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Abstract
(WSN) using encrypted non-binary quantized data is studied. In
a WSN, sensors transmit their observations to a fusion center
through a wireless medium where the observations are suscep-
tible to unauthorized eavesdropping. Encryption approaches for
WSNs with fixed threshold binary quantization were previously
explored. However, fixed threshold binary quantization limits
parameter estimation to scalar parameters. In this paper, we
propose a stochastic encryption approach for WSNs that can
operate on non-binary quantized observations and has the
capability for vector parameter estimation. We extend a binary
stochastic encryption approach proposed previously, to a non-
binary generalized case. Sensor outputs are quantized using a
quantizer with R+ 1 levels, where R ∈ {1, 2, 3, . . .}, encrypted
by flipping them with certain flipping probabilities, and then
transmitted. Optimal estimators using maximum-likelihood es-
timation are derived for both a legitimate fusion center (LFC)
and a third party fusion center (TPFC) perspectives. We assume
the TPFC is unaware of the encryption. Asymptotic analysis of
the estimators is performed by deriving the Cramer-Rao lower
bound for LFC estimation, and the asymptotic bias and variance
for TPFC estimation. Numerical results validating the asymptotic
analysis are presented.  

I. INTRODUCTION

Recent advancements in wireless communications, digital
electronics and Micro Electro-Mechanical Systems (MEMS)
have led to the emergence of infrastructure systems such as
smart grid, smart homes, smart water networks that connect
our world intricately. Together such systems are associated
with a single concept called, the internet of things (IoT),
where networks of embedded devices called sensors are used
to perform the required tasks of monitoring and information
exchange. A WSN is composed of a large number of low-
cost and low-power devices called sensors that are capable of
monitoring information from an environment, processing and
transmitting data. Sensor networks for parameter estimation
have been successfully employed in many applications ranging
from commercial systems to military systems [1]. In many

 

of these applications, the sensors monitor critical information
like patient health or military data and communicate the
information to a location, referred to here as a legitimate
fusion center (LFC). Such wireless communication makes
the systems susceptible to a passive eavesdropper, referred
to as a third party fusion center (TPFC). Protection against
eavesdropping is thus an important requirement in the design
of sensor networks. However, the limited processing power,
energy and memory size of the sensors, along with the small
required maximum delays for the applications, make it difficult
to employ traditional encryption schemes. For this purpose,
low-complexity encryption schemes were proposed by several
authors and much of this work is described in the survey paper
[2].

As is the case of all digital communications the sensors must
employ quantized data. The sensors quantize their observations
and transmit the quantized symbols to a LFC. Much of the
previous work has focused on scalar parametric estimation
using the most restrictive case of binary quantization [3]-
[5]. In [5], the authors propose a low-complexity encryption
approach considering fixed binary quantization (with a single
fixed threshold for all sensors). They propose a binary channel-
like encryption scheme at each sensor that flips the quantized
binary symbols with given probabilities. The encrypted sym-
bols are then transmitted to the LFC . The encryption key
is the bit flipping probabilities. By deriving the appropriate
asymptoic analysis, these authors show that a significant bias
can be introduced to a TPFC with minimum cost to the LFC
estimation variance.

A significant drawback of the approach of [5] is that
recent work shows it is limited to estimation of only scalar
parameters. In practice, we might need to estimate vector
parameters. Estimating the position of an object is one ex-
ample. In [6]-[8], it was shown that only scalar parameter
estimation is possible with fixed threshold binary quantization.
With the objective of making vector parameter estimation
possible, we extend the binary stochastic encryption proposed
in [5] to an encryption scheme that can operate on non-
binary quantized data. Each sensor employs a quantizer with
R + 1 levels, R ∈ {1, 2, 3, . . .}. Each quantized symbol is
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then flipped into one of the R+1 symbols with given flipping
probabilities, which is the encryption scheme. The encrypted
symbols are then transmitted. A LFC, with the knowledge of
the flipping probabilities (encryption key) would be able to
estimate the unknown vector parameter but a TPFC unaware
of the encryption key would suffer from estimation bias. We
derive the ML estimator of the LFC that has the encryption
key, and the ML estimator of the TPFC, assuming the TPFC
is not aware of the encryption key. Primarily, our focus in this
study is providing an asymptotic analysis of these estimators.
We present the Cramer-Rao lower bound (CRLB) for the LFC
since it is asymptoically unbiased with known variance [9],
and the asymptotic bias and variance for the TPFC estimators
which are new.

The paper is structured as follows. In Section II, the
encryption scheme is formulated. Section III, discusses ML
estimation of the unknown parameter from a LFC perspective
while Section IV, discusses ML estimation of the unknown
parameter from a TPFC perspective. In Section V, we illus-
trate numerical results validating the asymptotic analysis and
also highlight limitations of the proposed encryption scheme.
Finally, conclusions are drawn in Section VI.

II. ENCRYPTED WIRELESS SENSOR NETWORK MODEL

Consider a set of N distributed sensors, each making
observations of an unknown deterministic vector parameter θ.
The observation at kth sensor xk, corrupted by additive noise
nk, is denoted by

xk = θ + nk. (1)

for k = 1, 2, . . . , N . The probability density function of the
additive noise is denoted by nk ∼ f (). We assume that each
sensor employs a common quantizer with R+ 1 levels. Each
sample xk is quantized to uk, where uk ∈ {0, 1, 2, . . . , R}.
The quantizer at each sensor is described by a set of non-
overlapping regions {A0, A1, ..., AR}, such that the quantizer
will assign the symbol uk = `k to any input xk ∈ A`k for `k ∈
{0, 1, 2, . . . , R}. In accordance with the proposed encryption
scheme, at each sensor the quantizer output uk is flipped to
ũk with a flipping probability pr(ũk = ˜̀

k|uk = `k). pr(ũk =
˜̀
k|uk = `k) is the conditional probability that ũk = ˜̀

k given
that uk = `k, for `k, ˜̀

k ∈ {0, 1, 2, . . . , R}. The encrypted
symbols ũk are then transmitted to the LFC, and at the same
time could possibly be received by an unauthorized TPFC. The
problem of interest at both the LFC and TPFC, is to estimate
θ from the received ũk. The system model is illustrated in Fig.
1.

III. LFC ESTIMATION PERFORMANCE

A. LFC Maximum Likelihood Estimator

In this section, we derive the ML estimator of θ at a LFC. In
our analysis in this paper, we make the following assumptions.

Assumption 1: The probability density function of xk is
f(xk|θ), which depends on the parameter θ. We assume that
f(xk|θ) obeys regularity (smoothness) conditions [9] such

that interchanges involving derivatives with respect to θ and
integrals with respect to xk are valid.

Assumption 2: The observations at different sensors xk are
statistically independent and identically distributed (i.i.d.)

We define the probability that the quantizer output is uk =
`k for `k ∈ {0, 1, 2, . . . , R} as

pr(uk = `k|θ) =

∫
xk∈A`k

f(xk|θ)dxk. (2)

We denote the indicator function I(`k = `′k) as taking on
the value unity when `k = `′k and zero otherwise, where
`′k ∈ {0, 1, 2, . . . , R}. Using the law of total probability [10],
we write the probability that the encrypted symbol is ũk = `k
as

pr (ũk = `k|θ) =
R∑

`′k=0

(
pr(ũk = `k|uk = `′k)

×pr(uk = `′k|θ)
)
. (3)

Under Assumption 2, the joint probability mass function of
the encrypted symbols ũ = (ũ1, ũ2, . . . , ũN )T evaluated at
¯̀= (`1, `2, . . . , `N )T is

pr(ũ = ¯̀|θ) =

N∏
k=1

R∏
`′k=0

pr(ũk = `k|θ)I(`k=`′k). (4)

Taking the logarithm of (4) we obtain the log-likelihood
function evaluated at ũ = ¯̀ as

LLFC(θ) = ln pr(ũ = ¯̀|θ)

=
N∑
k=1

R∑
`′k=0

I(`k = `′k) ln pr(ũk = `′k|θ). (5)

The ML estimate of θ for a LFC is the solution to maxθ
LLFC(θ), and is represented as θ̂(¯̀)LFC . Setting the derivative
of (5) to zero yields a necessary condition for the ML estimate
as that θ satisfying the following equation.

Figure 1. Encrypted wireless sensor network model



N∑
k=1

R∑
`′k=0

I(`k = `′k)
d
dθpr(ũk = `′k|θ)
pr(ũk = `′k|θ)

= 0. (6)

Using (2), (3) in (6) and employing Assumption 2 we obtain
a more explicit equation as

1
N

∑N
k=1

∑R
`′k=0

(
I(`k = `′k)×

∑R
˜̀
k=0

pr(ũk=`′k|uk=˜̀
k)

∫
xk∈A˜̀

k

d
dθ f(xk|θ)dxk∑R

˜̀
k=0

pr(ũk=`′k|uk=˜̀
k)

∫
xk∈A˜̀

k

f(xk|θ)dxk

)
= 0. (7)

We solve (7) iteratively to find the ML estimate θ̂LFC for a
received ¯̀ after choosing an appropriate initialization.

B. LFC Cramer-Rao Lower Bound (CRLB)

Being a standard ML estimation problem with known distri-
bution, the LFC ML estimate is asymptotically unbiased and
asymptotically approaches a Gaussian random variable with a
variance approaching the CRLB [9]. In this section, we derive
the CRLB for a LFC. To find the CRLB we first compute the
Fisher information J(θ). Let the true value of θ be θ0. Using
Assumption 2, the Fisher information is given by

J(θ) = Epr(ũ=¯̀|θ0)

{(
d

dθ
ln pr(ũ = ¯̀|θ)

)2

|θ=θ0

}

=

N∑
k=1

Epr(ũ=¯̀|θ0)

{(
d

dθ
ln pr(ũk = `k|θ)

)2

|θ=θ0

}

=
N∑
k=1

Epr(ũ=¯̀|θ0)


(

d
dθpr(ũk = `k|θ)
pr(ũk = `k|θ)

)2

|θ=θ0

 (8)

Applying Assumption 2 again, (8) can be simplified as

J(θ) = N

R∑
r=0

(
d
dθpr(ũ1 = r|θ)

)2
pr(ũ1 = r|θ)

|θ=θ0 (9)

Then, the CRLB is given by ψLFC (θ) = 1
I(θ) .

IV. TPFC ESTIMATION PERFORMANCE

A. TPFC Maximum Likelihood Estimator

Now, we consider ML estimation at a TPFC. We assume that
the TPFC is unaware of the encryption and hence believes the
received symbols ũk are unencrypted. Thus, it will perform
calculations which would be ML estimation if the symbols
were unencrypted, but the symbols are actually encrypted.
Thus, the effect of this mismatched estimation is quite different
from standard ML. It is assumed that the TPFC has knowledge
of the quantizer design and the parameters of the pdf charac-
terizing the WSN environment. Note that TPFC performance
degrades further if it is unaware of these parameters. TPFC
ML processing is exactly (7) with pr(ũk = `′k|uk = ˜̀

k) = 1

if `′k = ˜̀
k and zero otherwise. Thus the TPFC will use the

estimate θ̂TPFC which is the θ satisfying

1

N

N∑
k=1

R∑
`′k=0

I(`k = `′k)

∫
xk∈A`′k

d
dθf(xk|θ)dxk∫

xk∈A`′k
f(xk|θ)dxk

= 0. (10)

Similar to the LFC ML estimation, an iterative algorithm
can be employed to solve (10) to find θ̂TPFC . The TPFC
log-likelihood function is the log-likelihood function (5) with
pr(ũk = `′k|uk = ˜̀

k) = 1 if `′k = ˜̀
k and zero otherwise.

B. TPFC ML Estimator Asymptotic Bias

In this section, we present asymptotic bias of the TPFC
ML estimator. Let the true value of θ be θ0. As N →∞, the
strong law of large numbers [10] and Assumption 2 imply
that the sums over k in (10) scaled by 1

N approach the
common expected value of the term being summed, where
the expectation is taken with respect to the true distribution
of the observations pr(ũ1 = `1|θ0) · · · pr(ũN = `N |θ0) (the
flipped symbols), so the limit of (10) becomes

R∑
r=0

pr(ũ1 = r|θ0)

∫
x1∈Ar

d
dθf(x1|θ)dx1∫

x1∈Ar f(x1|θ)dx1
= 0. (11)

where (3) can be inserted. As before, we solve (11) iteratively
and the solution gives the asymptotic mean, represented as
θ̂ATPFC . The asymptotic bias of the estimator is then com-
puted as, βTPFC(θ) = θ̂ATPFC − θ0. The TPFC asymptotic
bias is the most important performance metric since the
limiting distribution of the TPFC ML estimate is Gaussian
with a variance that shrinks to zero as N gets very large.

C. TPFC ML Estimator Asymptotic Variance

In this section, we derive the asymptotic variance of the
TPFC ML estimator, denoted by ψATPFC(θ). As N → ∞
we know that θ̂TPFC → θ̂ATPFC . For large N , we employ
a Taylor series, about θ̂ATPFC , for the derivative of the log-
likelihood function to obtain the equation describing the ML
estimate (10) for a specific observed ũ = ¯̀ as

d

dθ
ln pr(ũ = ¯̀|θ)|θ=θ̂TPFC =

d

dθ
ln pr(ũ = ¯̀|θ)|θ=θ̂ATPFC+

(θ̂TPFC − θ̂ATPFC)
d2

dθ2
ln pr(ũ = ¯̀|θ)|θ=θ̂′ = 0. (12)

where the equality follows from the mean value theorem, for
some θ̂ATPFC < θ̂′ < θ̂TPFC . Re-arranging (12) yields

√
N(θ̂TPFC − θ̂ATPFC) =
1√
N

d
dθ ln pr(ũ = ¯̀|θ)|θ=θ̂ATPFC
− 1
N

d2

dθ2 ln pr(ũ = ¯̀|θ)|θ=θ̂′
. (13)



As N → ∞ and θ̂ATPFC < θ̂′ < θ̂TPFC , for sufficiently
large N it must be that θ̂′ → θ̂ATPFC , so the denominator of
(13) becomes

− 1

N

d2

dθ2
ln pr(ũ = ¯̀|θ)|θ=θ̂′

→ − 1

N

N∑
k=1

d2

dθ2
ln pr(ũk = `k|θ)|θ=θ̂ATPFC

→ −Epr(ũ=¯̀|θ0)

{
d2

dθ2
ln pr(ũk = `k|θ)|θ=θ̂ATPFC

}
= −

R∑
r=0

pr(ũ1 = r|θ0)

(∫
x1∈Ar

d2

dθ2 f(x1|θ)dx1∫
x1∈Ar f(x1|θ)dx1

−

(∫
x1∈Ar

d
dθf(x1|θ)dx1∫

x1∈Ar f(x1|θ)dx1

)2)
|θ=θ̂ATPFC = c (14)

where convergence to the constant c is with probability one
from the strong law of large numbers. Given Assumption
2, from the central limit theorem the numerator of (13)
approaches a Gaussian distribution with mean a and variance
b as in

1√
N

d

dθ
ln pr(ũ = ¯̀|θ)|θ=θ̂ATPFC → N(a, b). (15)

Using (11) we find a as

a = Epr(ũ=¯̀|θ0)

{
1√
N

d

dθ
ln pr(ũ = ¯̀|θ)|θ=θ̂ATPFC

}
= Epr(ũ=¯̀|θ0)

{
1√
N

N∑
k=1

d

dθ
ln pr(ũk = `k|θ)

}
|θ=θ̂ATPFC

=
√
N

(
Epr(ũ=¯̀|θ0)

{
d

dθ
ln pr(ũ1 = `1|θ)

}
|θ=θ̂ATPFC

)
= 0. (16)

Since a = 0 from (16), using the definition of variance we
compute b as

b = Epr(ũ=¯̀|θ0)

{(
1√
N

d

dθ
ln pr(ũ = ¯̀|θ)

)2

|θ=θ̂ATPFC

}

=
N∑
k=1

Epr(ũ=¯̀|θ0)

N

{(
d

dθ
ln pr(ũk = `k|θ)

)2

|θ=θ̂ATPFC

}

=
R∑
r=0

pr(ũ1 = r|θ0)

(∫
x1∈Ar

d
dθf(x1|θ)dx1∫

x1∈Ar f(x1|θ)dx1

)2∣∣∣∣
θ=θ̂ATPFC

(17)

Next, we employ Slutsky’s Theorem which states that if
x(N) → x in distribution as N → ∞ and y(N) → c as
N → ∞ with probability one, where c is a constant, then
x(N)/y(N)→ x/c in distribution as N →∞. Applying this
to (13), we have that

√
N(θ̂TPFC − θ̂ATPFC) approaches a

Gaussian distribution with mean 0 and variance b/c2. Thus,
θ̂TPFC asymptotically approaches a Gaussian distribution
with mean θ̂ATPFC and variance ψATPFC(θ) = b

Nc2 .

Fig. 2. LFC CRLB as a function of Ω

V. SIMULATION RESULTS

In this section, we present simulations results illustrating the
asymptotic behaviour of the LFC and TPFC ML estimators.
We simulate a WSN of N = 1000 sensors with Additive
White Gaussian noise. A 3-level quantizer with quantizer
outputs uk ∈ {0, 1, 2} is considered. The quantization regions
are A0 = (−∞,−1), A1 = [−1, 1] and A2 = (1,∞).
We consider stochastic encryption with symmetric encryption
key, i.e., pr(ũk = `k|uk = `′k) = Ω if `k = `′k and
pr(ũk = `k|uk = `′k) = (1 − Ω)/2 if `k 6= `′k, for
`k, `

′
k ∈ {0, 1, 2}. For simplicity, we simulate a scalar

parameter estimation with θ = −1.3. By varying Ω, we change
the encryption and simulate the corresponding LFC and TPFC
estimation performance. Monte-Carlo simulations were run,
and the bias and variance were plotted against Ω.

The first performance metric to be illustrated is the LFC
CRLB ψLFC (θ). In Fig. 2, the LFC CRLB ψLFC (θ) as
well as the simulated mean-square-error of the LFC ML
estimator are plotted as a function of Ω. It is clear that
the simulated mean-square-error approaches the ψLFC (θ) for
every Ω. When Ω = 1/3, pr(ũk = ˜̀

k) = 1/3,∀˜̀
k ∈ {0, 1, 2},

i.e., the encrypted symbols ũk are independent of uk and hence
carry no information about θ. Hence, as Ω → 1/3 it can be
observed in Fig. 2 that ψLFC (θ)→∞. This is similar to the
binary quantization case in [5], in which ψLFC (θ) → ∞ as
Ω→ 1/2. Note that Ω = 1/3 produces ψLFC (θ)→∞ for a
symmetric encryption key case. For an asymmetric encryption
key case, different values of Ω produce ψLFC (θ)→∞.

Next, we simulate the performance for a TPFC. First, we
look at the bias, βTPFC(θ). Fig. 3 illustrates the TPFC ML
estimator asymptotic bias βTPFC(θ) as well as the simulated
estimator bias as functions of Ω. It can be clearly seen that the
bias is maximum for Ω = 0 and reduces linearly to zero bias
at Ω = 1. This is intuitive, as Ω = 0 corresponds to the case
where the symbols uk are most often flipped into ũk with ũk 6=
uk thereby introducing a large bias. Similarly Ω = 1 represents
the case of no encryption thereby introducing zero bias. Note
that the linearly decreasing behavior of the βTPFC(θ) with
increasing Ω, is true only for a symmetric encryption key.
Similar linear behavior with a symmetric key is illustrated for
binary quantization case in [5]. If a different encryption key



Ω

Ω

is employed, the behavior would be different. It is important
to note here that depending on the design of quantizer and the
choice of the flipping probabilities, it is possible that the bias
βTPFC(θ) = 0 for certain values of θ. For example, in the
current case of a symmetric encryption key, if θ is the midpoint
of the quantization region A1, then the bias βTPFC(θ) =
0. Similar behavior was observed for the binary stochastic
encryption in [5]. Hence, while designing a system using the
proposed encryption, care has to be taken to avoid the zero-
bias points.

Finally, the TPFC ML estimator asymptotic variance
ψATPFC(θ) is plotted in Fig. 4 as a function of Ω, along with
the simulated variance. It can be observed that ψATPFC(θ)

is very small, and hence TPFC is mainly degraded by it’s
estimator bias.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a stochastic encryption scheme
for a wireless sensor network that can operate on non-binary
quantized observations and is capable of estimation of vector
parameters. The stochastic encryption was achieved by flipping
the quantized symbols, where the flipping probabilities act as
the encryption key. The optimal ML estimator for a LFC and a
TPFC were derived, assuming that the TPFC has no knowledge
of the encryption key. Asymptotic behavior of the estimators
was analyzed by deriving the CRLB for the LFC, and the
asymptotic bias and variance for the TPFC. Numerical results
validating the asymptotic analysis were presented. Currently,
we are investigating efficient methods to deploy the proposed
approach in practical situations.
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