
Making Caches Work for Graph Analytics

Yunming Zhang, Vladimir Kiriansky,

Charith Mendis, Saman Amarasinghe

MIT CSAIL

{yunming,vlk,charithm,saman}@csail.mit.edu

Matei Zaharia

Stanford InfoLab

matei@cs.stanford.edu

Abstract—Large-scale applications implemented in today’s
high performance graph frameworks heavily underutilize modern
hardware systems. While many graph frameworks have made
substantial progress in optimizing these applications, we show
that it is still possible to achieve up to 5⇥ speedups over the fastest
frameworks by greatly improving cache utilization. Previous
systems have applied out-of-core processing techniques from the
memory/disk boundary to the cache/DRAM boundary. However,
we find that blindly applying such techniques is ineffective
because the much smaller performance gap between cache and
DRAM requires new designs for achieving scalable performance
and low overhead. We present Cagra, a cache optimized in-
memory graph framework. Cagra uses a novel technique, CSR
Segmenting, to break the vertices into segments that fit in last
level cache, and partitions the graph into subgraphs based on the
segments. Random accesses in each subgraph are limited to one
segment at a time, eliminating the much slower random accesses
to DRAM. The intermediate updates from each subgraph are
written into buffers sequentially and later merged using a low
overhead parallel cache-aware merge. Cagra achieves speedups of
up to 5⇥ for PageRank, Collaborative Filtering, Label Propaga-
tion and Betweenness Centrality over the best published results
from state-of-the-art graph frameworks, including GraphMat,
Ligra and GridGraph.

I. INTRODUCTION

High performance graph analytics has received considerable

research attention, leading to a series of optimized frameworks

such as GraphLab [1], Ligra [2], Galois [3] and GraphMat [4].

Increasingly, many of these frameworks target a single mul-

ticore machine, because a single machine has the smallest

communication overhead and memories have grown to the

point where many graphs can fit on one server [2], [5].

Given the effort in this field, it is natural to ask whether

current frameworks are close to hardware limits. Perhaps

surprisingly, we find that they are not. Cagra employs novel

optimizations to achieve up to 5× speedup over state-of-the-art

shared memory graph frameworks.

The core problem is that graph applications have poor cache

utilization. They do very little computation per byte accessed,

and a large fraction of their memory requests are random.

Random accesses to a working set that does not fit in cache

make the entire cache hardware subsystem ineffective. Without

effective use of the cache to mitigate the processor-DRAM

gap, CPUs are stalled on high-latency random accesses to

DRAM. Indeed, we find that today’s fastest frameworks spend

60–80% of their cycles stalled on memory access.

The fastest in-memory frameworks, such as GraphMat

and Ligra, do not optimize for caches aggressively. On the

other hand, recent disk-based graph frameworks have applied

techniques developed for the memory/disk boundary to the

cache/DRAM boundary. However, we find that even the fastest

of these frameworks, GridGraph [6], is 3× slower than in-

memory frameworks that do not optimize for caches (e.g.,

GraphMat).

The main challenges in applying cache optimizations are

achieving good multicore scalability and keeping the runtime

overhead low enough to work with the smaller gap between

cache and DRAM. For example, GridGraph [6], which uses a

cache friendly 2D grid representation and a scatter-apply exe-

cution model, has trouble scaling efficiently beyond 4–6 cores.

X-Stream [7] partitions the graph into streaming partitions that

fit in cache and processes each partition with a scatter-gather

execution model. However, it incurs significant runtime over-

head from the additional shuffle and gather phases. To make

caches work for graph analytics, we need to carefully design

multiple aspects of the system, such as partitioning the graph

(2D Grid, Streaming Partitions or other schemes), choosing

a data format (sorted compressed graph or unsorted edge

list), exploiting parallelism (either within a single partition or

parallelism across multiple partitions), utilizing the multi-level

cache system (per core L1, L2 or shared LLC), and minimizing

overhead. Many of these decisions are also interrelated, adding

another layer of complexity to the problem.

In this paper, we present Cagra, a framework that signifi-

cantly speeds up graph applications on multicores using a new

scalable and low-overhead technique to optimize cache usage.

The core of Cagra is compressed sparse row (CSR) segment-

ing, a novel partitioning and computation design that limits

all random accesses in the system to the cache, and makes all

DRAM accesses sequential. Unlike disk-based systems, CSR

Segmenting uses a compressed 1D-segmented graph represen-

tation to improve the scalability of parallel in-cache processing

and reduce overhead. CSR Segmenting first preprocesses the

graph to divide the vertex data into cache-sized segments, and

partitions the edges into subgraphs based on these segments.

It then processes each subgraph in parallel, making one pass

through all the edges while keeping the random accesses

to vertex data in the cache. The intermediate updates from

each segment are locally merged and stored using a buffer to

eliminate random writes to DRAM. Finally, CSR Segmenting

employs a novel low overhead parallel cache-aware merge

algorithm to combine the updates from all the buffers within

L1 cache. With CSR segmenting, Cagra achieves up to 5×
speedup over previous optimized graph frameworks, including

Algorithm 5 PageRank in Cagra

typedef double vertexDataType
contrib {1/outDegree[v], ...}
newRank {0.0, ...}

procedure EDGEUPDATE(bufV al, srcV al, dstV al)
bufV al+ = srcV al
return true

end procedure

procedure MERGE(newDstV al, bufV al)
newDstV al+ = bufV al

end procedure

procedure VERTEXUPDATE(v)
newRank[v] 0.15 + 0.85 ⇤ newRank[v]
newRank[v] newRank[v]/outDegree[v]
contrib[v] 0.0
return true

end procedure

procedure PAGERANK(G,maxIter)
iter 0
A V
while iter 6= maxIter do

A EdgeMap(G,A,EdgeUpdate, EdgeMerge)
A V ertexMap(G,A, V ertexUpdate)
Swap(contrib, newRank)
iter iter + 1

end while
end procedure

cycles stalled on memory by serving more random requests

in fast storage.

Motivation: We make three key observations on graph

access patterns and motivate frequency based clustering. First,

each random read in graph applications often only uses a small

portion of the cache line. For PageRank, the size of the vertex

data is 8 bytes for a rank represented as a double, using

only 1/8 of a common 64 byte cache line. Second, certain

vertices are much more likely to be accessed than others in

power law distributed graphs, where a small number of vertices

have a large number of edges attached to them [8]. A third

observation is that the original ordering of vertices in real

world graphs often exhibit some locality. Vertices that are

referenced together are sometimes placed close to each other

due to existing communities.

Design and Implementation: We designed frequency based

clustering to group together the vertices that are frequently

referenced, while preserving the natural ordering in the real

world graphs. We use out-degrees to select the frequently

accessed vertices because many graph algorithms use only

pull based implementations, or spend a significant portion of

the execution time in the pull phase. To preserve the original

ordering in real world graphs, we cluster together only vertices

with out-degree above the average degree of nodes. This

thresholding allows us to keep some of the locality in the

original ordering, yet still offering a clustering of high-out-

degree vertices that maximizes the effectiveness of L1, L2,

Dataset Number of Vertices Number of Edges

LiveJournal [10] 5 M 69 M

Twitter [8] 41 M 1469 M

RMAT 25 [12] 34 M 671 M

RMAT 27 [12] 134 M 2147 M

SD [11] 101 M 2043 M

Netflix [13] 0.5 M 198 M

Netflix2x [14] 1 M 792 M

Netflix4x [14] 2 M 1585 M

TABLE I: Real world and synthetic graph input datasets

and L3 caches.

We use a parallel stable sort based on vertices’ out-

degree/threshold to cluster together frequently referenced ver-

tices. Next, we create a mapping from old vertex index to

the newly sorted vertex index and use the mapping to update

the vertex index in the G.edgeArray. Load balance is

critical to achieving high performance with frequency based

clustering. The thread responsible for the part of the vertex

array containing high out-degree vertices may perform much

more work than other threads. We implemented a work-

estimating load balancing scheme that partitions the vertex

array based on the number of edges within each task, which

reflects how many random reads it will make to the rank

array. The task then processes its range of vertices if the cost

is sufficiently small, or divides into two sub-tasks otherwise.

Combining Clustering and CSR Segmenting: Segmenting

works well with frequency based clustering. Cagra first applies

frequency based clustering on the entire graph and then

proceeds to apply CSR segmenting. The first advantage is that

Cagra can now make better use of faster higher level caches.

Additionally, the clustered graph requires less extra sequential

memory overhead. The expansion factors shown in Figure 6

for the clustered Twitter graph is over 2× smaller than the

original graph, reducing sequential memory traffic overhead.

VI. EVALUATION

We demonstrate up to 5× speedup for various graph ap-

plications over best published results from state-of-the-art

graph processing frameworks, and 3× speedup over previously

expert hand optimized C++ implementations. We provide a

detailed analysis on cycles stalled on memory to show that

Cagra’s improved cache efficiency. Finally, we show Cagra’s

good scalability and low runtime overhead through compar-

isons with other cache optimized frameworks and techniques,

including GridGraph and Hilbert Curve Ordering.

A. Experimental Setup

We conducted our experiments on a dual socket system with

Intel Xeon E5-2695 v2 CPUs 12 cores for a total of 24 cores

and 48 hyperthreads, with 30 MB last level cache in each

socket. The system has 128GB of DDR3-1600 memory. The

machine runs with Transparent Huge Pages (THP) enabled.

Data Sets: We used the social networks, including LiveJour-

nal [10] and Twitter [8], the SD web graph from 2012 common

crawl [11], and the RMAT graphs. We also synthesized an

expanded version of the Netflix dataset.Table I summarizes

the datasets that we use.

Dataset Cagra HandOpt
C++

GraphMat Ligra GridGraph

Live
Journal

0.017s
(1.00×)

0.031s
(1.79×)

0.028s
(1.66×)

0.076s
(4.45×)

0.195
(11.5×)

Twitter 0.29s
(1.00×)

0.79s
(2.72×)

1.20s
(4.13×)

2.57s
(8.86×)

2.58
(8.90×)

RMAT
25

0.15s
(1.00×)

0.33s
(2.20×)

0.5s
(3.33×)

1.28s
(8.53×)

1.65
(11.0×)

RMAT
27

0.58s
(1.00×)

1.63s
(2.80×)

2.50s
(4.30×)

4.96s
(8.53×)

6.5
(11.20×)

SD 0.43
(1.00×)

1.33
(2.62×)

2.23
(5.18×)

3.48
(8.10×)

3.9
(9.07×)

TABLE II: PageRank runtime per iteration comparisons with other
frameworks and slowdown relative to Cagra

Dataset Cagra HandOpt C++ GraphMat

Netflix 0.20s (1×) 0.32s (1.56×) 0.5s (2.50×)

Netflix2x 0.81s (1×) 1.63s (2.01×) 2.16s (2.67×)

Netflix4x 1.61s (1×) 3.78s (2.80×) 7s (4.35×)

TABLE III: Collaborative Filtering runtime per iteration comparisons
with GraphMat and slowdown relative to Cagra

Applications: We choose a representative set of applications

from domains such as machine learning, graph traversals

and graph analytics. PageRank, Label Propagation and Col-

laborative Filtering are dominated by unpredictable vertex

data accesses. The algorithms do not require any vertices’

activeness checking. Additionally, PageRank, Label Propaga-

tion and Collaborative Filtering take a number of iterations

to complete, justifying the preprocessing time. Betweenness

Centrality (BC) represents the applications that involve ver-

tices’ activeness checking and making unpredictable access

to vertices’ data, such as single source shortest path (SSSP).

Betweenness Centrality also takes a large number of iterations,

making a case for additional preprocessing time.

B. Comparison with Hand Optimized Implementations and

Other Frameworks

Tables II to V compare the running time for Cagra with that

of GraphMat, Ligra and GridGraph.

Hand Optimized C++ Implementations: We used hand

optimized C++ implementations for PageRank, Label Prop-

agation and Collaborative Filtering. These implementations

are based on previous work [15], and included many op-

timizations, such as hand-tuned work stealing load balance

scheme, replacing expensive divisions to multiplications of

reciprocal, working set compression by precomputing rank

divided by degree, vectorization of loads, software prefetching

and removal of unnecessary branches. These implementations

do not apply CSR segmenting and frequency based clustering.

Existing Frameworks: GraphMat holds the record of the

fastest published implementation of PageRank and Collabora-

tive Filtering and is over 2x faster than Galois [3]. Collabora-

tive Filtering is only implemented in GraphMat. GridGraph

partitions the vertex data and the graph to improve cache

performance. We used the number of partitions suggested

in the GridGraph paper which we verified gave their best

performance, since our machine has a similar LLC size. Ligra

has the fastest implementations of Betweenness Centrality on

many real world graphs thanks to its innovative push and pull

Dataset Cagra HandOpt C++ Ligra

Live Journal 0.02s (1×) 0.01s (0.68×) 0.03s (1.51×)

Twitter 0.27s (1×) 0.51s (1.73×) 1.16s (3.57×)

RMAT 25 0.14s (1×) 0.33s (2.20×) 0.5s (3.33×)

RMAT 27 0.52s (1×) 1.17s (2.25×) 2.90s (5.58×)

SD 0.34 (1×) 1.05 (3.09×) 2.28 (6.71×)

TABLE IV: Label Propagation runtime per iteration comparisons with
other frameworks and slowdown relative to Cagra

Dataset Cagra Ligra

LiveJournal 1.2s (1×) 1.2s (1.00×)

Twitter 14.6s (1×) 17.5s (1.19×)

RMAT 25 7.08s (1×) 11.1s (1.56×)

RMAT 27 21.9s (1×) 42.8s (1.95×)

SD 15.0(1×) 19.7 (1.31×)

TABLE V: Between Centrality runtime for 12 different starting points
comparisons with Ligra and slowdown relative to Cagra

switch optimization, and it is comparable to Galois on power

law graphs.

Table II to Table IV show that Cagra’s PageRank, Collabo-

rative Filtering and Label Propagation’s performance improves

with the size of the graph. For PageRank, we only achieved

1.6x speedup on the LiveJournal graph compared to GraphMat

because the graph is relatively small and most of the frequently

referenced data fits in the last level cache. Betweenness

Centrality has smaller working set than the other applications.

C. Analysis of Optimizations

In this section, we demonstrate the speedups of the op-

timizations for various applications in Fig. 7 and show the

reduction in cycles stalled on memory in Fig. 8.

CSR Segmenting: Segmenting alone accelerates PageRank,

Label Propagation and Collaborative Filtering by more than

2x. Segmented algorithm serves all of the random read re-

quests in LLC, eliminating random DRAM access. The impact

of segmenting on time and cycles stalled on memory per edge

is evident in Fig. 8.

The cycles stalled on memory per edge for Segmenting

stay low and stable for both PageRank and Label Propagation

across graphs of increasing sizes. The stability comes from the

fact that all random accesses are served in LLC, with almost a

fixed latency. On the other hand, the hand optimized C++ and

clustering’s cycles stalled on memory per edge increases as

we increase the size of the graph because more random reads

are served in DRAM. We have also measured the LLC miss

rate and find that it dropped from 46% to 10% on the Twitter

graph after CSR segmenting has been applied.

Frequency Based Clustering: Clustering is effective

on PageRank, Label Propagation, Betweenness Centrality.

Fig. 8 demonstrates that clustering significantly reduces cycles

stalled. For Betweenness Centrality, clustering can help take

advantage of the higher level L2 caches as the working set

is not much larger than LLC. On Collaborative Filtering, full

cache lines are used for per-vertex latent factor vectors, leaving

little room for cache line utilization improvements.

Combining Frequency Based Clustering and CSR Seg-

menting: Combining the two techniques achieved even better

results on PageRank and Label Propagation because clustering

Dataset Clustering Segmenting Build
CSR

LiveJournal 0.1 s 0.2 s 0.48 s
Twitter 0.5 s 3.8 s 12.7 s
RMAT 27 1.4 s 6.3 s 39.3 s

TABLE VI: Preprocessing Runtime in Seconds.

Frameworks Cagra GridGraph X-Stream

Partitioned
Graph

1D-
segmented
CSR

2D Grid Streaming
Partitions

Sequential
DRAM traffic

E + (2q+1)V E + (P+2)V 3E + KV

Random
DRAM traffic

0 0 shuffle(E)

Parallelism within 1D-
segmented
subgraph

within 2D-
partitioned
subgraph

across many
streaming
partitions

Runtime
Overhead

Cache-aware
merge

E*atomics shuffle and
gather phase

TABLE VII: Comparisons with other frameworks optimized for
cache. E is the number of edges, V is the number of vertices, q is
the expansion factor for our techniques, P is the number of partitions
for GridGraph, K is the expansion factor for X-Stream. On Twitter
graph, E = 36V, q = 2.3, P = 32.

compressed subgraphs during segmenting.

Cagra’s preprocessing cost is small compared to its signifi-

cant performance gains. We do not include the preprocessing

cost in Table II to Table V, since other frameworks also

incur significant preprocessing costs that were not included.

GraphMat and Ligra require the construction of CSR. Cagra’s

clustering and segmenting cost can easily be amortized by

performance gains over Ligra and GraphMat in 2–5 iterations,

when applications, such as PageRank, can run for more than

20 iterations. GridGraph uses a special 2D grid representation

of the graph that does not sort the edges by their destinations.

However, 2D partitioning also takes significant more time than

1D partitioning used in Cagra. GridGraph’s preprocessing time

for Twitter graph is 130s, much more than the 17s needed by

Cagra and is 9–11× slower than Cagra on PageRank. Finally,

the 1D segmented graphs can also be reused across multiple

graph applications, further amortizing the preprocessing cost.

VII. RELATED WORK

There have been many projects optimizing graph compu-

tations in shared-memory systems, including Ligra, Galois,

GraphMat and others [2], [3], [4]. Satish et al. [15] bench-

marked many of these frameworks and found them to un-

derperform hand-optimized code. The same authors proposed

GraphMat [4], a framework based on sparse matrix operations

that matched their hand-optimized benchmarks. Nonetheless,

GraphMat still uses memory bandwidth inefficiently and does

not optimize for cache aggressively.

GridGraph [6] and X-Stream [7] claimed their techniques

for reducing random disk access can also be applied to reduc-

ing random memory access. GridGraph partitions the edges on

both sources and destinations (2D partitioning) into subgraphs.

Each subgraph is processed separately to make sure reads

from sources and writes to destinations happen in cache. The

issue with 2D partitioning is that the number of edges in each

subgraph can be relatively small, making it difficult to scale

efficiently beyond 4-6 cores when each subgraph is processed

in parallel. Cagra produces much better parallelism with a 1D

segmented CSR scheme. Additionally, GridGraph uses atomics

for parallel execution, incurring significant runtime overhead.

X-Stream uses streaming partitions to keep the random reads

in fast storage and reduce random writes in slow storage

through a scatter-shuffle-gather design. X-Stream incurs heavy

overhead by requiring additional sequential memory traffic for

streaming the updates, extra random memory accesses and

execution time for shuffle and gather phases. Cagra completely

eliminates random writes to DRAM and keeps the runtime

overhead low with the cache-aware merge algorithm. Table VII

shows a detailed comparison between Cagra, GridGraph and

X-Stream. Techniques from other systems optimizing on the

disk to memory boundary will also unlikely translate to

performance gains as cache ptimizations. GraphChi [18] uses

shards with Parallel Sliding Windows to keep random access

low. However, it needs to stream the edges twice, and the

updates from processing each interval will incur random writes

in slow storage.

Polymer [19] is a NUMA-optimized framework that focuses

on minimizing both remote random access and cross-NUMA-

node access. It uses a 1D graph partitioning scheme, but incurs

slow remote writes for vertex data updates. While we do not

focus on NUMA in this work, we believe that our techniques

could further improve intra-socket performance in Polymer.

Graph analytics has also been studied extensively in dis-

tributed memory systems [1], [20]. These systems partition the

graph into subgraphs that can be executed in parallel. Their

partitioning model optimize for minimum communication and

good load balance across different partitions. In contrast, CSR

segmenting processes one segment at a time and optimizes for

limiting the range of random access, instead of load balance.

PowerLyra also exploits the skewed degree of the graphs with

differentiated processing.

Recent works have looked at speeding up graph application

with vertex and edge reordering. A concurrent work [21]

applied in-degree sort to many sequential graph algorithms.

Frequency Based Clustering improves the performance com-

pared to in-degree sort by preserving locality in the original

ordering of the graphs. Hilbert ordering [5] is an edge ordering

technique that was shown to improve the cache performance of

graph algorithms. We studied Hilbert ordering extensively in

Section VI-D and found that it underperforms our techniques

on multicore systems.

For graphs with poor locality, such as uniform random

graph, propagation blocking [22] and milk compiler [23]

achieves good cache performance by reorganizing random

memory accesses into sequential ones at runtime. Cagra does

more in preprocessing with little runtime overhead.

Finally, graph applications like PageRank are analogous to

sparse matrix-vector multiply problems, for which techniques,

such as cache blocking, have been proposed [16], [24]. CSR

Segmenting performs better than previous cache blocking

techniques as we do not fit both the sources and destinations

(2D blocking) in cache. Our technique fit only the sources

in cache (1D segmenting) and store the writes sequentially

in large buffers, which are later processed using cache-aware

merge. This approach allows us to generate greater parallelism,

reduce preprocessing time and keep runtime overhead low. Ad-

ditionally, not all applications, such as collaborative filtering,

can be easily expressed as SpMv problems.

VIII. CONCLUSION

Graph analytics are an essential part of modern data analysis

workflows, leading to significant work to optimize them on

shared-memory machines. Graph applications inherently ap-

pear to have poor cache utilization, requiring a large number

of random DRAM accesses. In this paper, we show that

substantial performance improvements can be obtained by

eliminating random DRAM access with CSR segmenting.

CSR Segmenting uses a novel 1D segmentation and cache-

aware merge scheme to achieve scalable performance with low

runtime overhead. We then present our framework, Cagra, that

applies CSR segmenting to various graph applications with an

easy to use interface. Cagra is up to 5× faster than the best

published results for common graph applications from high

performance graph frameworks and up to 3× faster than expert

optimized C++ implementations.

IX. ACKNOWLEDGMENTS

We thank William Hasenplaugh for discussions and sug-

gestions on the paper, Julian Shun, MIT COMMIT group

members and our reviewers for the many feedback. This

research is supported by affiliate members and other supporters

of the Stanford DAWN project (Intel, Microsoft, Teradata, and

VMware) as well as NSF CAREER grant CNS-1651570, grant

from Toyota Research Institute, DARPA grant FA8750-17-2-

0126, DOE awards DE-SC008923 and DE-SC014204.

REFERENCES

[1] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: A framework for machine learning
and data mining in the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp.
716–727, Apr. 2012.

[2] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’13. New York, NY, USA: ACM, 2013, pp. 135–146.

[3] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles, ser. SOSP ’13. New York, NY,
USA: ACM, 2013, pp. 456–471.

[4] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat: High
performance graph analytics made productive,” Proc. VLDB Endow.,
vol. 8, no. 11, pp. 1214–1225, Jul. 2015.

[5] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at what
COST?” in 15th Workshop on Hot Topics in Operating Systems, HotOS

XV, Kartause Ittingen, Switzerland, May 18-20, 2015, 2015.

[6] X. Zhu, W. Han, and W. Chen, “GridGraph: Large-scale graph
processing on a single machine using 2-level hierarchical partitioning,”
in Proceedings of the 2015 USENIX Conference on Usenix Annual

Technical Conference, ser. USENIX ATC ’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 375–386. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2813767.2813795

[7] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, ser.
SOSP ’13. New York, NY, USA: ACM, 2013, pp. 472–488.

[8] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proceedings of the 19th International

Conference on World Wide Web, ser. WWW ’10. New York, NY,
USA: ACM, 2010, pp. 591–600.

[9] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph pro-
cessing: Workload characterization on an ivy bridge server,” in Workload

Characterization (IISWC), 2015 IEEE International Symposium on, Oct
2015, pp. 56–65.

[10] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[11] “Sd-arc web data commons hyperlink graph 2012,”
http://webdatacommons.org/hyperlinkgraph.

[12] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proceedings of the Fourth SIAM International

Conference on Data Mining, Lake Buena Vista, Florida, USA, April

22-24, 2004, 2004, pp. 442–446.
[13] J. Bennett, S. Lanning, and N. Netflix, “The Netflix prize,” in In KDD

Cup and Workshop in conjunction with KDD, 2007.
[14] B. Li, S. Tata, and Y. Sismanis, “Sparkler: Supporting large-

scale matrix factorization,” in Proceedings of the 16th International

Conference on Extending Database Technology, ser. EDBT ’13. New
York, NY, USA: ACM, 2013, pp. 625–636. [Online]. Available:
http://doi.acm.org/10.1145/2452376.2452449

[15] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park, M. A. Has-
saan, S. Sengupta, Z. Yin, and P. Dubey, “Navigating the maze of graph
analytics frameworks using massive graph datasets,” in Proceedings of

the 2014 ACM SIGMOD International Conference on Management of

Data, ser. SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 979–
990.

[16] A.-J. Yzelman and D. Roose, “High-level strategies for parallel shared-
memory sparse matrix-vector multiplication,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 25, no. 1, pp. 116–125, Jan 2014.
[17] A.-J. N. Yzelman and R. H. Bisseling, “A cache-oblivious sparse

matrixvector multiplication scheme based on the Hilbert curve,” in
Progress in Industrial Mathematics at ECMI 2010, ser. Mathematics
in Industry. Springer Berlin Heidelberg, 2012, vol. 17, pp. 627–633.

[18] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale graph
computation on just a pc,” in Proceedings of the 10th USENIX Confer-

ence on Operating Systems Design and Implementation, ser. OSDI’12.
Berkeley, CA, USA: USENIX Association, 2012, pp. 31–46.

[19] K. Zhang, R. Chen, and H. Chen, “NUMA-aware graph-structured
analytics,” in Proceedings of the 20th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, ser. PPoPP 2015.
New York, NY, USA: ACM, 2015, pp. 183–193.

[20] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated graph
computation and partitioning on skewed graphs,” in Proceedings of the

Tenth European Conference on Computer Systems, ser. EuroSys ’15.
New York, NY, USA: ACM, 2015, pp. 1:1–1:15.

[21] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing
by graph ordering,” in Proceedings of the 2016 International

Conference on Management of Data, ser. SIGMOD ’16. New
York, NY, USA: ACM, 2016, pp. 1813–1828. [Online]. Available:
http://doi.acm.org/10.1145/2882903.2915220

[22] S. Beamer, K. Asanovi, and D. Patterson, “Reducing PageRank commu-
nication via propagation blocking,” in 2017 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), May 2017, pp. 820–
831.

[23] V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing indirect
memory references with milk,” in Proceedings of the 2016 International

Conference on Parallel Architectures and Compilation, ser. PACT ’16.
New York, NY, USA: ACM, 2016, pp. 299–312. [Online]. Available:
http://doi.acm.org/10.1145/2967938.2967948

[24] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Proceedings of the 2007 ACM/IEEE Conference on

Supercomputing, ser. SC ’07. New York, NY, USA: ACM, 2007, pp.
38:1–38:12.

