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Abstract—Large-scale applications implemented in today’s
high performance graph frameworks heavily underutilize modern
hardware systems. While many graph frameworks have made
substantial progress in optimizing these applications, we show
that it is still possible to achieve up to 5x speedups over the fastest
frameworks by greatly improving cache utilization. Previous
systems have applied out-of-core processing techniques from the
memory/disk boundary to the cache/DRAM boundary. However,
we find that blindly applying such techniques is ineffective
because the much smaller performance gap between cache and
DRAM requires new designs for achieving scalable performance
and low overhead. We present Cagra, a cache optimized in-
memory graph framework. Cagra uses a novel technique, CSR
Segmenting, to break the vertices into segments that fit in last
level cache, and partitions the graph into subgraphs based on the
segments. Random accesses in each subgraph are limited to one
segment at a time, eliminating the much slower random accesses
to DRAM. The intermediate updates from each subgraph are
written into buffers sequentially and later merged using a low
overhead parallel cache-aware merge. Cagra achieves speedups of
up to 5x for PageRank, Collaborative Filtering, Label Propaga-
tion and Betweenness Centrality over the best published results
from state-of-the-art graph frameworks, including GraphMat,
Ligra and GridGraph.

I. INTRODUCTION

High performance graph analytics has received considerable
research attention, leading to a series of optimized frameworks
such as GraphLab [1], Ligra [2], Galois [3] and GraphMat [4].
Increasingly, many of these frameworks target a single mul-
ticore machine, because a single machine has the smallest
communication overhead and memories have grown to the
point where many graphs can fit on one server [2], [5].

Given the effort in this field, it is natural to ask whether
current frameworks are close to hardware limits. Perhaps
surprisingly, we find that they are not. Cagra employs novel
optimizations to achieve up to 5x speedup over state-of-the-art
shared memory graph frameworks.

The core problem is that graph applications have poor cache
utilization. They do very little computation per byte accessed,
and a large fraction of their memory requests are random.
Random accesses to a working set that does not fit in cache
make the entire cache hardware subsystem ineffective. Without
effective use of the cache to mitigate the processor-DRAM
gap, CPUs are stalled on high-latency random accesses to
DRAM. Indeed, we find that today’s fastest frameworks spend
60-80% of their cycles stalled on memory access.

The fastest in-memory frameworks, such as GraphMat
and Ligra, do not optimize for caches aggressively. On the

other hand, recent disk-based graph frameworks have applied
techniques developed for the memory/disk boundary to the
cache/DRAM boundary. However, we find that even the fastest
of these frameworks, GridGraph [6], is 3x slower than in-
memory frameworks that do not optimize for caches (e.g.,
GraphMat).

The main challenges in applying cache optimizations are
achieving good multicore scalability and keeping the runtime
overhead low enough to work with the smaller gap between
cache and DRAM. For example, GridGraph [6], which uses a
cache friendly 2D grid representation and a scatter-apply exe-
cution model, has trouble scaling efficiently beyond 4—6 cores.
X-Stream [7] partitions the graph into streaming partitions that
fit in cache and processes each partition with a scatter-gather
execution model. However, it incurs significant runtime over-
head from the additional shuffle and gather phases. To make
caches work for graph analytics, we need to carefully design
multiple aspects of the system, such as partitioning the graph
(2D Grid, Streaming Partitions or other schemes), choosing
a data format (sorted compressed graph or unsorted edge
list), exploiting parallelism (either within a single partition or
parallelism across multiple partitions), utilizing the multi-level
cache system (per core L1, L2 or shared LLC), and minimizing
overhead. Many of these decisions are also interrelated, adding
another layer of complexity to the problem.

In this paper, we present Cagra, a framework that signifi-
cantly speeds up graph applications on multicores using a new
scalable and low-overhead technique to optimize cache usage.
The core of Cagra is compressed sparse row (CSR) segment-
ing, a novel partitioning and computation design that limits
all random accesses in the system to the cache, and makes all
DRAM accesses sequential. Unlike disk-based systems, CSR
Segmenting uses a compressed 1D-segmented graph represen-
tation to improve the scalability of parallel in-cache processing
and reduce overhead. CSR Segmenting first preprocesses the
graph to divide the vertex data into cache-sized segments, and
partitions the edges into subgraphs based on these segments.
It then processes each subgraph in parallel, making one pass
through all the edges while keeping the random accesses
to vertex data in the cache. The intermediate updates from
each segment are locally merged and stored using a buffer to
eliminate random writes to DRAM. Finally, CSR Segmenting
employs a novel low overhead parallel cache-aware merge
algorithm to combine the updates from all the buffers within
L1 cache. With CSR segmenting, Cagra achieves up to 5x
speedup over previous optimized graph frameworks, including
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Fig. 1: Normalized running time and cycles stalled on memory for
Cagra’s optimizations in PageRank on the RMAT27 graph. The last
bar is an incorrect program where random accesses were removed to
provide a lower bound.

cache-optimized techniques such as GridGraph and Hilbert
Curve Ordering [5].

CSR Segmenting can also be combined with Frequency
Based Clustering, a variant of degree based graph reordering
technique, to further boost cache line utilization and keep
frequently accessed vertices in fast cache. In many graph
applications, each random access brings only one useful vertex
data in each cache line. Taking advantage of the power-
law degree distribution, we pack popular vertices together in
memory to improve overall cache line utilization. Cagra first
applies frequency based clustering to the entire graph and then
performs CSR segmenting.

We evaluate Cagra with various applications on large graphs
with skewed degree distributions, as found in real world
social, web and rating graphs. Cagra achieves 5x speedup for
PageRank, Label Propagation, 4x speedup for Collaborative
Filtering, and 2x for Betweenness Centrality over the fastest
previous frameworks.

Figure 1 explains our speedups further by showing how
CSR segmenting and clustering reduce the cycles stalled on
memory for PageRank. The last bar shows a modified version
of PageRank where all reads go to vertex 0 with no random
access to DRAM; Cagra is within 2x of this lower bound.

In summary, our contributions are:

o We propose CSR Segmenting, which partitions graph data
in a novel way and uses a cache-aware merge to process
the intermediate updates. CSR Segmenting eliminates all
random access to DRAM and makes all DRAM access
sequential, achieving scalable cache-efficient graph pro-
cessing.

o We present Cagra, a new framework that offers a program-
ming interface to automatically apply CSR Segmenting to
various graph applications.

« We evaluate Cagra on several representative applications
and demonstrate significant speedup over best published
results. We also provide a detailed analysis of Cagra’s
cache performance with stall cycles analysis and compare
Cagra with cache optimized GridGraph and Hilbert Curve
Ordering techniques.

Algorithm 1 PageRank

1 procedure PAGERANK(Graph G)

2 parallel for v : G.vertexArray do
3 for u : G.edgeArray[v] do

4 G.newRank[v] +=

5 G.rank[u] / G.degree[u]
6
7
8

end for
end parallel for
end procedure

II. MOTIVATION

We will use PageRank listed in Algorithm 1 as a running
example to motivate our optimizations for graph processing.
PageRank iteratively updates the rank of each vertex based
on the rank and degree of its neighbors. The performance
characteristics of PageRank can generalize to a large number
of graph applications.

A. Graph and Vertex Data Representation

Graph frameworks typically store graph in Compressed
Sparse Row (CSR) format. Assuming the graph has V ver-
tices and E edges, CSR format would create a vertex array,
G.vertexArray, of of length O(V) and an edge array,
G.edgeArray, of size O(E). Vertex Array stores the indices
of the first neighbor of each vertex in the Edge Array and use
that to access the neighbor list of each vertex. Application
specific data is stored as separate arrays. In the case of
PageRank, vertex data is stored as arrays newRank, rank
and degree of length O(V).

B. Memory Access Pattern

The algorithm sequentially reads size O(FE) data. By going
over every vertex in order, the algorithm issues sequential read
requests to G.edgeArray and sequential writes requests to
newRank. The algorithm randomly reads O(FE) times from
size O(V) vertex data, including rank and degree. These
read requests are random because we cannot predict the values
of u.

This pattern of sequentially accessed edge data and ran-
domly accessed vertex data is common in representative graph
applications. Collaborative Filtering needs to randomly read
each vertex’s latent factors, and Betweenness Centrality needs
to randomly access the active frontier and number of paths
through each vertex.

C. Random Memory Access Bottleneck

Graph applications have poor cache hit rate and are largely
stalled on memory accesses, since the working set of realistic
graphs is much larger than the last level cache (LLC) of current
machines. For example, the Twitter graph [8] has 41 million
vertices and 1.5 billion edges. The rank and degree arrays,
which together form the working set that is randomly accessed,
are 656 MB (assuming 64-bit doubles) and are many times
larger than the 30-55 MB LLC of current CPUs. Even though
there is a higher than expected hit rate due to the power-law
degree distribution and the community structures in the graph
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Fig. 2: Processing each segment.

[9], we still find the LLC miss rate for PageRank to be more
than 45%.

As a result of the high cache miss rate, our performance
profile shows graph applications are spending 60-80% of their
cycles stalled on memory access. Random memory access
becomes the major bottleneck because random access to
DRAM is 6-8x more expensive than random access to LLC
or sequential accesses to DRAM. Sequential access to DRAM
effectively uses all memory bandwidth, and benefits from
hardware prefetchers to further reduce latency.

III. CSR SEGMENTING

CSR Segmenting improves cache utilization by working on
one cache-sized segment of vertex data at a time. To make
CSR segmenting work for the cache/memory hierarchy, we
have to keep graph processing scalable across all cores and
runtime overhead low with carefully designed preprocessing,
segment processing and cache-aware merging. This technique
can be applied to a wide class of computations that aggregate
values over the neighbors of each vertex in the graph.

First, consider the PageRank algorithm in Algorithm 1. To
compute the new ranks, each vertex randomly accesses a large
array (the ranks of all vertices on the pervious iteration) to find
its neighbors’ rank. If this array does not fit in the CPU cache,
many random accesses go to DRAM, shown in Figure 2(a).

With segmenting, we partition the graph into subgraphs
and make one pass through all the subgraphs. When pro-
cessing each subgraph, we confine our random accesses to
a cache-sized segment (Figure 2(b)). Specifically, we first do
a preprocessing step by dividing the previous iteration’s rank
array into k£ segments that fit in the CPU’s last-level cache.
We then construct subgraphs by grouping together all the
edges whose sources are in the same segment and construct
a data structure for the destination vertices. CSR Segmenting

original graph: %

segment 1: source verts

dest verts

Subgraph 1

segment2: — (3 (4|5 source verts

>
0[3]4]5] destverts

Subgraph 2

Fig. 3: Example of subgraphs created in segmenting. We split
the set of vertices, 0..5, into segments {0,1,2} and {3,4,5}, then
build subgraphs with the destination vertices and out-edges for each
segment.

processes one subgraph at a time. Within a subgraph, it iterates
over all vertices in parallel and adds their contributions from
the segment. Some destination vertices would potentially be
duplicated across different subgraphs. As a result, we use
parallel cache-aware merge to combine the contributions for
each vertex from all segments that have edges to it, as shown
in Figure 4.

Segmenting can also potentially be applied to the push
version of the algorithms. However, we focus on the InEdge
processing (pull) version as it does not require atomic syn-
chronizations, and takes most of the execution time [2].

In summary, segmenting has the following benefits:

o Improved cache utilization: It restricts all random reads
and writes to cache, and makes all accesses to DRAM
sequential.

o Great scalability: Within each subgraph, threads can
parallelize the execution across all vertices without using
atomic operations for synchronization. Each subgraph is
only partitioned on the source vertices, not on both the
source and destination vertices, providing ample paral-
lelism. The merge phase can be parallelized as well.

o Low overhead: Cache-aware merge only needs a small
amount of extra sequential memory accesses and per-
forms the merge in L1 cache in parallel. Processing the
graph requires only one sequential pass through all the
edges.

o Easy to use: It can easily be applied to any algorithm
that aggregates values across the graph with a clean API
provided by Cagra.

We next describe and analyze the preprocessing, segment

processing and cache-aware merge in more detail.

A. Preprocessing

The preprocessing algorithm is shown in Algorithm 2 and
Figure 3 shows an example dividing a graph into two sub-



Algorithm 2 Preprocessing

Algorithm 3 Parallel Segment Processing

Input: Number of vertices per segment N, Graph G
for v : G.vertices do
for inEdge : G.inEdges(v) do
segmentID < inEdge.src/N
subgraphs[segmentI D].addInEdge(v,inEdge.src)
end for
end for
for subgraph : subgraphs do
subgraph.sort By Destination()
subgraph.constructldxMap()
subgraph.construct BlockIndices()
subgraph.constructIntermBuf ()
end for

graphs based on the segments. The first step is to construct the
subgraphs based on the segments. We first divide the vertices
into segments such that the data for each segment fits in the
cache. For each segment S, we construct a new subgraph
consisting of edges whose sources are in the segment. To do
this, we compute the segmentID(subgraphID) of each inEdge
by dividing the sourcelD of the inEdge by the number of
vertices in each segment N and then add the edge to the
subgraph. The edges in each subgraph are sorted by their
destinations (sortByDestination). This step takes no time
since the original graph in CSR is already sorted by destina-
tion. Then, a CSR representation will be constructed for each
subgraph. The algorithm also creates an array, intermBuf,
to hold the intermediate result for each destination vertex v.
Additionally, we create an index mapping, idzM ap, to map
local index of destination vertices in the subgraph to their
global index in the original graph. Finally, we create an index
of blocks that stores block starts and ends used in cache-aware
merge. Note that this preprocessing phase can be done in
parallel by building each subgraph separately from the original
CSR.

B. Parallel Segment Processing

After the preprocessing is done, the system processes each
subgraph in turn, as shown in Figure 2. Within each subgraph,
we parallelize the computation across different vertices. We
made three key design choices in segment processing, shown
in Algorithm 3.

First we exploit parallelism within a single large segment
that fits in LLC, instead of across multiple smaller segments.
This way, all the threads in our approach share the same
working set, i.e., the source vertex data in this segment,
which is read-only. Thus, adding more threads does not create
cache contention. We also experimented with parallelizing
the processing of multiple smaller segments. Each smaller
segment’s working set fits in L2 cache, instead of LLC, for
even lower random access latency. However, we found that the
merging overhead that comes with a large number of smaller
segments becomes a significant performance bottleneck.

Next, we divide the graph based on only source vertices, and
not on both source the destination vertices (2D partitioning),
to achieve good scalability. Many other frameworks, such as

for subgraph : subgraphs do
parallel for v : subgraph.Vertices do
for inEdge : subgraph.inEdges(v) do
Process inEdge
end for
end parallel for
end for
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Fig. 4: Cache-aware merge

GridGraph, use 2D partitioning to make sure reads and writes
happen in cache. However, this approach can create a large
number of subgraphs with a small number of edges, resulting
in poor scalability when processing each subgraph in parallel.
Instead, we limit only the reads to be in cache, allowing writes
to DRAM, as long as they are sequential.

Finally, we parallelize across different vertices, but not
within the same vertex. This parallelization approach takes
advantage of the CSR format of each subgraph to generate
large degree of parallelism without using atomics for synchro-
nization, since the updates to each vertex in the subgraph are
locally merged by the same worker thread.

C. Cache-Aware Merge

Once the per-segment passes are done, Cagra fills up the
intermediate buffers for each subgraph with the updates for
vertices. These buffers are sparse, holding data only for the
destination vertices in each segmented subgraph. For example,
in Figure 3, segmented subgraph 1 will produce a buffer with
updates for vertices 0,1,5 and the second buffer for subgraph
2 will produce a buffer with updates for vertices 0,3,4,5, as
shown in Figure 4.

To combine these intermediate update buffers into one
dense output vector, we use a cache-aware merge algorithm
(Algorithm 4). The algorithm accesses the intermediate buffers
sequentially, requiring no branches, and runs in parallel. We
divide the range of vertex IDs into Ll-cache-sized blocks.
Then, for each block, a worker thread reads the updates for
that range of vertex IDs from the sparse buffers of intermediate
results, and updates a dense vector output for the final output
using the local to global index mapping idxMap. Helper data
structures blockStarts and blockEnds hold the start and end
local index of each output block’s vertex IDs in each of the
per-subgraph buffers, ensuring the random access is confined
in L1 cache. Different blocks can be processed in parallel by
different threads, and we use a work-stealing load balancing
scheme to divide them across processors. !

!One benefit of this approach is that each thread usually processes multiple
consecutive blocks, further increasing the range of sequential access for both
reads and writes.



Algorithm 4 Cache-Aware Merge

parallel for block : blocks do
for subgraph : G.subgraphs do
blockStart < subgraph.blockStarts[block]
block End < subgraph.block Ends[block]
intermBuf < subgraph.intermBuf
for localldz from blockStart to blockEnd do
globalldx < subgraph.idzMapllocalldz)
localUpdate = intermBuf[localldz]
merge(output|[globalldz], localUpdate)
end for
end for
end parallel for
return output
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Fig. 5: Comparison of segment computation vs merge costs. Run-
time% normalized to an optimized PageRank baseline without seg-
menting on 24 cores.

With the cache-aware merge algorithm, merging adds only a
small runtime overhead. Figure 5 shows the percentage of time
on segment processing and merge using 48 hyperthreads for
PageRank, normalized to a baseline with all our optimizations
other than segmenting.

D. Segment Size Selection

A final consideration in using segmenting is how large
to make the segments. In general, there is a tradeoff with
segment size. Smaller segments will fit into a lower-level cache
(e.g., L1 or L2), reducing random access latency. However,
smaller segments will also result in more merges for the same
destination vertex, because the source vertices pointing to
it will be in multiple segments. Across the applications we
evaluated, we found that sizing the segments to fit in last level
(L3) cache provided the best tradeoff.

To further understand the impact of segment size, we define
a metric called the expansion factor. Let s be the number of
vertices in each segment, and s,q; be the average number of
vertices adjacent to each segment, that is, with edges from the
segment to them. Then we define ¢ = s.qj/s as the expansion
factor. The expansion factor describes how many segments, on
average, contribute data to each vertex, and hence how many
merge operations happen for each vertex.

Figure 6 shows the expansion factors as a function of
number of segments for several graphs while varying number
of vertices, average degrees, and vertex order. For PageRank
calculations where we need 8-byte data per vertex, a 30
MB LLC cache can fit 4M vertices. For these workloads the
expansion factors are less than 5, which is much less than the
number of segments or the average degree (24 for the Twitter
graph) which are the upper bounds of ¢. Randomly permuting
vertices results in a much worse expansion factor.

Twitter random Twitter original ~ # Twitter clustered

s ___‘__PJ//

1 10 100 1000

Expansion
Factor
=
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Fig. 6: Expansion factors of segmenting Twitter graph in original and
random order, frequency based clustered order.

E. Analysis of Memory Access Costs

We analyze the memory access efficiency of CSR segment-
ing by analyzing the total traffic between LLC and DRAM
and the total number of cache misses in LLC.

Traffic between LLC and DRAM: Assume we have k
segments, and the expansion factor detailed in the last section
is ¢. When processing each segment, we only need to read in
V/k source vertex data and write ¢V//k intermediate updates
buffer to memory. Cagra makes only one pass through all the
edges. As a result, it incurs a total of E 4 ¢V + V traffic
during segment processing phase. In cache-aware merge, we
first read back all the intermediate buffers (¢V') to perform the
merge and write back V final values, incurring ¢V +V traffic.
Summing up both phases, we get the total DRAM traffic:

E+2¢V+V

We compare Cagra’s sequential and random memory traffic
with other cache optimized frameworks, including GridGraph
and X-Stream, in Section VII.

IV. PROGRAMMING ABSTRACTION

Cagra extends the EdgeMap and VertexMap API from Ligra
to support automatic cache optimizations. Cagra processes a
directed graph G = (V, E), where V is the vertex set and E
is the edge set. Undirected graph is represented with edges in
both directions. Algoirithm 5 demonstrates the pseudocode of
PageRank implemented in Cagra.

EdgeMap (G, ActiveFrontier, EdgeUpdate, Merge) Sim-
ilar to the original Ligra API, EdgeMap traverses the edge set
E, and applies an EdgeUpdate function to the edge if the
source node is in the ActiveFrontier. Cagra requires users to
provide a Merge function to perform cache-aware merge, as
shown in Algorithm 4. Furthermore, the update function works
with data values of source and destination vertices, instead
of their indices as in Ligra, since the indices in the original
graph’s CSR are different from those in the CSR of the current
segmented graph. The users direct all writes to the segmentVal.

VertexMap (G, VertexSubset, VertexUpdate) VertexMap
applies the user defined VertexUpdate function to every vertex
in the VertexSubset.

V. FREQUENCY BASED CLUSTERING

CSR Segmenting can also be combined with Frequency
Based Clustering, an out-degree based graph reordering tech-
nique, to further boost cache line utilization and keep fre-
quently accessed vertices in fast cache. Frequency Based
Clustering reorganizes the physical layout of the vertex data
structures to improve cache utilization. It reduces overall



Algorithm 5 PageRank in Cagra

typedef double vertexDataType
contrib <— {1/outDegree[Vv], ...}
newRank + {0.0, ...}

procedure EDGEUPDATE(bu fV al, srcVal, dstV al)
bufVal4+ = srcVal
return true

end procedure

procedure MERGE(newDstVal, bufVal)
newDstVal+ = bufVal
end procedure

procedure VERTEXUPDATE(v)
newRank[v] < 0.15 + 0.85 * new Rank|v]
newRank[v] < newRank|[v]/out Degree[v]
contribv] < 0.0
return true

end procedure

procedure PAGERANK(G, maxIter)
iter < 0
A+V
while iter # maxlIter do
A <+ EdgeMap(G, A, EdgeUpdate, EdgeMerge)
A + VertexMap(G, A, VertexUpdate)
Swap(contrib, newRank)
iter < iter + 1
end while
end procedure

cycles stalled on memory by serving more random requests
in fast storage.

Motivation: We make three key observations on graph
access patterns and motivate frequency based clustering. First,
each random read in graph applications often only uses a small
portion of the cache line. For PageRank, the size of the vertex
data is 8 bytes for a rank represented as a double, using
only 1/8 of a common 64 byte cache line. Second, certain
vertices are much more likely to be accessed than others in
power law distributed graphs, where a small number of vertices
have a large number of edges attached to them [8]. A third
observation is that the original ordering of vertices in real
world graphs often exhibit some locality. Vertices that are
referenced together are sometimes placed close to each other
due to existing communities.

Design and Implementation: We designed frequency based
clustering to group together the vertices that are frequently
referenced, while preserving the natural ordering in the real
world graphs. We use out-degrees to select the frequently
accessed vertices because many graph algorithms use only
pull based implementations, or spend a significant portion of
the execution time in the pull phase. To preserve the original
ordering in real world graphs, we cluster together only vertices
with out-degree above the average degree of nodes. This
thresholding allows us to keep some of the locality in the
original ordering, yet still offering a clustering of high-out-
degree vertices that maximizes the effectiveness of L1, L2,

Dataset Number of Vertices | Number of Edges
LiveJournal [10] 5M 69O M
Twitter [8] 41 M 1469 M
RMAT 25 [12] 34 M 671 M
RMAT 27 [12] 134 M 2147 M
SD [11] 101 M 2043 M
Netflix [13] 0.5M 198 M
Netflix2x [14] 1M 792 M
Netflix4x [14] 2M 1585 M

TABLE I: Real world and synthetic graph input datasets

and L3 caches.

We use a parallel stable sort based on vertices’ out-
degree/threshold to cluster together frequently referenced ver-
tices. Next, we create a mapping from old vertex index to
the newly sorted vertex index and use the mapping to update
the vertex index in the G.edgeArray. Load balance is
critical to achieving high performance with frequency based
clustering. The thread responsible for the part of the vertex
array containing high out-degree vertices may perform much
more work than other threads. We implemented a work-
estimating load balancing scheme that partitions the vertex
array based on the number of edges within each task, which
reflects how many random reads it will make to the rank
array. The task then processes its range of vertices if the cost
is sufficiently small, or divides into two sub-tasks otherwise.

Combining Clustering and CSR Segmenting: Segmenting
works well with frequency based clustering. Cagra first applies
frequency based clustering on the entire graph and then
proceeds to apply CSR segmenting. The first advantage is that
Cagra can now make better use of faster higher level caches.
Additionally, the clustered graph requires less extra sequential
memory overhead. The expansion factors shown in Figure 6
for the clustered Twitter graph is over 2x smaller than the
original graph, reducing sequential memory traffic overhead.

VI. EVALUATION

We demonstrate up to 5x speedup for various graph ap-
plications over best published results from state-of-the-art
graph processing frameworks, and 3 x speedup over previously
expert hand optimized C++ implementations. We provide a
detailed analysis on cycles stalled on memory to show that
Cagra’s improved cache efficiency. Finally, we show Cagra’s
good scalability and low runtime overhead through compar-
isons with other cache optimized frameworks and techniques,
including GridGraph and Hilbert Curve Ordering.

A. Experimental Setup

We conducted our experiments on a dual socket system with
Intel Xeon E5-2695 v2 CPUs 12 cores for a total of 24 cores
and 48 hyperthreads, with 30 MB last level cache in each
socket. The system has 128GB of DDR3-1600 memory. The
machine runs with Transparent Huge Pages (THP) enabled.

Data Sets: We used the social networks, including LiveJour-
nal [10] and Twitter [8], the SD web graph from 2012 common
crawl [11], and the RMAT graphs. We also synthesized an
expanded version of the Netflix dataset.Table I summarizes
the datasets that we use.



Dataset Cagra | HandOpt C++ Ligra
Live Journal | 0.02s (Ix) | 0.01s (0.68x) | 0.03s (1.51x)
Twitter 0.27s (I1x) | 0.51s (1.73x) | 1.16s (3.57%)
RMAT 25 0.14s (1x) | 0.33s (2.20x) | 0.5s (3.33%)
RMAT 27 0.52s (I1x) | 1.17s (2.25x) | 2.90s (5.58%)
SD 0.34 (1x) 1.05 (3.09x) | 2.28 (6.71%)

Dataset | Cagra HandOpt | GraphMat | Ligra GridGraph
C++

Live 0.017s 0.031s 0.028s 0.076s | 0.195

Journal | (1.00x) (1.79%) | (1.66x) (4.45x) | (11.5%)

Twitter | 0.29s 0.79s 1.20s 2.57s 2.58
(1.00%) (2.72x) | (4.13%) (8.86x) | (8.90%)

RMAT | 0.15s 0.33s 0.5s 1.28s 1.65

25 (1.00x) (2.20x) | (3.33%) (8.53%x) | (11.0x)

RMAT | 0.58s 1.63s 2.50s 4.96s 6.5

27 (1.00%) (2.80x) | (4.30x) (8.53x) | (11.20%)

SD 0.43 1.33 2.23 3.48 3.9
(1.00x) (2.62x) | (5.18%) (8.10x) | (9.07x)

TABLE II: PageRank runtime per iteration comparisons with other
frameworks and slowdown relative to Cagra

Dataset Cagra | HandOpt C++ GraphMat
Netflix 0.20s (1x) | 0.32s (1.56%x) | 0.5s (2.50%)
Netflix2x | 0.81s (1x) | 1.63s (2.01x) | 2.16s (2.67 %)
Netflix4x | 1.61s (1x) | 3.78s (2.80%) Ts (4.35%)

TABLE III: Collaborative Filtering runtime per iteration comparisons
with GraphMat and slowdown relative to Cagra

Applications: We choose a representative set of applications
from domains such as machine learning, graph traversals
and graph analytics. PageRank, Label Propagation and Col-
laborative Filtering are dominated by unpredictable vertex
data accesses. The algorithms do not require any vertices’
activeness checking. Additionally, PageRank, Label Propaga-
tion and Collaborative Filtering take a number of iterations
to complete, justifying the preprocessing time. Betweenness
Centrality (BC) represents the applications that involve ver-
tices’ activeness checking and making unpredictable access
to vertices’ data, such as single source shortest path (SSSP).
Betweenness Centrality also takes a large number of iterations,
making a case for additional preprocessing time.

B. Comparison with Hand Optimized Implementations and
Other Frameworks

Tables II to V compare the running time for Cagra with that
of GraphMat, Ligra and GridGraph.

Hand Optimized C++ Implementations: We used hand
optimized C++ implementations for PageRank, Label Prop-
agation and Collaborative Filtering. These implementations
are based on previous work [15], and included many op-
timizations, such as hand-tuned work stealing load balance
scheme, replacing expensive divisions to multiplications of
reciprocal, working set compression by precomputing rank
divided by degree, vectorization of loads, software prefetching
and removal of unnecessary branches. These implementations
do not apply CSR segmenting and frequency based clustering.

Existing Frameworks: GraphMat holds the record of the
fastest published implementation of PageRank and Collabora-
tive Filtering and is over 2x faster than Galois [3]. Collabora-
tive Filtering is only implemented in GraphMat. GridGraph
partitions the vertex data and the graph to improve cache
performance. We used the number of partitions suggested
in the GridGraph paper which we verified gave their best
performance, since our machine has a similar LLC size. Ligra
has the fastest implementations of Betweenness Centrality on
many real world graphs thanks to its innovative push and pull

TABLE IV: Label Propagation runtime per iteration comparisons with
other frameworks and slowdown relative to Cagra

Dataset Cagra Ligra
LiveJournal 1.2s (I1x) 1.2s (1.00x)
Twitter 14.6s (1x) | 17.5s (1.19%)
RMAT 25 7.08s (1x) | 11.1s (1.56%)
RMAT 27 21.9s (1x) | 42.8s (1.95%)
SD 15.0(1x) 19.7 (1.31x)

TABLE V: Between Centrality runtime for 12 different starting points
comparisons with Ligra and slowdown relative to Cagra

switch optimization, and it is comparable to Galois on power
law graphs.

Table II to Table IV show that Cagra’s PageRank, Collabo-
rative Filtering and Label Propagation’s performance improves
with the size of the graph. For PageRank, we only achieved
1.6x speedup on the LiveJournal graph compared to GraphMat
because the graph is relatively small and most of the frequently
referenced data fits in the last level cache. Betweenness
Centrality has smaller working set than the other applications.

C. Analysis of Optimizations

In this section, we demonstrate the speedups of the op-
timizations for various applications in Fig. 7 and show the
reduction in cycles stalled on memory in Fig. 8.

CSR Segmenting: Segmenting alone accelerates PageRank,
Label Propagation and Collaborative Filtering by more than
2x. Segmented algorithm serves all of the random read re-
quests in LLC, eliminating random DRAM access. The impact
of segmenting on time and cycles stalled on memory per edge
is evident in Fig. 8.

The cycles stalled on memory per edge for Segmenting
stay low and stable for both PageRank and Label Propagation
across graphs of increasing sizes. The stability comes from the
fact that all random accesses are served in LLC, with almost a
fixed latency. On the other hand, the hand optimized C++ and
clustering’s cycles stalled on memory per edge increases as
we increase the size of the graph because more random reads
are served in DRAM. We have also measured the LLC miss
rate and find that it dropped from 46% to 10% on the Twitter
graph after CSR segmenting has been applied.

Frequency Based Clustering: Clustering is effective
on PageRank, Label Propagation, Betweenness Centrality.
Fig. 8 demonstrates that clustering significantly reduces cycles
stalled. For Betweenness Centrality, clustering can help take
advantage of the higher level L2 caches as the working set
is not much larger than LLC. On Collaborative Filtering, full
cache lines are used for per-vertex latent factor vectors, leaving
little room for cache line utilization improvements.

Combining Frequency Based Clustering and CSR Seg-
menting: Combining the two techniques achieved even better
results on PageRank and Label Propagation because clustering
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is low and stable across graphs with increasing sizes, demonstrating that random accesses are confined in LLC.

can further make better use of L2 cache within each segment
that fit in LLC. The combined technique can further reduce
10-20% of cycles stalled on memory, achieving another 20%
speedup over segmenting alone on large graphs, including
RMAT?27 and SD.

D. Comparison with Other Cache Optimizations

In this section, we compare Cagra with Hilbert Ordering
and GridGraph. Several researchers [16], [5] have proposed
traversing graph edges along a Hilbert curve, creating locality
in both the source vertex read from and the destination vertex
written to.

On a single core, processing the edge list in Hilbert order
matches the serial performance of segmenting with clustering.
On multiple cores, however, we found that the technique did
not scale as well as our approaches.

We tested two approaches to parallelize Hilbert-ordered
updates. The first, labeled HAtomic, uses atomic compare-
and-swap updates. While this approach scales linearly with
the number of threads, performance of atomic operations is 3 x
worse than non-atomic operations. The second, HMerge, uses
an approach from [17] that creates per-thread private vectors
to write updates to, and merges them at the end. Only 5% of
the runtime is spent on merging the private vectors.

Figure 9 shows the scalability on PageRank of parallel
Hilbert-order implementations using a single NUMA socket.
When using all 12 cores, the best runtimes of HSerial (5.4s),
HAtomic (2.3s), and HMerge (1.8s) are 3 slower than Cagra,
which takes 0.5 seconds. The main reason that Hilbert ordering
does not scale well is cache contention. Each core has a private
L2 cache, however, the Last Level Cache is competitively
shared. While Hilbert ordering helps increase locality for each
thread, because the threads work on independent regions,
they compete for the LLC. In contrast, segmenting allows
multiple threads to share the same working set in the LLC,
and continues scaling with more cores.
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Fig. 9: PageRank speedups on Twitter graph over HSerial (serial
Hilbert-order) of HAtomic (parallel Hilbert ordering with atomics),
HMerge (parallel Hilbert ordering with buffers), Cagra and Grid-
Graph.
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Fig. 10: Scalability for PageRank on Twitter

Fig. 10 shows that Cagra is significantly more scalable
than cache optimized GridGraph or parallel Hilbert ordering
and achieves 8.5x speedup using 12 cores on the same
NUMA socket, 14x speedup with 24 cores interleaved across
two sockets, and 16x speedup with all 48 SMT using both
hyperthreads per core.

E. Preprocessing Time

Table VI shows Cagra’s preprocessing cost. Cagra first
computes the degrees of vertices and uses a parallel prefix
sum to construct the CSR of the input graph. The CSR
is then processed with clustering, and later partitioned into



Dataset Clustering | Segmenting| Build
CSR
LiveJournal | 0.1 s 0.2s 0.48 s
Twitter 05s 38 s 12.7 s
RMAT 27 14s 63 s 393 s
TABLE VI: Preprocessing Runtime in Seconds.
Frameworks Cagra GridGraph X-Stream
Partitioned 1D- 2D Grid Streaming
Graph segmented Partitions
CSR
Sequential E + 2q+1)V E + (P+2)V | 3E + KV
DRAM traffic
Random 0 0 shuffle(E)
DRAM traffic
Parallelism within ~ 1D- | within 2D- | across many
segmented partitioned streaming
subgraph subgraph partitions
Runtime Cache-aware E*atomics shuffle  and
Overhead merge gather phase

TABLE VII: Comparisons with other frameworks optimized for
cache. E is the number of edges, V is the number of vertices, g is
the expansion factor for our techniques, P is the number of partitions
for GridGraph, K is the expansion factor for X-Stream. On Twitter
graph, £ = 36V, q = 2.3, P = 32.

compressed subgraphs during segmenting.

Cagra’s preprocessing cost is small compared to its signifi-
cant performance gains. We do not include the preprocessing
cost in Table II to Table V, since other frameworks also
incur significant preprocessing costs that were not included.
GraphMat and Ligra require the construction of CSR. Cagra’s
clustering and segmenting cost can easily be amortized by
performance gains over Ligra and GraphMat in 2-5 iterations,
when applications, such as PageRank, can run for more than
20 iterations. GridGraph uses a special 2D grid representation
of the graph that does not sort the edges by their destinations.
However, 2D partitioning also takes significant more time than
1D partitioning used in Cagra. GridGraph’s preprocessing time
for Twitter graph is 130s, much more than the 17s needed by
Cagra and is 9-11x slower than Cagra on PageRank. Finally,
the 1D segmented graphs can also be reused across multiple
graph applications, further amortizing the preprocessing cost.

VII. RELATED WORK

There have been many projects optimizing graph compu-
tations in shared-memory systems, including Ligra, Galois,
GraphMat and others [2], [3], [4]. Satish et al. [15] bench-
marked many of these frameworks and found them to un-
derperform hand-optimized code. The same authors proposed
GraphMat [4], a framework based on sparse matrix operations
that matched their hand-optimized benchmarks. Nonetheless,
GraphMat still uses memory bandwidth inefficiently and does
not optimize for cache aggressively.

GridGraph [6] and X-Stream [7] claimed their techniques
for reducing random disk access can also be applied to reduc-
ing random memory access. GridGraph partitions the edges on
both sources and destinations (2D partitioning) into subgraphs.
Each subgraph is processed separately to make sure reads
from sources and writes to destinations happen in cache. The
issue with 2D partitioning is that the number of edges in each

subgraph can be relatively small, making it difficult to scale
efficiently beyond 4-6 cores when each subgraph is processed
in parallel. Cagra produces much better parallelism with a 1D
segmented CSR scheme. Additionally, GridGraph uses atomics
for parallel execution, incurring significant runtime overhead.
X-Stream uses streaming partitions to keep the random reads
in fast storage and reduce random writes in slow storage
through a scatter-shuffle-gather design. X-Stream incurs heavy
overhead by requiring additional sequential memory traffic for
streaming the updates, extra random memory accesses and
execution time for shuffle and gather phases. Cagra completely
eliminates random writes to DRAM and keeps the runtime
overhead low with the cache-aware merge algorithm. Table VII
shows a detailed comparison between Cagra, GridGraph and
X-Stream. Techniques from other systems optimizing on the
disk to memory boundary will also unlikely translate to
performance gains as cache ptimizations. GraphChi [18] uses
shards with Parallel Sliding Windows to keep random access
low. However, it needs to stream the edges twice, and the
updates from processing each interval will incur random writes
in slow storage.

Polymer [19] is a NUMA-optimized framework that focuses
on minimizing both remote random access and cross-NUMA-
node access. It uses a 1D graph partitioning scheme, but incurs
slow remote writes for vertex data updates. While we do not
focus on NUMA in this work, we believe that our techniques
could further improve intra-socket performance in Polymer.

Graph analytics has also been studied extensively in dis-
tributed memory systems [1], [20]. These systems partition the
graph into subgraphs that can be executed in parallel. Their
partitioning model optimize for minimum communication and
good load balance across different partitions. In contrast, CSR
segmenting processes one segment at a time and optimizes for
limiting the range of random access, instead of load balance.
PowerLyra also exploits the skewed degree of the graphs with
differentiated processing.

Recent works have looked at speeding up graph application
with vertex and edge reordering. A concurrent work [21]
applied in-degree sort to many sequential graph algorithms.
Frequency Based Clustering improves the performance com-
pared to in-degree sort by preserving locality in the original
ordering of the graphs. Hilbert ordering [5] is an edge ordering
technique that was shown to improve the cache performance of
graph algorithms. We studied Hilbert ordering extensively in
Section VI-D and found that it underperforms our techniques
on multicore systems.

For graphs with poor locality, such as uniform random
graph, propagation blocking [22] and milk compiler [23]
achieves good cache performance by reorganizing random
memory accesses into sequential ones at runtime. Cagra does
more in preprocessing with little runtime overhead.

Finally, graph applications like PageRank are analogous to
sparse matrix-vector multiply problems, for which techniques,
such as cache blocking, have been proposed [16], [24]. CSR
Segmenting performs better than previous cache blocking
techniques as we do not fit both the sources and destinations



(2D blocking) in cache. Our technique fit only the sources
in cache (1D segmenting) and store the writes sequentially
in large buffers, which are later processed using cache-aware
merge. This approach allows us to generate greater parallelism,
reduce preprocessing time and keep runtime overhead low. Ad-
ditionally, not all applications, such as collaborative filtering,
can be easily expressed as SpMv problems.

VIII. CONCLUSION

Graph analytics are an essential part of modern data analysis
workflows, leading to significant work to optimize them on
shared-memory machines. Graph applications inherently ap-
pear to have poor cache utilization, requiring a large number
of random DRAM accesses. In this paper, we show that
substantial performance improvements can be obtained by
eliminating random DRAM access with CSR segmenting.
CSR Segmenting uses a novel 1D segmentation and cache-
aware merge scheme to achieve scalable performance with low
runtime overhead. We then present our framework, Cagra, that
applies CSR segmenting to various graph applications with an
easy to use interface. Cagra is up to 5x faster than the best
published results for common graph applications from high
performance graph frameworks and up to 3x faster than expert
optimized C++ implementations.
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