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A B S T R A C T

This note analytically investigates non-reciprocal wave dispersion in locally resonant acoustic metamaterials.
Dispersion relations associated with space-time varying modulations of inertial and stiffness parameters of the
base material and the resonant components are derived. It is shown that the resultant dispersion bias onsets
intriguing features culminating in a break-up of both acoustic and optic propagation modes and one-way local
resonance band gaps. The derived band structures are validated using the full transient displacement response of
a finite metamaterial. A mathematical framework is presented to characterize power flow in the modulated
acoustic metamaterials to quantify energy transmission patterns associated with the non-reciprocal response.
Since local resonance band gaps are size-independent and frequency tunable, the outcome enables the synthesis
of a new class of sub-wavelength low-frequency one-way wave guides.

1. Introduction

The last few decades have witnessed a spurt of activity investigating
the use of metamaterials to realize unique solutions to problems in vi-
broacoustic mitigation, wave cloaking, focusing, guidance, and others
[1–3]. Locally resonant acoustic metamaterials (LRAMs) are sub-wa-
velength structures that exhibit mechanically tunable, size-in-
dependent, low frequency band gaps [4]. In their common form, LRAMs
comprise a base (outer) structure that houses a series of uniformly
distributed inner resonators (Fig. 1a), which contribute to the rise of
unique dispersion properties. Local resonance band gaps in LRAMs stem
from their ability to significantly attenuate incident excitations over a
narrow frequency spectrum at the vicinity of the resonators’ eigen-
frequencies [5]. As such, LRAMs have been recently investigated in the
context of discrete lumped mass systems [6,7], elastic bars [8,9], flex-
ural beams [10–13], as well as 2D membranes and plates [14–16].

Owing to their periodic nature, band structures of LRAMs can be
computed using a Bloch-Floquet wave solution. These structures convey
the wave dispersion relations ω μ( ), where ω is the frequency and μ is
the dimensionless wavenumber. Due to elastodynamic reciprocity, band
structures of LRAMs are symmetric about =μ 0 implying that waves
travel from point A to B in the same manner they would travel from B to
A [17]. Breaking this reciprocity in 1D systems creates a bias in the
band structures intended to force waves to travel differently in op-
posing directions [18,19]. Non-reciprocity in metamaterials have been
very recently utilized to synthesize, among others, acoustic guides [20]

and static displacement amplifiers [21]. Means to induce non-reciprocal
behavior include introduction of large nonlinearities, topological fea-
tures, and material fields that travel in time and space [22,23]. The
latter has been recently demonstrated in elastic metamaterials using a
perturbation approach [24]. Although very challenging, several efforts
have recently investigated achieving material variations in time using
negative capacitance piezoelectric shunting [25], inductance-based
resonance control [26], and magnetoelastic materials [27]. In this
work, we build on the work developed in [28] for non-resonant space-
time traveling phononic lattices to develop a mathematical framework
that captures and predicts non-reciprocal dispersion physics in lumped
time-traveling LRAMs. After analytically deriving the asymmetric wave
dispersion relations based on a defined unit-cell, we validate the fra-
mework using the finite band structures reconstructed from the actual
response of an LRAM chain of a known length. Furthermore, we present
a structural intensity analysis of the non-reciprocal LRAMs and derive
the power flow maps associated with the non-reciprocal energy trans-
mission in the LRAM as a result of the imposed modulations.

This note is organized in four sections. Following the introduction,
we begin by deriving the governing equations for spatiotemporally
modulated mass and stiffness properties for both the base and the re-
sonant components of a lumped LRAM to obtain the non-reciprocal
dispersion relations. Through numerical simulations, a 2-Dimensional
Fourier Transform (2D-FT) is then performed to validate the obtained
band structure derived analytically. To further investigate the non-re-
ciprocal behavior, in the subsequent section we investigate the LRAM
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using the energy-based structural intensity analysis (SIA) to capture the
power flow patterns within the non-reciprocal range. Finally, the con-
clusions are briefly summarized.

2. Dispersion relations

2.1. Mathematical formulation

To onset acoustic non-reciprocity, the parameters of the LRAM have
to undergo a traveling-wave like modulation. As such, we begin by
deriving mass m and stiffness k properties which travel simultaneously
in time and space. Contrary to the conventional unit cell definition, we
define a unit cell of a subset of lumped masses, spanning a length d, that
constitute a single cycle of property variation (Fig. 1a). We also denote
each spring-mass system and its resonator as a sub-cell. Consequently,
we consider harmonic variation of m and k as follows

= + +∼m t m m ω t κ j( ) cos( )γ
j

γ γ 0 0 (1)

= + +∼k t k k ω t κ j( ) cos( )γ
j

γ γ 0 0 (2)

where, as depicted in Fig. 1b, = …j J1, , is the sub-cell index and J is the
total number of sub-cells within a unit cell. Also =γ a b, refers to the
base masses and local resonators, respectively. kγ and mγ are the
average values of both variations while

∼kγ and ∼mγ are the oscillatory
components. Further, ω0 and =κ π J2 /0 represent the temporal and
spatial modulation frequencies. In practice, such modulations can be
physically realized via piezoelectric or magnetoelastic actuation [29].
Equations governing the motion of the jth sub-cell can be derived as
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where uaj and ub
j denote the base mass and resonator displacements,

respectively. Using the Floquet-Bloch theorem [30,31], and exploiting
the LRAM’s periodicity, the unit cell displacement can be related to its
adjacent ones via =+ −u u eγ

J
γ

iμ1 1 and =u u eγ γ
J iμ0 , where i is the ima-

ginary unit. Upon establishing periodic boundary conditions, the mo-
tion equations of the entire cell can be represented in compact matrix
notation as

+ =t t μM u K u 0( ) ¨ ( , ) (5)

where = … …u u u u u uu { , , , | , , , }a a a
J

b b b
J T1 2 1 2 is the displacement field, and t μK( , )

and tM( ) are the unit cell stiffness and mass matrices. Being periodic
functions of time, both K and M can be expanded using a complex
Fourier series as follows
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where Mp and Kp are the corresponding Fourier matrix coefficients.
Henceforth, we assume a harmonic solution with a time-modulated
amplitude of the following form

̂∑=
=−∞

∞

e eu uiωt

n
n

inω t0

(8)

where ̂un is the nth vector of displacement amplitudes. Substituting Eqs.
(6)–(8) into (5), and employing harmonic function orthogonality, we
obtain
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in which N is the truncated limit of the infinite series and s is an ar-
bitrary integer within the interval −N N[ , ]. As n

q
,
( ), with =q 0,1,2, is a

×J J2 2 matrix for any s and n combination. It is defined as
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Eqs. (9)–(12) can be combined into a quadratic eigenvalue problem
[32]

+ + =ω ωΦ Φ Φ U 0( )2 1 0
2 (13)

where the new vector ̂U is obtained by stacking all ̂un for = −n N to N,
sequentially. The block matrix Φq is of size + × +J N J N2 (2 1) 2 (2 1)
and each of its elements is a sub-matrix defined by
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Eq. (13) requires the matrix multiplied by ̂U to be singular in order to
yield a non-trivial solution, which describes the acoustic wave disper-
sion in the LRAM lattice. If an index p is defined such that = −p s n,
explicit forms of Mp and Kp, which constitute As n

q
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( ), can be found as
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where = …r J1, , . The definitions of Ψ Ψ,1 −1 and Ψ0 are given by
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where = −ψ ej
i κ jℓ ℓ 0 and = −ℓ 1,0,1.

Fig. 1. (a) Lumped realization of a locally resonant acoustic metamaterial (LRAM) and (b)
mass and stiffness modulation profile within a unit cell.
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2.2. Numerical validation

To validate the derived dispersion relations, we performed a
transient numerical simulation of a spatiotemporally modulated
LRAM using the following parameters: = = = =m m k k 1a b a b ,

= = = =∼ ∼∼ ∼m m k k 0.3a b a b , =J 3 and =ω 0.20 . The analysis is carried out
on a sufficiently large lattice consisting of 305 sub-cells. The LRAM is
excited precisely at its mid-span to avoid anomalies associated with
lattice asymmetry that can influence results. Dispersion contours con-
structed from the response of the finite LRAM can be evaluated using a
discrete variant of the conventional 2D-FT [33] given by

∫∑=
−∞

∞
−U μ ω d

J
e e u j t dt( , ) ( , )

j

iμx iωt

( )

j

(21)

where xj is the position of each sub-cell with respect to the global co-
ordinate system. The approach uses the numerical response of an LRAM
subject to a broadband transient wave-packet to excite the entire fre-
quency range of interest. During which, the resultant displacement field
is recorded for windowed time and space. The results are given in Fig. 2
for an unmodulated (i.e. = = = =∼∼ ∼∼k k m m 0a b a b ), spatially modulated
(i.e. =ω 00 ), and a spatiotemporally modulated LRAM, and are com-
pared to band structures computed from the derived dispersion rela-
tions. The unmodulated case (with =J 1) serves as a benchmark and
shows a traditional band structure of a locally resonant acoustic me-
tamaterial [5]. The presence of the resonators splits the structure into
two dispersive branches, an acoustic (lower) branch and an optic
(upper) branch depicting the two possible oscillation modes, with a
band gap (approximately spanning < <ω0.874 1.414) in between.

Upon applying a spatial modulation to the LRAM parameters, two

new band gaps (shaded areas in Fig. 2b) emerge by breaking-up both
the acoustic and optic branches. Acoustic reciprocity is, however, fully
maintained and the newly emerging band gaps spread across the entire
wavenumber space. With temporal modulation added, the width (fre-
quency range) of the band gaps remains almost unchanged but they
shear and eventually separate at the wavenumber origin =μ 0. The
split-up band gaps yield one way propagation structures at their re-
spective frequencies. Depending on the latter, the LRAM can act as a
forward- or backward-only diode for incident excitations. It is worth
noting that not all the analytically computed dispersion branches ap-
pear in the 2D-FT contours. This has been similarly reported in
modulated phononic crystals where an eigenvector-based weighting
factor was used to filter out redundant branches [28]. The choice of the
modulation frequency depends on the desired magnitude of disparity
between the forward and the backward band gaps. A gradual increase
in ω0 results in a larger separation of the non-reciprocal band gaps as
shown in the optic branch displayed in Fig. 3a for =ω 0.10 , 0.2, and 0.3.
While the frequency shift between the two opened band gaps remains
equal to ω0, a decrease in the forward band gap frequency and an in-
crease in the backward band gap frequency take place. As a con-
sequence, the split of the dispersion branch which onsets the non-re-
ciprocal behavior shifts to a slightly larger wavelength for the forward
mode and to a smaller wavelength for the backward mode as evident in
the same figure. With that in mind, it is necessary to avoid large in-
creases in the modulation frequency ω0 which risk the possibility of
discontinuities and time-growing waves that are associated with un-
stable interactions between propagating waves and the imposed mod-
ulations in time-space periodic media as outlined in [34,35]. Such ef-
fects can render the effort to establish an observable non-reciprocal
behavior futile. This is also shown in Fig. 3b when the modulation

Fig. 2. Dispersion bands from Eq. (13) (black lines)
and by using a 2D-FT of the time-domain response
(contours). Shaded regions indicate forward (purple)
and backward (grey) band gap ranges. Results shown
are for (a) An unmodulated LRAM with =J 1. (b)
Spatially modulated LRAM with = =ω J0, 30 . (c)
Spatio-temporally modulated LRAM metamaterial
with = =ω J0.2, 30 . (For interpretation of the refer-
ences to color in this figure legend, the reader is re-
ferred to the web version of this article.)

M.A. Attarzadeh et al. Applied Acoustics 133 (2018) 210–214

212



frequency matches the local resonance of the unmodulated system.
Fig. 4 shows all the preceding features via the time-response of the

LRAM’s displacement field at different spatial locations along its length
L. The LRAMs here are excited at their mid-point with a narrow band
excitation centered around a frequency ωc to illustrate forward and
backward propagating modes.

3. Power flow analysis

To further illustrate the non-reciprocity of the LRAM, a structural
intensity analysis (SIA) is exercised to provide visual snapshots of
power flow in the modulated lattice at different time instants. In the x-
direction, the complex transmitted power P t( ) is calculated as a func-
tion of the internal forces N t( )x and the velocity vector u ṫ ( )x using
[36,37]

= −P t N t u t( ) ( ) ̇ ( )x x (22)

and has been recently reported as an effective measure of energy at-
tenuation in local resonance band gaps of LRAMs [38,39]. The SIA is
carried out on three cases of the considered LRAM: Case 1: An LRAM
with no modulation. Cases 2 and 3: A spatiotemporally modulated
LRAM with the same modulation parameters used to generate the dis-
persion bands. Similar to Fig. 4, the LRAMs are excited at the mid-span
with a narrow band excitation centered around a frequency ωc. In the
second case, ωc is outside the one-way band gaps observed in Fig. 2,
while it lies within it in the third case.

The computed power flow diagrams are shown in Figs. 5 and 6 using
a quiver representation in which the power flow variation along the
length of the LRAM is given as arrows that capture the direction and
magnitude (arrowhead height) of P. Excitation source is marked by a
red circular dot at the lattice’s mid-point and the variations are plotted
at three different time instants. The diagrams demonstrate the flow of
the energy packet (emerging from the excitation location) as it travels
along the length of the LRAM lattice in both directions. In the un-
modulated case (Fig. 5), the packet travels symmetrically in both di-
rections about the LRAM’s origin demonstrating, as expected, full
acoustic reciprocity. At all three time instants shown, P x( ) and −P x( )
are identical at any arbitrary location along the length L. Further, the
excitation applied (at =ω 0.5c ) does not coincide with the local re-
sonance band gap, as can be verified from Fig. 2a, and as a result power
flows freely to both ends of the LRAM. In the spatiotemporally modu-
lated LRAMs, cases 2 and 3, non-reciprocal power flow is evidently
observed. In the upper row of Fig. 6, P flows asymmetrically about the
origin and attenuates faster on the forward propagation side. Due to the
space-time parameter modulations, the energy packet emerging from
the excitation at =x 0 effectively sees two different mediums on both

Fig. 3. (a) Optic dispersion branch of the spatiotemporally modulated LRAM at =ω 0.10 , 0.2, and 0.3 (arrows mark the separation between the emergent non-reciprocal band gaps). (b)
Full dispersion diagram at =ω 10 .

Fig. 4. Time-response of the LRAM’s displacement field at different spatial locations: (a)
An unmodulated LRAM, (b) spatially modulated LRAM excited at =ω 0.58c and (c) spa-
tiotemporally modulated LRAM excited at =ω 0.5c .

Fig. 5. Transient power flow in the unmodulated LRAMs at 80, 240, and 400 s (Excitation frequency is =ω 0.5c and circular dots mark excitation location).
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sides at each time instant of the transient simulation. Finally, in case 3,
the central frequency of the exciting force ( =ω 0.5c ) hits a band gap in
the lower (acoustic) positive dispersion branch and consequently ex-
hibits a forward-only band gap which is clearly picked up by the power
flow diagrams displayed in the bottom row of Fig. 6.

4. Conclusions

In conclusion, the analytical dispersion relations have been derived
for a locally resonant acoustic metamaterial (LRAM) exhibiting tra-
veling-wave-like modulations of both the mass and stiffness properties.
The dispersion curves were used to characterize the emergent non-re-
ciprocal dispersion patterns in the media of such systems. It was shown
that the dispersion bias as a result of the parameter modulation can
onset intriguing features in the LRAM bands, including loss of parity
and asymmetric dispersion about the wave vector origin, as well as
break-up of both the acoustic (lower) and optic (upper) dispersion
branches yielding forward- (or backward-) only local resonance band
gaps. The presented mathematical framework was verified using dis-
persion contours constructed from the transient response of finite
LRAMs under different excitations using a Fourier-transform based
approach. Furthermore, using a structural intensity analysis (SIA), the
non-reciprocal behavior was validated and the power flow diagrams in
the modulated time-traveling LRAMs were shown to capture the evo-
lution of non-reciprocal energy transmission patterns. Since LRAMs are
sub-wavelength systems, such findings can be used to instigate a new
class of low-frequency structures that can yield non-reciprocal proper-
ties at moderate size scales.
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and excited at =ω 0.5c (circular dots mark excitation location).
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