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Abstract Smartphones embedded with cameras and other sensors offer possibilities to
attack the problem of indoor localization where GPS is not reliable. In this paper, a novel
tree-based localization system is proposed based on WiFi, inertial and visual signals. There
are three levels in the tree: (1) WiFi-based coarse positioning. The WiFi database of a
building is clustered into several branches for coarse positioning; (2) Orientation pruning.
Images collected in a building are tagged with camera orientations towards which they are
taken, so when inferring a user’s location by comparing the query image the user takes
with the reference image dataset, the image branches tagged with unmatched orientation
will not be searched; (3) Fine visual localization. The user’s location is accurately deter-
mined by matching the query image with the reference image dataset based on a multi-level
image description method. Our signal tree based method is compared with other methods
in terms of the localization accuracy, localization efficiency and time cost to build the refer-
ence database. Experimental results on four large university buildings show that our indoor
localization system is efficient and accurate for indoor environments.

Keywords Indoor localization - Multimodal information fusion - Cross-media data
analytics

1 Introduction

Indoor localization using consumer electronic devices (e.g., smartphones embedded with
various sensors) has many applications such as localizing a patient in a hospital, navigat-
ing consumers in a big shopping mall or finding a safety egress during an emergency. The
technology of indoor localization of human can also be applied to automatically position
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a robot in a building. Finding a smartphone carrier’s location based on Global Positioning
System (GPS) usually works well outdoors. However, GPS relies on unobstructed signals
transmitted between satellites and devices on or near the earth. Walls, ceilings or other phys-
ical infrastructures within an indoor environment weaken or cut off GPS signals, making
GPS-based indoor localization inaccurate [6]. Furthermore, it is difficult to localize which
floor the phone-carrier is on because GPS is more sensitive to the horizontal disparity on
the earth surface than the vertical difference.

1.1 Related work

The drawbacks of GPS inspire research ideas on other new indoor localization approaches
[7, 9, 16], which can be divided into two categories in general: triangulation-based and
fingerprint-based. Triangulation-based methods make use of geometric properties of trian-
gles. The device sends signals to three or more stationary receivers and the device’s position
is estimated by the angle, travel time or strength of arrival signals on the receivers [8, 10,
18, 22, 29]. This method usually requires specific infrastructures and relatively high cost,
which limits its application. Moreover, the accuracy of triangulation-based methods will
greatly reduce when physical infrastructures, electronic equipment or signal interference
influence the transmission of signals. Rather than calculating the geometric relationship
between a device and receivers based on signal propagation, fingerprint-based methods pre-
record “fingerprints” at different indoor positions [12, 20, 25, 32]. The term “fingerprint”
means every position inside a building has a unique descriptor to identify it, just like the fin-
gerprints of people. The fingerprint may be represented by different types of sensor signals
such as WiFi [32], FM radio signals [20], etc. A device’s indoor position is estimated by cap-
turing a fingerprint at a location and matching it with fingerprints in the pre-built reference
database. The performance of fingerprint-based methods largely depends on the quality and
discriminative capability of signals used. A drawback of fingerprint-based method lies in the
reference dataset collection. High accuracy indoor localization usually requires to densely
collect reference data in a building.

The method of indoor localization can also be grouped by the sensor signals such as
WiFi, Inertial Measure Unit (IMU) and visual signals. WiFi signal is a popular choice
used in the indoor localization because the related cyber-physical infrastructures are already
available in many buildings nowadays [2, 4, 15, 21]. However, WiFi-based indoor localiza-
tion needs to conquer several challenges to achieve high accuracy: (1) Stability. Figure la
shows a floor plan of a university building and Fig. 1b shows the Received Signal Strength
Indication (RSSI) of a WiFi access point (hotspot), collected over 1000 times at location A,
from which we observe that the WiFi signal strength of a hotspot is not a constant at a given
location. In Fig. 1b, the RSSI value ranges from -68dBm to -89dBm; (2) Reliability. WiFi
signal becomes more unreliable when its RSSI value gets lower. For example, it is reported
in [19] that one WiFi hotspot becomes limitedly valuable when its RSSI value is below -
85dBm; (3) Discriminative Capability. Figure 1c—e show the average signal strength of
every hotspot at three different locations C, D and E within the same building. Location C is
about 10 meters away from location D and location E is about 40 meters away from C and
D. From Fig. 1c—e, we observe that locations C and D have similar WiFi signal patterns but
they are 10 meters away from each other. (4) Environment Change. In practice, it is pos-
sible that some hotspots are shut down or the RSSI value of a specific hotspot is changed
because of the device update. Although the previous work [2, 4] can mitigate the first three
challenges by extracting more sophisticated features from the raw RSSI values, it is still
hard to deal with the WiFi environment change.

@ Springer



Multimed Tools Appl (2017) 76:20317-20339 20319

Ia U‘ Jmlﬁ} Jﬁtl‘ _lé_‘w\lJ JE

?%TIIE‘E yiml

Aoe

,(dl,am)
858

From E

RSSI Valuey

b\
S @ D
> ©

rom C FromD @,
0 20 60 80 100 120

WiFi Hotspot Sequence Number

100 120 — 0 20 40 60 80 100 120
WiFi Hotspot Sequence Number

20 40 60 80
WiFi Hotspot Sequence Number

-+

Fig. 1 Challenges for indoor localization. a A floor plan of a university building. b Received Signal Strength
Indication (RSSI) of a WiFi hotspot collected over 1000 times at location B. c—e RSSI values of all WiFi
hotspots at locations C, D and E, respectively. f-h Images taken at locations F, G and H, respectively, with
their orientations specified in (a)

Inertial Measure Unit (IMU) is another sensor that can be used in indoor localization.
Previous work usually utilizes IMU to perform the step detection, speed estimation and
heading direction determination. The three components can be built in the Dead Reckoning
framework to obtain the user’s trajectory. The trajectory can then be matched with the floor
plan to infer the user locations [5, 14, 30]. This method does not need to collect reference
data in the building except the floor plan, but Dead Reckoning suffers from cumulative
errors, making the trajectory estimation inaccurate.

Visual signal is intuitively useful for indoor localization as people generally know where
they are according to what they see. In visual-based indoor localization, an image around a
user’s location is taken and it is compared with a pre-recorded image database to estimate
her/his location [11, 13, 17, 27, 28]. This method needs to be improved in the follow-
ing aspects: (1) Computational Cost. In a common building, thousands of images can
be recorded as references and millions of Scale Invariant Feature Transform (SIFT) fea-
ture points can be extracted from them. An efficient way to represent and compare image
contents is needed for the big image data; (2) Image Feature Description. Simple tem-
plate matching between a query image and reference image dataset will not work well for
the indoor localization. Representative and discriminative features must be extracted from
images for effective and reliable image matching; (3) Image Similarity. A building may
have a unified decoration style so similar scenes exist at different positions, which is very
hard for a visual-based indoor localization system to classify. Figure 1f-h show three images
taken at locations F, G and H, respectively, with their orientations specified in Fig. 1a, and
they are very similar to each other.

1.2 Our proposal
Despite these challenges and shortcomings of existing indoor localization algorithms, the

pervasiveness of smartphones offers the opportunities to combine heterogeneous signals
together and makes full use of their advantages as well as offsets their drawbacks. In this
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paper, we propose a novel tree-based indoor localization algorithm in which the WiFi, IMU
orientation and visual signals from smartphones are bound into a signal tree: (1) WiFi is
used for coarse positioning. The problems of instability, unreliability and low discrimina-
tive capacity of WiFi signals is mitigated since WiFi is only used for the coarse localization
instead of fine localization. As we cluster WiFi fingerprints into several groups, the impact
of WiFi environment change is also mitigated; (2) IMU is not used to estimate the tra-
jectory, but to obtain the orientation towards which the user takes photos. The orientation
information helps rule out impossible references in the image database, decreasing the com-
putational cost and increasing the localization accuracy; (3) In the fine localization level, an
image taken by the user is compared with the reference image database to search the most
confident match. The problem of image similarity is alleviated in our system. For example,
although Fig. 1f-h are similar to each other, they are distinguishable according to orientation
(e.g., Fig. 1f and g are taken in different orientations) and WiFi fingerprints (e.g., Fig. lhis
far away from Fig. 1f and g, so they may have largely different WiFi fingerprints).

The indoor localization algorithm proposed in this paper is closely related to [1, 3, 23,
33]. Zhang et al. [33] and [23] utilize WiFi signals to rectify the trajectory obtained by
IMU sensor. Chen et al. [3] combines Radio Frequency and WiFi to improve the localiza-
tion accuracy. Azizyan et al. [1] combines more signals (i.e., WiFi, sound, motion, color) to
build the localization algorithm. Unlike the previous work which just concatenates several
sensors together to improve the localization accuracy, our algorithm hierarchically builds
WiFi, IMU orientation and visual signals into a tree, which can not only improve the local-
ization accuracy, but also improve the efficiency and decrease the time used to build the
reference database.

In the rest of this paper, we firstly describe how to build the reference signal tree
using the WiFi, IMU orientation and image data. Secondly, detailed searching strategies for
online localization are introduced. Then, experimental results are presented with thorough
comparisons and evaluation.

2 Algorithm overview

The proposed indoor localization algorithm consists of two stages: building the signal tree
and online localization (Fig. 2).

Building the signal tree (Fig. 2a) WiFi signals are collected in a building, tagged with
hotspots’ Received Signal Strength Indication (RSSI) and the positions where the signals

a Building the Signal Tree b Online Localization
Reference
Images Query Image
WiFi oee Coarsely W|F| |
Clustering WlFl-based Bfal’l!i';l.l Positioning
Orientation = Orientation |_| m m mml m""
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CIusterlng & Candidate Images
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Vectors Matched Image I'

Fig. 2 Overview of the propose indoor localization algorithm
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are collected. Reference images are densely captured in a building and labeled with their
orientation and location information. Essentially, the construction of a signal tree is the
process of clustering and describing reference images with the aid of WiFi and orientation
signals. Locations are described by WiFi fingerprints and then all WiFi fingerprints are
clustered into branches. All reference images are partitioned into the WiFi branches based
on their spatial distance to WiFi fingerprints’ positions (purple part in Fig. 2a). Then, images
in the same WiFi branch are further classified according to their orientation similarity (green
part in Fig. 2a). Images in one leaf node share the same WiFi and orientation labels. Given
a leaf node, each image is described by multiple level descriptors (blue part in Fig. 2a).

Online localization (Fig. 2b) When a user takes a photo to localize herself/himself, WiFi
and orientation signals are recorded automatically and synchronously. The signal tree is
then searched to find the best matched reference image that indicates the user’s location.
The query WiFi fingerprint coarsely determines which WiFi branches the matched image
belongs to. Orientation information further rules out impossible reference images. Then,
every searched leaf node gives a candidate image as the best match to the query image.
Finally, all these candidate images are compared to decide the final matched image. The
matched image’s tagged position indicates the user’s location.

Our proposed tree-based indoor localization algorithm not only mitigates the afore-
mentioned challenges, but also benefits as follows. (1). It makes full use of the existing
infrastructures in a building, such as the WiFi hotspots equipped in libraries and hospi-
tals; (2). It does not require too much work to users. When the user queries her/his indoor
position, all needs to be done are taking a picture. The WiFi and orientation signals are auto-
matically recoded by our software in the smartphone. (3). In the online localization, WiFi
and orientation can not only offer more context information to refine the matched loca-
tion, but also rule out impossible reference images, decreasing the computational cost and
increasing the localization accuracy. Thus, the proposed method can be applied to scenar-
ios where buildings are equipped with WiFi hotspots and users carry common smartphones
which are popular nowadays.

3 Building the WiFi branches

In our signal tree, WiFi signals are sparsely collected in a building. A location is described
by the WiFi fingerprint, which is a vector with each dimension equaling to the processed
RSSI of a certain hotspot. To better describe the WiFi environment of a building, all finger-
prints are clustered into groups. In this section, we firstly introduce how to generate WiFi
fingerprints from WiFi signals and then present the clustering algorithm to cluster WiFi
fingerprints into WiFi branches in the signal tree.

3.1 WiFi fingerprint

Due to the variation of WiFi signals, we collect the RSSI of each hotspot multiple times at
any reference location in a building and compute its mean RSSI:

71‘,]‘ =meany fi js W

where f; ;s is the s, sample of the raw RSSI values of WiFi hotspot j at location i.
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It is reported in [19] that WiFi signal gets less reliable when its RSSI value is lower, so
we normalize the raw RSSI values by an exponential distribution (i.e., the WiFi signal is
less valuable for the WiFi fingerprint generation or comparison if its RSSI value is lower):

f7, = hexp |:A fij— Jmin i| @

max — fmin

where fi,qx and fyi, are the maximal and minimal RSSI value in all 71‘, It

Smax = maxi, j ?i,j 3)
fmin = mini,j ?iyj (4)
X is the rate parameter
fmax — fmin

A= " 5)

f - fmin

where B B
f =mean; fi,j. (6)

Therefore, the WiFi fingerprint at location i is defined by a feature vector

=[S S B )

where N, denotes the number of WiFi hotspots in a building.

Furthermore, we consider the discriminative capability of each WiFi hotspot for the WiFi
fingerprint clustering. A WiFi hotspot is less discriminative if many reference locations
receive similar RSSI values of this hotspot. On the contrary, a WiFI hotspot is discriminative
if different locations receive largely different RSSI values of this hotspot. We define the
discriminative capability of WiFi hotspot j by its entropy:

wj ==Y [prj xlog(prj + )] ®

where ¢ is a small value to avoid computing the log of zero (e.g., ¢ = 1079). Dr,j is
the possibility of a location collecting hotspot j’s RSSI value that is equal to r (e.g.,
r € [—135d Bm, 0d Bm]):

ia(?i j=r)
pry = Z2 =0 o ©)

where §() is the Kronecker delta function. The numerator in (9) is the number of 71’, j that
equals to r for WiFi hotspot j and Np is the total number of reference positions that have
WiFi signals collected in the WiFi dataset.

If a WiFi hotspot’s RSSI values are constant at all locations, the entropy is high (i.e.,
uncertainty of identifying the location based on this hotspot is high). Contrarily, if a WiFi
hotspot’s RSSI values are diverse at different locations, the entropy is low (i.e., we are more
certain to identify the location based on this hotspot). Hence we define a diagonal weighting
matrix for the WiFi clustering to be described in the next subsection:

W =diag(e™, ..., e " ... e "W). (10)

3.2 WiFi clustering
The physical infrastructures and electronic equipment inside a building make the WiFi

environment complicated such that the distance between two reference locations is not ade-
quate to describe the similarity of their WiFi fingerprints (i.e., adjacent positions may have
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a large discrepancy in WiFi fingerprints while positions with similar fingerprints may be
relatively far away from each other). To better partition the WiFi environment in a build-
ing and to mitigate the problem that WiFi environment in a building may be changed due
to closed or updated hotspots, we cluster WiFi fingerprints into groups based on their WiFi
fingerprint similarity and spatial distance. The clustering procedure is divided into two
steps (Fig. 3): Bottom-Up clustering by WiFi fingerprint similarity and Top-Down cutoff by
spatial distance:

Bottom-up clustering by WiFi fingerprint similarity (Fig. 3a) Initially each individ-
ual WiFi fingerprint is considered as one cluster. Similarities between every pair of clusters
are calculated based on the similarity kernel and two clusters which are the most similar
are then merged into one bigger cluster in the next higher level. This mergence opera-
tion is performed iteratively and the complete WiFi hierarchical tree is built when all WiFi
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Fig. 3 WiFi clustering. a Button-Up WiFi Clustering Dendrogram. The number in the leaves are indices of
WiFi fingerprint; b Top-Down Cutoff Dendrogram. Leaves sharing the same color belong to the same WiFi
cluster; ¢ The floor plan where the WiFi fingerprints are collected. Dots indicate where the WiFi signals are
collected and surrounding numbers are the corresponding indices of WiFi fingerprints. Dots sharing the same
color belong to the same WiFi cluster corresponding to (b)
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fingerprints are grouped into the single largest cluster. The similarity kernel of two clusters
is defined by the Ward’s method [31]

S(A,B)= Y it —fauslle — Y _lIfk —Falle — ) _ Il —fslle (1D

keAUB keA keB

where f; denotes a WiFi fingerprint. fa, 5 and f4up are the centroids of cluster A, B and
A U B, respectively. || - || g is the weighted Euclidean distance defined as

I — £l = & —£)" Wt — 1)) (12)
where f; and f; are any WiFi fingerprints. The weight matrix W is from (10).

Top-down cutoff by spatial distance (Fig. 3b) The WiFi hierarchical tree in Fig. 3a
shows a multi-branch hierarchy rather than a set of WiFi clusters. In this step, we parti-
tion the tree into several groups based on WiFi fingerprints’ spatial distances. As shown in
Fig. 3b, from the top to down of the WiFi hierarchy, every node is checked if the maximal
value of the spatial distance between all pairs of WiFi fingerprints belonging to this node is
less than a predefined threshold dt%i Fi (we set it as 20 meters here because it is the distance
limit that WiFi can coarsely distinguish two positions). When the maximal value is less than

d)ViFi, the WiFi fingerprints belonging to this node will be considered to be within the same

group.

Note that the number of WiFi clusters is defined automatically by our algorithm instead
of being preset by human. The Bottom-Up clustering and Top-Down cutoff consider the
WiFi fingerprint similarity and spatial distance, respectively, thus the clustering result
reveals the actual WiFi environment of a building well. Figure 3c shows the final clustering
results of WiFi fingerprints in one university building. For example, location 19 is further
from 23 than from 20, but the WiFi fingerprint at location 19 is more similar with 23 than
with 20, therefore, location 19 is clustered with 23. Location 18 and 20 are near to each
other, but they have relatively different WiFi fingerprints so they are grouped in different
clusters. In addition, the WiFi environment is represented as groups instead of individual
fingerprints, so the tolerance to WiFi environment change becomes higher.

4 Building the orientation branches

Magnetometer (measure the earth’s magnetic field) and accelerometer (measure the tri-axis
acceleration) are embedded in smartphones hence a phone’s acceleration and magnetic field
values can be recorded when a user takes photos with the phone. In this section, we firstly
introduce the transformation method between a phone’s coordinate system and the world
coordinate system. Then we introduce how to estimate a phone’s orientation on the floor
plan when its user takes photos. Finally, we present how to cluster estimated orientations
into the orientation branches of a signal tree.

4.1 Transformation between the phone and the world

A phone’s coordinate system is shown in Fig. 4a. When a smartphone is held upright in front
of a user, x, axis points right, y, axis points up and z,, points towards outside the screen.
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Fig. 4 The coordinate system of a phone (a) and the world (b) http://www.androidcommunitydocs.com/
guide/topics/sensors/index.html. g,, and m,, are the gravity and geomagnetic north pole directions in the
world coordinates, respectively

The world coordinate system is shown in Fig. 4b where y,, axis is tangential to the ground
and points to the north. z,, points towards the sky and x,, is just the cross product (right-
hand rule) of y,, and z,,. Gravity direction (purple dotted line in Fig. 4b) is parallel to —z,,
axis, while geomagnetic north pole direction (croci dashed line in Fig. 4b) has components
in both —z,, axis and y,, axis. Nevertheless, the cross product of gravity direction (g, ) and
geomagnetic north pole direction (,,) points to x,, axis. The subscripts p and w denote the
phone and world coordinates, respectively.

We describe the coordinate transformation method in the format of quaternion, a
four-dimensional normalized vector http://en.wikipedia.org/wiki/Quaternion. We define the
transformation quaternion from the phone to the world coordinate system Qp,_., =
[91 92 g3 g4] where |Qp ]l = 1 and || - |2 is the 2-norm. A general quaternion in
the phone’s coordinate system, such as v, = [v; vz v3 v4], is transformed to the world
coordinate system by

Vi = Qpsy ®Vy ® Q;k;*)w (13)
where ® is the quaternion multiplication defined as

Qp—w ®Vpy = [q1 92 q3 q4] ® [v1 v2 V3 V4]

T
q1v1 — q2V2 — q3V3 — 404
_ q1v2 + q2v1 + q3v4 — q403 (14)
q1v3 — q2v4 + q3v1 + q4v2 '

q1V4 + g2v3 — q302 + g4V

*

»—w 18 the quaternion conjugate of Q—.,, denoted as

Qv =[a1 =02 —q3 —q4] = Qu)p. 15)

In the format of quaternion, any point in the world or phone coordinate is represented as
a vector [0 x y z], where x, y and z are the values of three axes, respectively. We compute
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the coordinate transformation quaternion, Q. , by solving the following optimization
problem:

argming {II (Qp—>w ®a, ®Q)_,, — gw) 13

1 (Qw ®2, @ Q) X (Qow @M@ Qpy ) —xull3]  (16)

where a, = [0 a; az a3] is the normalized (i.e., [|apll2 = 1) acceleration in the phone
coordinate. The acceleration of a phone is measured by its accelerometer. When a user
takes photos, we assume the smartphone is relatively stable thus only gravity contributes
to a phone’s acceleration. The acceleration a, is transformed from the phone coordinate
system to the world coordinate system by Q. ® ap ® Qj,_,,,, which should be equal to
gu. 8w = [000 — 1], a constant vector pointing to the gravity in the world coordinate.
Therefore, the first term of (16) is the difference between transformed a,, and g,,.

In the second term of (16), m;, = [0 m| my m3] is the normalized magnetic field in
the phone coordinate, which is measured by the phone’s magnetometer. The acceleration
a, and magnetic field m, are transformed from the phone coordinate system to the world
coordinate system as a,, = Q. ® 2, ® Q;_)w andmy, = Qpy @M, ® Qf,_w,
respectively. As shown in Fig. 4b, the normalized cross product (x) of gravity g,, and m,,
should be equal to x,, (X, = [0 1 0 0], the x axe of the world coordinate system). Therefore,
the second term of (16) is the difference between a,, x m,, and x,,.

After some matrix computation, (16) is converted into the following quadratic optimiza-
tion problem:

argming (4 + Qp_m,AQg_w) (17)

where A is a 4-by-4 symmetrical matrix related to a, and m,,. This minimization problem is
considered as the Rayleigh Quotient and Q,,_,,, is solved as the eigenvector corresponding
to the smallest eigenvalue of A.

4.2 Orientation estimation

Figure 5 shows the scenario when a user takes a photo. The yellow vector ¢, = [0 0 0 -1]
(parallel with —z, axis in the phone’s coordinate system) represents the orientation that the
camera is towards. ¢, is transformed to the world coordinate by

Cy = Qp—)w Rep ® Q;_m) (13)

Fig. 5 The scenario when a user
takes a photo for localization. ¢,
is the constant vector parallel
with —z,, axis in the phone’s
coordinate system
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Denoting ¢,, = [0 ¢ ¢z ¢3], we project the orientation to the horizontal plane in the
world coordinate system, i.e., vector O = [c] c2] is the orientation on the floor plan which
the photo is taken towards.

Note that when a user takes photos, the smartphone usually keeps stable, so the accel-
eration value is relatively accurate without the noise of movement. However, the electronic
equipment inside buildings, the metal components and metal structures of smartphones all
lead substantial bias to the measurement of earth’s magnetic field. The good thing is that
this error does not badly affect the localization algorithm considering that the consistent
noise results in a constant deviation between the measured earth’s magnetic field and ground
truth. So different people take photos towards the same direction in the same position, their
measured orientations are similar although not perfectly accurate. The similar orientation
can still form a useful feature to describe the location.

4.3 Orientation clustering

The orientation information is tagged with reference images. To discuss the orientation clus-
tering, we need to introduce the reference image collection process first. Compared to the
sparse collection on WiFi signals, we collect reference images densely in a building for
precise localization by recording continuous videos and sensor information simultane-
ously. For example, eight video clips were recorded in a building following the eight routes
defined in Fig. 6a. Each frame in the videos is tagged with its corresponding orientation
computed by the method in the previous subsection. Each video clip is recorded following
the same direction, therefore the computed orientations of all frames in a video are similar,
naturally forming a cluster of orientations.

Figure 6b shows the distributions of eight orientation clusters corresponding to the eight
routes in Fig. 6a. For example, the red and black distribution curves are largely overlapped
and they point to the same orientation in Fig. 6a. The orientation distribution of each video
clip is not a constant impulse distribution due to the environmental impacts on magnetic
and inertial sensors. We model the orientation distribution of video clip g by a Gaussian
distribution N (4, 8;). Suppose the entire floor plan in Fig. 6a is in one WiFi cluster, we
can further merge largely overlapped orientation clusters into a bigger cluster. The similarity
of two distributions g and ¢» is defined as:

2 2
(Sql + 8‘]2

19
|Mq1 - ,uq2|

Sqr.a =

Fig. 6 Orientation clustering. a Floor plan of a building with eight routes to record videos and their corres-
ponding sensor information. b Orientation distributions calculated by the data collected according to (a)
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Fig. 7 Flow chart of the Multiple Level Image Descriptions (MLID) method

If the centroid of two distributions are close to each other and their inter-distribution
variances are small, then they can be merged into a bigger orientation cluster. In Fig. 6b,
the eight orientation distributions can be clustered into four clusters corresponding to north,
west, south and east directions. Each of the four orientation clusters is one orientation
subbranch within the same WiFi branch.

Without loss of generality, video clips with more orientations can be recorded according
to how dense the image database is required to be. The video clips collected towards the
same orientation are not necessary to be merged to a cluster if inertial sensors are badly
influenced by noise.

5 Building the image leaf nodes

In this paper, we propose a Multiple Level Image Description (MLID) method to describe
images in leaf nodes of the signal tree (Fig. 2). MLID is based on Term Frequency Inverse
Document Frequency (TF-IDF) [24], but we improve it in three-folds: (1) Dense SIFT key-
points are extracted in the low texture areas. (2) Divisive hierarchical clustering is adopted
rather than K-means. (3) Each image is described as multiple vectors, thus both global

Fig. 8 SIFT points in a user-taken image. The red points are the salient SIFT points and the blue points are
the dense SIFT points. The image is equally divided into five subimages

@ Springer



Multimed Tools Appl (2017) 76:20317-20339 20329

and local information of an image is recorded. As shown in Fig. 7, MLID consists of four
steps:

Feature extraction SIFT is ideal to describe local features because it is robust to local
affine distortion [26], which means even though the query image has scale or rotation
change compared to the images in the dateset, SIFT keypoints remain stable between the
corresponding images. Figure 8 shows an example of feature extraction. First, salient SIFT
keypoints (red points in Fig. 8) are extracted from an image. However, salient SIFT key-
point extraction ignores the low texture areas such as some parts of the ceiling and walls.
Then, dense SIFT keypoints (blue points in Fig. 8) are extracted in the image. Dense SIFT
keypoints are uniformly sampled in the area without salient SIFT keypoints. The SIFT
features extracted from both salient and dense SIFT keypoints jointly describe the con-
tent of an image. All the SIFT features extracted from every reference image in a leaf
node of the signal tree are collected into a large feature pool (represented as purple circles
in Fig. 7a).

Feature clustering The number of keypoints in the feature pool depends on how large
and complex the building is, which ranges between hundreds of millions and hundreds of
thousands. Thus it is hard to estimate the proper number of groups. In addition, clustering
hundreds of millions of keypoints into millions of groups in one time is time-consuming.
In this paper, a top-down clustering method is applied to partition the SIFT keypoints in
the feature pool. SIFT features are firstly clustered into ¢ groups (+ = 2 in Fig. 7b) at
Level 1 (L = 1) based on 2-norm of feature vector distances. Then each cluster in the first
level is clustered into ¢ groups, so that in the second level (L = 2), there are 2 branches.
The process is performed repeatedly until every leaf of the feature clustering tree has less
than r SIFT feature descriptors (r is set to 100. When there is a small number of features
descriptors in a group, no further clustering is needed). The symbol around each node in
Fig. 7b represents the mean of SIFT feature vectors in that subtree (called visual word)
and the visual words at each level forms the visual codebook for that level. In Fig. 7b, the
symbols in each dotted rectangle belong to one visual codebook.

Feature interpretation Based on the visual codebooks at different levels, we can interpret
the SIFT features in an image into visual words in a corse-to-fine manner. A SIFT feature is
interpreted as the visual word of a visual codebook which is the closest to the SIFT feature.
The distance between a SIFT feature and visual word is based on the 2-norm of feature
vector distance. For example, in Fig. 7c, at level 1, all feature descriptors in one image is
interpreted into 2 visual words: 15 SIFT descriptors are close to visual word 1 (red star) and
10 SIFT descriptors are close to visual word 2 (green circle). The interpreted visual words
at level 1 are finely interpreted at following levels.

Image description At level L, the number of visual words in the codebook is 7, and the
histogram of visual words at level L is used as the feature description at level L. For exam-
ple, in Fig. 7d, at L = 1, the codebook has 2 elements, so does the feature vector. Because 15
SIFT descriptors belong to visual word 1 (red star) and 10 SIFT descriptors belong to visual
word 2 (green circle), the description vector is [15, 10] at level 1 (or [0.6, 0.4] after normal-
ization). The feature descriptors are finely computed in the subsequent levels according to
more and more detailed visual vocabulary books.
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Spatial information is also considered when formulating the feature description of an
image. As the yellow lines in Fig. 8 illustrate, the image is firstly equally divided into four
subimages and the fifth subimage is in the center of the image with the same size of other
four subimages. Multi-level feature vectors are calculated based on individual subimages
and then they are concatenated to form long vectors to describe the whole image. So in level
L, there are actually 5+L dimensions in the feature vector.

The proposed MLID algorithm keeps both global and local information of images. At
the top level, SIFT descriptors are coarsely clustered and the dimension of feature vector
is low, so the global information of the image is reflected. As the feature descriptors are
finely clustered, the dimension of feature vector gets larger and more detailed information is
recorded. Note that, compared with K-means, there is no need for our algorithm to predefine
how many groups we should cluster the SIFT descriptors, which is another advantage of the
MLID method to handle different unknown scenes.

In a short summary of this section, reference images in the dataset are partitioned based
on their surrounding WiFi environment at the first level of signal tree and then they are
further clustered according to their tagged orientation information at the second level. In the
third level, the Multiple Level Image Description is generated for every image within a leaf
node of the signal tree. Thus, the surrounding sensor environment and image attributes of a
position are merged together in the hierarchical signal tree to describe that location.

6 Online localization

When a user takes a photo to localize herself/himself, WiFi and sensor signals are recorded
synchronously. This section presents the search strategy to find the best matched reference
image to identify a user’s location. Online localization consists of three stages: coarsely
WiFi positioning, orientation pruning and fine visual localization.

6.1 WiFi-based coarse positioning

Let fy be the WiFi fingerprint submitted by the user and can be computed by (7). Assume
there are Nw,;r; WiFi clusters in the signal tree. The centroid of WiFi clusters are denoted
as f,(n = 1...Nw;r;). The distance between fy and any WiFi cluster f,, is computed by the
weighted Euclidean distance, denoted as dj .

don = (fo — £)TW(fy — £,). (20)

Only the top & WiFi clusters with the smallest distance will be searched in the next level,
other WiFi clusters as well as their subbranches are skipped over. In the experiments, / is set
to 2 which works well in our campus buildings. If the WiFi environment is complex, / can
be larger such that more WiFi branches can be searched. In the following steps, branches
are searched independently.

6.2 Orientation pruning
Several hundred of orientation samples can be collected instantly when a user is taking a
photo. The query orientations Og can be modeled as a Gaussian distribution N (ug, 00).

The similarity between Op and any orientation cluster can be computed by (19). Top &
orientation clusters with the smallest similarity to Og will be searched in the next level,
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other subbranches are skipped. As shown in Fig. 2b, the black branches indicate the search
routes. Only parts of the leaf nodes need be searched, greatly increasing the efficiency.

Algorithm 1 Search Algorithm in a Leaf Node

Notations:
e B: the totally number of reference images in a leaf node
e L.: the number of clustering levels in a leaf node
Input:
e Multiple feature vectors of query image: Vo ;(I = 1...L);
e  Multiple feature vectors of reference images in a leaf node: V(b = 1...B,l =
1...L);
e codebooks: M;(l = 1...L);
e A predefined threshold d;p,-. It is set to 3 meters in this system;
e Comparison Pool (CP): all reference images in a leaf node;

Iteration:
for/=1:Ldo
e Compute the similarity between query image and images in CP: Sf) b= %
S Ypecr So ’
e Compute the average similarity S/, , = =22 00
p g Y20 2Lbecr

Reference images satisfying S(l) b < S(Z) , are deleted from CP
Compute the maximum of pairwise spatial distance of images in CP, denoted as dj,,x

if dyyux < dipy then
return M; and reference images with the largest Sé! b
break
end if
end for
Output:
M; and the candidate image which is the reference images with the largest S(l). , in CP

6.3 Fine visual localization

Within each searched leaf node, the most similar reference image needs to be found. Algo-
rithm 1 shows the search strategy within a leaf node. The best reference image is searched
from top to down of multiple vectors. At each level, we discard the reference images having
low similarity with the query image. Thus as the level goes deeper, the number of refer-
ence images to be compared becomes less and less, which decreases the computational cost.
Meanwhile, the dimension of feature vector increases as the level goes deeper, images are
compared with more and more local details.

If only one leaf node is searched, the candidate image selected from that leaf node is
the final matched reference image. Otherwise, every searched leaf node gives one candidate
image, we need to compare which candidate image is the best match. As shown in Fig. 9,
without loss of generality, only two candidate images are discussed here. A new visual
codebook is built by concatenating the codebooks from the outputs of Algorithm 1. This
new codebook is specialized to the two candidate images, therefore it is more discriminative
than either of the single codebook. Then, feature vectors of the query image and candidate
images are calculated based on the new codebooks. The candidate image that has the largest
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Codebook for Candidate Image 1 Codebook for Candidate Image 2
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| Similarity Comparison ]

Final Matched Image

Fig. 9 Determine the final matched image from candidate images

similarity with the query image is considered as the final matched image. The matched
image’s labeled position is reported as the user’s location.

7 Experiments

To validate the effectiveness of our indoor localization algorithm, we developed an App in
the platform of Android OS to record the WiFi, inertial sensor and visual signals. Figure 10a
is one screenshot of the App with a simple interface. This App is capable of collecting
reference signals as well as query signals.

Figure 11 shows the floor plan of a university building based on which we illustrate
how we collect reference signals and build the signal tree. The circles in Fig. 11 denote the
positions where we collect WiFi signals. The WiFi signals in this building are partitioned

NCT Lall 77 6:17
& photolL
v Sensor

v WiFi

v Vision

Fig. 10 a The data collection app. b A laser distance measurer is used to identify the ground truth of a user’s
position
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Fig. 11 Floor plan of a building with illustrations on how the signal tree is built. Circles are positions where
we collect WIfi signals. Visual signals are collected from the beginning of each arrow to the end while sensor
information is recorded simultaneously

into 9 branches by our WiFi clustering algorithm. Generally, WiFi signals are collected
uniformly and sparsely in the available regions of a building such as hallway and public
lounge. The distance of two adjacent WiFi collection position is about 5 meters. We collect
visual signals in the format of videos following the routes in Fig. 11. Simultaneously, the
orientation signals are recorded, which are the same as the arrow directions. The frame
rate of each video is 30 f/s. The resolution of images can be calibrated through software
method. We keep walking with a constant speed when we record the videos. Thus, the
position tagged to each frame can be interpolated by the positions of the start and end of
each arrow. Frames in all videos forms the images dataset of the building. In this building,
there are 18 image leaf nodes. As shown in Fig. 11, we denote each leaf node by the WiFi
and orientation branches it belongs to.

The proposed indoor localization system is tested in 4 campus buildings whose floor
plans are shown in Fig. 12. Table 1 summarizes the information of signal trees of the 4
buildings which are used in experimental evaluation.
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Fig. 12 Floor plans of the test buildings

Figure 13 shows some localization samples of our approach, which demonstrates the
proposed localization system is robust to crowded people, scene changes and orientation
shifts. Our proposed indoor localization system is compared with three other approaches:
(1) Only visual signals are used in the localization. (2) Only WiFi signals are used in the
localization. (3) The localization system proposed by Wang et al. [28]. Here the method by
Wang et al. [28] is chosen as our benchmark because it is also based on visual information
and takes Term Frequency Inverse Document Frequency(TF-IDF) as its landmark. However,
Wang et al. [28] does not consider dense SIFT keypoints and multi-level feature vectors,
which are parts of the contribution of this paper. The comparison is in terms of localization
accuracy, localization efficiency and time used to build the reference database.

7.1 Localization accuracy
Figure 14 summarizes the localization accuracy of 4 approaches in the 4 buildings. Our

system achieves the highest accuracy compared to the other 3 methods. The comparison
between the approach described in [28] and MLID proposed in this paper shows that it

Table 1 Information about the

Signal Trees of 4 Buildings Building No. NWB NOB NRI NQI
ber of 1 9 4 10117 241

NWB: Number of WiFi

Branches; NOB: Number of 2 6 4 4335 283

Orientation Branches; NRI: 3 11 4 19313 202

Number of Reference Images; 4 12 4 18825 278

NQI: Number of Query Images
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20335

Fig. 13 Samples of our indoor localization. Top row: query images. Bottom row: matched reference images.
a People occlusion. b Illumination changes. ¢ Orientation shifts. d Scene slightly changes. e Textureless scene

Fig. 14 Accuracy comparison.
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Table 2 Average time used for
localization (seconds) Building Ours Only image Wang [28] Only WiFi
1 5774059 1042 £0.60 548 +0.52 0.0094 & 0.00015
2 5.63+052 9.63£0.54 522+0.56 0.006 & 0.00012
3 5.80+0.57 10.79 £0.55 5.11 £0.59 0.0050 £ 0.00015
4 6.20 £0.55 11.23 £0.60 491 £0.51 0.0014 & 0.00014
4 T
E 3.3517s
9 3
i)
8 1.9335s
52
o
o
21
£ | 0.0087s 0.0315s 0.4474s
WIlFi Orientation Salient SIFT  Dense SIFT  Image Comparison

Fig. 15 Time cost of every step of our method in building 1
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Table 3 Time used to build the

database (hours) Building Ours Only image Wang [28] Only WiFi
1 1.75 15.5 12 0.000866
2 2.5 23.75 22 0.001178
3 2 28 27.75 0.000948
4 2.25 27 26 0.00145

is more effective to describe images with multiple-level features descriptors, thus images’
global and local information are both recoded and utilized for localization. Note that for
all building datasets, 80% of query images have the accuracy within 30 inches and 95% of
these have the accuracy within 100 inches, which is acceptable in most scenarios such as
schools and hospitals.

7.2 Localization efficiency

Table 2 summarizes the comparison of the average time cost of online localization. During
all the experiments, we notice that all query signals can be localized in less than 6.5 seconds
with our method. The comparison between column 2 (Our signal tree method) and column
3 (image-only method) proves that WiFi and orientation signals are capable to rule out
impossible reference images and largely speed up the online localization.

However, our current method is still slower than Wang et al. [28]. As shown in Fig. 15,
we analyzed the average time cost of every step in our method and found out that computing
dense SIFT keypoints which is not required in Wang’s method consumes 58.06% (about
3.35s) of the total time while searching the signal tree only takes up 7.75% (about 0.45s)
in our method. Finding the SIFT keypoints can be further speeded up with GPU parallel
computing. We leave this as our future work.

7.3 Time used for building the reference database

Table 3 summarizes the time cost of the 4 approaches to build the reference database. Except
WiFi-only method, The proposed signal tree takes the least time to build the database (about
one-tenth of the time cost of the image-only method). Note that the advantage of the pro-
posed method will be much greater in a skyscraper. It is very time-consuming to deal with
all reference images from a tall building as a whole. However, no matter how big the build-
ing is, WiFi and orientation signals pre-cluster reference images into several leaf nodes, thus
a complex problem is divided and conquered by small problems.

8 Conclusion and discussion

In this paper, we propose a novel signal-tree based indoor localization algorithm combin-
ing WiFj, inertial and visual signals. From the experimental results, our method takes more
time to build the reference database compared with the WiFi-only method and our method
takes more time for online localization compared with the WiFi-only and Wang’s method
[28], but the accuracy of our method is much better than the other methods. Considering
the evaluation metrics together, our proposed method is competitive and effective in the
indoor environment. The biggest contribution of the proposed algorithm is that WiFi and
orientation signals simplify the database building process and provide more contextual
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information not only to speed up the image query, but also to improve the localization accu-
racy. In addition, the multiple level description records more comprehensive information
about an image. They all make an accurate and efficient indoor localization possible. Other
advantages of the proposed algorithm are summarized as follows.

For a fingerprint base algorithm, it is usually painful to collect reference data, espe-
cially for the high accuracy requirement. In this paper, because WiFi signal is only used
for coarse position, we just uniformly and sparsely collect WiFi fingerprints in a building
(about every 5 meters a reference location). In addition, the previous work [11, 13, 27]
usually takes thousands of reference images in building and recodes each image’s location
one by one. However, we collect reference images in the format of videos. Every frame of
the videos forms a reference image tagged by WiFi and IMU sensor signals automatically,
which largely speed up the collection.

In online localization, the user just need to take a photo with his/her smartphone, the WiFi
and orientation information will be automatically recorded. Thus, the workload of the user
will not be increased compared with traditional image-based indoor localization system.

One challenge of indoor localization algorithm using the WiFi signal is the WiFi environ-
ment change, which may be caused by the shut-down or updating of hotspots. The proposed
algorithm deals with this problems in two ways. As discussed in Section 3.2, WiFi finger-
prints are clustered into groups, thus the tolerance to WiFi environment change is higher
compared to that we treat each WiFi fingerprint individually. In the condition that WiFi
environment is largely changed, we can increase the number of search branch % described
in Section 6.1 to allow more branches to be searched in the signal tree. In the extreme case,
h can be defined as the number of WiFi branches, which means all WiFi branches will
be searched. We have tested our algorithm in this extreme condition in building 1 and the
average localization errors is only slightly increased from 56 inches to 59 inches.

In the future work, we plan to set up an indoor navigation system based on the indoor
localization algorithm. Combined with the GPS based navigation outdoors, a persistent
navigation system can be built, which is an important part of smart cities.
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