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Abstract

Vision based pedestrian tracking becomes a hard problem when long-term/heavy
occlusion happens or pedestrian temporarily moves out of the visual field. In
this paper, a novel persistent pedestrian tracking system is presented which
combines visual signals from surveillance cameras and sensor signals from
Inertial Measurement Unit (IMU) carried by pedestrians themselves. IMU
tracking performs Dead Reckoning (DR) approach utilizing accelerometer,
gyroscope and magnetometer. IMU tracking has nothing to do with visual
occlusion, so it keeps working even when pedestrians are visually occluded.
Meanwhile, visual tracking assists in calibrating IMU to avoid the bias drift
during DR. The experimental results show that the IMU and visual track-
ing are complementary to each other and their combination performs robust
pedestrian tracking in many challenging scenarios.

Keywords: Cross-media Object Tracking; Persistent Pedestrian Tracking,
Visual Object Tracking, IMU Tracking, Dead Reckoning.

1. Introduction

Automatic pedestrian tracking has a wide range of applications, such
as security surveillance and behavior analysis. Typically, pedestrian track-
ing can be classified as “passive” and “active”[1]. Passive tracking utilizes
devices that are not carried by pedestrians. The typical passive tracking
is based on vision such as tracking targets in video streams from color or
thermal cameras. Active tracking lets pedestrians carry electronic devices
and sensor signals collected from pedestrians are used to locate the pedes-
trians. The most common active tracking devices include Global Position-
ing System (GPS), WiFi receiver, base station signal receiver and Inertial
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Figure 1: Visual pedestrian tracking and its challenges. (a) Successful pedestrian tracking;
(b) The target pedestrian is occluded by other pedestrians; (c) The pedestrian is occluded
by a tree over a long period; (d) The pedestrian moves out of the field of view temporarily.

Measurement Unit (IMU). This paper attacks the problem of persistently
tracking cooperative targets (e.g., children, teens, the elderly, patients with
autism/alzheimers/dementia) by combining passive and active tracking.

1.1. Related Work

1.1.1. Passive Pedestrian Tracking

Passive vision based pedestrian detection and tracking has been studied
for several decades [2, 3, 4, 5, 6, 7, 8]. When there is heavy occlusion, large
appearance change, nearby clutter or pedestrians temporarily moving out of
the field of view as shown in Fig.1, it is still challenging for a vision based
tracking algorithm to persistently track the pedestrian without any failure.
Most of the previous efforts on pedestrian tracking in videos are made in the
following two categories.

When the pedestrians are partially occluded, previous work mostly relies
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on tracking the body parts that are visible. For example, Wu et al. [9]
combine body part detectors which are learned by boosting edgelet feature
based weak classifiers and whole pedestrian detectors. Merad et al. [10]
classify pedestrian’s appearances into front and back poses in addition to
segmenting detected individuals into several parts such as head and torso.
However, part-based tracking algorithms can hardly overcome the challenges
when the target is totally occluded or has disappeared for a long time.

Thus, more researchers focus on predicting the positions of occluded
pedestrians. For realtime prediction, Li et al. [11] improves the traditional
mean shift tracking algorithm by proposing “occlusion layers” to represent
the pedestrian occlusion relation, and the non-occlusion part of the pedes-
trian is used for the mean shift tracking. Leykin and Riad [4] introduces a
pedestrian tracker designed as a particle filter using a combined inputs from
color and thermal cameras. These algorithms assume the pedestrians do not
change their forwarding direction and speed when occluded, which may be
not true in practice. Besides the aforementioned realtime tracking methods,
Zhang et al. [12] proposes a unified algorithm that automatically learns the
trajectory models from the local and global information to obtain an optimal
assignment. Sherrah [13] tracks a pedestrian over short time-frames to form
tracklets. Then an optimal path finding problem is posed in the generalized
Hough space and can be solved using the Viterbi algorithm. Trajectory as-
signment depends on the similarity of pedestrians’ appearances. However,
the appearance of the target may change a lot before and after the occlu-
sion because of the illumination and viewpoint, which results in inaccurate
matches.

1.1.2. Active Pedestrian Tracking

It is intuitive to track pedestrians with GPS since it is already widely
used in vehicle navigation. However, the accuracy of a common GPS module
is not high enough, for example, Garmin reports its GPS receivers are accu-
rate to within 15 meters on average [14]. Compared with common moving
vehicles, time delay on locating pedestrians slower than vehicles is highly
possible when using GPS. When a pedestrian starts moving, the position
obtained from GPS may maintain as a constant for 2∼3 seconds. When
the pedestrian stops, the position reported from GPS may still move for a
while. Such asynchrony leads tracking failures or frequent mistakes when
analyzing a pedestrian’s behaviour. Furthermore, GPS is based on the di-
rect signal transmission between a GPS receiver and satellites. Obstructions
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Figure 2: A video of a pedestrian’s position estimated by GPS. The pedestrian moves
from red points A to B (ground truth). Blue points C and D are the positions estimated
by GPS in the starting and end frames.

such as city canyons or tall trees outdoors and walls/ceilings indoors cut off
or weaken the signals, making the GPS-based localization and tracking unre-
liable. The author performed a GPS-based pedestrian tracking using Google
Map on a Samsung Galaxy s4, as shown in Fig.2, when the pedestrian walked
along a straight line indoors from red points A to B (50 meters away from
each other), the GPS-based trajectory is from blue points C to D which are
almost stationary at the same location, deviating from the true pedestrian
trajectory.

WiFi is another type of ubiquitous signal in daily lives [15, 16, 17]. How-
ever, WiFi hotspots are available mostly in indoor environments and the
coverage area of most WiFi hotspots is less than 50 meters, limiting its ap-
plication in pedestrian tracking outdoors. Base stations in mobile telephony
are high power and can cover a radius as large as 35km, with which we can
make a call and send messages. However, base station is only suitable for
coarse localization and tracking [18].

Inertial Measurement Unit (IMU) is a good choice for active pedestrian
tracking, which consists of Gyroscope, Magnetometer and Accelerometer
[19, 20, 21]. In an ideal environment without any noise or movement, Mag-
netometer measures the direction of the earth’s geomagnetic north pole and
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Accelerometer measures the gravity. The two signals can be used to set up
a world coordinate system, which is available everywhere on the earth only
except the north and south poles. So, unlike GPS that is inaccurate and
unreliable indoors or WiFi that needs to artificially install WiFi hotspots,
IMU-based active pedestrian tracking systems can be applied almost every-
where except the north and south poles.

Figure 3: Challenges in IMU-based pedestrian tracking. (a) The magnitudes of the x-axis
acceleration data collected in 5 seconds during a normal walking. (b)∼(e) the experiment
results of IMU-based pedestrian tracking by four different methods [22]. Blue curves are
ground truth and red curves are tracking results.

Most of the previous IMU-based tracking methods depend on Dead Reck-
oning (DR) which adds the estimated current displacement vector to the
previously estimated location [22, 23, 24, 25, 26]. DR is built upon three
components: step detection, speed estimation and forward moving direc-
tion determination. However, all these three components have challenges
for IMU-based DR: (1) Step detection. The human gait varies during
walking, which results in irregular movement patterns. Fig.3(a) shows the
magnitudes of the x-axis acceleration data collected in 5 seconds during a
normal walking. The acceleration values are almost irregular, causing diffi-
culties for step detection. Foxlin [23] solves this problem by binding IMU
to the pedestrian’s foot because the foot movement is more reliable for step
detection compared with other body parts, but this method is not generally
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applicable when the IMU is not bound to foot such as smartphones. Other
step detection methods mostly rely on thresholds to detect steps [22, 24],
but these thresholds are pedestrian-dependant and require the pedestrian’s
speed to be stable over time. (2) Speed estimation. Theoretically speak-
ing, acceleration can be used to calculate speed by integration over time. But
it is unpractical because accumulated little noise leads to unacceptable large
error. For example, an acceleration measurement noise of 0.1g sums up to
60 m/s speed error within one minute. Generally, speed is often estimated
by the amplitude of acceleration [22, 24, 27]. However, the amplitude of
acceleration only describes the intensity degree of movement. The length of
legs also affects the speed which can not be measured by inertial sensors. (3)
Forward moving direction. Acceleration is often used to determine the
forward moving direction. However, when a pedestrian walks, the movement
is a complicated combination rather than a merely forward direction. For ex-
ample, if the sensor is in the lapel pocket, there is a moving direction which
is perpendicular to the forward moving direction due to the swing of arms,
so the moving direction calculated by acceleration is different from ground
truth. Fig.3(b)∼(e) show four IMU based pedestrian tracking results which
are from the experiment section of [22]. Blue curves are ground truth and
red curves are IMU-based tracking results over many times. The shape of
the trajectories are mostly correct but the forward moving directions are in-
accurate. Moreover, it is assumed in [22] that the speed is a constant which
is not achievable practically.

1.2. Our Proposal

Passive visual based pedestrian tracking is intuitive and low cost but the
occlusion problem is hard to solve. However, despite many limitations and
challenges, almost all active pedestrian tracking methods have no problems
of occlusion because they do not rely on vision. Thus, the occlusion prob-
lem of visual tracking can be compensated by active sensor tracking. In this
paper, we propose a novel persistent pedestrian tracking system combining
passive visual tracking and active sensor tracking. The visual signal is from
stationary surveillance cameras and IMU devices are used for active track-
ing. IMU is chosen here because IMU can be applied almost everywhere
merely except the earth’s north and south poles. No other infrastructure in-
stallations are needed other than the sensor module on a pedestrian’s body.
The most significant contribution of this paper lies in the complementation
of visual tracking and IMU-based active tracking. Not only can IMU as-
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sist visual tracking when pedestrian is occluded, but also the challenges of
IMU tracking are alleviated when visual signals are available. The drift of
IMU-based speed and forward moving direction estimation can be rectified
by visual tracking on videos. Thus, our persistent pedestrian tracking system
solves two complementary problems simultaneously.

The persistent pedestrian tracking system can be applied to many areas.
Coupled with IMU-based behaviour analysis [28, 29, 30], our system can
comprehensively monitor patients’ locations and daily actions in hospitals.
Suspects carrying IMU’s can be persistently tracked for security reasons.
In addition, our system can be adopted to navigate robots in the WiFi-
and GPS-denied environment. Considering the pervasiveness of smartphones
which already embed with IMU modules, all our experiments are performed
on the platform of a self-developed App on Android smartphones. There
should be no problem to adopt professional IMU which collects more accurate
signals to our system.

2. Passive Visual Tracking

Histogram of Oriented Gradient (HOG) features along with Support Vec-
tor Machine (SVM) have been popularly used to perform pedestrian detection
in images [5, 6]. Visual pedestrian tracking in videos can be implemented
by the classic tracking-by-detection algorithm [31]. A large dataset (both
positive samples and negative samples) are usually needed to train a general
pedestrian detector which is very time-consuming and the detector may not
work well on scenarios different from the training dataset [32]. In common
pedestrian detection, pedestrians are searched in different scales in every
image to adapt to pedestrians’ scale changes [33]. Considering a specific
and fixed viewpoint, we propose a scene-specific pedestrian detector and an
adaptive scale selection algorithm to improve the pedestrian detection per-
formance and reduce its computational cost.

2.1. Training a Scene-specific Pedestrian Detector

In a fixed scene, the viewpoints from which pedestrians can be observed
and the scales of pedestrians in images are limited. Moreover, the negative
samples are limited (they are just the background in the scene!) We still
use the HoG+SVM for the detector. The specific problem is how to classify
those background samples that are very likely to be mistakenly classified
from various pedestrian samples. If the detector can correctly classify those
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Figure 4: Flow chart of training a scene-specific pedestrian detector.

background samples whose feature descriptors are near the support vectors,
it is sufficient to classify other background samples which are largely different
from pedestrian samples.

In this paper, we propose a new scene-specific training algorithm to deal
with this problem. As illustrated in Fig.4, the positive samples (images
framed in red) are the manually cropped pedestrian images from videos taken
on the specific scene. The positive samples include pedestrian images with
different angles and scales that can be seen from the specific viewpoint. The
pool of positive samples is not changed during the following iterative training.

The negative sample pool initially consists of randomly cropped back-
grounds from images taken on the specific scene with a fixed viewpoint in
different weather and illumination conditions (images framed in blue). Then,
the negative sample pool expands gradually during each iteration. The it-
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erative training algorithm is performed in the following steps: when a new
pedestrian detector is available after SVM training, it will be applied to clas-
sify background images randomly cropped from images taken on the specific
scene (images framed in green); the false positive samples (images framed in
purple) are put into the negative sample pool and the SVM will be updated
for the next iteration; training stops when the number of false positive sam-
ples is zero. Every time the SVM is updated, the detector is more robust to
classify those samples that are misclassified previously.

2.2. Adaptive Scale Selection

Figure 5: Adaptive scale selection.

In common pedestrian detection algorithms, for every frame, different
scales defined by the height and width of rectangles need to be searched in
the image exhaustively to detect all pedestrians. In a fixed scene, although
the same person may display different scales at different locations in the
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viewpoint. However, in the top-down viewpoint, the width of the pedestrian
rectangle is a constant. Fig.5 shows the same pedestrian at four different
locations in the fixed scene. After warping the original image to the top-
down view, the red lines in Fig.5(b) are the warped rectangular bottoms
from four detections. Although the pedestrian in four original detections are
with different scales, their scales are the same in the top-down viewpoint.
Thus, if we fix the ratio of the height and width of a detection rectangle and
determine the standard scale Sstd by the length of the bottom side of the
warped rectangle, pedestrians’ scales in every region of the specific scene can
be estimated, i.e., we know which scale in the original image we should use
to detect pedestrians.

We assume a homography transformation between the original image and
the image with the top-down view. Let Ha be the homography transforma-
tion matrix. Four pairs of point correspondences are needed to estimate Ha.
As shown in Fig.5, we choose the four corners of a rectangular region in the
world as the correspondences. Assume points (xi, yi) are the four vertices
of the trapezoid in Fig.5(a) and (x

′
i, y

′
i) are the corresponding vertices in

Fig.5(b) where i ∈ [1, 4]. We have x
′
i

y
′
i

1

 ∼ Ha

 xi
yi
1

 (1)

where

Ha =

 h11 h12 h13
h21 h22 h23
h31 h22 h33

 (2)

The homogeneous coordinates can be transformed into two equations for
each pair of correspondence:

x
′

i =
h11xi + h12yi + h13
h31xi + h32yi + h33

(3)

y
′

i =
h21xi + h22yi + h23
h31xi + h32yi + h33

. (4)

The degree of freedom of Ha is 8 because ‖Ha‖2 = 1 where ‖ · ‖2 is the
2-norm. Four pairs of correspondences provide 8 linear equations for us to
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solve the Ha. After we calculate Ha, the constant scale in the top-down
view (Fig.5(b)) can be warped to every floor location in the original view
(Fig.5(a)). Therefore, we know the suitable scale to search pedestrians at
every location in the original image. Ha is constant for a fixed scene and it
only needs to be updated when the viewpoint changes.

2.3. Tracking by Detection

With the pedestrian’s location and scale in the previous frame t− 1, we
apply our scene-specific pedestrian detector within a local region around the
previous location to detect pedestrians in the current frame t. To estimate
the pedestrian’s scale in frame t, the bottom side of rectangle in frame t− 1
is warped to top-down viewpoint with Ha and the warped bottom side will
be compared with Sstd to decide whether the pedestrian’s scale in frame t
should be changed. Fig.6 shows the pedestrian images and their confidence
maps corresponding to SVM scores of the scene-specific detector. The white
in a confidence map denotes high score (confidence) of pedestrian detection.
The pedestrian’s location in frame t is determined by the position with the
maximal confidence in the confidence map.

Figure 6: Confidence maps for the pedestrian tracking. (a) and (c) are the pedestrian
images. (b) and (d) are their confidence maps, respectively.

If the pedestrian is not occluded (Fig.6(a)), there is a single global peak
in the confidence map, thus the pedestrian is correctly tracked. However, as
shown in Fig.6(c), when the target pedestrian is occluded by other pedes-
trians, there are multiple peaks in the corresponding confidence map. It
is really possible that the non-target pedestrian is detected and tracked in-
stead, causing drift on pedestrian tracking. Therefore, when occlusion and
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Figure 7: Flow chart of our IMU-based pedestrian tracking.

disappearance of the pedestrian happen, we refer to IMU-based tracking to
correct the vision tracker and reidentify the lost pedestrian.

3. Active IMU-based Tracking

As shown in the blue part of Fig.7, IMU is made up of Accelerometr,
Gyroscope and Magnetometer. Accelerometer measures tri-axis acceleration
values. Magnetometer measures the strength of magnetic field. Gyroscope
measures tri-axis angular velocities. The idea of our IMU tracking is based on
Dead-Reckoning (DR) which adds the estimated current displacement vector,

Vn
−→
Un

‖
−→
Un‖

, to the previously estimated location
−→
Pn. Vn and

−→
Un are the speed and

forward moving direction in step n, respectively. Our IMU tracking approach
consists of four components: step detection, speed estimation, coordinate
transformation and forward moving direction determination.

3.1. Step Detection

Speed requires to be estimated on a complete step period for DR, so the
accurate beginning and end of each step is needed. In [22], step is detected
in the time domain by finding the local maximum and minimum of filtered
acceleration data and a threshold is set to rule out false positives. How-
ever, the threshold value depends on the speed and is pedestrian specific.
When speed greatly changes, the rate of missed detection of step increases
rapidly. Moreover, we need to set a new threshold each time when the target
pedestrian changes. Therefore, a constant threshold poorly deals with speed
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Figure 8: Step detection. (a) DFT results of 4-second signal with 400 samples. (b) The
variance metric vs. signal length.

variation and this method can not be applied when we do not know any
stride information of the target pedestrian in advance.

In this paper, a step detection algorithm based on adaptive sliding window
and Discrete Fourier Transform (DFT) is introduced, which is inspired by
the following observations: (1) When the pedestrian walks, the movement
pattern is repetitive, so we can consider the IMU data as periodic signals.
Therefore, DFT can be applied to find the number of periods in a certain
sliding window, which is just the number of steps in that sliding window.
(2) Magnitude field is sensitive to heading direction change, so it is not
suitable for step detection. Instead, angular velocity and acceleration are
ideal because they are independent of the forward moving direction; (3) Only
one axis signal, no matter from Gyroscope or Accelerometer, is not reliable
for step detection because the movement pattern is a combination of all three
axes instead of one. Thus, all 6 axes of Gyroscope and Accelerometer are
considered in our step detection by DFT.

Fig.8(a) shows the results after applying DFT to the six signals of Ac-
celerometer and Gyroscope over a time sliding window L of 400 samples (in
our IMU device, 100 samples of data are collected per second, so 400 samples
of data imply data collected in 4 seconds). The horizontal axis in Fig.8(a)
is the frequency related to the number of periods within the time sliding
window. The vertical axis in Fig.8(a) is the corresponding magnitude. As
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we know, the frequency component related to the step number should have
higher magnitude, compared with the frequency component corresponding
to noise. We compute the principle frequency of all six signals, f ∗, by

f ∗ = arg max
f

6∑
i=1

|Fi(f ;L)| (5)

where |Fi(f ;L)| denotes the magnitude of frequency component f of the
ith signal within the time sliding window L. Note that f ∗ is an integer in
DFT. In Fig.8(a), f ∗ = 4, but is there exactly f ∗ steps during the time
sliding window L? The answer is possibly NO. This is because DFT here
only detects integral frequency. If there are 3.8 steps in the sliding window,
the corresponding principle frequency of DFT is ceilinged to 4. If there are
4.3 steps in the sliding window, the corresponding principle frequency of
DFT is floored to 4. Therefore, we need to search the accurate beginning
and end sampling moments of complete steps in the signals to estimate the
speed for DR. Otherwise, DR will deviate from the truth quickly due to the
accumulated error. We observe that the principle frequency should have a
large difference compared to its neighboring frequencies. For example, if one
sliding window actually contains 4 steps, the magnitude of frequency 4 should
be greatly larger than the magnitudes of frequency 3 and 5. Therefore, we
propose a new metric ML, the magnitude variance of the principle frequency
compared with its neighboring frequencies, to search the accurate steps:

ML =
6∑

i=1

var([|Fi(f
∗-1;L)|, |Fi(f

∗;L)|, |Fi(f
∗+1;L)|]). (6)

We gradually increase the time sliding window L, compute f ∗ by Eq.5
and then compute ML. Fig.8(b) shows the plot of ML versus L. We can see
the first peak is around 450 in L = [1, 450] which means that there are 4 steps
in 450 samples (4.5 seconds), i.e., each step period is about 113 samples. If
we keep increasing L, we will find another peak around 565 in L = [1, 565]
which means that there are 5 steps in 565 samples. The peaks in Fig.8(b)
indicate that at these points, the magnitude of the principle frequency has
the largest difference compared to its neighboring frequencies.Thus we can
detect the exact number of steps by adapting the time sliding window.

Fig.9 summarizes the workflow of our step detection based on adaptive
sliding window and DFT. First, we coarsely define a time sliding window

14



as long as 400 samples (4 seconds). Secondly, we gradually increase the
sliding window length until we find a peak of ML, thus fine sliding window
is determined. Then, the length of fine sliding window is divided by f ∗

(the number of steps in the sliding window) to get the step period, thus the
beginning and end of every step in the time sliding window can be calculated.
In video streams, steps are detected in non-overlapping time sliding windows
(i.e., the starting time of next window sb = se + 1 where se is the end time
of the current kth sliding window Lk).

Figure 9: Flow chart of our step detection.

3.2. Speed Estimation

Practically, walking/running speed varies from pedestrian to pedestrian.
Even for the same person, the speed is not constant. Integration on accel-
eration to obtain speed accumulates errors very fast, making it impractical
for speed estimation. Observing that the intensity degree of movement is ap-
proximately proportional to speed, we propose to use the maximal difference
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of angular velocity to measure the movement intensity. The measurement is
only valid in complete movement pattern periods, which is at least one step.
That is one of the reasons why we need accurate step detection and speed is
calculated in the unit of step. The speed for step n is defined as

Vn = K(max
s∈[s(n)

b , s
(n)
e ]
‖ −→es ‖ −mins∈[s(n)

b , s
(n)
e ]
‖ −→es ‖) (7)

where s
(n)
b and s

(n)
e denote the beginning and end time of the nth step and

‖ −→es ‖ computes the magnitude of angular velocity at sample s. K is the
normalization factor depending on specific pedestrians. In merely IMU track-
ing, K is determined by calibration. When visual signal is considered, K is
involved in a similarity warp matrix which will be introduced in Sec.4.

3.3. Coordinate Transformation

If there is no movement on IMU or noise, Accelerometer measures the
gravity and Magnetometer measures the earth’s magnetic field, so merely
using Accelerometer and Magnetometer is enough to obtain the transforma-
tion between the IMU coordinate and the world coordinate. However, in
practice, the estimation of gravity is influenced by IMU movement, and the
measurement of the earth’s magnetic field can be distorted by the presence of
electrical components in surrounding environments. To mitigate these prob-
lems, Gyroscope can be added to compensate the bias from Accelerometer
and Magnetometer [34], greatly improving the accuracy.

We describe the transformation in the format of quaternion, a four-
dimensional normalized vector [35]. The transformation quaternion from
IMU to the world coordinate is defined as Q(p→w) = [q1 q2 q3 q4], where
the superscripts p and w represent the IMU and world coordinates, respec-
tively. ‖Q(p→w)‖2 = 1. A general quaternion in the IMU coordinate, such as
v(p) = [v1 v2 v3 v4], is transformed to the world coordinate by

v(w) = Q(p→w) ⊗ v(p) ⊗ (Q(p→w))∗ (8)

where ⊗ is the quaternion multiplication defined as
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Q(p→w) ⊗ v(p) = [q1 q2 q3 q4]⊗ [v1 v2 v3 v4]

=


q1v1 − q2v2 − q3v3 − q4v4
q1v2 + q2v1 + q3v4 − q4v3
q1v3 − q2v4 + q3v1 + q4v2
q1v4 + q2v3 − q3v2 + q4v1


T

(9)

(Q(p→w))∗ is the quaternion conjugate of Q(p→w) defined as

(Q(p→w))∗ = [q1 − q2 − q3 − q4] = Q(w→p). (10)

In the format of quaternion, any point in the world or IMU coordinate is
represented as a vector [0 x y z], where x, y and z are the values of three axes,

respectively. In [34], Q
(p→w)
a&m,s (the transformation quaternion merely com-

puted by Accelerometer and Magnetometer at sample s where the subscript
a&m denotes Accelerometer and Magnetometer) and Q

(p→w)
gyr,s (the transfor-

mation quaternion calculated merely by Gyroscope at sample s where the
subscript gyr denotes Gyroscope) are computed individually. Q

(p→w)
s is then

obtained by the combination of the above two transformation quaternions.
Q

(p→w)
a&m,s is computed by solving the following optimization problem:

arg min
Q

(p→w)
a&m,s

(Q
(p→w)
a&m,s ⊗ a(p)

s ⊗ (Q
(p→w)
a&m,s)∗ − g(w))2 +

(Q
(p→w)
a&m,s ⊗m(p)

s ⊗ (Q
(p→w)
a&m,s)∗ −m(w)

s )2

where g(w) = [0 0 0 − 1], a constant pointing to the gravity in the world

coordinate. a
(p)
s is the acceleration in the IMU coordinate at sample s. m

(w)
s

and m
(p)
s are the magnetic field at sample s in the world and IMU coordinates,

respectively.
Q

(p→w)
a&m,s can be obtained by solving the optimization problem using gra-

dient descent method. The component transformation quaternion Q
(p→w)
gyr,s

estimated by gyroscope at sample s, can be calculated by the ensemble trans-
formation quaternion at s − 1, Q

(p→w)
s−1 , plus the angular change during the

time interval ∆s between sample s and s-1:

Q(p→w)
gyr,s = Q

(p→w)
s−1 +

1

2
Q

(p→w)
s−1 ⊗ e(p)s ⊗∆s (11)
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Figure 10: Test the coordinate transformation method by measuring a phone’s posture.

where e
(p)
s is the angular velocity in the IMU coordinate. The ensemble

Q
(p→w)
s is defined by

Q(p→w)
s = γsQ

(p→w)
gyr,s + (1− γs)Q(p→w)

a&m,s , 0 ≤ γs ≤ 1 (12)

where γs is a weighting coefficient related to the divergence of Gyroscope and
convergence of Accelerometer and Magnetometer [34].

Q
(p→w)
s can be applied to obtain the orientation of IMU in the world

coordinate which is realized by transforming every point of IMU from the
IMU coordinate to the world coordinate system. To test the effectiveness of
this coordinate transformation method, we developed a smartphone orien-
tation measurement program with the embedded IMU. As shown in Fig.10,
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the smartphone was rotated by hands and the measured smartphone’s ori-
entation is shown on the software interface in real time. The precise results
indicate that accurate Q

(p→w)
s can be accurately estimated from the IMU

sensors.

3.4. Forward Moving Direction Determination

The 3D acceleration vectors in the IMU coordinate during a short period
(e.g., a few steps) can be projected to the horizontal plane in the world
coordinate to infer the forward moving direction [22, 24]. This method works
for professional IMU. But for low cost IMU such as the IMU module built in
smatphones which is more likely to be influenced by noise, it performs poorly.
Fig.11 shows the results when acceleration collected by a smartphone in 4
steps is projected to the world coordinate’s horizontal plane. There is no
obvious forward moving direction.

Considering the 3D acceleration vectors during a time sliding window
as time-series signals, we transform them into the frequency domain. Since
the principle frequency during the sliding window is already detected in the
step detection process, we treat all non-principle frequency components as
noise and zero out them. Then, we transform the filtered signal back to the
time domain and project it to the world coordinate’s horizontal plane. As
shown in Fig.11(b), the moving direction is obvious. Ellipse-fitting (i.e., 2D
Principle Component Analysis, PCA) is applied to the projected principle
acceleration and the semi-major axis of the ellipse represents the forwarding
direction [ux uy].

We can apply the above procedure (filtering, projection and PCA) repet-
itively to determine the forward direction for every step, but the method
can be further improved. In Fig.12, if an IMU follows the forward directions
A → B → C → D, the black vector that is constant in the IMU coor-
dinate always points to the forward direction after projecting to the world
coordinate. Thus, it is possible to find a constant vector r(p) in the IMU
coordinate system and then project it to the world coordinate to represent
the forward moving direction. r(p) can be found by formulating the following
optimization problem

arg min
r(p)

∑
s∈[s(1)b , s

(1)
e ]

‖ Q(w→p)
s ⊗ u(w) ⊗ (Q(w→p)

s )∗ − r(p) ‖ (13)

where u(w) = [0 ux uy 0] is the forward direction in the world coordinate
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Figure 11: Determine the forward moving direction. (a) The acceleration in a short period
(4 steps) is projected to the horizontal plane in the world coordinate. (b) The acceleration
corresponding to the principle frequency in a short period is projected. The semi-major
axis of the ellipse represents the forward moving direction.

computed by the filtering, projection and PCA approach in the first step.
s
(1)
b and s

(1)
e denote the beginning and end sample of the first step. r(p) is

obtained by solving the optimization problem using the least square method.
r(p) is fixed as long as the IMU’s position on a human body is not

changed. Once r(p) is computed by some samples in the first step, the for-
ward direction in the following sensor samples can be easily computed as
Q

(p→w)
s ⊗ rp ⊗ (Q

(p→w)
s )∗ where the coordinate transformation quaternion

Q
(p→w)
s is computed in Eq.12. Note that, r(p) only needs to be computed

once and it is only updated when the IMU position on a human body is
changed.

4. Integration of Visual and IMU Tracking

There are two differences between the visual and IMU tracking methods
which we should consider when developing a persistent pedestrian track-
ing system: (1) Visual tracking algorithm tracks pedestrians in surveillance
videos frame-by-frame, but IMU tracking algorithm tracks pedestrians in ev-
ery adaptive time sliding window (SW); (2) The trajectories generated by
visual tracking is in the scene-specific coordinate while the trajectories from
IMU tracking is in the horizontal plane of the world coordinate. To over-
come the two problems, we update visual and IMU trajectories every sliding
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Figure 12: A constant vector in the IMU coordinate always represents the forward direction
after projecting to the world coordinate.

Figure 13: The flow chart of the persistent tracking system.

window. The IMU trajectories in the world coordinate are warped to the
image coordinate to match with visual trajectories. As Fig.13 shows, the
persistent pedestrian tracking system can be divided into three parts: Ini-
tialization (blue), normal tracking (purple) and IMU-based reidentification
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(atrovirens).

4.1. Initialization

In this step, the initial relationship between visual and IMU trajectories
is built. Fig.13(a) and Fig.13(b) show the visual trajectory (red) and IMU
trajectory (green) in the first sliding window L1, respectively. The trajectory
generated by IMU tracking is in the world coordinate, so it is a 2D curve
in the horizontal plane viewed from top to down. Unlike IMU trajectory,
visual trajectory is in the image coordinate depending on the specific cam-
era viewpoint, thus they are not comparable. As illustrated in Fig.13(c), we
warp the visual trajectory from scene-specific viewpoint to top-down view-
point by Ha. Since the transformation between the warped visual trajectory
(Fig.13(c)) and IMU trajectory (Fig.13(b)) is just rotation, translation and
scaling (i.e., similarity transformation), we match the two trajectory curves
by computing the similarity transformation matrix Hs,k in sliding window
Lk using the least square procedure:

arg min
Hs,k

∑
t

(Hs,kT
(v,k)
t −T

(s,k)
t )2 (14)

where T
(v,k)
t and T

(s,k)
t denote the uniformly sampled points on the warped vi-

sual trajectory and sensor trajectory in sliding window Lk, respectively. The
initialization step is performed in the first sliding window, so k = 1. Fig.13(d)
shows the result of IMU trajectories matched to visual trajectories. For bet-
ter visualization, we can warp the top-down viewpoint to the scene-specific
viewpoint by the inverse of Ha. Therefore, two matrices, Ha (homography
transformation) and Hs,k (similarity transformation), make visual and IMU
trajectories compatible. Ha does not change unless the scene-specific view-
point changes. Hs,k keeps being updated during each sliding window of the
persistent tracking.

4.2. Normal Tracking

The initialization step only needs to be performed once, then our system
goes to the normal tracking. Fig.13(f) and (g) show the trajectories based
on visual and IMU tracking, respectively, in sliding windows L1 ∼ Lk. Then,
Hs,k−1 and Ha are applied to warp IMU and visual trajectories to top-down
viewpoint. The average distance d between trajectories in Fig.13(h) is cal-
culated. If d < dthr, visual and IMU trajectories are matched, then new
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Hs,k is computed using Eq.14 and we go to the next sliding window. In our
persistent pedestrian tracking system, we set dthr = 2m which is the highest
error that the current system can tolerate.

4.3. IMU-based Reidentification

The atrovirens part of Fig.13 illustrates the IMU-based reidentification.
Two cases lead to the reidentification: (1) The pedestrian disappears in visual
tracking. The pedestrian may move out of the visual field or be occluded by
obstructions such as trees; (2) Visual and IMU trajectories do not match each
other. This may be caused by visual tracking drift (i.e., track a non-target
pedestrian).

As shown in Fig.13(i), IMU keeps tracking the pedestrian even the target
is occluded by a tree. The green curve is the IMU trajectory. Meanwhile,
visual pedestrian detector tries to detect pedestrians in a search region esti-
mated by IMU (yellow circle in Fig.13(i)). If detected, the pedestrian will be
tracked by visual tracking for ∆t frames (Fig.13(k)∼(m)). If any visual track-
ing failure happens within the ∆t frames, we go back to the IMU-tracking
(Fig.13(i)). If the tracking within the ∆t frames successes, the average dis-
tance d between IMU and visual trajectories during ∆t is computed to judge
if they match. If d < dthr, the target pedestrian is reidentified and we go back
to the normal tracking again. Otherwise, we go back to the IMU-tracking
(Fig.13(i)) for reidentification.

The above persistent pedestrian tracking system elucidates why visual
tracking and IMU tracking are “complementary”. First, when visual tracking
fails, IMU tracking keeps working and offers the clue where the pedestrians
should be, helping visual tracking reidentify the pedestrian. Secondly, Hs,k

contains rotation, translation and scale relationship between IMU and visual
trajectories. The visual trajectory corrects the bias of speed and forward
direction estimation in IMU tracking by the similarity matrix Hs,k. The value
of K in Eq.7 is involved in Hs,k. As we keep updating Hs,k, visual tracking
rebuilds the relationship with IMU tracking and rectifies the deviation of
IMU-based tracking trajectory.

5. Experiments

To validate the effectiveness of our persistent tracking system, we apply it
for pedestrian tracking in daily environments. Smartphones embedded with
IMU modules are selected as the IMU signal collector. The IMU module in a
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smartphone is low cost and more likely to be influenced by noise. If our sys-
tem works well in smartphones, it is reasonable to justify that it should work
using expensive and professional IMU devices. In addition, the popularity of
smartphones offers more possibilities of application of our tracking system.
We developed an App to collet IMU signals when the target pedestrian is
walking. The IMU signals are transmitted back to a groundstation by GSM.
Meanwhile, a stationary surveillance camera collects visual signals of the tar-
get pedestrian. The visual signal is taken at 30 frames per second and the
sampling frequency of IMU signal is 100 samples per second. To synchronize
the two signals, for every frame of the video, the nearest IMU signal is found
according to the timestamp provided by the smartphone system. We design
the experiments in two aspects. (1) IMU helps visual tracking in challenging
cases such as long term occlusion, nearby clutter and suddenly changes on
movement patterns. (2) Visual tracking assists in calibrating IMU tracking
by rectifying the bias during IMU tracking.

5.1. IMU Tracking Assists Visual Tracking

Visual tracking challenges include long term and heavy occlusions, sud-
den speed/appearance change and temporarily disappearance. We record
four videos in different conditions to test the performance of our persistent
pedestrian tracking system. Fig.14 shows the visual and IMU trajectories
from our persistent pedestrian tracking system (video demos are provided in
the supplemental materials). Video 1 is taken in an occlusion environment
with a small slope. The target pedestrian is occluded twice for 9 and 16
seconds, respectively. This video aims to validate the proposed algorithm in
heavy and long-term occlusions. Fig.14(a)(b) show that the pedestrian is suc-
cessfully tracked in such a scenario. In video 2 (Fig.14(c)(d)), the pedestrian
changes his speed from walking to sudden run and then stop when hidden by
the tree. Ten seconds later, the pedestrian begins to walk toward the starting
point. The pedestrian changes his movement pattern (i.e., speed and forward
direction) when occluded, which is very hard to visual-based tracking algo-
rithms. Fig.14(e)(f) show the case where there are multiple pedestrians. The
pedestrian is occluded by other walking pedestrians, when two nearby people
depart towards different directions, visual tracking fails because of the clut-
ter of similar appearance. However, IMU tracking tracks and reidentifies the
pedestrian successfully. Fig.14(g)(h) shows a comprehensive case, where the
pedestrian is occluded by moving pedestrians at location A and moves out
of the visual field from location B. At locations C and D, the pedestrian is
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Figure 14: Trajectories of the target pedestrian. Red curves are visual trajectories and
green curves are IMU trajectories when visual tracking fails. (a)(b) Screenshots from video
1. (c)(d) Screenshots from video 2. (e)(f) Screenshots from video 3. (g)(h) Screenshots
from video 4.
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occluded by background objects frequently. Despite the complex scenarios,
our persistent tracking system successfully tracks the pedestrian.

Table 1 summarizes the quantitative evaluation about the persistent track-
ing system. The ground truth is labelled by a human annotator in each frame
of the videos. A frame is considered to be successfully tracked when the dis-
tance between the trajectory in that frame and the ground truth is no larger
than 100 inches. The average trajectory error is estimated by the difference
between the successfully tracked trajectories and ground truth. The stan-
dard deviation shows the stability of these methods. Visual tracking fails
when the pedestrian is occluded or disappears at the first time in each video
while our proposed tracking system can persistently track the pedestrian in
all videos. Note that the performance of Only-IMU tracking is largely influ-
enced by parameters (e.g., K in Eq.7). The results of Only-IMU tracking in
Table 1 are obtained by carefully predefined parameters, but it is infeasible
to manually choose parameters for different people in practice. The experi-
ments validate that visual tracking combined with IMU tracking can achieve
both persistency and accuracy.

Table 1: Persistent Pedestrian Tracking Results. FS: number of Frames Successfully
tracked. AVG: Average Error (inch). STD: Standard deviation (inch).

5.2. Visual Tracking Assists IMU Tracking

We use video 1 as an example to compare different IMU tracking methods
and shows the benefit of visual tracking to help IMU tracking. Fig.15(a) is
the ground truth of the pedestrian trajectory, which is obtained by warping
the pedestrian’s trajectories in the scene-specific viewpoint to the top-down
viewpoint by Ha. All trajectories in Fig.15 are in the horizontal plane of the
world coordinate. Fig.15(b) is based on the PCA2D method introduced in
[22], which detects step in the time domain. There are many misdetections
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on step and direction by this approach and the tracked trajectory drifts away
from the ground truth largely. Fig.15(c) is the result by our IMU tracking
method without any assistance from the visual tracking. Step is detected by
DFT and forward direction is calculated by the constant vector obtained in
the first step. Fig.15(d) shows the trajectory results of IMU tracking assisted
by the visual tracking. Our IMU tracking is more reliable than other step
detection algorithms, but the IMU trajectory in Fig.15(c) still drift from the
ground truth a little. When visual tracking is combined, visual trajectories
constantly adjust the orientation and scale of IMU trajectories with Hs,k, the
IMU trajectory in Fig.15(d) is very close to the ground truth.

Figure 15: IMU trajectories processed by three different approaches. (a) Ground truth
trajectory; (b) Trajectory by the time-domain step detection [6]; (c) Trajectory by our
DFT approach; (d) Trajectory by our DFT approach assisted by the visual signal.

6. Conclusion

To persistently track pedestrians in a specific scene with occlusion, we
present a novel tracking system combining the visual and Inertial Measure-
ment Unit (IMU) signals, obtained from surveillance cameras and IMU de-
vices carried by the targets themselves, respectively. Not only can IMU
assist visual tracking when the target is occluded, but also the challenges of
IMU tracking (calibration and drift) are alleviated when visual signals are
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available. Experimental results show that visual and IMU tracking are com-
plementary to each other and their integration achieves good performance
on persistent people tracking under challenging daily environments.
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