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Abstract

It has long been recognized that populations and species occupying different environments vary
in their thermal tolerance traits. However, far less attention has been given to the impact of
different environments on the capacity for plastic adjustments in thermal sensitivity, i.e.,
acclimation ability. One hypothesis is that environments characterized by greater thermal
variability and seasonality should favor the evolution of increased acclimation ability compared
to environments that are aseasonal or thermally stable. Additionally, organisms under selection
for high heat tolerance may experience a trade-off and lose acclimation ability. Few studies have
tested these non-mutually exclusive hypotheses at both broad latitudinal and local elevation
scales in phylogenetically paired taxa. Here, we measure short-term acclimation ability of the
critical thermal maximum (CTyax) in closely related temperate and tropical mayflies
(Ephemeroptera) and stoneflies (Plecoptera) from mountain streams at different elevations. We
found that stream temperature was a good predictor of acclimation ability in mayflies, but not in
stoneflies. Specifically, tropical mayflies showed reduced acclimation ability compared to their
temperate counterparts. High elevation tropical mayflies had greater acclimation ability than low
elevation mayflies, which reflected the wider temperature variation experienced in high elevation
streams. In contrast, temperate and tropical stoneflies exhibited similar acclimation responses.
We found no evidence for a trade-off between heat tolerance and acclimation ability in either
taxonomic order. The acclimation response in stoneflies may reflect their temperate origin or
foraging mode. In combination with previous studies showing tropical taxa have narrower
thermal breadths, these results demonstrate that many lower elevation tropical aquatic insects are

more vulnerable to climate warming than their temperate relatives.
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Introduction

Thermal acclimation is a form of plasticity that enables organisms to adjust their
physiology following chronic or brief exposure to thermal stimuli (Bowler 2005; Angilletta
2009). Yet, the extent to which organisms exhibit thermal acclimation varies among species (e.g.
Brattstrom 1968; Addo-Bediako et al. 2000; Deutsch et al. 2008; Beaman et al. 2016), types of
traits (e.g. CTmax, CTwvn, metabolic rate, performance; Johnson and Bennett 1995; Stillman
2003; Terblanche et al. 2005; Terblanche and Chown 2006; Calosi et al. 2008), and habitats (e.g.
temperate, tropical, elevation; Feder 1978, 1982; Tsjui 1988). One fundamental challenge is
therefore to understand what selection pressures act on and shape acclimation ability in
organisms (Beaman et al. 2016).

Theoretical models suggest that populations from more thermally variable environments
should be under greater selection for the capacity to be plastic, because the presumed benefits of
maintaining thermal plasticity exceed any potential costs (e.g. Levins 1968; Gavrilets & Scheiner
1993; Hoffmann 1995; Angilletta 2009). At macrophysiological scales, this theory has led to the
general prediction that organisms living at low, tropical latitudes should have a reduced
acclimation capacity compared to those from temperate environments, because temperate
latitudes undergo greater seasonal changes in temperature (Janzen 1967; Ghalambor et al 2006;
Tewksbury et al 2008; Angilletta 2009; Gunderson and Stillman 2015). Indeed, the role of
temperature or climate variability in shaping species acclimation ability between high and low
latitudes is one of the primary predictions of Daniel Janzen’s “climate variability hypothesis”

(1967). Janzen proposed that organisms from temperate mountains should evolve broad thermal
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breadths and greater acclimation abilities in response to the large seasonal fluctuations and
overlap in temperature across elevations. Selection for broader thermal breadths or increased
acclimation responses should subsequently enable temperate organisms to disperse across
elevations, unhindered by the changes in temperature they encounter. In contrast, the lack of
seasonal variation and reduced overlap in temperature across elevations in the tropics should
favor the evolution of narrower thermal breadths and reduced acclimation ability (reviewed in
Ghalambor et al. 2006). However, the relationship between thermal breadths and acclimation
capacity can be shaped by other factors. It has been proposed that the evolution of high thermal
tolerance should come at the expense of acclimation ability (Cavicchi et al. 1995; Stillman 2003;
Overgaard et al. 2011; Gunderson & Stillman 2015). The “trade-off hypothesis” (sensu
Gunderson & Stillman 2015) therefore predicts a negative relationship between increased
thermal breadths (particularly for tolerance to warmer temperatures) and acclimation ability,
whereas the climate variability hypothesis predicts a positive relationship.

Macrophysiological comparisons of temperate and tropical organisms provide ideal
conditions for testing how thermal limits and acclimation ability vary independently or jointly.
To date, there is growing evidence that tropical organisms have narrower thermal breadths
compared to temperate species (Ghalambor et al. 2006; Deutsch et al. 2008; Tewksbury et al.
2008; Gaston et al. 2009; Huey et al. 2009; Sunday et al. 2011). However, evidence for
differences in acclimation ability due to climate variability (i.e. in support of the climate
variability hypothesis) is mixed (Angilletta 2009). For example, while some studies have found
reduced acclimation ability in tropical organisms (Feder 1978, 1982; Tsuji 1988; Garcia-Robledo
et al. 2016), other studies have found little or no difference in acclimation responses of temperate
and tropical species (Hoffmann & Watson 1993; Gunderson & Stillman 2015; van Heerwaarden

et al. 2016; Seebacher et al. 2015). Similarly, some studies have found evidence for the trade-off
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between thermal tolerance and acclimation ability (e.g. Cavicchi et al. 1995; Stillman 2003), but
other studies do not find such evidence (e.g. Calosi et al. 2008; Gunderson and Stillman 2015).
These mixed results could, in part, reflect how differences in local temperature variation shape
thermal acclimation. For example, tropical high elevation sites can exhibit temperature
fluctuations on a daily basis that are similar to those experienced between summer and winter in
temperate regions (Mani 1967; Ghalambor et al. 2006; Shah et al. in press). Thus, latitudinal
comparisons of critical thermal limits and acclimation ability could be complicated by the degree
of local variation in temperature due to elevation.

Understanding what factors ultimately shape patterns of thermal plasticity requires
comparisons across diverse regions and taxa (Seebacher et al. 2015). Here, we focus on
temperate and tropical aquatic insects; a group that plays an important ecological role in
freshwater habitats, but have been largely ignored compared to terrestrial insects (Chown et al.
2015). We test predictions from two non-mutually exclusive hypotheses: 1) the climate
variability hypothesis, which predicts that increased local or regional temperature variability is
positively correlated with increased acclimation ability (e.g. Brattstrom 1968; Patterson 1984;
Rogowitz 1996), and 2) the trade-off hypothesis, which predicts that increased thermal tolerance
is negatively correlated with acclimation ability (Stillman 2003). In addition to addressing the
long-standing question of what factors shape patterns of thermal physiology in organisms,
understanding geographic variation in acclimation ability is paramount to assessing vulnerability
and species response to climate change (Sgro et al. 2016).

We measured the short-term acclimation response (48 h; defined in Bowler 2005) of
critical thermal maximum temperatures (CTyax) in two orders of freshwater aquatic insects,
mayflies (Ephemeroptera) and stoneflies (Plecoptera). Previous work has shown that the thermal

breadths (the difference between CTwmax and CTavin) of these insects closely track environmental
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temperature variation (Shah et al. in press). Here, we focused on short-term acclimation because
both temperate and tropical aquatic insects experience short-term changes in temperature,
whereas only temperate species experience long-term, seasonal changes in temperature. For
instance, insects in high elevation temperate and tropical streams can experience rapid
temperature changes because of the combined influences of reduced vegetation cover, cloud
cover, and weather events that persist for several days (see Methods). The same taxonomic
families can also be found in temperate and tropical regions facilitating phylogenetically paired
comparisons. Such conditions make freshwater streams an excellent model system to test how
large-scale climate variability and local variation along an elevation gradient shapes patterns of

thermal acclimation.

Methods
Study sites and Species

We collected aquatic insects from shallow paired streams at ~2000m (“low elevation”,
hereafter) and ~2800m (“mid elevation”, hereafter) in the Colorado Rocky Mountains and the
Ecuadorian Andes between the months of June and December 2014 and 2015. We also collected
tropical mayflies from a “high elevation” stream in Ecuador (~3683m) but were unable to collect
from an equivalent high elevation in the Colorado study site because of a lack of accessibility.
To assess how stream temperature ranges differed across latitude and elevation, we recorded
temperature in each stream using HOBO loggers (Onset Corporation). We calculated
temperature range from the logger data collected over an 8-12-month period. We collected
mayflies (Ephemeroptera) within the family Baetidae (Baetis spp. in Colorado and Andesiops
spp. in Ecuador) and stoneflies (Plecoptera) within the families Perlidae (Hesperoperla sp. in

Colorado and Anacroneuria spp. in Ecuador) and Perlodidae (Megarcys sp. and Kogotus sp. in
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Colorado). Most of these species occur at both latitudes, multiple elevations, and are numerically
abundant in streams. Insects from each species were size-matched to reduce any effects of
developmental stage on thermal physiology.

CTyux Acclimation Experiments

In the lab, we acclimated the field-caught insects for 48 h at one of two temperature
treatments, “home” or “warming”, which were the same at both latitudes for a given elevation.
We were specifically interested in determining if CTuax increased in the “warming” treatment,
suggesting an acclimation response. The “home” temperature treatments, calculated as the
average stream temperature from the HOBO logger data, were 13°C and 10°C for low and mid
elevation streams, respectively. The “warming” temperature treatments were 5°C higher than the
“home” temperatures. These were 18°C and 15°C for low and mid elevations, respectively. Thus,
temperatures by elevation were paired across latitudes, because at these elevations the temperate
and tropical sites had the same average temperatures. The use of different temperature treatments
between elevations within latitudes ensured insects, particularly the sensitive tropical populations,
were unstressed in their “home” temperature treatments (Rezende et al. 2011). We also collected
mayflies from an un-paired high elevation tropical site (3683m, home temperature treatment =
7°C; warming treatment = 12°C). Because we did not have insects from a similar high elevation
in Colorado, this population was analyzed separately (see Statistical Analyses).

We chose a 5°C increase from the “home” stream temperature as the “warming”
treatment because it is within the range of natural variation experienced by most aquatic insects
(Alan et al. 1991; Shah et al. in press). The acclimation period of 48 h was used because it was
the duration for which insects could be kept in the laboratory without exhibiting any visible signs
of stress due to food deprivation (see Rezende at al. 2011; Shah et al. in press). For example,

when we attempted longer acclimation periods (> 4 days), we found that insects experienced
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high mortality. All insects were starved during the “home” and “warming” acclimation period to
ensure individuals were tested in a similar nutritional and post-absorptive state.

We measured CTumax following the 48-h acclimation period by placing up to 12 insects in
separate mesh containers and immersing them in a water bath fitted with water and air pumps to
provide flow and maximum oxygenation. The mesh allowed water to flow through the containers,
but prevented insects from escaping during the experiment. We ramped temperature in the water
bath at the rate of 0.3°C min™' (Dallas and Rivers-Moore 2012) using a temperature controller
(16C-2, Dwyer Instruments Inc.) connected to a 500watt titanium heating rod. As temperature
increased, we recorded changes in behavior (see Shah et al. in press for detailed documentation
of behavioral changes) until insects displayed a loss of righting response (LRR, Hutchinson &
Lutterschmidt 1995; Angilletta 2009). After exhibiting LRR, each insect was returned to cooler
water for recovery. Only data from insects that recovered from the experiments were used in the
analyses. After recovery, insects were euthanized in 95% EtOH, dried for 24 h at 56°C, and
weighed to obtain individual dried body mass measurements.

Statistical Analyses

We used R version 3.1.3 (R Core Team 2013) for all statistical analyses. Between latitudes, the
acclimation temperatures were the same at each elevation, facilitating direct statistical
comparisons between temperate and tropical insects under the same temperature treatments. For
all analyses, an insect was considered to have acclimated if CTwmax increased in the “warming”
treatment compared to the “home” treatment. All model parameters were treated as fixed effects
and effect sizes (partial eta®) were also calculated.

To test the influence of climate variability on acclimation ability, we first ran an ANOVA
with CTyax as our response variable. Parameters for this analysis included the fixed factors

latitude, treatment, elevation, taxonomic order, all interactions, and dry weight as a covariate to
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account for body size. Next, we assessed the effect of temperature variability on acclimation
ability by directly comparing the reaction norms of the different insect populations. We did this
by conducting separate analyses for each taxonomic order, to control for phylogeny, and each
elevation sampled across both latitudes. The models included latitude and treatment as fixed
effects, an interaction between latitude and treatment, and dry weight as a covariate. We were
particularly interested in finding if there was a significant interaction indicating that acclimation
ability (i.e. the slope of the reaction norm) differed between temperate and tropical populations
of insects from a given elevation. Third, for the un-paired high elevation stream in Ecuador, we
ran an analysis in which we only tested the treatment effect, because there was no Colorado
counterpart. Fourth, we analyzed within-latitude differences in acclimation ability separately for
each taxonomic order to assess the effect of elevation on acclimation ability. If thermal
variability at a given elevation influences acclimation ability, we predicted a stronger
acclimation response with increasing temperature variation. We included elevation and treatment
as fixed effects with an interaction between elevation and treatment. As with the previous
analysis with latitude, a significant elevation by treatment interaction would indicate that there
are differences in acclimation ability among insects from different elevations. However, because
different acclimation temperatures were used at different elevations, such comparisons must be
interpreted cautiously. Finally, we tested the directional hypothesis that increased stream
temperature variability is correlated with the percent change in CTyax (i.e. acclimation ability)
for the two taxonomic orders.

To assess the if there is a trade-off between thermal breadth and acclimation ability, we
tested the directional hypothesis that the percent change in CTyax decreases with increasing
CTwmax. For these analyses, we considered a decrease in CTyax after acclimation to be a non-

acclimatory response.
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Results

Temperature loggers placed in each stream at both latitudes revealed that stream
temperature range was greater in temperate (Colorado) streams than in tropical (Ecuador)
streams (Fig. 1A). Within the temperate latitude site, temperature ranges in low elevation streams
were greater than mid elevation streams. However, the pattern was reversed in tropical streams
where low and mid elevation streams had a narrower temperature range compared to the high
elevation stream (Fig. 1B; also see Shah et al. in press).

The full ANOVA model results showed that latitude, treatment, elevation, and taxonomic
order had a significant effect on CTmax. Dry weight and all interactions were non-significant
(Table 1). When we tested if acclimation varied among our paired temperate and tropical taxa at
the same elevation, we found the latitude x treatment interaction to be significant for all but the
low elevation stoneflies (Table 2). Specifically, when examining the thermal reaction norms, we
see that temperate, but not tropical mayflies increased CTyax in response to the warming
treatment at the low and mid elevations (Figs. 2A, B; Table 3). Three of the stonefly populations
exhibited a significant acclimation response across latitude (Fig. 3A, B), with no differences in
the slope between latitudes at the low elevation site (Fig. 3A; Table 4). Interestingly, a
significant latitude x treatment interaction at the mid elevation revealed that the tropical species
had a greater acclimation response compared to its temperate counterpart (Fig. 3B; Table 2).
When we compared the acclimation response of the low and mid-elevation mayflies to the
unpaired high elevation population, we found only the high elevation population exhibited a
significant acclimation response (Table 2; Fig. 4).

Finally, we found a positive correlation between stream temperature variation and percent

change in CTyax (r = 0.85; one-tailed p-value = 0.036) for mayflies, consistent with predictions
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from the climate variability hypothesis, but no correlation in stoneflies (r=-0.31; one-tailed p-
value = 0.347; Fig. 5A). We found no evidence of the trade-off hypothesis in mayflies (r =-0.01;

one-tailed p-value = 0.492) or in stoneflies (r= -0.79; one-tailed p-value = 0.105; Fig. 5B).

Discussion

The capacity for thermal acclimation is thought to be an adaptive response that allows
organisms to adjust their physiology and track variable environmental temperatures (Kingsolver
and Huey 1998; Gunderson and Stillman 2015; Seebacher et al. 2015). Nevertheless, the
relationships between environmental thermal variability, thermal limits, and acclimation ability
continue to be debated. Here, we tested two mutually non-exclusive hypotheses that have been
proposed to explain variation in whole organism acclimation ability. The “climate variability
hypothesis” posits that organisms from more variable climates should be under selection for
greater thermal acclimation ability than those from stable climates (Janzen 1967; Ghalambor et
al. 2006; Angilletta 2009). The “trade-off hypothesis” proposes that organisms that evolve high
levels of thermal tolerance do so at the expense of their acclimation ability (Stillman 2003). We
found support for the prediction that more variable thermal environments select for greater
acclimation ability in mayflies. Temperate mayflies and high elevation tropical mayflies that
experience more variable temperatures exhibit a significant acclimation response (~2°C increase
in CTmax over a 5°C warming treatment), whereas tropical mayflies from less variable lower and
middle elevations do not exhibit an acclimation response (~0-0.5°C increase in CTyax over a
5°C warming treatment; Figs. 2A, B; 4). In contrast, the stoneflies generally exhibit a similar
acclimation response at all latitudes and elevations despite having relatively high upper critical
temperatures (Figs. 3A, B). Thus, climate variability predicted acclimation ability in mayflies,

but not in stoneflies (Fig. 5A). We did not find support for the trade-off hypothesis, as there was
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no general relationship between increasing thermal tolerance and reduced acclimation ability
(Fig. 5B). The contrasting results between mayflies and stoneflies may reflect differences in
evolutionary history, functional roles, challenges associated with aquatic life, or some
combination of these factors. Below we discuss these results within the context of how
temperature varies across latitude and elevation.

Across latitude, tropical and temperate streams exhibit significant differences in
temperature range (Figs. 1A, B). The warm summers and cold winters that characterize Rocky
Mountain seasons result in wide ranges of annual stream temperatures. This range (i.e., from
freezing to the warmest summer temperatures) is typically experienced from May, just before the
spring-melt, through late August. Small ectotherms, such as insects, are highly responsive to
their thermal environment because their body temperature closely matches that of their
surroundings. Unlike terrestrial insects, aquatic insect larvae can remain active year-round and
experience the full range of temperature variation at a given site. For example, stonefly larvae
often live for 2-3 years, thus encountering repeated seasonal shifts in temperature. Similarly,
while mayflies overwinter as eggs, they hatch in early June when snowmelt causes stream
temperatures to be very low. These larvae rapidly develop and emerge as flying adults a few
months later, when temperatures peak in the summer, thus experiencing the full range of
seasonal variation during their development. In the aseasonal tropics, streams typically exhibit
far less temperature variation (Figs. 1A, B; see also Shah et al. in press) except in the highest
elevation tropical streams (Fig. 1B), where diel changes in temperature are much greater than
those observed at lower tropical elevations. Thus, if temperature variation selects for acclimation
ability in the tropics, it would be predicted to be more common only at high elevations, as we

observed (Fig. 4).
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We found greater acclimation ability in temperate mayflies compared to their tropical
counterparts at similar elevations, whereas tropical stoneflies exhibited mostly similar
acclimation ability compared to temperate stoneflies (Figs. 2A, B; 3A, B; 4). In tropical streams,
neither low nor mid elevation mayflies acclimated after the 48-h period (Fig. 2). In fact, not only
was there a lack of an acclimation response in the low elevation tropical mayflies (genus
Andesiops), but they also experienced ~55% mortality during the 48-h acclimation period prior
to experimentation. We did not document such high rates of mortality in any of the other
populations of insects in this study. These results suggest that even a seemingly moderate 5°C
increase in temperature can be stressful for low elevation populations. Thus, despite experiencing
only slightly warmer year-round temperatures than their mid-elevation counterparts, low
elevation tropical mayflies have the most reduced capacity for short-term thermal acclimation.
Our results also suggest that differences in CTwax across elevations are unlikely to reflect plastic
responses to different stream temperatures (Shah et al. in press). For example, short-term
acclimation to warmer temperatures does not result in mid-elevation mayflies increasing their
CTwmax temperatures to match that of the low elevation mayflies (Fig. 2), suggesting these
populations have evolved different upper thermal limits.

Further support for the role of temperature variability in selecting for greater acclimation
ability is supported by the observation that high elevation tropical mayflies show a significant
acclimation response (Fig. 4). High elevation tropical stream temperatures are significantly
colder than lower elevation streams, but they can also vary by ~7°C on a daily, weekly, or
seasonal basis (A.A Shah, pers. obs.) exposing insects to a remarkably large and rapid
temperature change in an otherwise thermally stable environment. Shah et al. (in press) found
that high elevation tropical aquatic insects had thermal breadths that were more like high

elevation temperate species, rather than other tropical species. Thus, the observed plasticity in
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high elevation tropical mayflies is consistent with the view that it is the degree of local
temperature variability that selects for thermal breadth (Shah et al. in press) and plasticity, rather
than simply latitudinal position. Indeed, there is a positive relationship between the amount of
temperature variation at a given site and the magnitude of the acclimation response in mayflies
(Fig. 5A). Collectively, such results suggest that mayfly acclimation responses are shaped by
both large-scale seasonal changes in temperature and local temperature variation.

Tropical stoneflies acclimate as well as (Fig. 3A) or better than (Fig. 3B) their temperate
relatives. These results stand in sharp contrast to the mayfly results. While there was no general
support for the trade-off hypothesis (Fig. 5B), as a group, temperate stoneflies are good
candidates for tests of the trade-off hypothesis, as they have some of the highest CTyvax values
among all aquatic insects (Shah et al. in press). A broader comparison of stoneflies throughout
their geographic range and across a more diverse set of thermal environments is ultimately
needed to test if thermal limits trade off against acclimation ability. In other aquatic organisms,
studies have found evidence for acclimation capacity-thermal breadth trade-offs (e.g. Stillman
2003), but others have not (e.g. Calosi et al. 2008; Simon et al. 2015). Thus, the generality of this
hypothesis remains to be explored.

The evolutionary history of stoneflies may also provide some insight into the similar
acclimation capacities between temperate and tropical species. The order Plecoptera has a
northern Pangean origin, and is thought to have split into two lineages, Arctoperlaria and
Antarctoperlaria relatively recently compared to mayflies (McCulloch 2010). The
Antarctoperlaria subsequently dispersed to South America (Zwick 2000). If tropical stoneflies
retained their ancestral traits, then high CTyax values and acclimation abilities of tropical

stoneflies may reflect the temperate origin of this lineage.
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Differences in thermal physiology among orders could also result from alternative
evolutionary responses and constraints in how respiratory physiology, life-history, foraging, and
habitat use impact heat tolerance via oxygen limitation (Pdrtner 2001) and oxygen availability
(Verberk et al. 2011). For example, stoneflies are active predators that presumably have high
oxygen demands when hunting, and maintaining acclimation ability could be necessary for their
foraging success (Grigaltchik et al. 2012). In comparison, the herbivorous mayflies that ‘drift’
along with the water flow may not require such precise thermoregulation. Stoneflies and
mayflies also emerge at different times of the year, so some of the variation we observed could
also be linked to differences associated with various stages of development, particularly those
close to molting (Camp et al. 2014). Additional studies that include several species from multiple
temperate and tropical drainages could be used to further explore the variation in acclimation of
thermal limits between different taxonomic groups.

Summary and Implications

We find evidence that climate variability plays an important role in determining
acclimation ability in phylogenetically related temperate and tropical mayflies but not stoneflies.
More work comparing different groups of temperate and tropical insects are needed before
broader generalizations can be made. Nevertheless, in combination with measures of thermal
breadth (i.e. the difference between CTmax and CTwmin) across a large number of temperate and
tropical aquatic insect species (Shah et al. in press), the mayfly results provide support for the
role of climate variability in shaping thermal physiology across latitude and elevation gradients,
as predicted by Janzen (1967).

We note that whole organism acclimation ability is only a first step in identifying how
animals respond to changes in their thermal environment. Although beyond the scope of this

study, a next step would include quantifying the responses to temperature at the molecular and
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354  biochemical level to better understand the physiological mechanisms driving shifts in whole
355  organism thermal sensitivity (Hochachka and Somero 2002; Somero 2005, 2010).

356 These results also have important implications for how aquatic insect taxa, which are
357  wvital to healthy freshwater stream communities (Allan & Castillo 2007), will respond to warming
358  global temperatures. Studies designed to estimate organismal responses to such changes often
359 fail to incorporate acclimation capacity (see Gunderson et al. 2016). Freshwater ecosystems are
360  predicted to respond the warming of atmospheric temperatures (Daufresne et al. 2007) and

361 increase by a range of +1 °C to +3.7 °C (IPCC 2007, 2013). Forecasts of climate change also
362  suggest that thermal and natural disturbance regimes in small streams are likely to change in the
363  near future, with warming being the most proximate effect (IPCC 2007, 2013). Yet, thermal
364 tolerance for freshwater aquatic invertebrates is not well understood (Chown et al. 2015)

365 Human exploits of stream environments — riparian clearing, dams, and urbanization to
366 name a few — have also been shown to increase stream temperatures well above their natural
367  range (e.g. Brown & Krygier 1970) over relatively short periods of time. In our study system,
368 landslides due to heavy rains and clear-cutting at the mid-elevation tropical stream resulted in a
369 temperature increase of ~ 10°C in just 24 h (pers. obs.). Our results indicate that while some
370  acclimation ability exists in tropical aquatic insects, they are likely to be more vulnerable to
371  warming than their temperate counterparts. This is especially true of low and mid elevation
372  tropical mayflies. In fact, even the moderate increase in CTuax after acclimation in high

373  elevation tropical mayflies may not be enough to buffer those insects from warming streams.
374  Although tropical stoneflies display some thermal plasticity, they too have lower CTyax

375  temperatures compared to temperate species, which suggest greater sensitivity to warming.

376  Future work should therefore address how temperature sensitivity determines species
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vulnerability, and alters species interactions, to better predict potential shifts in community

composition of freshwater ecosystems.
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Figure & Table Captions
Figure 1. Average stream temperature range (annual maximum — minimum) at temperate and

tropical latitudes (A) and across low, mid, and high elevations (B).

Figure 2. Reaction norms showing acclimation response in mayflies from low elevation (A;
home = 13°C, warming = 18°C) and mid elevation (B; home = 10°C, warming = 15°C).
Temperate mayflies (gray circles, dashed line) exhibited a greater acclimation response than

tropical mayflies (black circles, solid line).

Figure 3. Reaction norms showing acclimation response in stoneflies from low elevation (A;
home = 13°C, warming = 18°C) and mid elevation (B; home = 10°C, warming = 15°C). There
were no differences in acclimation responses between low elevation temperate (gray circles,
dashed line) and tropical (black circles, solid line) stoneflies, but a borderline significant
difference between the two groups at mid elevation, where tropical stoneflies acclimated better

than their temperate relatives.

Figure 4. Reaction norm showing differences in acclimation responses for mayflies from low
(home = 13°C, warming = 18°C), mid (home = 10°C, warming = 15°C) and high (home = 7°C,
warming = 12°C) elevations. Although no acclimation capacity was seen in mid and low

elevation populations, high elevation mayflies exhibited an acclimation response.

Figure 5. Percent change in CTyax (showing acclimation ability) as a function of stream
temperature variation to test the climate variability hypothesis (A). While the trend is positive for

mayflies (filled circles), there is no relationship for stoneflies (open circles). B shows
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acclimation capacity as a function of CTyax to test the trade-off hypothesis. We find no evidence

for this hypothesis in mayflies (filled circles) or stoneflies (open circles).

Table 1. Output of the full model ANOVA in which latitude, treatment, and order are fixed

effects, and dry weight is a covariate. The fixed effects are all significant but the interactions are

not. Dry weight is not a significant covariate.

Table 2. Output of models assessing the latitude x treatment interaction for mayflies and

stoneflies from different elevations.

Table 3. Output of models assessing the elevation x treatment interaction for mayflies and

stoneflies from temperate and tropical latitudes.
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Table 1.
Factor F(df) p-value | Partial eta’
(effect size)
Latitude 68.49 (1, 366) | <0.001 | 0.016
Treatment 56.74 (1, 366) | <0.001 | 0.133
Elevation 62.87 (2, 366) | <0.001 | 0.240
Order 78.54 (2, 366) | <0.001 | 0.305
Dry weight 0.26 (1, 366) | 0.61 0.61
Latitude x Treatment 1.24 (1, 366) | 0.27 0.27
Latitude x Elevation 0.002 (1, 366) | 0.96 0.96
Treatment x Elevation 0.20 (2, 366) | 0.81 0.81
Latitude x Treatment x Elevation | 0.36 (1, 366) | 0.55 0.55
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Table 2.

Factor F(df) P-value | Partial eta’
(effect size)
Low Elevation Mayflies
Latitude 14.41 (1, 26) <0.001 0.35
Treatment 0.10 (1, 26) 0.75 0.00
Dry weight 1.00 (1,26) 0.32 0.00
Latitude x Treatment 4.62 (1, 26) 0.04 0.17
Mid Elevation Mayflies
Latitude 2.52 (1,119) 0.12 0.02
Treatment 17.34 (1, 119) <0.001 0.13
Dry weight 0.05 (1,119) 0.82 0.00
Latitude x Treatment 5.97 (1, 119) 0.02 0.05
High Elevation Mayflies
Treatment 8.23 (1, 21) 0.01 n/a
Dry weight 6.42 (1, 21) 0.02 n/a
Low Elevation Stoneflies
Latitude 50.05 (1, 20) <0.001 0.71
Treatment 12.57 (1, 20) 0.002 0.39
Dry weight 1.79 (1,20) 1.20 0.08
Latitude x Treatment 0.70 (1, 20) 0.41 0.03
Mid Elevation Stoneflies
Latitude 200.36 (1, 93) <0.001 0.68
Treatment 8.65 (1, 93) 0.004 0.09
Dry weight 3.55(1,93) 0.06 0.04
Latitude x Treatment 5.17 (1, 93) 0.03 0.05
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Table 3.
Factor F(df) P-value | Partial eta’
(effect size)
Tropical Mayflies
Elevation 5.47 (2, 58) 0.01 0.16
Treatment 0.06 (1, 58) 0.81 0.00
Dry weight 3.11(1,58) 0.08 0.05
Elevation x Treatment 3.00 (2, 58) 0.05 0.09
Tropical Stoneflies
Elevation 230.77 (1, 44) <0.001 0.84
Treatment 47.39 (1, 44) <0.001 0.52
Dry weight 2.08 (1,44) 0.12 0.05
Elevation x Treatment 1.69 (1, 44) 0.20 0.04
Temperate Mayflies
Elevation 31.41 (1,109) <0.001 0.22
Treatment 24.32 (1, 109) <0.001 0.18
Dry weight 0.02 (1, 109) 0.89 0.00
Elevation x Treatment 0.02 (1, 109) 0.90 0.00
Temperate Stoneflies
Elevation 8.72 (1, 69) 0.004 0.11
Treatment 1.96 (1, 69) 0.17 0.03
Dry weight 12.43 (1, 69) <0.001 0.15
Elevation x Treatment 1.56 (1, 69) 0.22 0.02
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