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Abstract—Sparse tensors appear in many large-scale appli-
cations with multidimensional and sparse data. While multidi-
mensional sparse data often need to be processed on manycore
processors, attempts to develop highly-optimized GPU-based im-
plementations of sparse tensor operations are rare. The irregular
computation patterns and sparsity structures as well as the
large memory footprints of sparse tensor operations make such
implementations challenging. We leverage the fact that sparse
tensor operations share similar computation patterns to propose
a unified tensor representation called F-COO. Combined with
GPU-specific optimizations, F-COO provides highly-optimized
implementations of sparse tensor computations on GPUs. The
performance of the proposed unified approach is demonstrated
for tensor-based kernels such as the Sparse Matricized Tensor-
Times-Khatri-Rao Product (SpMTTKRP) and the Sparse Tensor-
Times-Matrix Multiply (SpTTM) that are used in tensor de-
composition algorithms. Compared to state-of-the-art work we
improve the performance of SpTTM and SpMTTKRP up to
3.7 and 30.6 times respectively on NVIDIA Titan-X GPUs. We
implement the CANDECOMP/PARAFAC (CP) decomposition
and achieve up to 14.9 times speedup using the unified method
over state-of-the-art libraries on NVIDIA Titan-X GPUs.

I. INTRODUCTION

Tensors, defined as multi-dimensional or N-way arrays,

represent multidimensional data naturally. Tensor-based com-

putations or multilinear algebraic methods such as tensor

decomposition(s) appear widely in a variety of fields including

machine learning [1], [2], data mining [3], [4], computer

vision [5], [6], recommender systems [7], and quantum chem-

istry [8]. A number of industry-initiated frameworks for deep

learning such as TensorFlow [9] and Torch [10] also use tensor

representations. Tensor operations are essential building blocks

and tend to be the determinant operations for the performance

of tensor algorithms and applications. In many applications,

the tensors are sparse, that is, most of their elements are

zeros. Thus, developing parallel algorithms and libraries that

accelerate sparse tensor computations on modern architecture

is essential.

Previous work has optimized sparse tensor operations on

different hardware platforms including shared memory sys-

tems [11], [12], [13], distributed systems with MapReduce [3],

[14] and on distributed memory with MPI [15], [16], [17].

Due to their embarrassingly parallel execution model, GPUs

are good candidates to accelerate sparse tensor computations;

however, using GPUs is challenging because of the inherently

irregular computation patterns in sparse tensor algebra. To our

knowledge, Parallel Tensor Infrastructure (ParTI [18]) is the

only work that accelerates tensor operations on GPUs. The

optimizations in ParTI are not memory efficient, lead to load

imbalance, and are sensitive to mode changes and increase

with the tensor computation rank.
Previous work on tensor computations, optimize tensor

operations independently and thus use different approaches

to accelerate sparse tensor operations. For example, the work

in [13], [18], [16] optimizes the sparse tensor-times-dense

matrix (SpTTM) operation while others [11], [12], [15], [17],

[18], [3] mainly focus on the sparse Matricized Tensor Times

Khatri-Rao Product (SpMTTKRP). The type of optimizations

and the order in which they are applied are often shared

between different sparse tensor operations. By investigating

the underlying computation patterns and computation orders in

sparse tensor operations, we propose an approach to generalize

sparse tensor representations. Our unified storage format and

parallel algorithms can be used across many sparse tensor

operations and can be extended to high-order tensor compu-

tations.
Numerous challenges exist in optimizing sparse tensor oper-

ations on GPUs, such as i) finding a good parallelization gran-

ularity, ii) reducing storage costs and irregularities in memory

accesses, and iii) dealing with atomic updates. Prior work has

used fiber- or slice-level computations as the granularity for

parallelization. However, such approaches lead to noticeable

load imbalance between threads on the GPU because of the

sparse nature of the tensors. Also, the optimizations do not

deliver consistent performance across different modes and

ranks. The large intermediate data created during the sparse

tensor computations is also very expensive to store on GPUs.

Finally many of the sparse tensor operations require atomic

updates that are expensive to perform on GPUs. We propose

a unified optimization method for sparse tensor operations to

address these challenges on GPUs. Our major contributions

are as follows:

1) F-COO: A unified storage format for sparse tensors.

We propose a new storage format that is based on the

tensor modes for sparse tensor computations. F-COO is

memory efficient compared to other sparse tensor storage

formats and can be used as a unified storage format across

different sparse tensor operations.

2) Unified parallel algorithms for sparse tensor opera-
tions. F-COO is used to implement parallel algorithms
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and optimizations for sparse tensor operations on GPUs.

We demonstrate how optimizations of sparse tensor op-

erations such as SpMTTKRP and SpTTM that have

been treated differently in previous tensor literature are

inherently the same. Our unified parallel algorithms are

used across different tensor operations, are not sensitive

to mode changes, and scale well with increases in the

tensor computation rank.

3) GPU-specific optimizations. By using the flag arrays in

F-COO, we enable the application of efficient algorithms

commonly used in sparse matrix literature such as the

segmented scan method without unfolding the tensor.

Other optimizations such as kernel fusion, warp shuffle,

and data reuse are also enabled in our unified optimiza-

tions.

4) Significant speedups on real datasets for SpTTM,
SpMTTKRP, and CP decomposition. The proposed

unified approach leads to 3.7× speedup for SpTTM and

30.6× speedup for SpMTTKRP for tested benchmarks

over state-of-art work on GPU platforms. The CP de-

composition is accelerated up to 14.9× times compared

to state-of-the-art libraries.

II. BACKGROUND

Tensor notation: A tensor is a multi-way array. The order
of a tensor refers to the number of dimensions, also called

modes. Vectors (first-order tensors) and matrices (second-order

tensors) are presented by boldface lowercase and boldface

capital letters respectively. We generally use calligraphic let-

ters for higher-order tensors (e.g., X ). The scalar element

at position (i, j, k) of a third-order tensor X is shown as

X (i, j, k). We also use the colon notation from MATLAB (as

does SPLATT [11]), in which a colon in the place of an index

represents all members of that mode. For example, A(m, :) is

the m-th row of the matrix A.

A fiber is a one-dimensional segment of a tensor along one

of the modes. A third-order tensor X has three kinds of fibers

on three different modes represented by X (:, j, k), X (i, :, k),
and X (i, j, :). Slices are two dimensional segments of a tensor,

obtained by fixing all indices except for two. A third-order

tensor X also has three kinds of slices, written as X (i, :, :),
X (:, j, :), and X (:, :, k).

Matricization, also called unfolding or flattening, transforms

a tensor into a matrix. The result of mode-n matricization X(n)

is a matrix which it’s columns are mode-n fibers of the tensor

X meaning that mode-n fibers in tensor X become the columns

of the resulting matrix. Given a tensor X of size I × J ×K,

X(1) is of size I × JK. Figure 1 illustrates how to unfold a

(2×2×2) tensor along each of the three modes. The Kronecker
product of matrices A ∈ R

I×J and B ∈ R
K×L is represented

by A ⊗ B, which generates a matrix of size IK × JL. The

Figure 1: The matricization of a (2× 2× 2) tensor.

Kronecker product is defined as

A⊗B =

⎡
⎢⎢⎢⎣

a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
...

. . .
...

aI1B aI2B . . . aIJB

⎤
⎥⎥⎥⎦ . (1)

The Khatri-Rao product of A and B, also known as the

column-wise Kronecker product, is written as A�B. If A ∈
R

I×K and B ∈ R
J×K , the resulting matrix of size IJ ×K

is defined by

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 . . . ak ⊗ bk

]
. (2)

Tensor-Times-Matrix: Tensor-Times-Matrix (TTM) on

mode n, also called the n-mode product, is a product of

multiplying the tensor X ∈ R
I1×I2×...×In×...×IN by the

matrix U ∈ R
In×R along the n-th dimension; represented

by Y = X ×n U . For third-order tensors, TTM on mode-3 is

represented by:

Y(i, j, :) =
K∑

k=1

X (i, j, k)U(k, :). (3)

When X is sparse, U is dense and the operation is called

SpTTM. In this case, the resulting tensor Y is only semi-sparse
since each fiber at index (i, j) becomes dense and the length

of the fiber will be equal to the number of columns of the

dense matrix U. SpTTM can be seen as a high dimensional

generalization of the sparse matrix-vector multiply (SpMV)

operation. SpTTM to tensor-based computation is what SpMV

is to matrix-based computation. Similarly, SpTTM is usually

the building block and bottleneck operation in tensor-based

computations.

As demonstrated in [16], [19], the key operation in the

ALS-based Tucker decomposition algorithm, namely Higher

Order Orthogonal Iteration (HOOI), is called the tensor times

matrix-chain (TTMc) product. For an N-order tensor, TTMc

on mode-n indicates tensor times matrix (TTM) products

with N − 1 different matrices along the corresponding modes

other than mode-n. For example, a typical mode-1 TTMc in

Tucker decomposition for a 3-order tensor is Y = X ×2

U2 ×3 U3. Previous work on Tucker decomposition provides

a high-performance parallel algorithm and implementation of

TTMc [20], [16]. Equation (4) shows TTMc based on the

coordinate storage format:

Y(1) =
∑

X (i,j,k)∈X
X (i, j, k)(U2(j, :)⊗U3(k, :)) (4)
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More information about TTMc can be found Kaya et al. [16].

Matricized Tensor Times Khatri-Rao Product: MTTKRP

is an important sparse tensor operation and is the main

computation bottleneck in the CP decomposition algorithm.

Parallel implementations of CP mainly focus on accelerating

the execution of MTTKRP. Equation (5) represents MTTKRP

operations along the first tensor mode. It unfolds the tensor

along the first mode and then multiplies it with the Khatri-

Rao product of the corresponding matrices B and C:

M = X(1)(C�B). (5)

For large-scale sparse tensors, C � B cannot be explicitly

computed since the resulting matrix is dense and has a size

of JK×R which can consume more memory than the sparse

tensor X itself in most cases. Therefore, previous research on

SpMTTKRP focuses on how to map SpMTTKRP to other less-

costly operations based on the sparsity pattern of the tensor to

avoid computing the Khatri-Rao product explicitly [3], [11].

The SpMTTKRP for the first mode can be written as follows:

M(i, r) =

JK∑
z=1

X(1)(i, z)(B(z%J, r)C(z/J, r))

M(i, :) =
JK∑
z=1

X(1)(i, z)(B(z%J, :) ∗C(z/J, :))

=
K∑

k=1

J∑
j=1

X (i, j, k)(B(j, :) ∗C(k, :)), (6)

where % is the modulus operation. While X is sparse, the

result matrix M is a dense matrix where two product modes

are replaced with the column dimensions of the dense matrices

B and C. The index mode i is also dense due to the fact that

a sparse tensor can not have empty slices in the i-dimension.

Tensor Decomposition: The CANDECOMP/PARAFAC

(CP) Decomposition [19] factorizes a tensor into a sum of

component rank-one tensors. The most popular algorithm for

fitting the CP decomposition is based on the Alternating Least

Squares (ALS) method. The ALS method iterates through the

modes of the tensor, updating a factor matrix for each mode

while holding the other factors constant. The algorithm for a

3-way tensor is given in Algorithm 1.

Algorithm 1 CP-ALS for a 3-way tensor

Input: X : A 3rd order tensor R: The rank of approximation

Output: CP decomposition [λ;A,B,C]
1: repeat
2: A ← X(1)(C�B)(B�B ∗C�C)†

3: Normalize columns of A
4: B ← X(2)(C�A)(A�A ∗C�C)†

5: Normalize columns of B
6: C ← X(3)(B�A)(A�A ∗B�B)†

7: Normalize columns of C and store the norms as λ
8: until no improvement or maximum iterations reached

III. RELATED WORK

Sparse tensor operations such as SpTTM [13], [16] and

SpMTTKRP [11], [12], [15] have been implemented as stan-

dalone routines to improve the performance of tensor algo-

rithms and applications. Most of these work first propose or

choose a tensor format and then propose parallel algorithms

that operate on these formats efficiently. Therefore, our survey

of previous work is based on storage formats for sparse tensors

and parallel algorithms on storage formats.

A. Storage Formats for Sparse Tensors

While some parallel algorithms for sparse tensor opera-

tions are directly based on the coordinate format (COO) for

SpMTTKRP [17] and SpTTM [16], a number of novel storage

formats have been proposed to reduce floating point com-

putations and exploit more parallelism; the compressed data
fiber (CSF) format [12] is an example used in SpMTTKRP.

These storage formats are proposed for distributed memory

or shared memory systems. Dfacto [15] and SPLATT [11]

unfold a tensor along one mode to reduce floating point

operations at the cost of increased memory usage. As pointed

in [17], unfolding tensors requires column index values up to∏N
k �=i Ik, which easily exceeds integer value limits when the

input tensor is large in each mode. CSF is a tree-based data

structure used in SPLATT that enables the extension of an

efficient implementation of SpMTTKRP to higher dimensions.

For GPU implementations of SpTTM on GPUs [13], Li et al.
proposes the semi-COO (sCOO) format which stores a semi-

sparse tensor, which is the output of SpTTM; sCOO does not

store indices for the dense modes in the semi-sparse tensor.

The objective of sparse tensor storage formats is to facilitate

parallel implementations of tensor computations on shared

and distributed memory systems. However, they often can

not directly be used on GPU platforms since they will lead

to significant overheads. For example, the compressed data
fiber (CSF) [12], extends the compressed row storage format

(CSR) to sparse tensors and is a fiber-centric and tree-based

storage format. The recursive algorithms used in CSF-based

optimization methods are not a good fit for GPU architectures.

Also, the general storage format COO causes too many atomic

operations when non-zeros processed by different threads

share identical indices. The sCOO format stores the output

of SpTTM which is a semi-sparse tensor [13]. Since sCOO is

designed to store the output of a tensor operation, it can not

be used to control the type of algorithms and optimizations

used to implement the tensor operation.

B. Parallel Sparse Tensor Algorithms and Implementations

Sparse tensor operations have been parallelized on differ-

ent types of processing platforms such as shared-memory,

distributed-memory, and GPUs.

Shared memory systems: The Tensor Toolbox [21], [4]

and N-way Toolbox [22] are two widely used MATLAB

toolboxes for tensor operations on share memory systems. The

Cyclops Tensor Framework (CTF) [23] is a C++ library which

provides automatic parallelization of sparse tensor operations.
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CTF transforms sparse tensors to matrices via unfolding and

can only store the SpTTM output as a dense tensor. This

restriction significantly reduces its efficiency. SPLATT [11]

is a library used for parallelizing the CP decomposition on

shared-memory systems. It proposes a compressed and fiber-

centric data structure for sparse tensors called compressed data
fiber (CSF). Based on the CSF data structure, hypergraph

models and multi-partite graphs are used to partition non-

zeros into semi-sparse regions and improve data locality for

SpMTTKRP.

Distributed memory systems: Many parallel algorithms

have been proposed for large-scale tensor operations on

distributed-memory systems. Gigatensor [3] handles tera-scale

tensors using the MapReduce framework. Gigatensor is the

first work that minimizes the intermediate data sizes in SpMT-

TKRP and the number of floating operations for large-scale

tensor operations. Dfacto [15] also provides a distributed

tensor decomposition implementation. However, the perfor-

mance of Dfacto is limited by high memory footprints and

data communication overhead since it needs to transform a

tensor X into three matrices X(1), X(2), X(3) along three

modes before operating on its data. Hypertensor [17] is a

sparse tensor library for SpMTTKRP on distributed-memory

environments. Hypergraphs are used to partition the non-zero

elements in a tensor and thus improve load balance and reduce

data communication in sparse tensor operations on distributed

memory environments [17], [16].

GPU: Li et al. [13] propose a parallel algorithm and

implementation of SpTTM on GPUs via parallelizing the

algorithm on fibers. Since fibers in a sparse tensor may have

different sizes their proposed implementation suffers from load

imbalance and leads to warp divergence on GPU platforms for

some sparse tensors. They also implement the SpMTTKRP

algorithm on GPUs in ParTI [18] where data partitions are

created based on the non-zeros of a tensor. The performance of

their algorithm is limited by the overhead of atomic operations

when updating divided slices via multiple threads.

IV. A UNIFIED OPTIMIZATION METHOD FOR SPARSE

TENSOR OPERATIONS ON GPUS

We propose a unified approach for the storage and op-

timization of tensor operations. We generalize some of the

mode notations used in previous literature to categorize the

computation patterns and structures in sparse tensor oper-

ations. The modes are then encoded into a novel sparse

storage format that we call as F-COO (flagged-coordinate).

F-COO can be used as a unified format across different

tensor operations. We show how the mode encoding in F-COO

allows our proposed parallel algorithms to operate on tensor

non-zeros directly, eliminating the need to store intermediate

data. This shows how a unified approach enables a one-shot

approach to computing tensor operations such as SpMTTKRP.

F-COO also enables the application of the segmented scan

algorithm, a highly efficient algorithm used in sparse matrix

computations, without the need to unfold the tensor into a

matrix. In this section we describe our generalization of tensor

modes, introduce F-COO, and show how this unified approach

applies to parallel algorithms.

A. Unified Form of Sparse Tensor Modes

The operations and computations in tensor methods can be

characterized using a number of mode notations originally

introduced by Baskran et al. [24] and Li et al. [13] for SpTTM.

In the following we extend these notations to other sparse

tensor operations such as SpMTTKRP which enables us to

propose a unified storage format and optimization method for

sparse tensor operations:

• Product modes: are defined as the modes in which a ten-

sor gets multiplied by a matrix. Mode-3 in Equation (3)

for TTM and mode-(2,3) in Equation (5) for MTTKRP

are the product modes.

• Index modes: are all modes except for the product mode

such as mode-(1,2) in Equation (3) for TTM and mode-1

in Equation (5) for MTTKRP.

• Sparse mode: is when at least one non-empty fiber in this

mode is sparse. For example, if at least one of the fibers

in X (i, j, :) is sparse mode-3 will be a sparse mode.

• Dense mode: is when all fibers in the mode are dense

vectors. For example, if the fibers in X (i, j, :) are all

dense then mode-3 is in a dense mode.

B. The F-COO Storage Format

This section discusses our proposed F-COO storage format

which: i) encodes changes in tensor modes and thus can

be extended to support different sparse tensor operations;

ii) eliminates the need for tensor unfolding while enabling

the application of efficient sparse matrix algorithms such as

segmented scan; iii) requires less storage compared to formats

used in previous tensor literature. F-COO follows a similar

storage approach to the COO format where all non-zeros of

the tensor are stored with their corresponding indices and

values. However, to enable unified computations for sparse

tensor operations, the tensor modes discussed in the previous

subsection are encoded into F-COO. As a result of this

encoding, F-COO captures changes in the computation pattern

during the sparse tensor operations such as switching to a

new fiber/slice or changing from a dense operation to a sparse

mode.

Table I shows our classification of tensor modes for different

operations and Figure 2 demonstrates how this classification

is used to store the tensor for the SpTTM and SpMTTKRP

operations. The val vector stores the non-zero values of the

tensor. Except for the flag arrays, all other vectors such as

i, j, k are used to store the indices corresponding to the product

mode. The indices in F-COO that correspond to the product

mode are used to guide the Kronecker or Hadamard product

operations. F-COO also uses two flag arrays, i.e. the bit-flag

(bf) and the start-flag (sf). The bf array is used to represent

any changes in the index modes which consequently shows the

computation has switched to another fiber (in SpTTM) or to

another slice (in SpMTTKRP). F-COO also comes with a start-

flag (sf) that is used to indicate whether a new fiber or slice
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Operations Equation Product mode Index mode Sparse mode of result Dense mode of result
SpTTM on mode-3 Y(i, j, :) += X (i, j, k)U(k, :) mode-3 mode-(1,2) mode-(1,2) mode-3

SpMTTKRP on mode-1 M(i, :) += X (i, j, k)(B(j, :) ∗C(k, :)) mode-(2,3) mode -1 mode-1 mode-(2,3)⇒mode-2
SpTTMc on mode-1 Y(1)(i, :) += X (i, j, k)(U2(j, :)⊗U3(k, :)) mode-(2,3) mode-1 mode-1 mode-(2,3)

Table I: Mode definitions for sparse tensor operations (mode-1: i, mode-2: j, mode-3: k). The symbol ⇒ indicates the mode

change from input tensor to output. Based on mode classification, we can provide a unified view for sparse tensor operations.

starts inside the current partition. Section IV-D demonstrates

how the flag arrays are used to implement segmented scan

to remove atomic updates and increase parallelism in tensor

computations. Table I and the F-COO storage format can be

extended to support other tensor operations and higher-order

tensors.

As demonstrated in Figure 2, F-COO is used as a unified

storage format for different tensor operations reducing tensor

storage costs and enabling the application of unified parallel al-

gorithms across tensor operations. Existing methods optimize

tensor operations in isolation, requiring a different storage for-

mat and optimization strategy for each tensor operation [18].

For example, ParTI parallelizes SpTTM on the tensor fibers

where the input is stored in a compressed fiber-order. For the

SpMTTKRP operation, ParTI uses the COO storage format to

enable operating on the non-zeros of the tensor. Our unified

algorithm and storage format capture the similarity between

these two operations.

Like COO, F-COO stores non-zero tensor elements. How-

ever, it does not suffer from load imbalance and can maintain

maximum parallelism when operating on sparse tensors on

different modes. Also, similar to COO, F-COO is insensitive to

the irregularities of the underlying sparse tensor structures; this

is why COO is useful in sparse matrix computations [25]. One

of the major drawbacks of using COO in tensor computations

is that COO has a high memory footprint because all the

product and index mode indices have to be explicitly stored

and accessed. Compared to COO, F-COO is more memory-

efficient because it only keeps the indices on the product mode;

the index modes are not stored and only a change in their

values are stored in a considerably smaller bit-flag array. The

number of non-zeros processed per thread depends on the data

type selected for the bf array shown in Figure 2. For example,

if we use uint8 t or unsigned char to bf, the number of non-

zeros processed per thread will be 8. For the sf array, we

use unsigned int to compress 32 bits for values accessed by

threads in one warp concurrently to save bandwidth. Table II

compares the storage costs of COO and F-COO for the SpTTM

and SpMTTKRP operations; these can be extended to other

sparse tensor operations.

C. One-Shot Sparse Tensor Computations

In the proposed unified approach, the F-COO storage format

is used to compute tensor operations in one-shot. The one-shot

strategy eliminates the need to create large intermediate data

and avoids transformations between different F-COO represen-

tations. As shown in Figure 3a, when a sparse tensor operation

such as SpMTTKRP is transformed into a series of sparse

computations it will generate intermediate tensors which lead

1 1 1 1
1 1 2 2
1 1 3 3
1 1 4 4
1 1 5 5
2 1 1 6
2 1 2 7
2 1 3 8
2 1 4 9
2 2 1 10
2 2 2 11
2 2 3 12

1 1 1 1
1 1 2 2
1 1 3 3
1 1 4 4
0 1 5 5
1 1 1 6
1 1 2 7
1 1 3 8
1 1 4 9
1 2 1 10
1 2 2 11
0 2 3 12

1 1 1
1 2 2
1 3 3
1 4 4
0 5 5
1 1 6
1 2 7
1 3 8
0 4 9
1 1 10
1 2 11
0 3 12

sf[0]=1

sf[1]=1

sf[2]=1

sf[0]=1

sf[1]=1

sf[2]=0

(a) COO (b) F-COO for mode-3 SpTTM (c) F-COO for mode-1 SpTTMRP

Figure 2: F-COO for a 3-order tensor computing SpTTM on

mode-3 and SpMTTKRP on mode-1. As shown in Table I for

SpTTM, the index modes are i and j. bf (bit-flag) will change

from 1 to 0 when a change in the i or j value occurs. For

SpMMTKRP, bf change from 1 to 0 when the index mode i
changes. If each partition holds 4 tensor non-zeros, sf (start-

flag) indicates whether partitions processed by the current

thread start new indices on index mode over previous thread.

sf for thread 0 is always 1 since it always starts new indices.

to extra storage costs. Figure 3a shows that operating on the

sparse tensor X of size I×J×K will generate an intermediate

tensor Y of size I × J × R, which has larger storage costs

compared to X because mode-3 is dense. Also, operations on

intermediate tensors require mode change in F-COO which is

an expensive operation.

As shown in Figure 3b, the overhead in both storage cost

and conversion between different F-COO representations is

eliminated when performing sparse tensor operations in one-

shot. The one-shot algorithm uses the product mode indices

in F-COO to obtain rows from the dense factor matrices, C

or B, and to perform a Hammard or Kronecker product. This

intermediate result is then scaled using the corresponding non-

zero value in the sparse tensor and is accumulated to the

correct location using the indices from the index mode. The

results are accumulated using segmented scan to reduce atomic

operations in the parallel implementation.

D. Parallel Algorithms for Sparse Tensor Operations on
GPUs

We propose unified parallel algorithms for sparse tensor

operations on GPUs based on the F-COO storage format.

This section discusses how our unified algorithm uses the

segmented scan primitive to improve parallelization and how

it reduces atomic updates in sparse tensor computations. We

will also discuss our parallelization strategy which operates on

the non-zeros of the sparse tensor to maintain load balance and
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storage format SpTTM on mode-3 SpMTTKRP on mode-1
COO 16× nnz 16× nnz

F-COO (8 + 1/8 + 1/(8 ∗ threadlen))× nnz (12 + 1/8 + 1/(8 ∗ threadlen))× nnz

Table II: Storage cost of a 3-order tensor for COO vs. F-COO. The storage cost of COO for a 3-order sparse tensor is 16×nnz
bytes when integer and single-precision floating-point are used to store indices and non-zeros respectively. For SpTTM, indices

in the index mode are replaced by bits, therefore, F-COO for SpTTM only takes (8 + 1/8 + 1/(8 ∗ threadlen))× nnz bytes

(threadlen indicates the number of non-zeros processed per thread), where 8×nnz bytes are the storage cost for indices in the

product mode (one integer per non-zero) and data values (one float per non-zero), (1/8)nnz bytes is the memory cost from

the bit-flag array and 1/(8 ∗ threadlen)nnz is the storage cost for the start-flag array, which is a flag array for each thread.

The storage cost of SpMTTKRP is obtained analogously.

X C

BY

M

i

jk

i

jk

(a) Previous method for SpMTTKRP

X C B

M

(b) One-shot method for SpMTTKRP

Figure 3: Figure (a) shows that previous fiber-centric SpMTTKRP implementations first multiply along mode-k with matrix C,

then multiply along mode-j with matrix B. The drawback is that an intermediate tensor Y is generated and tensor operations

will have to switch between different modes. Figure (b) illustrates our proposed one-shot method for SpMTTKRP. Our method

directly performs computations on the non-zeros of the sparse tensor in one-shot.

provides consistently good performance for different ranks in

sparse tensor computations. GPU-specific optimization tech-

niques are also discussed. Finally, we will demonstrate how

unified can be used to implement complete tensor algorithms

such as CP decomposition.
Enabling segmented scan: Using the F-COO storage

format, the non-zeros in the tensor are accessed to apply

the computations in parallel and reduce the results using the

product indices. The F-COO format has two flags, the bit-flag

and the start-flag, both of which are used to implement the

segmented scan algorithm to parallelize and reduce product

results in the sparse tensor computation. The bit-flag is toggled

when a new fiber or slice starts and the start-flag is used to

indicate the start of a fiber or slice inside a partition. Partitions

are allocated to different threads and their sizes are tuned for

best performance. Details of the segmented scan algorithm can

be found in [26], [27] and are not repeated here.
Parallelization strategy: The unified approach partitions

the data and parallelizes computations based the non-zeros of

the sparse tensor and the columns of the dense factor matrices

as shown in Figure 4. As a result, our approach delivers

consistently good performance for larger factor matrices where

the rank of the tensor operation increases. The number of

columns in dense matrices represent the rank of the tensor

decomposition. Previous work on sparse tensor optimizations

on GPUs [13] uses two-dimensional thread blocks in their

implementation where the shape of thread blocks varies with

the rank of the tensor operation. For example, when the

number of threads is 512 in a two-dimensional thread block

and rank is 32, the shape of the two-dimensional thread

block will be (16, 32). Since the threads inside a warp are

in charge of computing the product of two dense columns

in the implementations proposed in [13], the shape of the

thread block can lead to thread divergence inside a warp and

cause strided memory accesses. As a result, the performance

of the code from [13] can vary for different ranks of the tensor

operation.
To resolve this issue, we launch two-dimensional thread

grids with one-dimensional thread blocks. One-dimensional

thread blocks operate on their allocated partitions of the sparse

tensor and columns of the dense matrices indicated by thread

block index (bIdx, bIdy) as shown in Figure 4. Since the thread

block dimensions in our approach do not vary with rank, the

rank of sparse tensor operations will not affect parallelism and

the memory access patterns in the proposed unified approach.
GPU-specific optimizations: A number of GPU-specific

optimization techniques are used to further improve the perfor-

mance of our unified algorithm on GPUs. Since sparse tensor

operations on GPUs are memory-bound, all of the techniques

are memory-oriented optimizations to efficiently use the GPU
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Figure 4: The parallelization and partitioning strategy used in unified for SpTTM on mode-3 ((Y = X ×3U)). R is the number

of columns in the dense factor matrix. A thread block is shown by a two-dimensional index (bIdx, bIdy) in the figure. d nnz
represents the dimension of the thread grid along the x dimension: non-zeros of sparse tensor, R represents the dimension of

thread grid along the y dimension: column dimension of the dense matrix.

memory hierarchy. Our optimizations include using the read-

only data cache, fusing kernels, and applying warp shuffle.

Since in a single SpTTM and SpMMTKRP operation the

dense factor matrices are read-only, they are cached in the

Read-Only Data-Cache to further reduce global memory loads.

Adjacent synchronization [27] is used to perform inter-block

communication and to fuse the kernels in the sparse tensor

implementation. Kernels such as the product kernel, segmented

scan, and the accumulation kernels are fused to increase data

reuse and keep intermediate data in shared memory. For the

segment scan implementation, warp shuffle is used to increase

data sharing inside a warp. Warp shuffle enables register to

register data exchange and thus reduces the shared memory

footprint and avoids overusing shared memory.

Complete tensor-based algorithms: Sparse tensor op-

erations such as SpMTTKRP and SpTTM are used inside

complete tensor-based algorithms such as the Tucker and CP

decomposition algorithms. To our knowledge there are cur-

rently no implementations of CP or Tucker for sparse tensors

on GPUs. We implement the CP decomposition algorithm to

show our unified approach is insensitive to the mode being

operated on. As a result, the MTTKRP operations in lines

2, 4, and 6 in Algorithm 1 will have very similar and well-

balanced execution times. To eliminate the need for format

conversations or CPU-GPU data transfers inside a CP iteration,

F-COO is preprocessed for different modes on the host and

will only be transferred once in the beginning to the GPU.

For very large tensors, multiple-GPUs can be used. A similar

approach can be used to implement Tucker using unified.

V. EXPERIMENTS

We evaluate the performance of the unified approach by

comparing to two state-of-the-art tensor libraries, namely

ParTI [18] and SPLATT [11]. ParTI accelerates sparse tensor

operations on multicore CPU and GPU architectures. SPLATT

provides high-performance implementations of SpMTTKRP

on shared-memory systems. SPLATT doesn’t support sparse

tensor operations on GPUs. All the experiments on the CPU

platform for ParTI-omp and SPLATT are executed with 12

threads. For fair comparison, we follow the execution instruc-

tions provided by the authors of SPLATT and ParTI libraries.

Parameters
Intel

Core i7-5820K
NVIDIA

GeForce GTX Titan X
Microarchitecture Haswell Maxwell

Frequency 3.3GHz 1.0 GHz
Physical cores 6 3072

Peak SP Performance 56.72 Gflops 6144Gflops

Last-level cache 15MB 3MB
Memory size 64GB 12GB

Memory bandwith 68 GB/S 336GB/S

compiler gcc 5.4.0 nvcc 8.0

Table III: Experimental platform configuration.

Dataset order Mode sizes nnz density

brainq 3 60× 70K × 9 11M 2.9e− 01
nell2 3 12K × 9K × 29K 77M 2.5e− 05

dellicious 3 0.5M × 17.3M × 2.5M 140M 6.1e− 12
nell1 3 2.9M × 2.1M × 25.5M 144M 9.3e− 13

Table IV: Description of sparse tensor datasets.

Our experiments are performed on an Intel Core i7-5820K

CPU and the NVIDIA GeForce GTX Titan X platforms. Hard-

ware configurations are shown in Table III. We use a number

of datasets from real applications provided by FROSTT [28].

Nell1 and nell2 come from Never Ending Language Learning

(NELL) project [29] and represent noun-verb-noun triplets.

The brainq dataset is generated from functional Magnetic

Imaging (fMRI) measurements of brain activity [30], which

represents noun-voxel-human subjects. Delicious is a user-
item-tag tensor crawled from tagging systems [31]. Table IV

provides more details on the datasets.
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Because both the sparsity pattern of the tensor and its

partitioning scheme will impact the memory footprint of

sparse tensor operations on GPUs, we tune the threadlen
and BLOCK SIZE parameters to find their best configuration.

The parameter threadlen indicates the number of non-zeros

processed by each thread and BLOCK SIZE shows the number

of threads inside a thread block. As shown in Figure 5, the

best parameter configurations for nell1 and brainq for SpMT-

TKRP on mode-1 are (BLOCK SIZE=128 and threadlen=64)

and (BLOCK SIZE=32, threadlen=16) respectively. The best

parameter configuration for each dataset and sparse tensor

operation can be found in Table V. These parameters are used

to obtain the results for unified in the upcoming sections.

Operations nell-1 delicious nell-2 brainq
SpTTM (32,8) (512,8) (256,64) (1024,32)
SpMTTKRP (32,16) (32,8) (1024,64) (128,64)

Table V: The best parameters for SpTTM on mode-3 and

SpMTTKRP on mode-1.

A. Performance Results and Analysis

This section compares the performance of the unified

method with ParTI and SPLATT. ParTI-omp and ParTI-GPU

are parallel implementations of ParTI on multi-core and GPU

architectures respectively. The number of columns of dense

matrices in tensor computations is set to 16, which is also

the rank of the tensor decomposition. Since SPLATT only

supports SpMTTKRP, the performance of unified method for

the SpTTM operation is only compared to ParTI. As shown

in Figure 6a, compared to ParTI-omp unified achieves 5.3×
(nell1) to 215.7× (brainq) speedup. Compared to ParTI-GPU,

unified achieves 1.1× (nell1) to 3.7× (brainq) speedup. For

the SpMTTKRP operation ParTI-GPU runs out of memory for

larger tensors such as nell1 and delicious. As shown in Figure

6b, compared to ParTI-omp, our proposed method achieves

from 8.1× (nell1) to 102.5× (brainq) speedup. Compared to

ParTI-GPU, we achieve 23.7× speedup on nell2 and 30.6×
speedup on brainq. Unified achieves a speedup of 1.4× for

nell2 and 12.5× for brainq compared to SPLATT.

The experiments show the unified method achieves best

performance for the brainq dataset and does not perform well

for the nell1 dataset. nell1 is extremely sparse with a density

of 9.1e-13 (nell1) while brainq is the densest tensor in our

dataset. The performance of tensor operations on GPUs tend

not to be good for very sparse tensors because the non-zero

elements processed by one warp will need access to columns

of the dense factor matrices that are located far apart based

on the indices of the product mode. To resolve this issue, we

use a read-only data cache to cache accesses to the dense

matrices. However, if the indices in the product mode vary

to a large extent, cache hit rates will decrease. Thus, while

unified does not perform well for nell1 it performs better

for brainq (density: 2.9e-01), nell-2 (density: 2.5e-05), and

delicious (density: 6.1e-12).

B. Mode Behavior

The experiments in this section demonstrate that the per-

formance of the unified method does not depend on the

mode being operated on and performs relatively the same

mainly because it is based on the F-COO format. Since brainq

is one of the “oddly” shaped tensors in our dataset with

60×70K×9 dimensions, it is used to examine the performance

of unified on different modes. As shown in Figure 7, for both

SpTTM or SpMTTKRP, unlike ParTI-GPU and SPLATT, the

running time of unified method remains relatively the same

for different modes.

Unified performs well for all modes because it uses the F-

COO format to partition and parallelize based on the tensor

non-zeros. However, because ParTI-GPU operates on fibers

of the sparse tensor, its performance changes for each mode.

For example, when computing SpTTM on mode-2 of brainq,

ParTI only launches up to 540 threads to perform computations

on fibers in parallel and thus does not efficiently use the

GPU resources. SPLATT organizes the sparse tensor as a tree.

Thus, parallelizing computations for different modes requires

operating on different levels of the tree which changes the

level of parallelization and the memory access patterns.

C. Rank Behavior

As discussed in Section IV-D, the performance of unified

scales well when the number of columns in the dense factor

matrices is increased, i.e. increasing the rank of the tensor de-

composition. We ran unified for different ranks (8, 16, 32, 64).

As demonstrated in [13], when the rank increases the resulting

tensor or matrix from the sparse tensor operations becomes

larger, thus, we only test rank behavior for the two smallest

tensors brainq and nell2. As shown in the Figure 8, when the

rank varies from 8 to 64 the execution time of ParTI increases

at a faster rate compared to unified. The speedup of unified

over ParTI-GPU for brainq varies from 3.7× to 4.3× and the

speedup of unified over ParTI-GPU for nell1 varies from 2.1×
to 2.4×.

D. Memory Consumption on GPUs

SpTTM does not generate intermediate data, thus, the

memory consumption of unified and ParTI is nearly the same.

However, ParTI does generate intermediate data for SpMT-

TKRP. Since ParTI runs out of memory when operating on the

larger tensor datasets we computed the memory consumption

by hand for nell1 and delicious based on ParTI’s open source

code. The memory consumption for the other two datasets

is measured by executing the code. As shown in Figure 9,

compared to ParTI-GPU, our method reduces the memory

consumption by 68.6% for nell1 and 88.6% for brainq because

of the one-shot computations.

E. CANDECOMP/PARAFAC (CP) Decomposition on GPUs

To the best of our knowledge, this work provides the

first implementation for the CP decomposition on GPUs.

Our implementation creates two GPU streams where one

stream performs SpMTTKRP on different modes and the other
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performs matrix operations including matrix multiplication

and matrix inversion using the CUBLAS library [32]. As a

result, the computations performed by separate streams would

be overlapped automatically when possible. Because a single-

GPU memory can not store all the tensor data for the CP

decomposition we provide results for brainq and nell2. For

larger datasets, multiple GPU cards can be used. As shown

in Figure 10, most of execution time for CP decomposition

is spent on the SpMTTKRP operation and unlike SPLATT,

in unified computations are well-balanced between operations

for both tensors.

We compare the performance of SPLATT with our unified

method for CP decomposition. ParTI doesn’t support CP on

GPUs. The rank of the tensor decomposition is fixed to 8 to

represent the low-rank property of the tensor decomposition.

Another important reason is that one of the dimensions in

brainq (60 × 70k × 9) is 9 and ranks larger than 9 will

create a deficient matrix in the tensor decomposition algorithm.

Figure 10 shows per iteration runtimes for CP decomposition;

converting the storage format to F-COO is done only once
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Figure 10: Running time per iteration of the unified method

(on GPU) and SPLATT on CPU performing CP decomposition

on ”brainq” and ”nell2” datasets; lower is better.

before iterations and thus is not reported and is considered as

per-processing overhead. From Figure 10, the unified method

achieves 14.9× and 2.9× speedup over SPLATT for brainq

and nell2 respectively. As shown in Figure 10, most of time

in our implementation is spent on performing SpMTTKRP

operations.

VI. CONCLUSION

This paper proposes a unified sparse storage format and

parallel algorithms for sparse tensor operations on GPUs. The

tensor modes for different operations are encoded into unified

to deliver highly-efficient implementations of sparse tensor

operations. Unified is used across different tensor operations

and also accelerates the execution of complete tensor-based

algorithms. Unified’s performance is not sensitive to mode

changes in tensor methods, scales well with rank updates, and

reduces memory footprints and storage costs on GPUs. Several

techniques are used to further improve the performance of

unified on GPUs such as the segmented scan method, kernel

fusion, warp shuffle, and data reuse. The experiments show

that our unified solution significantly outperforms state-of-

art implementations of sparse tensor operations on multicore

CPUs and manycore GPUs.
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