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We study the universal properties of eigenstate entanglement entropy across the transition between
many-body localized (MBL) and thermal phases. We develop an improved real space renormalization
group approach that enables numerical simulation of large system sizes and systematic extrapolation to the
infinite system size limit. For systems smaller than the correlation length, the average entanglement follows
a subthermal volume law, whose coefficient is a universal scaling function. The full distribution of
entanglement follows a universal scaling form, and exhibits a bimodal structure that produces universal
subleading power-law corrections to the leading volume law. For systems larger than the correlation length,
the short interval entanglement exhibits a discontinuous jump at the transition from fully thermal volume
law on the thermal side, to pure area law on the MBL side.
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Recent experimental advances in synthesizing isolated
quantum many-body systems, such as cold atoms [1–4],
trapped ions [5,6], or impurity spins in solids [7,8], have
raised fundamental questions about the nature of statistical
mechanics. Even when decoupled from external sources of
dissipation, large interacting quantum systems tend to act as
their own heat baths and reach thermal equilibrium. This
behavior is formalized in the eigenstate thermalization
hypothesis (ETH) [9,10]. Generic excited eigenstates of
such thermal systems are highly entangled, with the entan-
glement of a subregion scaling as the volume of that region
(volume law). This results in incoherent, classical dynamics
at long times. In contrast, strong disorder can dramatically
alter this picture by pinning excitations that would otherwise
propagate heat and entanglement [11–17]. In such many-
body localized (MBL) systems [18–20], generic eigenstates
have properties akin to those of ground states. They exhibit
short-range entanglement that scales like the perimeter of
the subregion [17] (area law), and have quantum coherent
dynamics up to arbitrarily long time scales [21–27], even at
high energy densities [17,26,28–31].
A transition between MBL and thermal regimes requires

a singular rearrangement of eigenstates from area-law to
volume-law entanglement. This many-body (de)localiza-
tion transition (MBLT) represents an entirely new class of
critical phenomena, outside the conventional framework
of equilibrium thermal or quantum phase transitions.
Developing a systematic theory of this transition promises
not only to expand our understanding of possible critical
phenomena, but also to yield universal insights into the
nature of the proximate MBL and thermal phases.
The eigenstate entanglement entropy can be viewed as a

nonequilibrium analog of the thermodynamic free energy

for a conventional thermal phase transition, and plays a
central role in our conceptual understanding of the MBL
and ETH phases. Describing the entanglement across the
MBLT requires addressing the challenging combination
of disorder, interactions, and dynamics. Consequently,
most studies have resorted to fully microscopic simulation
methods like exact diagonalization (ED) [15,16,32–34].
The exponential complexity of such methods fundamen-
tally limits them to small systems (≲30 sites), preventing
them from accurately capturing universal scaling proper-
ties. For example, critical exponents computed from ED
violate rigorous scaling bounds [35,36].
A promising alternative is to eschew a microscopic

description, which is not required to compute universal
scaling properties, and instead develop a coarse grained
renormalization group (RG) description. Two related RG
approaches [37,38] have produced a consistent picture of the
MBLT (see also [39]). Nonetheless, both approaches rest on
ad hoc albeit plausible heuristics for computing many-body
matrix elements. In this paper, we develop a RG scheme
building upon [38], but whose steps are rooted in well-
established properties ofmatrix elements inMBLand thermal
systems.Using thismodifiedRGscheme,we compute the full
scaling structure of entanglement across the transition, by
simulating large systems sizes with many (105–106) disorder
realizations that allow systematic extrapolation to the infinite
size limit. The resulting scaling properties depart dramatically
from those of conventional equilibrium critical points, high-
lighting the unusual nature of the MBLT.
RG approach.—Our RG approach builds a coarse-

grained picture of eigenstates by identifying collective
many-body resonances that destabilize the MBL phase.
Although this approach is not tied to a particular microscopic
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model, we picture a chain of spinless fermions with
Hamiltonian H¼

P
xð−c

†
xcxþ1þH:c:−μxρxþVρxρxþ1Þ;

here ρx ¼ c†xcx is the fermion density on site x, and μx is
a random chemical potential drawn from a uniform distri-
bution on ½0;W&. The noninteracting system (V ¼ 0)
is Anderson localized with localization length x0 ≈
2= log ð1þW2Þ [38]. Interactions (jVj > 0) can drive multi-
particle collective resonances. For weak interactions,
V ≪ W, the system remains MBL and these resonances
restructure the local integrals of motion (LIOM) from
weakly dressed single-particle orbitals to few-body LIOM
[40–43]. For sufficiently strong interactions, MBL breaks
down as all degrees of freedom resonate.
While finding the true resonances is tantamount to

solving the many-body Hamiltonian, close to the continu-
ous MBLT, one expects a scale-invariant structure in which
resonances are organized hierarchically and can be con-
structed iteratively [38]. Since large many-fermion reso-
nances will drive the MBLT, it is natural to consider an
effective model in terms of resonant clusters, i.e., groups of
inter-resonating single-particle orbitals, characterized only
by coarse grained information: the effective bandwidth Λi
and the typical level spacing δi.
To characterize cluster interactions, we retain only the

typical amplitude Γij of matrix elements for transitions
changing the states of clusters i and j, and compare this to
the corresponding typical energy mismatch ΔEij between
those states. For Γij ≫ ΔEij, states of i and j will
resonantly admix, whereas for Γij ≪ ΔEij, the clusters
will remain decoupled apart from weak virtual dressing. We
divide these regimes sharply and define a resonant coupling
if Γij > ΔEij. The ambiguity of this partition becomes
unimportant for the large clusters determining the transi-
tion, since both Γij and ΔEij depend exponentially on
fluctuating extensive quantities, and are rarely comparable.
The RG procedure for a chain of L sites with

periodic boundary conditions proceeds as follows.
Initially, each cluster corresponds to a localized single-
particle orbital with bandwidth Λi ¼ εi ≈ μi (εi being the
noninteracting single-particle energy), ΔEij ¼ jμi − μjj,
and Γij ¼ Vðe−ji−jj=x0 þ e−ji−j−Lj=x0Þ. We set V ¼ 0.3
throughout. During a RG step, all clusters connected
by a path of resonating bonds are merged into a new
cluster fig → i0. The coarse grained parameters of the
newly formed cluster are chosen as [44]: Λi0 ¼
½
P

iΛ2
i þ

P
ijΓ2

ij&1=2, δi0 ¼ Λi0=ð2ni0 − 1Þ, and ΔEi0j0 ¼
δi0δj0=minðΛi0 ;Λj0Þ where ni0 is the number of sites in
cluster i0.
The effective intercluster couplings are changed accord-

ing to two distinct rules, locally mirroring MBL or ETH
behavior (Fig. 1). First, consider two clusters not modified
during a RG step. In isolation, these clusters would form a
small MBL region, with decoupled LIOM that project onto
the separate states of each cluster. Any further resonance

between these two clusters must be mediated by other
clusters; we can therefore neglect the direct coupling
between them and set Γi0j0 ¼ 0. Second, if at least one
of the clusters is modified during the RG step, the new
coupling between two clusters is [45]

Γi0j0 ¼
h

max
i1∈fig;i2∈fjg

Γij

i
e−ðni0þnj0−ni1−ni2 Þsth=2: ð1Þ

Here, maxΓ selects the strongest resonating pathway. The
exponential factor approximates the resonating clusters as
small locally thermal subsystems with entropy sth ¼ log 2
per site. This form holds for matrix elements of local
operators in a finite-size, ETH system [9,45].
The renormalization of intercluster couplings is different

from those of [37,38], but has similarities to those of [46].
The coupling Γij sets the time scale over which clusters can
resonate to change each other’s state. Early in the RG,
resonances are fast and occur directly between a few
strongly coupled sites. Later in the RG, resonances are
more collective and involve many sites. Although the direct
coupling Γij is set to zero if two clusters cannot resonate at
a given time scale, they can still resonate later, if mediated
via coupling to other clusters [45].
Approximating Γij by the limiting MBL and ETH

forms becomes self-consistently justified since the width
of the distribution of resonance parameters gij ¼ Γij=ΔEij

[37,38,47] increases with each RG step. In an infinite
critical system, the width of the distribution of g increases
without bound along the RG flow so that one asymptoti-
cally encounters only the cases g ≪ 1 (MBL) or g ≫ 1
(ETH) and almost never faces marginal cases where g ≈ 1.
This flow to infinite randomness of g justifies the RG
approximations in an analogous fashion to other micro-
scopic RG approaches for quantum phase transitions in
disordered spin chains [30,48–51].
Rooting the Γij renormalization in well-established

asymptotic properties more accurately captures the compe-
tition between locally MBL regions being thermalized by
nearby locally thermal clusters, or isolating them. These
rules cleanly prevent unphysical “avalanche” instabilities of
the MBL phase [46,52] in which an atypically large resonant
cluster becomes increasingly thermal as it grows, enabling it
to thermalize an arbitrarily large MBL region [53].

FIG. 1. Schematic of a RG step. Eight initial clusters (dashed
squares) interact with each other; those connected by a resonant
path (Γij > ΔEij) merge into bigger, new clusters (colored
rectangles). The coupling between new clusters is turned off
or renormalized from the previous step (see the text).
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The RG terminates if no resonant bonds remain or the
system fully thermalizes. Like [38], our approach allows
for a distribution of various cluster sizes in the final
configuration. This feature is important, as typical con-
figurations at criticality are predominantly MBL with few
large clusters [38]—a picture supported by recent ED
numerics [34]. In contrast, the approach of [37] allowed
both MBL and thermal blocks (clusters) to grow until the
system is one large block that is either thermal or MBL.
Half-system entanglement at criticality.—For each dis-

order realization, the RG produces a configuration of
decoupled locally thermal clusters. We calculate the entan-
glement of a subinterval by summing the thermal volume
law contribution from each cluster spanning the interval
boundaries. A cluster partitioned into m and n sites
contributes Sm;n ¼ minðm; nÞsth.

Figure 2 depicts the normalized entanglement entropy,
ŝðxÞ ¼ Sðx; LÞ=xsth, for x ¼ L=2, where ð…Þ denotes
averaging over disorder realizations and interval location.
It shows the transition from a fully thermal system consisting
of a single large cluster to the localized system made from
many small clusters, indicated by curves of different L
crossing at critical disorder Wc ¼ 2.05' 0.01. The curves
satisfy a scaling form ŝ ¼ fð½W −Wc&L1=νÞ, with critical
exponent ν ¼ 3.2' 0.3 (Fig. 2 upper inset). This indicates
the presence of a single diverging correlation length
ξ ≈ jW −Wcj−ν. A variety of observables give the same
estimates of Wc and ν and our extracted ν lies within error
bars of those obtained in [37,38]. Notably, we find two
distinct values of ν for average and typical correlation length
exponents νtyp ≈ 2.1' 0.2 [45], consistent with a flow to
infinite randomness. Together with the small value ŝ at the

crossing, this demonstrates that the transition is driven by
rare thermal clusters separated by large MBL regions.
Figure 3 shows the full histogram of entanglement over

disorder realizations at Wc. The distribution has a bimodal
structure consisting of a power-law tail, PðsÞ ≈ s−α with
α ¼ 1.4' 0.2, fit over the interval s ∈ ½0.1; 0.8&, and a
distinct sharp peak near the fully thermal value s ¼ 1.
Away from criticality, the weight of the thermal peak scales
like a universal function of L=ξ (Fig. 3 inset). Indications
of a bimodal structure were observed in small-scale ED
simulations [54]. Our RG approach allows an extensive
exploration of this structure.
At criticality, the thermal peak gives a volume-law

contribution to the bipartite entanglement with a coefficient
a ¼ ð0.8' 0.3Þ × 10−2 far below the thermal value. The
power-law component gives a universal subleading
power-law contribution intermediate between area and
volume law,

Sðx ¼ L=2; L;W ¼ WcÞ ≈ axþ bx1−α þ… ð2Þ

These results differ from those of [37], whose proxy for
half-system entanglement showed a smaller power law
[PðsÞ ≈ s−0.9] and lacked a thermal peak.
Nonlocal influence of system size.—Consider next an

infinite system slightly away from the critical point. Near a
conventional continuous phase transition, observables
(including entanglement) measured over distance x exhibit
critical behavior over an extended “critical fan” x ≪ ξ
extending across both sides of the transition. Moreover,
they become independent of system size as L → ∞, since
critical fluctuations are determined by local physics.
Entanglement at the MBLT departs dramatically from this
conventional behavior, and instead shows a strong nonlocal
dependence on system size, since an infinite thermal

FIG. 2. Universal scaling of bipartite entanglement. Normal-
ized bipartite entanglement ŝðL=2Þ as a function of disorder
bandwidth W for different system sizes L. Inset: scaling collapse
of ŝðL=2Þ (upper) and fluctuations σŝðL=2Þ (lower), with Wc ¼
2.05 and ν ¼ 3.2. Data with L ≤ 1000 have 2.5 × 105 or 106

disorder realizations; those with L ≥ 1500 have 105. Error bars
were calculated using jackknife resampling, but are not shown
when smaller than marker sizes.

FIG. 3. Bipartite entanglement at criticality. Normalized histo-
gram over disorder realizations of the bipartite entanglement
entropy near criticality (W ¼ 2.04), using 100 linearly spaced
bins. Inset: scaling collapse of the fraction of fully thermalized
configurations Nth=Ntot; error bars are 95% confidence intervals
expected for binomial distribution.
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system can act as a bath for any finite subsystem, no
matter its local properties. Hence, all subintervals of an
infinite system must exhibit fully thermal entanglement
ŝðx; L ¼ ∞Þ ¼ 1 for W < Wc and L ≫ ξ [55]. The con-
ventional scaling picture would then suggest full thermal
entanglement also on the MBL side (W > Wc) for x ≪ ξ
[55]. Instead, ED simulations in [34] give evidence that this
region actually has subthermal entanglement, consistent with
the picture of [38] that the critical regime mainly contains
large MBL regions. Together with [55], this implies that the
entanglement jumps discontinuously from fully thermal to
subthermal across the MBLT for L ¼ ∞ [34].
Our RG approach can directly demonstrate this predicted

discontinuity by systematically extrapolating to the limit
L → ∞ with x ≪ ξ ≪ L. Figure 4 shows the normalized
entanglement for a fixed interval x ¼ 10 and various
system sizes L. While one can never observe a true
discontinuity in a finite-size system, we observe a clear
finite-size flow towards a nonanalytic jump with increasing
L. Similar L → ∞ extrapolations are obtained for all x.
This discontinuous jump establishes that the entangle-

ment on the MBL side is subthermal for all x. However,
many functional forms are consistent with this requirement.
Unlike the thermal behavior for L ¼ ∞ and W < Wc,
which follows from analytic constraints [55], determining
the entanglement scaling for W > Wc requires a threefold
hierarchy of scales 1 ≪ x ≪ ξ ≪ L (Fig. 5). This neces-
sitates large systems with at least Oð103Þ sites, making our
RG approach uniquely suited to address this question.
Having an objective measure of the correlation length ξ

is vital to identify the desired scaling regime and separate it
from the distinct crossover behavior when ξ ≈ L. To this
end, we examine the distribution of cluster sizes, which

exhibit power-law decay up to a scale that we identify as ξ,
beyond which they decay exponentially [45]. For L ≫ ξ,
the entanglement curves show a small nonuniversal rise
over x≲ 1–10 and then remain perfectly flat as x crosses
through ξ, indicating that the entanglement follows a pure
area law everywhere on the MBL side of the transition,
even for x ≪ ξ.
The absence of scaling on the MBL side is particular to

the disorder averaged entanglement, for which critical
fluctuations affect only subleading terms that vanish for
large L. Other observables, like higher moments of
entanglement, can exhibit universal power-law singularities
as W → Wþ

c . We also note that the discontinuous behavior
of entanglement for L → ∞ is special to static eigenstate
properties (equivalently, infinite time averaged quantities).
In contrast, due to the logarithmic causal cone for dynamics
at the MBLT [37,38], dynamical measurements on time
scales log t ≪ L are insensitive to the system size, and
exhibit a more conventional critical scaling fan.
Full scaling form of Sðx; L;WÞ.—For infinite systems,

we have seen that the entanglement jumps discontinuously
at the MBLT. For finite L, this jump becomes a smooth
crossover. What universal data can we extract from this
crossover? The entanglement is itself generically not a
scaling variable. In addition to nonuniversal, subleading
terms, different parts of the entanglement may be universal

FIG. 4. Infinite system entanglement. The normalized entan-
glement entropy for an interval x ¼ 10 develops a nonanalytic
step on the thermal side of the MBLT as L → ∞. Points labeled
þ∞ are extrapolations in L, assuming the leading scaling form
∝ L1=ν along fixed ŝ. Cubic spline interpolation was used
between data points. The error bars reflect the uncertainty in
ν ¼ 3.2' 0.3. The transition Wc ¼ 2.05' 0.1 is indicated by
the dashed line and gray shaded region.

(a)

(b) (c)

FIG. 5. Entanglement finite-size crossover. (a) Entanglement
entropy as a function of interval size x for system size L ¼ 1000
and various W > Wc. The error bars correspond to the vertical
thickness of the curves. The black points are lower bounds on the
estimate of ξ taken from the cluster size histograms. (b) Normal-
ized entanglement entropy for L ¼ 4000 for different fractions of
system size f ¼ x=L. (c) Plot as in (a) zoomed out for disorder
values W ¼ 1.4 (yellow, linear volume law) and 1.96 ≤ W ≤ 2.3
in steps of 0.02.
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for different critical points; identifying an appropriate
scaling form is not straightforward. For example, in one-
dimensional conformal field theories one needs to consider
∂S=∂ log x in the limit x; L ≫ 1 [56,57].

By performing scaling collapses of Sðx; LÞ for fixed x=L
and various W [45], we find evidence that the volume law
coefficient is a universal scaling function

ŝðx; LÞ ¼ Sðx; LÞ
xsth

¼ A
!
x
ξ
;
L
ξ
; sgnδW

"
þ ð…Þ: ð3Þ

Here ð…Þ indicates subleading corrections in x and L that
vanish in the scaling limit x; L ≫ 1. The scaled form as
the function of the variables x=L; L=ξ sgn δW is shown in
Fig. 5(b). At finite L, the above scaling form with a single
universal exponent ν is relatively conventional. The large L
limit, however, is different from the scaling of conventional
correlation functions. The nonlocal system size dependence
shown above implies that in the limit L=ξ → ∞,A depends
only on sgnδW; there is absolutely no dependence on x=ξ.
The striking discrepancy in scaling highlights the unusual
and asymmetric nature of thermalization and the MBL
transition.
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