Sympiler: Transforming Sparse Matrix Codes by Decoupling
Symbolic Analysis

Kazem Cheshmi

Rutgers University

Piscataway, NJ, US
kazem.ch@rutgers.edu

Michelle Mills Strout
University of Arizona
Tucson, AZ, US
mstrout@cs.arizona.edu

ABSTRACT

Sympiler is a domain-specific code generator that optimizes sparse
matrix computations by decoupling the symbolic analysis phase
from the numerical manipulation stage in sparse codes. The com-
putation patterns in sparse numerical methods are guided by the
input sparsity structure and the sparse algorithm itself. In many
real-world simulations, the sparsity pattern changes little or not at
all. Sympiler takes advantage of these properties to symbolically
analyze sparse codes at compile time and to apply inspector-guided
transformations that enable applying low-level transformations to
sparse codes. As a result, the Sympiler-generated code outperforms
highly-optimized matrix factorization codes from commonly-used
specialized libraries, obtaining average speedups over Eigen and
CHOLMOD of 3.8 and 1.5X respectively.

CCS CONCEPTS

« Software and its engineering — Source code generation; «
Computing methodologies — Parallel programming languages;

KEYWORDS

Matrix computations, sparse methods, loop transformations, domain-
specific compilation

ACM Reference format:

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri
Dehnavi. 2017. Sympiler: Transforming Sparse Matrix Codes by Decoupling
Symbolic Analysis. In Proceedings of SC17, Denver, CO, USA, November 12-17,
2017, 13 pages.

DOI: 10.1145/3126908.3126936

1 INTRODUCTION

Sparse matrix computations are at the heart of many scientific ap-
plications and data analytics codes. The performance and efficient

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC17, Denver, CO, USA

© 2017 ACM. 978-1-4503-5114-0/17/11...$15.00

DOI: 10.1145/3126908.3126936

Shoaib Kamil
Adobe Research
New York, NY, US
kamil@adobe.com

Maryam Mehri Dehnavi
Rutgers University
Piscataway, NJ, US

maryam.mehri@rutgers.edu

memory usage of these codes depends heavily on their use of spe-
cialized sparse matrix data structures that only store the nonzero
entries. However, such compaction is done using index arrays that
result in indirect array accesses. Due to these indirect array accesses,
it is difficult to apply conventional compiler optimizations such as
tiling and vectorization even for static index array operations like
sparse matrix vector multiply. A static index array does not change
during the algorithm; for more complex operations with dynamic
index arrays such as matrix factorization and decomposition, the
nonzero structure is modified during the computation, making con-
ventional compiler optimization approaches even more difficult to
apply.

The most common approach to accelerating sparse matrix com-
putations is to identify a specialized library that provides a manually-
tuned implementation of the specific sparse matrix routine. A large
number of sparse libraries are available (e.g., SuperLU [22], MUMPS
[2], CHOLMOD [11], KLU [20], UMFPACK [15]) for different numer-
ical kernels, supported architectures, and specific kinds of matrices.
While hand-written specialized libraries can provide high perfor-
mance, they must be manually ported to new architectures and may
stagnate as architectural advances continue. Alternatively, com-
pilers can be used to optimize code while providing architecture
portability. However, indirect accesses and the resulting complex
dependence structure run into limitations of compile-time loop
transformation frameworks.

Compiler loop transformation frameworks such as those based
on the polyhedral model use algebraic representations of loop nests
to transform code and successfully generate highly-efficient dense
matrix kernels [5, 10, 40, 55, 67, 69]. However, such frameworks
are limited when dealing with non-affine loop bounds and/or ar-
ray subscripts, both of which arise in sparse codes. Recent work
has extended polyhedral methods to effectively operate on kernels
with static index arrays. These work build run-time inspectors to
examine the nonzero structure and use executors to transform code
execution [65, 68, 70-72]. However, these techniques are limited
to transforming sparse kernels with static index arrays. Sympiler
addresses these limitations by performing symbolic analysis at com-
pile time to specialize the code for the nonzero pattern whereas the
inspector-executor approaches can only reorder data and schedules.
Symbolic analysis is a term from the numerical computing com-
munity; it uses the nonzero pattern of the sparse matrix to analyze
computation patterns. Information from symbolic analysis can be

SC17, November 12-17, 2017, Denver, CO, USA Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi
x=b; // copy RHS to z
for(j=0;j<n;j++){

x[j1/=Lx[Lp[jl1;

L: {n,Lp,Li,Lx} Dependence Graph (DGy)

Bl - —;f— L B = {ilb; # 0} = {1,6} for(p=Lp[j]+1;p<Lp[j+1];p++){
9 I; Reachy(8) = {1,6,7,8,9,10} x[Lilpl]-=Lx[pl*x[j1;}}
¢« 3 T (b) Forward substitution
4 12 9
L] xs
e o e E) 6 P e x=b; _
. 7 P e 6 x[0] /= Lx[0]; // Peel col 0
e o R Zs for(p = 1; p < 3; p++)
o fo o e 9 Tg x[Lilpl] -= Lx[p] * x[0];
. e o 10 10 for(px=1;px<3;px++){
B ST j=reachSet [px];x[j]l/=Lx[Lp[j]l]
@ for(p=Lp[jl+1;p<Llp[j+1];p++)
x[Lilpl]l-=Lx[pl*x[jl;}
x=b: x=b; x[7] /= Lx[20]; // Peel col 7

for(p = 21; p < 23; p++)
x[Lilpl] -= Lx[pl * x[7];
for (px=4;px<reachSetSize;px++){
j=reachSet [px];x[j1/=Lx[Lp[j]l]
for (p=Lp[jl1+1;p<Lp[j+1];p++)
x[Lil[pl]-=Lx[pl*x[j];}

(e) Sympiler-generated

for (px=0;px<reachSetSize;px++){
j=reachSet [px];
x[j1/=Lx[Lp[jl];
for(p=Lp[jl+1;p<Lp[j+1];p++){
x[Lilpll-=Lx[pl*x[j1;}}
(d) Decoupled code

for(j=0;j<n;j++){
if(x[j]1 '= 0){
x[j1/=Lx[Lp[j1];
for(p=Lp[jl+1;p<Lp[j+1];p++)
x[Lilpl]l-=Lx[pl*x[j1;}}

(c) Library implementation

Figure 1: Four different codes for solving the linear system in (a). In all four code variants, matrix L is stored in compressed
sparse column (CSC) format, with {n,Lp,Li,Lx} representing {matrix order, column pointer, row index, nonzeros} respectively.
The dependence graph DG is the adjacency graph of matrix L; vertices of DG, correspond to columns of L and its edges show de-
pendencies between columns in triangular solve. Vertices corresponding to nonzero columns are colored in blue and columns
that participate in the computation because of the dependence structure are in red. Boxes around columns show supernodes
of different sizes. (b) is a forward substitution algorithm. (c) is a library implementation that skips iterations when the cor-
responding entry in x is zero. (d) is the decoupled code that uses the symbolic information provided by the reachSet, which is
computed by performing a depth-first search on DGy . (e) is the Sympiler-generated code which peels iterations corresponding
to the columns inside the reach-set with more than 2 nonzeros.

used to make subsequent numeric manipulation faster, and can be
reused as long as the matrix nonzero structure remains constant.

For a number of sparse matrix methods such as LU and Cholesky,
it is well known that viewing their computations as a graph (e.g.,
elimination tree, dependence graph, or quotient graph) and apply-
ing a method-dependent graph algorithm yields information about
dependences that can then be used to more efficiently compute
the numerical method [14]. Most high-performance sparse matrix
computation libraries utilize symbolic information, but couple this
symbolic analysis with numeric computation, further making it
difficult for compilers to optimize such codes.

This work presents Sympiler, a domain-specific code generator
which produces high-performance sparse matrix code. Sympiler
fully decouples symbolic analysis from numeric computation and
transforms the sparse code using symbolic information. The sym-
bolic information is obtained using a symbolic inspector. Inspector-
guided transformations, such as variable-sized blocking, are then
applied resulting in performance equivalent to hand-tuned libraries.
But Sympiler goes further than existing numerical libraries by gen-
erating code for a specific matrix nonzero structure. Because the
matrix structure often arises from properties of the underlying
physical system that the matrix represents, in many cases the same
structure reoccurs multiple times, with different values of nonzeros.
Thus, Sympiler-generated code can combine inspector-guided and

low-level transformations to produce even more efficient code. The
transformations applied by Sympiler improve the performance of
sparse matrix codes through applying single-core optimizations
such as vectorization and increasing data locality, which should
extend to improve performance on shared and distributed memory
systems.

1.1 Motivating Scenario

The sparse triangular solve takes a lower triangular matrix L and
a right-hand side (RHS) vector b and solves the linear equation
Lx = b for x. It is a fundamental building block in many numerical
algorithms such as factorization [14, 43], direct system solvers [13],
and rank update methods [18], where the RHS vector is often sparse.
A naive implementation visits every column of the matrix L to
propagate the contributions of its corresponding x value to the rest
of x (see Figure 1b). However, when b is sparse the solution vector
is also sparse which can reduce the iteration space of the sparse
triangular solve. The reduced iteration space is proportional to the
number of nonzero values in x. To benefit from this property, the
nonzero pattern of x has to be computed. Based on a theorem from
Gilbert and Peierls [31], the dependence graph DGy = (V,E) for
matrix L with nodes V = {1, ...,n} and edges E = {(j,)|L;; # 0}
can be used to compute the nonzero pattern of x, where n is the
matrix rank and numerical cancellation is neglected. The nonzero

Sympiler: Transforming Sparse Codes

indices in x are given by Reachy (f) which is the set of all nodes
reachable from any node in § = {ilb; # 0} and is computed by
performing a depth-first search on the directed graph DGy starting
with . An example dependence graph is illustrated in Figure 1a.
The blue colored nodes correspond to the set § and the final reach-
set Reachp (f) contains all the colored nodes.

Figure 1 shows four different implementations of sparse triangu-
lar solve. All solvers shown in Figure 1 assume the input matrix L is
stored in a compressed sparse column (CSC) storage format. While
the naive implementation in Figure 1b traverses all columns, the
typical library implementation shown in Figure 1c skips iterations
when the corresponding value in x is zero.

The implementation in Figure 1d shows a decoupled code that
uses the symbolic information provided by the precomputed reach-
set. This decoupling simplifies numerical manipulation and reduces
the run-time complexity from O(|b|+n+ f) in Figure 1c to O(|b|+ f)
in Figure 1d, where f is the number of floating point operations
and |b| is the number of nonzeros in b. Sympiler goes further by
building the reach-set at compile time and using it to generate
code specialized for the specific matrix structure and the RHS. The
Sympiler-generated code is shown in Figure le, where the code
only iterates over reached columns and peels iterations where the
number of nonzeros in a column is greater than some threshold (in
the figure this threshold is 2). These peeled loops can be further
transformed with vectorization to speed up execution. This shows
the power of fully decoupling the symbolic analysis phase from the
code that manipulates numeric values; the compiler aggressively
applies conventional optimizations using the reach-set to guide the
transformations. On matrices from the Florida Sparse Matrix Col-
lection [19], the Sympiler-generated code shows speedups between
8.4x to 19x with an average of 13.6x compared to the forward
solve code (Figure 1b) and from 1.2X to 1.7x with an average of
1.3X compared to the library-equivalent code (Figure 1c).

1.2 Static Sparsity Patterns

Sympiler takes advantage of the fundamental concept that the
structure of sparse matrices in scientific codes is dictated by the
physical domain and as such does not change in many applications.
This structure often arises from the physical topology of the un-
derlying system, the discretization, and the governing equations.
These remain unchanged for long periods in simulations across
many domains. Some examples include: (i) solving nonlinear time-
dependent differential equations, where the Jacobian matrix has
a static sparsity pattern for each time point while the numerical
values change (example domains include fluid dynamics [45] and
electromagnetics [24, 47]); (ii) design problems where values or
parameters are chosen to maximize some measure of performance;
(examples include computer animation [7, 56]); (iii) domains where
the sparse matrix is assembled from a physical topology such as
power system modeling; (iv) controlling rigid multibody move-
ments in robotics applications where a sequence of linear systems
needs to be solved for a static input [52]; and (v) simulations where
the sparse stiffness matrix is assembled using a discretized mesh
and governing equations and remains static for long periods (e.g.
aerospace and electromagnetic simulations).

SC17, November 12-17, 2017, Denver, CO, USA

1.3 Contributions

This work describes Sympiler, a sparsity-aware code generator for
sparse matrix algorithms that leverages symbolic information to
generate fast code for a specific matrix structure. Major contribu-
tions of this paper are:

e A novel approach for building compile-time symbolic in-
spectors that obtain information about a sparse matrix for
use during compilation.

o Inspector-guided transformations that leverage compile-time
information to transform sparse matrix code for specific
algorithms.

e Implementations of symbolic inspectors and inspector-
guided transformations for two algorithms, namely the
sparse triangular solve and the sparse Cholesky factoriza-
tion.

o A demonstration of the performance impact of our code
generator, showing that Sympiler-generated code outper-
forms state-of-the-art libraries for triangular solve and
Cholesky factorization by up to 1.7x and 6.3X respectively.

2 SYMPILER: A SYMBOLIC-ENABLED CODE
GENERATOR

Sympiler generates efficient sparse kernels by tailoring sparse code
to specific matrix sparsity structures. By decoupling the symbolic
analysis phase, Sympiler uses information from symbolic analysis
to guide code generation for the numerical manipulation phase
of the kernel. In this section, we describe the overall structure of
the Sympiler code generator, as well as the domain-specific trans-
formations enabled by leveraging information from the symbolic
inspector.

2.1 Sympiler Overview

Sympiler currently supports sparse triangular solve and Cholesky
factorization. Given one of these numerical methods and an input
matrix stored using the compressed sparse column (CSC) format,
Sympiler utilizes a method-specific symbolic inspector to obtain
information about the matrix. Sample code that uses Sympiler is
shown in Figure 2a, specifying the input matrix and numerical
method. The numerical solver is internally represented using a
domain-specific abstract syntax tree (AST) which is annotated with
potential transformations. The annotated information is used to
apply domain-specific optimizations while lowering the code for
the numerical method. In addition, the lowered code is annotated
with additional low-level transformations (such as unrolling) when
applicable based on domain- and matrix-specific information. Fi-
nally, the annotated code is further lowered to apply low-level
optimizations and output to C source code.

2.2 Symbolic Inspector

Different numerical algorithms can make use of symbolic informa-
tion in different ways. Prior work has described run-time graph
traversal strategies for various numerical methods [12, 14, 44, 53].
The compile-time inspectors in Sympiler are based on these strate-
gies. For each class of numerical algorithms with the same symbolic
analysis approach, Sympiler uses a specific symbolic inspector to

SC17, November 12-17, 2017, Denver, CO,

(a) Input code

int main() {
Sparse A(type(float,64),
"Matrix.mtx");
Sparse rhs(type(float,64),
"RHS.mtx") ;

USA Kazem Cheshmi, Shoaib Kamil

Sparsity Pattern — Symbolic Inspector

v

Numerical -Gui
Triangular trns(A,rhs); I\L;| eh (;a |_r|1_specftor Gu.lded
trns.sympile_to_c("triang") L RIS
}
VS-Block and VI-Prune
(b) Initial AST (c) After VI-Prune
VI-Prune peel(0,3)
for sol.jp in O..Lsp.n for sol.pp in O..pruneSetSize
VS-Block Jo=pruneSet,, ;
x [bsp;,]1/=Lx[Lsp.diag(jo)]1; x[bsp;,1/=Lx[Lsp.diag(jo)];
VS-Block vec(0)

for sol.j; in Lsp.coly,..Lsp.col;,+1
x [Lsp.row;, 1-=Lx [j11*x [bsp;,];

for sol.j; in Lsp.colj,..Lsp.col;,+1

x[Lsp.row;, 1-=Lx [j11*x[bsp;,];

, Michelle Mills Strout, and Maryam Mehri Dehnavi

Code
Generation

Low-Level
Transformations

(d) After Low-Level Transformations

so=pruneSetg;

x[bsps,1/=Lx[Lsp.diag(sp)];

for sol.j; in Lsp.cols,..Lsp.cols,+1
x[Lsp.row;, 1-=Lx [j11*x [bsp,,];

for sol.pp in 0..pruneSetSize
Jo=pruneSet,, ;
x[bspj;,]1/=Lx[Lsp.diag(jo)];
for sol.j; in Lsp.colj,..Lsp.col;,+1

x[Lsp.row;, 1-=Lx [j1]1*x [bsp;,];

Figure 2: Sympiler lowers a functional representation of a sparse kernel to imperative code using the inspection sets. It con-
structs a set of loop nests and annotates them with domain-specific information that is later used in inspector-guided transfor-
mations. The inspector-guided transformations use the lowered code and inspection sets as input and apply transformations.
Inspector-guided transformations also provide hints for low-level transformations by annotating the code. For instance, the
transformation steps for the code in Figure 1 are: (a) Sympiler input code describing input matrices as well as the numerical
method; (b) The initial AST with annotations showing where the VI-Prune and VS-Block transformations apply; (c) The trans-
formed code after VI-Prune which has used the pruneSet to add low-level transformation hints such as peeling iterations 0
and 3; (d) The final code where hinted low-level transformations are applied (peeling is only shown for iteration zero).

for (I

1 for(){ . ory
2

3.
3. .

4 for(Ip < pruneSetSize) {
4 for(f <my { 5 II’(= pruneSet[I,];
’ 6
6 . ;

for(In (g, ...y In- ’

; e e s ForUn(oo Ta)) €
\) Dotk ind 5 alidx(ly, ..., 1L, ..., In)T;
10 3} 10) 3}

1
1} 2)

(a) Before (b) After
Variable Iteration Space Pruning, loop[k].VI-Prune(pruneSet,pruneSetSize)
1 for(b < blockSetSize) {
1 for(I) { 2 for(J; < blockSet[b].x) {
2 for(J) { 3 for(J; < blockSet[bl.y) {
3 BLidx1(I,J)] op1= alidx2(I,J)1; 4 BLidx1(b, Ji,2)]1 opl = ALidx2(b, J1, J2)1;
4 } 5 }
5) 6 3}
7}

(c) Before
2D Variable-Sized Blocking, loop[I].VS-Block(blockSet,blockSetSize)

(d) After

Figure 3: The inspector-guided transformations. Top: The loop over I, with iteration space m in (a) transforms to a loop over
I, with iteration space pruneSetSize in (b). Any use of the original loop index I is replaced with its corresponding value from
pruneSet i.e., /’C Bottom: The two nested loops in (c) are transformed into loops over variable-sized blocks in (d).

Sympiler: Transforming Sparse Codes

obtain information about the sparsity structure of the input ma-
trix and stores it in an algorithm-specific way to be used in the
transformation stages.

We classify symbolic inspectors based on the numerical method
as well as the transformations enabled by the obtained information.
For each combination of algorithm and transformation, the sym-
bolic inspector creates an inspection graph from the given sparsity
pattern and traverses it during inspection using a specific inspec-
tion strategy. By running the inspector on the inspection graph
inspection sets are generated. Inspection sets are used to guide
transformations in Sympiler.

For our motivating example, triangular solve, the reach-set can be
used to prune loop iterations that perform work made unnecessary
due to the sparseness of the matrix or the right hand side. In this
case, the inspection set is the reach-set and the inspection strategy
is to perform a depth-first search over the inspection graph, which
is the directed dependency graph DGy of the triangular matrix.
For the example linear system shown in Figure 1, the symbolic
inspector generates the reach-set {6, 1, 7, 8, 9, 10}.

2.3 Inspector-guided Transformations

The initial lowered code along with inspection sets obtained by the
symbolic inspector go through a series of passes that further trans-
form the code. Sympiler currently supports two transformations
guided by inspection sets, namely Variable Iteration Space Pruning
and 2D Variable-Sized Blocking, which can be applied independently
or jointly depending on the input sparsity. As shown in Figure 2b,
the code is internally annotated with information showing where
inspector-guided transformations may be applied. The symbolic
inspector provides the required information to the transformation
phases, which decide whether to transform the code based on the
inspection sets. Given the inspection set and annotated code, trans-
formations occur as illustrated in Figure 3.

2.3.1 Variable Iteration Space Pruning. Variable Iteration Space
Pruning (VI-Prune) prunes the iteration space of a loop using infor-
mation about the sparse computation. The iteration space for sparse
codes can be considerably smaller than that of dense codes, since
only iterations with nonzeros are computed. The inspection stage
of Sympiler generates an inspection set that enables transforming
the unoptimized sparse code to a code with a reduced iteration
space.

Given this inspection set, VI-Prune is applied at a particular loop-
level to transform the code from Figure 3a to Figure 3b. In the figure,
the transformation is applied to the kth loop nest in line 4. In the
transformed code the iteration space is pruned to pruneSetSize,
which is the inspection set size. In addition to the new loop, all
references to I are replaced by its corresponding value from the in-
spection set, pruneSet[I,]. Furthermore, the transformation phase
uses the inspection set information to annotate certain loops with
low-level optimizations. These low-level transformations are ap-
plied in subsequent stages of code generation and are guided by
tunable thresholds to generate faster code.

In our running triangular solve example, the VI-Prune transfor-
mation elides unnecessary iterations due to zeros in the right hand
side. In addition, depending on the number of iterations the loops
will run (which is known thanks to the symbolic inspector), loops

SC17, November 12-17, 2017, Denver, CO, USA

are annotated with directives to unroll and/or vectorize during code
generation.

2.3.2 2D Variable-Sized Blocking. 2D Variable-Sized Blocking
(VS-Block) converts a sparse code to a set of non-uniform dense sub-
kernels. In contrast to the conventional approach of blocking/tiling
dense codes, where the input and computations are blocked into
smaller uniform sub-kernels, the unstructured computations and
inputs in sparse kernels make blocking optimizations challenging.
The symbolic inspector identifies sub-kernels with similar structure
in the sparse matrix methods and sparse inputs to find “blockable”
sets that are not necessarily of the same size or consecutively lo-
cated. These blocks are similar to the concept of supernodes [43] in
sparse libraries. VS-Block must deal with a number of challenges:

e The block sizes are variable in a sparse kernel.

o Because of using compressed storage formats, the block
elements may not be in consecutive memory locations.

e The type of numerical method used may have to change
after applying this transformation. For example, to apply
VS-Block to sparse Cholesky code, a dense Cholesky fac-
torization has to be applied to the diagonal segment of the
blocks and the off-diagonal segments need to be updated
with dense triangular solves.

To address the first challenge, the symbolic inspector provides
an inspection set which specifies the size of each block. For the
second challenge, the transformed code allocates temporary block
storage and copies data as needed prior to operating on the block.
Finally, to deal with the last challenge, the synthesized loops/in-
structions in the lowering phase will contain information about
the block location in the matrix and the correct operation is cho-
sen for each loop/instruction when applying the transformation.
Similar to VI-Prune, VS-Block also annotates loops with low-level
transformations such as tiling for the code generation phase. By
leveraging specific information about the matrix when applying
the transformation, Sympiler is able to apply VS-Block to sparse
numerical methods.

An off-diagonal version of the VS-Block transformation is shown
in Figures 3c and 3d. A new outer loop is created. This outer loop
provides block information to the inner loops using the blockSet.
The inner loop in Figure 3c is transformed to two nested loops
(lines 2-6) that iterate over the block specified by the outer loop.
In line 3 of Figure 3c, the vector a is operated on and the result is
stored in matrix B. After the VS-Block transformation, this vector
operation is converted to a matrix-matrix operation as shown in
line 4 of Figure 3d. Indices J; and J» are used to access a particular
block in matrix A. Examples of applying VS-Block to triangular
solve and Cholesky factorization are provided in Section 3.

2.4 Enabled Conventional Low-level
Transformations

While applying inspector-guided transformations, the original loop
nests are transformed into new loops with potentially different
iteration spaces, enabling the application of conventional low-level
transformations. Based on the applied inspector-guided transforma-
tions as well as the properties of the input matrix and the right-hand
side vectors, the code is annotated with transformation directives.

SC17, November 12-17, 2017, Denver, CO, USA

1 for(column j = 0 to n){

2 £ = A(:,3)

3 PruneSet = The sparsity pattern of row j

4 for(every row r in PruneSet){ // Update

5 f -= L(j:n,r) * L(j,r);

6 }

7 L(k,k) = sqrt(£(k)); // Diagonal

s for(off-diagonal elements in f){ // Off-diagonal
9 L(k+1:n,k) = f(k+1:n) / L(k,k);

10 r

Figure 4: Pseudo-code of left-looking Cholesky.

An example of these annotations is shown in Figure 2¢ where loop
peeling is annotated within the VI-Pruned code. To decide when to
add these annotations, the inspector-guided transformations use
sparsity-related parameters such as the average block size. Follow-
ing lists sources that enable Low-level transformations:

(1) Symbolic information provides dependency information
at compile time allowing Sympiler to apply more transfor-
mations such as peeling based on the reach-set in Figure 1;

(2) Inspector-guided transformations remove some of the indi-
rect memory accesses and annotate the code with potential
conventional transformations;

(3) Sparsity-specific code generation provides Sympiler with
information such as loop boundaries at compile time. A
a result, several customized transformations are applied
such as vectorization of loops with iteration counts greater
than a threshold.

Figure le demonstrates the process in which iterations in the
triangular solve code after VI-Prune are peeled. In this example,
the inspection set used for VI-Prune is the reach-set {1, 6, 8,9, 10}.
Because the reach-set is created in topological order, iteration order-
ing dependencies are met and thus code correctness is guaranteed
after loop peeling. As shown in Figure 2c, the transformed code
after VI-Prune is annotated with the enabled peeling transforma-
tion based on the number of nonzeros in the columns (the column
count). The two selected iterations with column count greater than
two are peeled. The peeled iterations are either replaced with a
specialized kernel or another transformation such as vectorization
is applied to them.

3 CASE STUDIES

Sympiler currently supports two important sparse matrix computa-
tions, namely the triangular solve and Cholesky factorization. This
section discusses some of the graph theory and algorithms used in
Sympiler’s symbolic inspector to extract inspection sets for these
two matrix methods. The run-time complexity of the symbolic in-
spector is also presented to evaluate inspection overheads. Finally,
we demonstrate the process of applying the VI-Prune and VS-Block
transformations using the inspection sets. Sympiler’s extension to
other matrix methods is also discussed.

Table 1 shows a classification of the inspection graphs, inspec-
tion strategies, and resulting inspection sets for the two studied

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi

A L T
1 LY . 1
.o) ®
3 . o 3
4 o @ . ! Q
¢ 5 . N e 5 @
. . () . e o 00 6 0
. e o 7 . e o 7
° o o 8 . o o ¢ o 8 o @
. . . 9 e e o 0o 0 0 0 0 9 e 0
. o o o 10 . e o o 10
@ ©

Figure 5: An example matrix A and its L factor from
Cholesky factorization. The corresponding elimination tree
(T) of A is also shown. Nodes in T and columns in L high-
lighted with the same color belong to the same supernode.
The red nonzeros in L are fill-ins.

numerical algorithms in Sympiler. As shown in Table 1, the sym-
bolic inspector performs a set of known inspection methods and
generates sets which include symbolic information. The last column
of Table 1 shows the list of low-level transformations enabled by
each inspector-guided transformation.

3.1 Sparse Triangular Solve

Theory: The symbolic inspector traverses the dependency graph
DGy, using depth-first search (DFS) to determine the inspection set
for the VI-Prune transformation, which in this case is the reach-set
from DGy and the right-hand side vector. The graph DGy is also
used to detect blocks with similar sparsity patterns, also known
as supernodes, in sparse triangular solve. The block-set, which
contains columns of L grouped into supernodes, is identified by
inspecting DGy, using a node equivalence method. The node equiv-
alence algorithm initially assumes nodes v; and v; are equivalent
and compares their outgoing edges. If the outgoing edges point to
the same destination nodes then the two nodes are equal and are
merged.

Inspector-guided Transformations: Using the reach-set, VI-
Prune limits the iteration space of the loops in triangular solve to
only those that operate on relevant nonzeros. The VS-Block trans-
formation changes the loops in triangular solve to apply blocking
as shown in Figure 2b. The diagonal block of each column-block,
which is a small triangular solve, is solved first and its solution
replaces the off-diagonal segment of the matrix.

Symbolic Inspection: The time complexity of DFS on graph
DGy is proportional to the number of edges traversed and the
number of nonzeros in the RHS of the system. The time complexity
for the node equivalence algorithm is proportional to the number
of nonzeros in L. We provide overheads for these methods for the
tested matrices in Section 4.3.

3.2 Cholesky Factorization

Cholesky factorization is commonly used in direct solvers and
is used to precondition iterative solvers. The algorithm factors a
Hermitian positive definite matrix A into LLT, where matrix L is a
lower triangular matrix. Figure 5 shows an example matrix A and
the corresponding L matrix after factorization.

Theory: The elimination tree (etree) [17] is one of the most
important graph structures used in the symbolic analysis of sparse

Sympiler: Transforming Sparse Codes

SC17, November 12-17, 2017, Denver, CO, USA

Table 1: Inspection and transformation elements in Sympiler for triangular solve and Cholesky. DG: dependency graph, SP
(RHS): sparsity patterns of the right-hand side vector, DFS: depth-first search, SP(A): sparsity patterns of the coefficient A, SP
(L)): sparsity patterns of the ;' hrow of L, unroll: loop unrolling, peel: loop peeling, dist: loop distribution, tile: loop tiling.

Transformations Triangular Solve Cholesky
Inspection Inspection Inspection Set | Inspection Inspection Inspection Set | Enabled
Graph Strategy Graph Strategy Low-level
VI-Prune DG + DFS Prune-set etree + Single-node | Prune-set dist, unroll, peel,
SP(RHS) (reach-set) SP(A) up-traversal | (SP(Lj)) vectorization
VS-Block DG Node Block-set etree + | Up-traversal | Block-set tile, unroll, peel,
equivalence | (supernodes) | ColCount(L) (supernodes) | vectorization

factorization algorithms. Figure 5 shows the corresponding elimi-
nation tree for factorizing matrix A. The etree of A is a spanning
tree of G*(A) satisfying parent[j] = min{i > j : Lj; # 0} where
G*(A) is the graph of L + LT . The filled graph or G*(A) results at
the end of the elimination process and includes all edges of the
original matrix A as well as the fill-in edges. Detailed discussions
of the theory behind the elimination tree, the elimination process,
and the filled graph can be found in [14, 53].

Figure 4 shows the pseudo-code of the left-looking sparse Cholesky,
which is performed in two phases of update (lines 3-6) and column
factorization (lines 7-10). The update phase gathers the contribu-
tions from the already factorized columns on the left. The column
factorization phase calculates the square root of the diagonal ele-
ment and applies it to the off-diagonal elements.

To find the prune-set that enables the VI-Prune transformation,
the row sparsity pattern of L has to be computed. Figure 4 shows
how this information is used to prune the iteration space of the
update phase in the Cholesky algorithm. Since L is stored in column
compressed format, the etree and the sparsity pattern of A are used
to determine the L row sparsity pattern. A non-optimal method
for finding the row sparsity pattern of row i in L is that for each
nonzero A;; the etree of A is traversed upwards from node j until
node i is reached or a marked node is found. The row-count of i is
the visited nodes in this subtree. Sympiler uses a similar but more
optimized approach from [14] to find row sparsity patterns.

Supernodes used in VS-Block for Cholesky are found with the L
sparsity pattern and the etree. The sparsity pattern of L is different
from A because of fill-ins created during factorization. However,
the elimination tree T along with the sparsity pattern of A are
used to find the sparsity pattern of L prior to factorization. As a
result, memory for L is allocated ahead of time to eliminate the
need for dynamic memory allocation. To create the supernodes, the
fill-in pattern should be first determined. Equation (1) is based on
a theorem from [29] and computes the sparsity pattern of column
jin L, Lj, where T(s) is the parent of node s in T and “\" means
exclusion. The theorem states that the nonzero pattern of L; is the
union of the nonzero patterns of the children of j in the etree and
the nonzero pattern of column j in A.

=4 o[U Ls\s} (1)

J=T(s)
When the sparsity pattern of L is obtained, the following rule is used
to merge columns to create basic supernodes: when the number

of nonzeros in two adjacent columns j and j — 1, regardless of the
diagonal entry in j — 1 are equal and j — 1 is the only child of j in T,
the two columns are merged.

Inspector-guided transformations: The VI-Prune transforma-
tion is applied to the update phase of Cholesky. With the row
sparsity pattern information when factorizing column i, Sympiler
only iterates over dependent columns instead of all columns smaller
than i. The VS-Block transformation can be applied to both the
update and the column factorization phases. Therefore, the outer
loop in the Cholesky algorithm in Figure 4 is converted to a new
loop that iterates over the block-set. All references to the column
Jj in the inner loops will be changed to the blockSet[j]. For the di-
agonal part of the column factorization, a dense Cholesky needs
to be computed instead of the square root in the non-supernodal
version. The resulting factor from the diagonal elements applies to
the off-diagonal rows through a sequence of dense triangular solves.
VS-Block also converts the update phase from vector operations to
matrix operations.

Symbolic Inspection: The computational complexity for build-
ing the etree in sympiler is nearly O(]A|). The run-time complexity
for finding the sparsity pattern of row i is proportional to the num-
ber of nonzeros in row i of A. The method is executed for all columns
which results in a run-time of nearly O(|A|).The inspection over-
head for finding the block-set for VS-Block includes the sparsity
detection which is done in nearly O(|A| + 2n) and the supernode
detection which has a run-time complexity of O(n) [14].

3.3 Other Matrix Methods

The inspection graphs and inspection strategies supported in the
current version of Sympiler are used in a large class of commonly-
used sparse matrix computations. The applications of the elimina-
tion tree go beyond the Cholesky factorization method and extend
to some of the most commonly used sparse matrix routines in
scientific applications such as LU, QR, orthogonal factorization
methods [46], and incomplete and factorized sparse approximate
inverse preconditioner computations [38]. Inspection of the de-
pendency graph and proposed inspection strategies that extract
reach-sets and supernodes from the dependency graph are the
fundamental symbolic analyses required to optimize algorithms
such as rank update/downdate methods [18], incomplete LU(0) [49],
incomplete Cholesky preconditioners, and up-looking implementa-
tions of factorization algorithms. Thus, Sympiler with the current
set of symbolic inspectors can be made to support many of these

SC17, November 12-17, 2017, Denver, CO, USA

Table 2: Matrix set: The matrices are sorted based on the
number of nonzeros in the original matrix; nnz refers to
number of nonzeros, n is the rank of the matrix.

Problem Name n (10%) | nnz (A)
D (10%)
1 cbuckle 13.7 | 0.677
2 Pres_Poisson 14.8 0.716
3 gyro 17.4 1.02
4 gyro_k 17.4 | 1.02
5 Dubcova2 65.0 1.03
6 msc23052 23.1 1.14
7 thermomech_dM 204 1.42
8 Dubcova3 147 3.64
9 parabolic_fem 526 3.67
10 ecology?2 1000 | 5.00
11 tmt_sym 727 5.08

matrix methods. We plan to extend to an even larger class of matrix
methods and to support more optimization techniques.

4 EXPERIMENTAL RESULTS

We evaluate Sympiler by comparing the performance to two state-
of-the-art libraries, namely Eigen [33] and CHOLMOD [11], for
the Cholesky factorization method and the sparse triangular solve
algorithm. Section 4.1 discusses the experimental setup and ex-
perimental methodology. In Section 4.2 we demonstrate that the
transformations enabled by Sympiler generate highly-optimized
codes for sparse matrix algorithms compared to state-of-the-art
libraries. Although symbolic analysis is performed only once at
compile time for a fixed sparsity pattern in Sympiler, we analyze
the cost of the symbolic inspector in Section 4.3 and compare it
with symbolic costs in Eigen and CHOLMOD.

4.1 Methodology

We selected a set of symmetric positive definite matrices from [19],
which are listed in Table 2. The matrices originate from different
domains and vary in size. All matrices have real numbers and
are in double precision. The testbed architecture is a 3.30GHz
Intel® Core™i7-5820K processor with L1, L2, and L3 cache sizes
of 32KB, 256KB, and 15MB respectively with turbo-boost disabled.
OpenBLAS.0.2.19 [73] is used for dense BLAS (Basic Linear Alge-
bra Subprogram) routines when needed. All Sympiler-generated
codes are compiled with GCC v.5.4.0 using the -03 option. Each
experiment is executed 5 times and the median is reported.

We compare the performance of the Sympiler-generated code
with CHOLMOD [11] as a specialized library for Cholesky factoriza-
tion and with Eigen [33] as a general numerical library. CHOLMOD
provides one of the fastest implementations of Cholesky factoriza-
tion on single-core architectures [32]. Eigen supports a wide range
of sparse and dense operations including sparse triangular solve and
Cholesky. Thus, Cholesky factorization results are compared with
both Eigen and CHOLMOD while results for triangular solve are
compared to Eigen. Both libraries are installed and executed using
the recommended default configuration. For the Cholesky factor-
ization both libraries support the more commonly used left-looking

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi

[ISympiler: VS-Block
] Il Sympiler: VS-Block+VI-Prune
[TISympiler: VS-Block+VI-Prune+Low-Level

MEigen

1 2 3 4 5 6 7 8 9 10 "

Figure 6: Sympiler’s performance compared to Eigen for tri-
angular solve. The stacked-bars show the performance of
the Sympiler (numeric) code with VS-Block and VI-Prune.
The effects of VS-Block, VI-Prune, and low-level transforma-
tions on Sympiler’s performance are shown separately.

- n
| | |

Triangular Solve GFLOP/s

(supernodal) algorithm which is also the algorithm used by Sympiler.
Sympiler applies one or both of the inspector-guided transforma-
tions as well as some of the enabled low-level transformations. For
low-level transformations, Sympiler currently supports unrolling,
scalar replacement, and loop distribution. For direct comparison
of different implementations, a constant floating point operation
(FLOP) count is used across all implementations.

4.2 Performance of Generated Code

This section shows how the combination of the introduced transfor-
mations and the decoupling strategy enable Sympiler to outperform
two state-of-the-art libraries for sparse Cholesky and sparse trian-
gular solve.

Triangular solve: Figure 6 shows the performance of Sympiler-
generated code compared to the Eigen library for a sparse triangular
solve with a sparse RHS. The nonzero fill-in of the RHS in our
experiments is selected to be less than 5%. The sparse triangular
system solver is often used as a sub-kernel in algorithms such as
left-looking LU [14] and Cholesky rank update methods [18] or as
a solver after matrix factorizations. Thus, typically the sparsity of
the RHS in sparse triangular systems is close to the sparsity of the
columns of a sparse matrix. For the tested problems, the number of
nonzeros for all columns of L is less than 5%.

The average improvement of Sympiler-generated code, which we
refer to as Sympiler (numeric), over the Eigen library is 1.49X. Eigen
implements the approach demonstrated in Figure 1c, where sym-
bolic analysis is not decoupled from the numerical code. However,
the Sympiler-generated code only manipulates numerical values
which leads to higher performance. Figure 6 also shows the effect
of each transformation on the overall performance of the Sympiler-
generated code. In the current version of Sympiler the symbolic
inspector is designed to generate sets so that VS-Block can be ap-
plied before VI-Prune. Our experiments show that this ordering
often leads to better performance mainly because Sympiler supports

Sympiler: Transforming Sparse Codes

7] [sympiler: VS-Block

— [sympiler: VS-Block+Low-Level

[| Sympiler-A: VS-Block+Low-Level
M Eigen (Numeric)

— [CHOLMOD (Numeric)

_| Il CHOLMOD-A (Numeric)

Cholesky %FLOP/S
|

Ul L

1 2 3 4 5 6 7 8 9 10 1

Figure 7: The performance of Sympiler (numeric) for
Cholesky compared to CHOLMOD (numeric) and Eigen
(numeric). The stacked-bar shows the performance of the
Sympiler-generated code. The effect of VS-Block and low-
level transformations are shown separately. The VI-Prune
transformation is already applied to the baseline code so it is
not shown here. Sympiler-A and CHOLMOD-A refer to ver-
sions with node amalgamation.

supernodes with a full diagonal block. As support for more trans-
formations are added to Sympiler, we will enable it to automatically
decide the best transformation ordering. Whenever applicable, vec-
torization and peeling transformations are applied after VS-Block
and VI-Prune. Peeling leads to higher performance if applied after
VS-Block where iterations related to single-column supernodes are
peeled. Vectorization is always applied after VS-Block and does not
improve performance if only VI-Prune is applied.

Matrices 3, 4, 5, and 7 do not benefit from the VS-Block transfor-
mation so their Sympiler run-times in Figure 6 are only for VI-Prune.
Since small supernodes often do not lead to better performance,
Sympiler does not apply the VS-Block transformation if the average
size of the participating supernodes is smaller than a threshold.
This parameter is currently hand-tuned and is set to 160. VS-Block
is not applied to matrices 3, 4, 5, and 7 since the average supernode
size is too small and thus does not improve performance. Also, since
these matrices have a small column count vectorization does not
payoff.

Cholesky: We compare the numerical manipulation code of Eigen
and CHOLMOD for Cholesky factorization with the Sympiler-
generated code. The results for CHOLMOD and Eigen in Figure 7
refer to the numerical code performance in floating point operations
per second (FLOP/s). Eigen and CHOLMOD both execute parts of
the symbolic analysis only once if the user explicitly indicates that
the same sparse matrix is used for subsequent executions. However,
even with such an input from the user, none of the libraries fully
decouple the symbolic information from the numerical code. This is
because they can not afford to have a separate implementation for
each sparsity pattern and also do not implement sparsity-specific
optimizations. For fairness, when using Eigen and CHOLMOD we
explicitly tell the library that the sparsity is fixed and thus report

SC17, November 12-17, 2017, Denver, CO, USA

only the time related to the library’s numerical code (which still
contains some symbolic analysis).

As shown in Figure 7, for Cholesky factorization Sympiler per-
forms up to 1.3%, 2.3X, and 6.3X better than CHOLMOD with node
amalgamation [26], CHOLMOD without node amalgamation, and
Eigen respectively. Eigen uses the left-looking non-supernodal al-
gorithm and thus its performance does not scale well with large ma-
trices. CHOLMOD benefits from supernodes and performs well for
large matrices with large supernodes. However, CHOLMOD does
not perform well for some small matrices and large matrices with
small supernodes. Node amalgamation merges small supernodes
to increase their size for better performance and is implemented
in both CHOLMOD and Sympiler. Sympiler provides the highest
performance for almost all tested matrix types which demonstrates
the effectiveness of sparsity-specific code generation.

The application of kernel-specific and aggressive optimizations
when generating code for dense sub-kernels enables Sympiler to
generate fast code for any sparsity pattern. Since BLAS routines
are not well-optimized for small dense kernels they often do not
perform well for the small blocks produced by applying VS-Block
to sparse codes [63]. Therefore, libraries such as CHOLMOD do
not perform well for matrices with small supernodes. Sympiler
has the luxury to generate code for its dense sub-kernels; instead
of being handicapped by the performance of BLAS routines, it
generates specialized and highly-efficient codes for small dense
sub-kernels. If the average column-count for a matrix is above a
tuned threshold, Sympiler will call BLAS routines [73] instead. Since
the column-count directly specifies the number of dense triangular
solves, which is the most important dense sub-kernel in Cholesky,
the average column-count is used to decide when to switch to BLAS
routines [73]. For example, the average column-count of matrices
3, 4, 6, and 8 is less than the column-count threshold.

Decoupling the prune-set calculation from the numerical ma-
nipulation phase also improves the performance of the Sympiler-
generated code. As discussed in subsection 3.2, the sparse Cholesky
implementation needs the row sparsity pattern of L. The elimina-
tion tree of A and the upper triangular part of A are both used in
CHOLMOD and Eigen to find the row sparsity pattern. Since A is
symmetric with only the lower part stored, both libraries compute
the transpose of A in the numerical code to access the upper trian-
gular elements. Through fully decoupling symbolic analysis from
the numerical code, Sympiler has the L row sparsity information
in the prune-set ahead of time. Therefore, both the reach function
and the matrix transpose operations are removed from the numeric
code.

4.3 Symbolic Analysis Time

All symbolic analysis is performed at compile time in Sympiler
and its generated code only manipulates numerical values. Since
symbolic analysis is performed once for a specific sparsity pattern,
its overheads amortize with repeat executions of the numerical
code. However, as demonstrated in Figures 8 and 9 even if the
numerical code is executed only once, which is not common in
scientific applications, the accumulated symbolic+numeric time of
Sympiler is close to Eigen for the triangular solve and faster than
both Eigen and CHOLMOD for Cholesky.

SC17, November 12-17, 2017, Denver, CO, USA

2.0
[Sympiler (Numeric)

] Sympiler (Symbolic)
M Eigen

1 2 3 4 5 6 7 8 9 10 "

Figure 8: Sparse triangular solve symbolic+numeric time for
Sympiler and Eigen’s normalized over the Eigen time.

o &
|]

Triangular Solve Time / (Eigen Time)
@
|

Triangular solve: Figure 8 shows the time Sympiler spends
to do symbolic analysis at compile time, Sympiler (symbolic), for
sparse triangular solve, normalized over Eigen’s run-time. No sym-
bolic time is available for Eigen since as discussed, Eigen uses the
code in Figure 1c for its triangular solve implementation. Sympiler’s
numeric plus symbolic time is on average 1.27X slower than the
Eigen code. In addition, depending on the matrix, code generation
and compilation in Sympiler costs between 6-197x more than the
numeric solve. It is important to note that since the sparsity struc-
ture of the matrix in triangular solve does not change in many
applications, the overhead of the symbolic inspector and compi-
lation is only paid once. For example, in preconditioned iterative
solvers a triangular system must be solved per iteration and often
the iterative solver must execute thousands of iterations [8, 41, 50]
until convergence since the systems in scientific applications are
not necessarily well-conditioned.

Cholesky: Sparse libraries perform symbolic analysis ahead of
time which can be re-used for same sparsity patterns and improves
the performance of their numerical executions. We compare the
analysis time of the libraries with Sympiler’s symbolic inspection
time. Figure 9 provides the symbolic analysis and numeric manip-
ulation times for both libraries normalized over Eigen time. The
time spent by Sympiler to perform symbolic analysis is referred to
as Sympiler symbolic. CHOLMOD (symbolic) and Eigen (symbolic)
refer to the partially decoupled symbolic code that is only executed
once if the user indicates that sparsity remains static. In nearly
all cases Sympiler’s accumulated time is better than the other two
libraries. Code generation and compilation, which are not shown
in the chart, cost at most 0.3x the cost of numeric factorization.
Also, similar to the triangular solve example, a matrix with a fixed
sparsity pattern must be factorized many times in scientific applica-
tions. For example, in Newton-Raphson (NR) solvers for nonlinear
systems of equations, a Jacobian matrix is factorized in each itera-
tion and the NR solvers require tens or hundreds of iterations to
converge [21, 51].

5 RELATED WORK

Compilers for general languages are hampered by optimiza-
tion methods that either cannot optimize sparse codes or only

10

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi

2.0

[TISympiler (Symbolic)
MEigen (Numeric)

[|Eigen (Symbolic)
[FICHOLMOD (Numeric)
CHOLMOD (Symbolic) I

I] .
| |
n L] - u
1 2 3 4 5 6 7 8 9 10 11

Figure 9: Symbolic+numeric time for Sympiler, CHOLMOD,
and Eigen for the Cholesky algorithm. All times are normal-
ized over the Eigen’s accumulated symbolic+numeric time.

[EISympiler (Numeric) I

Cholesky Time / (Eigen Time)
5 &
| |

o
3
1

apply conservative transformations that do not lead to high per-
formance. This is due to the indirection required to index and
loop over nonzero elements of sparse data structures. Polyhedral
methods are limited when dealing with non-affine loop nests or
subscripts [5, 10, 40, 55, 67, 69] common in sparse computations.

To make it possible for compilers to apply more aggressive loop
and data transformations to sparse codes, recent work [65, 68, 70—
72] has developed compile-time techniques for automatically creat-
ing inspectors and executors for use at run-time. These techniques
use an inspector to analyze index arrays in sparse codes at run-time
and an executor that uses this run-time information to execute code
with specific optimizations. These inspector-executor techniques
are limited in that they only apply to sparse codes with static index
arrays; such codes require the matrix structure to not change during
the computation. The aforementioned approach performs well for
methods such as sparse incomplete LU (0) and Gauss-Seidel meth-
ods where additional nonzeros/fill-ins are not introduced during
computation. However, in a large class of sparse matrix methods,
such as direct solvers including Cholesky, LU, and QR decomposi-
tions, index arrays dynamically change during computation since
the algorithm itself introduces fill-ins. In addition, the indirections
and dependencies in sparse direct solvers are tightly coupled with
the algorithm, making it difficult to apply inspector-executor tech-
niques. Partial evaluation techniques [39] specialize code by using
partial inputs and the program to generate code that works well for
all the remaining inputs. These methods have not been successfully
extended to support sparse matrix methods [36].

Domain-specific compilers integrate domain knowledge into
the compilation process, improving the compiler’s ability to trans-
form and optimize specific kinds of computations. Such an approach
has been used successfully for stencil computations [37, 57, 66], sig-
nal processing [54], dense linear algebra [34, 64], matrix assembly
and mesh analysis [1, 48], simulation [9, 42], and sparse opera-
tions [16, 58]. Though the simulations and sparse compilers use
some knowledge of matrix structure to optimize operations, they
do not build specialized matrix solvers.

Specialized Libraries are the typical approach for sparse direct
solvers. These libraries differ in (1) which numerical methods are

Sympiler: Transforming Sparse Codes

implemented, (2) the implementation strategy or variant of the
solver, (3) the type of the platform supported, and (4) whether the
algorithm is specialized for specific applications.

Each numerical method is suitable for different classes of ma-
trices; for example, Cholesky factorization requires the matrix
be symmetric (or Hermitian) positive definite. Libraries such as
SuperLU [22], KLU [20], UMFPACK [12], and Eigen [33] provide
optimized implementations for LU decomposition methods. The
Cholesky factorization is available through libraries such as Eigen [33],
CSparse [14], CHOLMOD [11], MUMPS [2-4], and PARDISO [59,
60]. QR factorization is implemented in SPARSPAK[28, 30], SPLOOES
[6], Eigen [33], and CSparse [14]. The optimizations and algorithm
variants used to implement sparse matrix methods differ between
libraries. For example, LU decomposition can be implemented using
multifrontal methods [12, 15, 35], left-looking [20, 22, 27, 28], right-
looking [25, 44, 61], and up-looking [13, 62] methods. Libraries are
developed to support different platforms such as sequential imple-
mentations [11, 14, 20], shared memory [15, 23, 59], and distributed
memory [3, 23]. Finally, some libraries are designed to perform well
on matrices arising from a specific domain. For example, KLU [20]
works best for circuit simulation problems. In contrast, SuperLU-
MT applies optimizations with the assumption that the input matrix
structure leads to large supernodes; such a strategy is a poor fit for
circuit simulation problems.

6 FUTURE WORK AND CONCLUSION

In this paper we demonstrated how decoupling symbolic analysis
from numerical manipulation can enable the generation of domain-
specific highly-optimized sparse codes with static sparsity patterns.
Sympiler, the proposed domain-specific code generator, takes the
sparse matrix pattern and the sparse matrix algorithm as inputs to
perform symbolic analysis at compile time. It then uses the informa-
tion from symbolic analysis to apply a number of inspector-guided
and low-level transformations to the sparse code. The Sympiler-
generated code outperforms two state-of-the-art sparse libraries,
Eigen and CHOLMOD, for the sparse Cholesky and the sparse
triangular solve algorithms.

We believe Sympiler has the potential to support a large class
of sparse matrix methods, accommodate adaptive changes to the
input sparsity pattern, and generate optimized code for parallel
and distributed hardware platforms. So far, our implementation has
only scratched the surface of what kinds applications and optimiza-
tions are possible. In future work, we will explore new inspector-
guided transformations to support code generation for parallel and
heterogeneous platforms. Although static sparsity is common and
important enough to warrant exploring code specialized for specific
sparsity patterns, adaptive updates to the input sparsity can also be
supported by Sympiler and will be explored in future work. While
domain experts are often aware of changes in sparsity, Sympiler
will be extended to detect incorrect input for code generated for
a specific sparsity pattern. Finally, we plan to extend Sympiler to
enable cross-kernel optimization and optimize whole applications
at once rather than only the solver.

11

SC17, November 12-17, 2017, Denver, CO, USA

7 ACKNOWLEDGEMENTS

This work is supported by the U.S. National Science Foundation
(NSF) Award Numbers CCF-1657175 and CCF-1564074. This work
used the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by the National Science Foundation
grant number ACI-1548562.

REFERENCES

[1] Martin S Alnzes, Anders Logg, Kristian B @lgaard, Marie E Rognes, and Garth N
Wells. 2014. Unified form language: A domain-specific language for weak for-
mulations of partial differential equations. ACM Transactions on Mathematical
Software (TOMS) 40, 2 (2014), 9.

Patrick R Amestoy, Iain S Duff, and J-Y L’Excellent. 2000. Multifrontal parallel
distributed symmetric and unsymmetric solvers. Computer methods in applied
mechanics and engineering 184, 2 (2000), 501-520.

Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. 2001. A
fully asynchronous multifrontal solver using distributed dynamic scheduling.
SIAM J. Matrix Anal. Appl. 23,1 (2001), 15-41.

Patrick R Amestoy, Abdou Guermouche, Jean-Yves LaAZExcellent, and Stéphane
Pralet. 2006. Hybrid scheduling for the parallel solution of linear systems. Parallel
computing 32, 2 (2006), 136-156.

Corinne Ancourt and Frangois Irigoin. 1991. Scanning polyhedra with DO loops.
In ACM Sigplan Notices, Vol. 26. ACM, 39-50.

Cleve Ashcraft and Roger G Grimes. 1999. SPOOLES: An Object-Oriented Sparse
Matrix Library.. In PPSC.

Yunfei Bai, M. Danny Kaufman, C. Karen Liu, and Jovan PopoviAG. 2016. Artistic-
dynamics for 2D animation. In ACM Transactions on Graphics (SSGGRAPH 2016).
Michele Benzi, Jane K Cullum, and Miroslav Tuma. 2000. Robust approximate
inverse preconditioning for the conjugate gradient method. SIAM Journal on
Scientific Computing 22, 4 (2000), 1318-1332.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito,
Matthew Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical
Simulation on CPUs and GPUs. ACM Trans. Graph. 35, 2, Article 21 (May 2016),
12 pages. DOI:https://doi.org/10.1145/2892632

Chun Chen. 2012. Polyhedra scanning revisited. ACM SIGPLAN Notices 47, 6
(2012), 499-508.

Yanging Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajaman-
ickam. 2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factoriza-
tion and update/downdate. ACM Transactions on Mathematical Software (TOMS)
35,3 (2008), 22.

Timothy A Davis. 2004. Algorithm 832: UMFPACK V4. 3—an unsymmetric-
pattern multifrontal method. ACM Transactions on Mathematical Software (TOMS)
30, 2 (2004), 196-199.

Timothy A Davis. 2005. Algorithm 849: A concise sparse Cholesky factorization
package. ACM Transactions on Mathematical Software (TOMS) 31, 4 (2005), 587—
591.

Timothy A Davis. 2006. Direct methods for sparse linear systems. Vol. 2. Siam.
Timothy A Davis. 2011. Algorithm 915, SuiteSparseQR: Multifrontal multi-
threaded rank-revealing sparse QR factorization. ACM Transactions on Mathe-
matical Software (TOMS) 38, 1 (2011), 8.

Timothy A Davis. 2013. Algorithm 930: FACTORIZE: An object-oriented linear
system solver for MATLAB. ACM Transactions on Mathematical Software (TOMS)
39, 4 (2013), 28.

Timothy A Davis and William W Hager. 2005. Row modifications of a sparse
Cholesky factorization. SIAM J. Matrix Anal. Appl. 26, 3 (2005), 621-639.
Timothy A Davis and William W Hager. 2009. Dynamic supernodes in sparse
Cholesky update/downdate and triangular solves. ACM Transactions on Mathe-
matical Software (TOMS) 35, 4 (2009), 27.

Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1.
Timothy A Davis and Ekanathan Palamadai Natarajan. 2010. Algorithm 907:
KLU, a direct sparse solver for circuit simulation problems. ACM Transactions
on Mathematical Software (TOMS) 37, 3 (2010), 36.

Ailson P de Moura and Adriano Aron F de Moura. 2013. Newton-Raphson power
flow with constant matrices: a comparison with decoupled power flow methods.
International Journal of Electrical Power & Energy Systems 46 (2013), 108-114.
James W Demmel, Stanley C Eisenstat, John R Gilbert, Xiaoye S Li, and
Joseph WH Liu. 1999. A supernodal approach to sparse partial pivoting. SIAM 7.
Matrix Anal. Appl. 20, 3 (1999), 720-755.

James W Demmel, John R Gilbert, and Xiaoye S Li. 1999. An asynchronous
parallel supernodal algorithm for sparse gaussian elimination. SIAM ¥. Matrix
Anal. Appl. 20, 4 (1999), 915-952.

Richard C Dorf. 2006. Electronics, power electronics, optoelectronics, microwaves,
electromagnetics, and radar. CRC press.

(10]

[11

[12

(13

[14
[15]

[16

[17

[18

[19

[21

[22]

(23]

[24

https://doi.org/10.1145/2892632

SC17, November 12-17, 2017, Denver, CO, USA

[25]

[26]

[27]

[28]

[30

[31]

[32

[33]

[34]

[35

[36]

[37

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Tain S Duff, Nick IM Gould, John K Reid, Jennifer A Scott, and Kathryn Turner.
1991. The factorization of sparse symmetric indefinite matrices. IMA J. Numer.
Anal. 11, 2 (1991), 181-204.

Tain S Duff and John K Reid. 1983. The multifrontal solution of indefinite sparse
symmetric linear. ACM Transactions on Mathematical Software (TOMS) 9, 3 (1983),
302-325.

Tain S Duff and John Ker Reid. 1996. The design of MA48: a code for the direct
solution of sparse unsymmetric linear systems of equations. ACM Transactions
on Mathematical Software (TOMS) 22, 2 (1996), 187-226.

Alan George and Joseph WH Liu. 1979. The design of a user interface for a
sparse matrix package. ACM Transactions on Mathematical Software (TOMS) 5, 2
(1979), 139-162.

Alan George and Joseph W. Liu. 1981. Computer Solution of Large Sparse Positive
Definite. Prentice Hall Professional Technical Reference.

Alan George and Joseph W Liu. 1981. Computer solution of large sparse positive
definite. (1981).

John R Gilbert and Tim Peierls. 1988. Sparse partial pivoting in time proportional
to arithmetic operations. SIAM J. Sci. Statist. Comput. 9, 5 (1988), 862-874.
Nicholas IM Gould, Jennifer A Scott, and Yifan Hu. 2007. A numerical evaluation
of sparse direct solvers for the solution of large sparse symmetric linear systems
of equations. ACM Transactions on Mathematical Software (TOMS) 33, 2 (2007),
10.

Gaél Guennebaud and Benoit Jacob. 2010. Eigen. URI: http://eigen. tuxfamily. org
(2010).

John A Gunnels, Fred G Gustavson, Greg M Henry, and Robert A Van De Geijn.
2001. FLAME: Formal linear algebra methods environment. ACM Transactions
on Mathematical Software (TOMS) 27, 4 (2001), 422-455.

Anshul Gupta, George Karypis, and Vipin Kumar. 1997. Highly scalable parallel
algorithms for sparse matrix factorization. IEEE Transactions on Parallel and
Distributed Systems 8, 5 (1997), 502-520.

Fred G Gustavson, Werner Liniger, and R Willoughby. 1970. Symbolic generation
of an optimal Crout algorithm for sparse systems of linear equations. Journal of
the ACM (JACM) 17, 1 (1970), 87-109.

Justin Holewinski, Louis-Noél Pouchet, and P. Sadayappan. 2012. High-
performance Code Generation for Stencil Computations on GPU Architectures.
In Proceedings of the 26th ACM International Conference on Supercomputing (ICS
’12). ACM, New York, NY, USA, 311-320. DOI :https://doi.org/10.1145/2304576.
2304619

Carlo Janna, Massimiliano Ferronato, and Giuseppe Gambolati. 2015. The use
of supernodes in factored sparse approximate inverse preconditioning. SIAM
Journal on Scientific Computing 37, 1 (2015), C72-C94.

Neil D Jones, Carsten K Gomard, and Peter Sestoft. 1993. Partial evaluation and
automatic program generation. Peter Sestoft.

Wayne Kelly. 1998. Optimization within a unified transformation framework.
(1998).

David S Kershaw. 1978. The incomplete CholeskyaATconjugate gradient method
for the iterative solution of systems of linear equations. J. Comput. Phys. 26, 1
(1978), 43-65.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro
Sueda, Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Woj-
ciech Matusik, and Saman Amarasinghe. 2016. Simit: A language for physical
simulation. ACM Transactions on Graphics (TOG) 35, 2 (2016), 20.

Xiaoye S Li. 2005. An overview of SuperLU: Algorithms, implementation, and
user interface. ACM Transactions on Mathematical Software (TOMS) 31, 3 (2005),
302-325.

Xiaoye S Li and James W Demmel. 2003. SuperLU_DIST: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems. ACM Transactions
on Mathematical Software (TOMS) 29, 2 (2003), 110-140.

Douglas K Lilly. 1965. On the computational stability of numerical solutions of
time-dependent non-linear geophysical fluid dynamics problems. Mon. Wea. Rev
93, 1 (1965), 11-26.

Joseph W. H. Liu. 1990. The Role of Elimination Trees in Sparse Factorization.
SIAM J. Matrix Anal. Appl. 11, 1 (Jan. 1990), 134-172. DOI:https://doi.org/10.
1137/0611010

José A Zevallos Luna, Alexandre Siligaris, Cédric Pujol, and Laurent Dussopt.
2013. A packaged 60 GHz low-power transceiver with integrated antennas for
short-range communications.. In Radio and Wireless Symposium. 355-357.
Fabio Luporini, David A Ham, and Paul HJ Kelly. 2016. An algorithm for the
optimization of finite element integration loops. arXiv preprint arXiv:1604.05872
(2016).

Maxim Naumov. 2012. Parallel incomplete-LU and Cholesky factorization in
the preconditioned iterative methods on the GPU. NVIDIA Technical Report
NVR-2012-003 (2012).

M Papadrakakis and N Bitoulas. 1993. Accuracy and effectiveness of precon-
ditioned conjugate gradient algorithms for large and ill-conditioned problems.
Computer methods in applied mechanics and engineering 109, 3-4 (1993), 219-232.

12

(51]

[52

[53

(54]

[55

[56

[57

[59

[60

[61]

[62]

o
A

(64

[65

[66]

(68

[69

[70]

(71]

(72]

(73]

Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi

Roger P Pawlowski, John N Shadid, Joseph P Simonis, and Homer F Walker. 2006.
Globalization techniques for Newton-Krylov methods and applications to the
fully coupled solution of the Navier-Stokes equations. SIAM review 48, 4 (2006),
700-721.

Lukas Polok, Viorela Ila, Marek Solony, Pavel Smrz, and Pavel Zemcik. 2013. In-
cremental Block Cholesky Factorization for Nonlinear Least Squares in Robotics..
In Robotics: Science and Systems.

Alex Pothen and Sivan Toledo. 2004. Elimination Structures in Scientific Com-
puting. (2004).

Markus Piischel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,
Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko,
Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. 2005. SPIRAL: Code
Generation for DSP Transforms. Proceedings of the IEEE, special issue on “Program
Generation, Optimization, and Adaptation” 93, 2 (2005), 232- 275.

Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. 2000. Generation of effi-
cient nested loops from polyhedra. International Journal of Parallel Programming
28, 5 (2000), 469-498.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Scalable locally injective mappings. ACM Transactions on Graphics (TOG)
36, 2 (2017), 16.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices 48, 6 (2013), 519-530.

Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A Anderson, and Mikhail
Smelyanskiy. 2016. Sparso: Context-driven optimizations of sparse linear algebra.
In Proceedings of the 2016 International Conference on Parallel Architectures and
Compilation. ACM, 247-259.

Olaf Schenk and Klaus Gértner. 2004. Solving unsymmetric sparse systems of
linear equations with PARDISO. Future Generation Computer Systems 20, 3 (2004),
475-487.

Olaf Schenk, Klaus Gértner, and Wolfgang Fichtner. 2000. Efficient sparse LU
factorization with left-right looking strategy on shared memory multiprocessors.
BIT Numerical Mathematics 40, 1 (2000), 158-176.

Kai Shen, Tao Yang, and Xiangmin Jiao. 2000. S+: Efficient 2D sparse LU factor-
ization on parallel machines. SIAM J. Matrix Anal. Appl. 22, 1 (2000), 282-305.
Andrew H Sherman. 1978. Algorithms for sparse Gaussian elimination with
partial pivoting. ACM Transactions on Mathematical Software (TOMS) 4, 4 (1978),
330-338.

Jaewook Shin, Mary W Hall, Jacqueline Chame, Chun Chen, Paul F Fischer, and
Paul D Hovland. 2010. Speeding up Nek5000 with autotuning and specialization.
In Proceedings of the 24th ACM International Conference on Supercomputing. ACM,
253-262.

Daniele G Spampinato and Markus Piischel. 2014. A basic linear algebra compiler.
In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization. ACM, 23.

Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara
Kreaseck, and Catherine Olschanowsky. 2016. An approach for code generation
in the sparse polyhedral framework. Parallel Comput. 53 (2016), 32-57.

Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk,
and Charles E Leiserson. 2011. The pochoir stencil compiler. In Proceedings
of the twenty-third annual ACM symposium on Parallelism in algorithms and
architectures. ACM, 117-128.

Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K
Hollingsworth. 2009. A scalable auto-tuning framework for compiler optimiza-
tion. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 1-12.

Harmen LA Van Der Spek and Harry AG Wijshoff. 2010. Sublimation: expanding
data structures to enable data instance specific optimizations. In International
Workshop on Languages and Compilers for Parallel Computing. Springer, 106—120.
Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. 2006. Polyhedral code
generation in the real world. In International Conference on Compiler Construction.
Springer, 185-201.

Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and data transforma-
tions for sparse matrix code. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 521-532.

Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo Rong, Rajk-
ishore Barik, Michelle Mills Strout, and Mary Hall. 2016. Automating wavefront
parallelization for sparse matrix computations. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE Press, 41.

Anand Venkat, Manu Shantharam, Mary Hall, and Michelle Mills Strout. 2014.
Non-affine extensions to polyhedral code generation. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization. ACM,
185.

Z Xianyi. 2016. OpenBLAS: an optimized BLAS library. (2016).

https://doi.org/10.1145/2304576.2304619
https://doi.org/10.1145/2304576.2304619
https://doi.org/10.1137/0611010
https://doi.org/10.1137/0611010

Sympiler: Transforming Sparse Codes

A ARTIFACT DESCRIPTION: SYMPILER:
TRANSFORMING SPARSE MATRIX CODES
BY DECOUPLING SYMBOLIC ANALYSIS

A.1 Abstract

This artifact provides information to reproduce results shown in the
paper: “Sympiler: Transforming Sparse Matrix Codes by Decoupling
Symbolic Analysis”. We explain how to compile and run Sympiler and
also provide instructions to build the CHOLMOD and Eigen libraries
used for comparison. For convenience, a script for evaluating each
algorithm in the paper is provided.

A.2 Description
A.2.1 Check-list (artifact meta-information).

o Algorithm: The sparse Cholesky factorization and the tri-

angular solver with a sparse right-hand-side

Program: C++ code

Compilation: GCC v.5.4.0 with -O3 flag.

Binary: OpenBLAS v.0.2.19

Data set: Publicly available matrix market files

Run-time environment: Ubuntu 16.04

Hardware: Intel®Core™i7-5820K

Output: The L-factor for the Cholesky algorithm and the

solution vector x for the triangular solver.

o Experiment workflow: Install OpenBlas, CHOLMOD, and
Eigen. Compile Sympiler and execute the test scripts.

e Experiment customization: Some parameters need to be changed

in CHOLMOD
e Publicly available: yes.

A.2.2 How software can be obtained (if available). Sympiler’s
code will be available in Github. We will provide a link when ac-
cepted. To maintain anonymity is not ready for public release.

A.2.3 Hardware dependencies. There is not hardware depen-
dency for Sympiler. It compiles and runs on any x86 processor.
However, the reported results are obtained on an Intel® Core™i7-
5820K.

A.24 Software dependencies. The current version of Sympiler
relies on BLAS for evaluating dense sub-blocks in Cholesky.

A.2.5 Datasets. The current version of Sympiler only supports
input matrices in the matrix market format. All matrices selected
for evaluation are publicly available from the Florida Sparse Matrix
Repository. The matrices can be downloaded from the UF website:

www.cise.ufl.edu/research/sparse/matrices/

For the sparse triangular system examples, a matrix from the UF
repository is first factorized and the resulting factor L is stored in a
local repository to be used in the triangular solve experiments.

A.3 Installation

The steps to installing Sympiler and then the setup instructions for
Eigen and CHOLMOD are presented here.

Sympiler. Since the current version of Sympiler calls some
BLAS routines, the user needs to modify the BLAS_LIB variable in
CMakeLists.txt and set it to the installed OpenBLAS library path.
The following shows the remaining steps for installing Sympiler.

$ git clone <https://github.com/sympiler/sympiler.git> Sympiler
$ cd Sympiler;

13

SC17, November 12-17, 2017, Denver, CO, USA

$ mkdir build; cd build;
$ cmake ..
$ make

Libraries. We have prepared a simple project for evaluating
Cholesky and the triangular solver using Eigen and CHOLMOD
libraries. After installing CHOLMOD and Eigen, the paths have to
be set via CHOL_LIB and Eigen_LIB in libTest/CMakeLists.txt. The
following steps will prepare the test environment for evaluation.

$ cd libTest;

$ mkdir build; cd build;
$ cmake ..

$ make

Similar to the paper, the results for running CHOLMOD with
and without node amalgamation are generated.

A4 Experiment workflow

Sympiler. We have prepared a script which generates the perfor-
mance results for each algorithm evaluated in the paper. For the
triangular solver, the user can run:

$ cd /path/to/Sympiler/build/
$./triangular.sh /path/to/triangular/input/matrix.mtx

The triangular script first generates a code for the given matrix
and stores it in the symGen folder. Then it compiles and runs the
generated code for the input matrix. For the Cholesky factorization,
the user can run a separate script as follows:

$./cholesky.sh /path/to/input/matrix.mtx

Libraries. To compare Sympiler’s performance with the two
libraries, two binary files one for each algorithm in [libTest are
provided. These files are built from the source code available in the
repository. For triangular solve evaluation, the following sequence
of commands will show the execution time of Eigen and Sympiler.
Functions are provided within the code that verify the correctness
of the resulting vector x.

$ cd /path/to/Sympiler/libTest/build/
$./libTriangular /path/to/triangular/input/matrix.mtx

For the Cholesky evaluations, the following commands show the
performance of both Eigen and CholMod libraries for a given input
matrix. A built-in function compares the L factor to check correct-
ness.

$ cd /path/to/Sympiler/libTest/build/
$./libCholesky /path/to/input/matrix.mtx

A.5 Evaluation and expected results

The expected results include the factor L for Cholesky and the
solution vector x for the triangular solver. The performance results
include the numerical manipulation and the symbolic analysis time
which are also presented in FLOPS.

A.6 Experiment customization

The experiments can be easily ran for other matrix market matrices.

A.7 Notes

An updated installation guide will be provided in the Sympiler
repository.

www.cise.ufl.edu/research/sparse/matrices/

	Abstract
	1 Introduction
	1.1 Motivating Scenario
	1.2 Static Sparsity Patterns
	1.3 Contributions

	2 Sympiler: A Symbolic-Enabled Code Generator
	2.1 Sympiler Overview
	2.2 Symbolic Inspector
	2.3 Inspector-guided Transformations
	2.4 Enabled Conventional Low-level Transformations

	3 Case studies
	3.1 Sparse Triangular Solve
	3.2 Cholesky Factorization
	3.3 Other Matrix Methods

	4 Experimental results
	4.1 Methodology
	4.2 Performance of Generated Code
	4.3 Symbolic Analysis Time

	5 Related Work
	6 Future Work and Conclusion
	7 Acknowledgements
	References
	A Artifact Description: Sympiler: Transforming Sparse Matrix Codes by Decoupling Symbolic Analysis
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected results
	A.6 Experiment customization
	A.7 Notes

