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Detection of Spoofed Identities on Smartphones via

Sociability Metrics
Fazel Anjomshoa, Student Member, IEEE, Burak Kantarci, Senior Member, IEEE

Melike Erol-Kantarci, Senior Member, IEEE and Stephanie Schuckers, Member, IEEE

Abstract—The pervasiveness of smartphones equipped with
various built-in sensors combined with the capability of serving
multiple applications that could access social network informa-
tion introduces next generation soft biometrics tools that could
be used to verify a user’s identity through their social behavior.
Smart mobile devices can provide multi-modal data acquisition
from various social networking applications, and when aggre-
gated, these data can help form highly identifiable behaviometric
information. Continuous identification and authentication of
users through monitoring social behavior improves detection of
identity spoofing. In this paper, we propose a social behaviometric
framework to cope with identity spoofing on smartphones. The
proposed framework consists of a front-end client module that
acquires and provides social networking data to the back-end
module which runs online machine learning procedures and
provides analytics as a service to the front-end in order to
verify user identity through social interactions. We evaluate the
performance of the proposed framework by using real data
collected from participants, and inject noisy behavioral patterns
to simulate identity spoofing scenarios. Performance results show
that under anomalous behavioral patterns, the proposed system
can identify genuine users with up to 97% success ratio using
an aggregated behavior pattern on five different social network
applications.

I. INTRODUCTION

Mobile social networking applications reveal significant

and useful information about user behaviour. According to

Ericsson’s report, mobile applications for social networking

produce high volumes of data that can be augmented with

analytics for the betterment of various services [1]. Most users

have regular behavioral patterns that are learnable which can

ultimately be used for continuous recognition of behavioral

signatures of users in social networks. That being said, in [2],

we hypothesized that the behavioral patterns on various social

network platforms can help continuously identify users and

verify that the smartphones are in possession of the proper user.

To this end, we proposed a mobile behaviometric framework

that assesses users’ social activity, and introduced sociability

metrics to generate signatures of users’ activities.

In this paper, we extend the previously proposed sociability

assessment framework and propose a generalized framework

in order to investigate the efficiency of social behaviometric

identification in the presence of identity spoofing attacks on

smartphones and illegitimate access to social network services.

The proposed framework is built on the Track My Social

Network Activity (TrackMaison) architecture proposed in [2].
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We use five popular social networking applications on mobile

platforms, namely Facebook, Twitter, Linkedin, Skype and

WhatsApp while the contextual data is built on location (of

usage), and distribution profile for uplink/downlink Wi-Fi data

generation and session duration through these applications.

Upon generation of the contextual data for each user, behavioral

patterns of each user are clustered by using the DBSCAN

algorithm, which enables learning user behavior within a week

time frame. To simulate the spoofed identities, we artificially

inject noisy contextual patterns into the user’s data, particularly,

we cloak five-day contextual data of the victim by the contextual

data of another user. Thus, detection of identity spoofing is

analogous to the anomaly detection problem. Through various

test cases on real data, we show that the proposed social

behaviometric approach can achieve up to 96% success ratio

in detecting anomalous behavior (i.e., spoofed identities) on

the mobile social network applications on smartphones.

Moreover, as sociability metrics that are defined through

these contextual data are the key indicators for identification,

we also investigate the impact of historical and recent sociability

signatures on the performance of continuous social identifi-

cation by assigning different weights to historical and recent

sociability values. We show that while forming the sociability

metrics on a running average basis, unbalanced weights of

historical and recent data (e.g. 30%-70% or vice versa) in

forming the running average values of sociability metrics lead

to at most 80% success ratio whereas equal contribution of

past and recent sociability can achieve 94% accuracy (i.e. true

rejection and true acceptance) in continuous identification of

the users on mobile social network platforms.

The rest of this paper is organized as follows. Section II

illustrates the background of the research. In Section III, the

system design and architecture are described. The results are

shown in section IV followed by the conclusion in section V.

II. RELATED WORK

The traditional identification schemes on mobile phones such

as pin codes and passwords have well-known vulnerabilities

[3] whereas widely used biometric identification schemes are

more secure at the expense of extra hardware on devices

[4], [5]. Biometric authentication schemes are categorized

into two groups [6]: 1) Physiological biometrics such as

fingerprint, facial recognition, iris and so on, and 2) behavioral

biometrics which are based on human habitual signature

including walking [7], handwriting, keystroke dynamics [8],

interaction with the mobile device [9] and social networking.

Continuous identification is based on behavioral patterns of

users which advances existing identification mechanisms to



more secure, easier and non-intrusive fashion. Yampolskiy et al

[10] categorize behavioral biometrics into five different classes

of authorship based biometrics, human computer interaction

(HCI)-based biometrics, indirect HCI-based biometrics, motor-

skills biometrics and purely behavioral biometrics. In particular,

the popularity of social networks yields users to generate a large

amount of data coming from mobile wearable devices. There

are various research efforts in the area of mining social network

induced information. Chen et al [11] address the social network

traits like scam or finding the stem of rumors [12]. The authors

in [13], [14] discuss the possibility of using behavioral patterns

on social platforms for user identification. Yet, verification with

real traces and identification success have not been evaluated

comprehensively. With the widespread adoption of Internet of

Things (IoT) devices, their use as a base for user identification

is expected to grow [15]. Behaviometrics is also an important

part of smart homes, as user signals and interaction with the

homes can be used to reconfigure a smart home [16]. For

hand-held devices, usage behavior patterns such as gestures on

touchscreens have been considered as continuous authentication

solutions which is proposed in [17]. Although these works are

relevant, they do not focus on identifying users uniquely based

on contextual patterns on social networks.

III. SYSTEM DESIGN

The front-end application collects data from five popular

social network services which are; Facebook, Twitter, LinkedIn,

Skype and WhatsApp. The collected data is stored as sessions,

and each session presents the corresponding user’s social

interaction through the device. Basically each session data

includes session ID, social network application identifier, the

time that the session is started, the time that the session ended

(i.e. the duration of that session), the amount of data consumed

in the session and the initial location where the session started.

The amount of data used is the amount of cellular or Wi-Fi

data consumed by the social network services.

To identify the behaviometric signature of users, the follow-

ing components are required:

Figure 1 system architecture includes main modules and

methods, namely monitoring, data collection, normalization,

training and identification modules. Below, more details on

each module are provided.

1) Data Collection: Mobile user data collected from the

device is uploaded to a private cloud-based server. The server

stores the raw data from all users in a database. The database

is queried for training and identification purposes.

2) User Characterization Model: User characterization is

done by extracting a combination of features from both users’

interaction over online social networks as well as the built-in

sensors of the device. The details of the model are provided

in the following sections.

3) Training Strategy: Training strategy builds a profile for

each user based on the collected data. Training is performed

continuously on a sliding window of data over time. This

allows capturing naturally altering patterns of user behavior.

4) Identification Strategy: Machine learning is the core of

user identification. Thus, the system is trained with feature sets

Table I
DEFINITIONS

SYMBOL DESCRIPTION

A Social Activity Rate
SF Sociability Factor
D data usage
τ The number of sessions per day
Tk k − th activity rate
t Duration of the activity
u User u
U Set of users | u ∈ U

p Data point
P Set of Data points
ins Instantaneous rate
sh Short term activity

overall overall activity
normal Normalized activity

A
U

u
appx

insi
Instantaneous Social activity of user u using application x

in a session i

A
U

u
appx

sh
Short-term Social activity of user u using application x

A
U

u
appx

overall
Overall Social Activity

AU
u

normal
Normalized Social Activity

α Balancing coefficient to choose Tk or Tk−1 activity rate
µ Mean
σ Standard Deviation

collected by the front-end application, and user identification

is performed based on each interaction through the device.

Once the session data is transferred to the server, the raw

collected data is converted to several metrics of interest. This

process is called normalization. In this study, two social

identification metrics, namely the social activity rate and

sociability factor are used which were initially defined in [2].

In the rest of this section, we revisit these metrics to assist the

readers.

Social Activity Rate: Social activity rate corresponds to the

relative amount of data that a user generates when using social

networking applications. The absolute data usage of a user is

normalized by the data usage of all active users. Social activity

rate of a user is a function of the user’s short term (daily) and

instantaneous social activity rates. Instantaneous social activity

rate denotes the data usage by a particular social network

application in a single session. Thus, denotes the amount of

data from the social network application x (appx) in session-i

and, is the duration of time that the appx in session-i was

used. Meanwhile instantaneous social activity rate (A
U

u
appx

insi
)

is formulated as shown in (1).

A
U

u
appx

insi
= D

U
u
appx

i
/t

U
u
appx

i
(1)

It is worthwhile noting that Short term (daily) activity denotes

the average data usage on the corresponding social network

app in a session per day as formulated in (2). A weighted

sum of consecutive short term social activity rates provide the

overall social activity rate (A
U

u
appx

overall
(Tk)) as shown in Eq. (3).

A
U

u
appx

sh
=

(

∑

D
U

u
appx

i
/t

U
u
appx

i

)

/τx (2)



Figure 1. Minimalist overview of the system architecture.

A
U

u
appx

overall
(Tk) = α ∗ A

U
u
appx

sh
(Tk−1)+

(1− α) ∗ A
U

u
appx

sh
(Tk) (3)

The normalized social active rate (Anormali
) is aggregated

overall social factors of a user averaged by the maximum social

activity rate in pool of active users as shown in Eq. (4)

AU
u

normal
=

∑

x∈X

ωxA
U

u
appx

overall
(Tk)/ argmax

u∈U

∑

x∈X

ωxA
U

u
appx

overall

(4)

Sociability Factor: Sociability of users is not limited to

their data consumption but it is also a function of the time

they spend on mobile social network applications. Therefore

we define the sociability factor metric as another identifier.

Similar to the social activity rate, the sociability factor also

has instantaneous, short term and global components that

ultimately lead to a normalized sociability factor value. Thus,

instantaneous sociability factor per app is calculated as the total

time that a user spends on a social networking app in a single

session as formulated in Eq. (5). Short term sociability factor

(SF
U

u
appx

shi
) is defined as the average time that a user spends on

a particular social network app in a session over a short time

window, e.g., a day, as formulated in (6) where t
U

u
appx

i
stands

for duration of session-i of user-u on appx. As formulated

in eq. (7), the overall sociability factor (SF
U

u
appx

overalli
(Tk)) is

a weighted sum of short term sociability factors where Tk

denotes the k − th short term sociability factor used in the

calculation, and β is a weight factor for each mobile social

network app. Finally, as expected, the normalized sociability

factor (SFnormali
) is the aggregated overall sociability factors

of a user scaled by the maximum aggregated sociability factors

in the active users pool as shown in Eq. (8).

SF
U

u
appx

insi
= t

U
u
appx

i
(5)

SF
U

u
appx

sh
=

(

∑

t
U

u
appx

i

)

/τ (6)

SF
U

u
appx

overall
(Tk) = β∗SF

U
u
appx

sh
(Tk−1)+(1− β)∗SF

U
u
appx

sh
(Tk)

(7)

SF
U

u
appx

normal
=

∑

x∈X

ωxSF
U

u
appx

overall
(Tk)/ argmax

u∈U

∑

x∈X

ωxSF
U

u
appx

overall

(8)

IV. PERFORMANCE EVALUATION

The performance of machine learning-based continuous

identification on mobile social network applications is evaluated

by using the platform that was initially introduced in [2]

which collects data usage, activity duration, location and usage

frequency of project participants on five popular social network

applications, namely Facebook, Twitter, LinkedIn, Skype and

WhatsApp. The back-end server computes the social activity

rate and sociability factor by using the data rates and session

duration as formulated in (4) and (8). The identification part was

done by using DBSCAN Density-based spatial clustering of

applications with noise (DBSCAN) [18]. DBSCAN groups the

data points that are nearest neighbors of each other, and aims

at forming dense regions. The front-end connectivity of the

testbed is provided by Android-based tablets that continuously

push data collected from 13K sessions in a two-month window.

Six representative users out of the participant set are chosen.

The raw data along with the user traits can be accessed online

at [19]. It is worthwhile mentioning that the algorithm filled

the missing data points with the mean value up to that point.

The results are based on different set of values for α and β in

(3) and (7). As mentioned before, social active rate denotes the

amount of data that a user spends on social network applications

whereas sociability factor is a function of the duration that

a user interacts with their mobile device. It is worthwhile



noting that connected IoT devices, and mobile applications

that run on those devices are prone to security vulnerabilities

as a result of unauthorized access as stated in [20]. Thus,

this paper does not aim to replace biometric authentication

in IoT-integrated platforms or consumer devices but aims

to strengthen existing password, fingerprint, face or speech

recognition-based authentication by incorporating knowledge

based spatiotemporal abstraction on mobile social networking

applications and services. That being said, a performance

metric, namely the authentication error probability is defined

in order to evaluate the disruption probability in continuous

authentication of users on connected mobile devices. In this

paper the authentication error probability is cumulative.

Besides evaluating the performance of sociability-based

identification, under identity spoofing scenarios, we also

investigate the impact of the contextual parameter weights

on the long term sociability signature, which is formulated by

(3) and (7). To this end, various values have been set in the

form of (( α )-( 1-α )) for social activity rate, and in the form

of (( β )-( 1-β )) for sociability factor as follows: 30%-70%,

50%-50% and 70%-30% where each set respectively refers to

( α ) and (1- α ). For example, 30%-70% means α and β are

equal to 30%.

Each figure presents the authentication error probability

(AEP ) of the system during the 5-day period after a user’s

behavior has been learned (i.e., converged authentication

error probability). It is worth noting that the motivation

behind continuous authentication is to reduce the frequency of

biometric authentication, and allow the users to keep using their

devices. As formulated in (9), AEPt denotes the disruption

probability due to triggering of biometric authentication. The

ratio of the cumulative value of false or true rejections (FR
and TR) starting from the beginning of training moving to

the end of the time of interest (t) to the cumulative value of

total acceptances and rejections. Indeed, false acceptance may

lead to severe consequences. In this section, we also show the

false acceptance probability, and the impact of the contextual

parameter weights (α− β) on the number of false acceptances.

AEPt =

∑

t

k=0
(FRk + TRk)

∑

i

k=0
(FRk + FAk + TRk + TAk)

(9)

By normal condition, we denote the situation where user

identities are not spoofed, and a smartphone is in possession

of the legitimate user. Thus, under normal condition, the

system can only experience false rejections that will increase

the authentication error probability (i.e. trigger biometric

authentication). On the other hand, by anomalous condition,

we denote artificially injected noisy patterns on each day to

the contextual data of the selected users. More specifically,

artificially injected noise denotes, cloaking of the contextual

patterns of the genuine user by the contextual data (short term)

of another randomly selected user. We inject noisy patterns to

each daily pattern one by one. Thus, any spoofed identity can

only be detected until the end of the day. Thus, under anomalous

condition, the system may experience high authentication error

probability (i.e. triggering of biometric authentication) due to

true rejection or false rejection. Therefore, in Figs. 2-4, the

gray bars represent the false rejections whereas the black bars

represent the disruption due to any rejection.

Fig. 2 presents the situation where the weight of historical

social activity rate and sociability factors is 30% whereas the

weight of the recent values of these sociability metrics is 70%.

As user-1 and user-3 reveal less deviation other than the points

representing extreme social activity levels (0% and 100%)

[19], they present better success rate under normal condition.

Moreover, since user-3 has a higher social activity rate which

is also correlated with its sociability factor, under normal

conditions, the user can be identified with a success ratio that

is close to 100%. It can also be concluded that the users with

lower social activity factor (i.e. shorter session duration), such

as user-2, lead to higher error rates in identification under

normal condition. This conclusion also holds for the scenarios

where identities are spoofed through injecting noisy patterns

because under anomalous conditions, besides false rejections,

true rejections will also trigger biometric authentication which

is a result of an error generated by the behavioral authentication.

As the sociability signature of user-3 has less fluctuations, the

authentication error probability of the corresponding user is still

under 4%. However, when we consider all users, the overall

average continuous authentication ratio is around 74%.

Fig. 3 and Fig. 4 present the same results under (α-β) is

set to (50%-50%) and (70%-70%), respectively. The former

denotes the situation where past and recent sociability metrics

of a user contribute to formulation of the sociability metrics

equally whereas the latter denotes the situation where recent

sociability metrics have higher impact on the formulation of the

sociability metrics. It is worthwhile noting that the sociability

metrics, namely the social activity factor and the sociability

rate, along with the location data, are the inputs of the machine

learning modules in the proposed framework. When the three

figures (i.e. Figs. 2-4) are compared, it is clearly seen that

having past and recent sociability values equally contribute

to the new inputs of the machine learning component helps

improve the success ratio. For most users, the AEP is below

10% which translate into a success ratio over 90%.

In addition to the observations reported above, in Figs.2-4, it

is an expected phenomena under anomalous condition to have

≥ AEP in comparison to the normal condition. Indeed, this

increase does not indicate a failure of the proposed system but

indicates a disruption in continuous behavioral authentication

in order verify user identity via biometrics.

Besides these values, we have also tested the False Ac-

ceptance (FA) probability under 15%-15% and 85%-85%

combinations for α-β. As illustrated in Fig. 5, the system

suffers from false acceptances when past sociability values are

lightly valued. Moreover, 15% and 50% settings lead to the

minimum number of false acceptances in detecting impostor

profiles. By studying given data, the minimum number of FA for

all users is experienced under α = β = 15% setting by just one

out of 30 noisy instances which translates into ≈97% success

in identification. This rate decreased to ≈74% by eight FA

occurrences out of thirty noisy instances when α = β = 30%.

The performance of the system under α = β = 50% improves

by reporting only two FA occurrences which translates into

≈94% accuracy.



(a)

(b)

Figure 2. Biometric authentication probability(TR + FR) under DBSCAN with spoofing identities when α and β equal to 30%

(a)

(b)

Figure 3. Biometric authentication probability(TR + FR) under DBSCAN with spoofing identities when α and β equal to 50%

V. CONCLUSION

We have proposed integration of machine learning-based

continuous identification of users with smartphones by using

contextual data generated by mobile social networking appli-

cations. We have particularly considered five popular social

networking applications, namely Facebook, LinkedIn, Twitter,

WhatsApp and Skype. Furthermore, we have augmented social

contextual data with location information obtained from the

built-in GPS sensors of smartphones. As the system is proposed

against identity spoofing on mobile platforms, we have tested

the performance of the proposed framework under scenarios

where artificial noisy patterns have been injected to the regular

contextual data of the users. Our results on real collected data

show that the users with high social activity and sociability

factor (i.e. longer session duration on social networks) are

highly identifiable (up to 100%) under normal condition

whereas the users that are less active can be identified with a

success ratio between 80%-95% depending on various factors

including the correlation between their sociability factor (i.e.

session duration) and social activity rate (data usage). We

have further shown that in the presence of noisy patterns (i.e.

spoofed identities), when past and recent sociability metrics

contribute equally to the current sociability metrics (i.e., inputs

of machine learning procedures), user identification can still

be as accurate as 94%.



(a)

(b)

Figure 4. Biometric authentication probability(TR + FR) under DBSCAN with spoofing identities when α and β equal to 70%

Figure 5. System performance for different settings for α and β over all users
under 30 noisy instances.
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