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Abstract—A robust stability assessment approach is presented
to efficiently estimate eigenvalues in microgrids in the presence
of bounded uncertainties. Through this method, all possible
locations of eigenvalues can be directly obtained, which makes
repeatedly eigenvalue calculation unnecessary when dealing
with uncertainties. More importantly, a quasi-diagonalization
technique is established to reduce the conservativeness of the
Gersgorin theory. Extensive tests show that the new method
enables highly efficient analysis on impact levels of disturbances
and offers a useful tool for droop coefficients design which
facilitates microgrids stable operation. Besides, test results show
that the Gersgorin theory based approach can be effectively
combined with other methods to obtain more accurate solutions.
These salient features make the new method a powerful tool for
planning, operating, and designing future microgrids.

Index Terms—microgrid; robust stability analysis; GerSgorin
theory; eigen-analysis; uncertainty; distributed energy resources
(DERs)

I. INTRODUCTION

Microgrid is a promising paradigm to enhance power sup-
ply resiliency for customers [1]. Nowadays, most power-
electronic-interfaced microgrids have very low inertia, making
them highly sensitive to disturbances such as intermittent
generations from PV or wind [2]. Because microgrid is
inevitably subject to small disturbances such as intermittent
renewable generation (coupled with load variations), any mi-
crogrid that is unstable in terms of small perturbations cannot
sustain for long term operations. Quantifying the impact of
various uncertainties (disturbances) on microgrid small signal
stability is fundamentally important for microgrid planning,
operation and control design. Therefore, a principal task in
microgrid analysis is to investigate the small signal stability of
power-electronic-dominated microgrids under uncertain inputs
or outputs, especially under multiple uncertainties (usually
‘unknown but bounded’ uncertainties characterized by sets).

There exist two major categories of methods to assess
small signal stability of microgrids, namely, exact compu-
tational approaches such as QR method and perturbation-
based methods such as matrix perturbation theory [3]. Both
are point-based approaches. When a microgrid is subject
to various disturbances, the former methods need to solve
eigenvalue problems caused by disturbances one by one, which
is extremely tedious and time-consuming. Furthermore, it is
difficult to use these methods to quantify and compare the
impact of different disturbances on microgrid stability [4]. On
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the other hand, the latter methods aim at obtaining eigenvalues
without repeated calculations when considering disturbances,
and the basic idea is to discover the impacts of perturbed
parameters on system stability through perturbation analysis.
Because these methods are still point-based analysis, they are
unable to deal with set-based disturbances.

To overcome the limitations of existing technologies, a
novel approach based on GerSgorin theory [5], [6] is developed
to efficiently assess the small signal stability of mcirogrids
under uncertainties. A salient feature of this approach is the
capability of demonstrating and describing variation regions
of eigenvalues which reflect a system’s small signal stability
feature under different disturbances. The major contributions
of this new method include: (i) It is an on-the-fly solution that
directly obtains the location of eigenvalues for a microgrid
subject to disturbances, rather than repeatedly solving the
eigenvalue problem of the microgrid with on-going distur-
bances; (ii) The detailed Gergorin disks information sheds
light on how different disturbances impact microgrid stability,
which can be used to pinpoint critical disturbances; (iii) It
can discover how to change microgrid parameters so as to
shift critical eigenvalues into designed or desirable region,
which can be utilized to design inverter controller parameters
to effectively enhance microgrids stability. Moreover, the new
Gersgorin method can be combined with other stability analy-
sis techniques to significantly enhance their performances. For
instance, since the GerSgorin approach can divide eigenvalues
into different groups, QR method or perturbation theory can
then be applied in each specific group exclusively to get more
accurate locations of eigenvalues in each group.

The remainder of this paper is organized as follows. Section
IT introduces the GersSgorin theorem for eigenvalue estimation
under system disturbances. Section III describes the Ger§gorin
analysis of a microgrid system. Besides rigorous theoretical
analysis, procedures to get Gergorin disks for a microgrid are
provided as well. Numerical tests are provided in Section IV
which verify the feasibility and effectiveness of the presented
approach. Conclusions are drawn in Section V.

II. GERSGORIN THEOREM

Gersgorin Theorem is a powerful method for the eigenvalues
estimation of dynamical systems. Considering the nonsingular



finite-dimensional state matrix of a system A = [a;;] € R™"*",
the eigenvalue problem is described as follows [7].
AVi = >\ivi (1)
ATlli = )\Z‘Lli
where )\; is the i" generalized eigenvalue of the system;v; and
u! are the i™ right and left eigenvector, respectively, satisfying
the orthogonal normalization conditions as shown in (2).

T
u; v = i 5
TAvV, = ..\ 2
u; Av; =6\
where 0;; is the Kronecker sign.

Theorem 1. For any nonsingular finite-dimensional matrix A
with \; as its it" eigenvalue, there is a positive integer k in

N=1,2,...,n such that,
|Ai — arr] < 7r(A) 3)

where Ti,(A) = > |ag;|. If 0(A) denotes a set of all
JEN\{k}

eigenvalues of A, then o(A) satisfies the following condition

o(A) CT(A) = U Tw(A) )

where T'(A) is the GerSgorin set of nonsingular matrix A;
[y (A) is the k™ Gersgorin disk, and can be expressed as
I'e(A) = {|lz — ar| < ri(A),z € R}

Further details can be found in [5], [6].

III. GERSGORIN ANALYSIS OF MICROGRIDS UNDER
DISTURBANCES

This section develops an enhanced GerSgorin method that
significantly improves the accuracy of eigenvalue estimation
for microgrids.

A microgrid consisting of DERs, inverters, loads, and net-
work can be expressed by state and algebraic equations [7].
Mathematically, such a microgrid can be described by a set of
differential and algebraic equations (DAEs).

x=F(x,y,p) 5)

0= G(X’ Yy, p)
where x € R"™ is the state variable vector; y € R™ is
the algebraic variable vector; p € RP is disturbance vector.
Linearizing the microgrid system at the initial operation point
(Xx0,¥0), one can obtain the following equations when the
partial derivative matrix of algebraic equations with respect to
algebraic variables G is nonsingular.

A% = [Fx — Fy G, 'Gx]Ax ©)

where Ax = x — xg, Fx(Fy) is the partial derivative
matrix of differential equations with respect to state (algebraic)
variables, Gy is the partial derivative matrix of algebraic
equations with respect to state variables. The small signal
stability feature of a microgrid is governed by the eigenvalues
of its state matrix:

Ape =Fx —FyG,'Gy @)

where A ;¢ is equivalent to A in Theorem 1.

978-1-5090-4168-8/16/$31.00 ©2016 IEEE

A. Gersgorin Disk and Set Calculation

After obtaining the system state matrix, the GerSgorin disk
and set can be calculated based on Theorem 1. However, the
estimation result of eigenvalue distribution is usually over-
approximated, when the state matrix is not strongly diag-
onally dominant. According to Theorem 1, the distribution
of eigenvalue (area of GerSgorin disk) is mainly determined
by the non-diagonal elements of state matrix. The more
diagonally dominant a state matrix, the smaller its GerSgorin
disk, i.e., the estimation accuracy of eigenvalue distribution
will be highly improved. Therefore, a quasi-diagonalization
technique is established below to reduce the conservativeness
of GerSgorin theory.

Taking into account the orthogonal normalization conditions
shown in (2), the state matrix A ;¢ under system disturbances
can be quasi-diagonalized as follows.

UJAncVo=UjAncoVo+USAune.pVo=So+Sp

®)
where A /G o is system state matrix at (Xo,yo); So, Up and
V are the corresponding eigenvalue matrix, left eigenvector
matrix, and right eigenvector matrix at (xo,¥o), respectively;
A rg,p is the increment of state matrix under disturbances,
which is constructed based on a bounded set of uncertainties
and will be analyzed in next subsection; Sp is the increment of
eigenvalue matrix. Thus, the eigenvalue problem of a disturbed
system is transformed to the analysis of the matrix Sp. And
the following expression can be obtained.

I'v(Sp) = {|z — skx| < re(Sp),z € R} )
1(Sp) CT(Sp) = Uy _1Tk(Sp) (10)

Therefore, the distribution of each eigenvalue in a system
under uncertainties can be expressed as a GerSgorin disk with
So as its center and I'y,(Sp) as its corresponding area.

B. Disturbances Analysis in Microgrids

To help process the wide variety of disturbances in mi-
crogrids, those uncertainties are divided into groups, i.e.,
fluctuations from DERS, changes of loads, perturbations from
controllers parameters, disturbances of power exchange at the
point of common coupling (PCC), etc. Since the constitutions
of A ;¢ will change accordingly when the system is under
disturbances, they can be generally expressed as follows.

Ng Np, Np
Fx - Z Fx,Gl + Z Fx,LJ + Z Fx,P;c + Fx,E + Fx,C (11)
i=1 i=1 k=1

Ng Nr, Np
Fy = Z Fy«,G, + Z Fy,L]- + Z Fy,P;c + Fy,E + Fy,C (12)
i=1 j=1 k=1

Ng Nr Np
Gx = Z Gx,Gi + Z Gx,LJ + Z Gx,Pk + Gx,E + Gx,C’ (13)
i=1 j=1 k=1

where Ng, N1, Np are the numbers of DERs, loads and con-
troller parameters subject to changes or disturbances; Fy ¢,,
Fy ¢, Gk g, are matrices only related to the fluctuations from



the ™ DER; Fx 1, Fy 1., Gx 1, are matrices only related to
the changes of the jth load; Fx p,, Fy p,, Gx, p, are matrices
only related to the perturbations from the kth parameter; Fy r,
Fy g, Gk g are matrices only related to the disturbances at
PCC; Fy,c, Fy.c. Gx,c are constant matrices uncorrelated
with any disturbances. Based on (11)-(13), Ay/¢ p can be
obtained as follows.

Ng Ny, Np
Ayep = ZMG’ + ZMLJ' + Zl\/[p,C + Mg
Na szl J:z\;c Np = No
+ Z ZMG%LJ + Z Z MGi,Pk + ZMG,E
7,71]\_[7:1NP 7,71]\];L=1 N}zjfl
+ Z Z My, p, + ZMLJ,E + Z Mp, g (14
=1 k=1 j=1 k=1

where Mg,, M., Mp,, Mg represent the increments only
caused by DERs, loads, controllers parameters, power ex-
change at PCC; the cross items Mg, 1,, Mg, p,, Mg, E,
My, p,» ML, g, Mp, g represent their mutual effects on the
matrix increment. Their expressions are given in Appendix A.

The advantage of the above matrix decomposition is that it
becomes easy and efficient to calculate the increment A y/¢ p
when disturbances occur, because only specific sub-matrices
need to be updated. Besides, it provides an efficient tool to
analyze the impacts of disturbances. For instance, it can be
clearly observed from (14) that the increment of state matrix
can be expressed in the form of a combination of disturbances,
which makes it easier to analyze the impact of a specific
disturbance. Moreover, when a bounded set of uncertainties
are introduced in system, it is easy to get the boundaries of
sub-matrices first, and then to obtain A 5, p correspondingly.

IV. TEST CASES

A typical microgrid system shown in Fig. 1 is used to test
and verify the presented approach. The test system includes
three categories of DERs [7], namely non-dispatchable PV,
dispatchable Fuel Cell (FC), and dispatchable Battery. Among
these DERs, PV units are controlled via a maximum power
point tracking strategy (P&O), whereas FC and Battery units
are controlled in droop strategy [7]. Besides, the test system
includes two types of loads [8], namely passive loads (constant
impedance loads: Load2 and Load5 as shown in Fig. 1)
and active loads (inverter-interfaced loads: Loadl, Load3, and
Load4 as shown in Fig. 1). The microgrid is assumed to
operate in islanded mode in order to better illustrate the
impact of disturbances on the small signal stability of a power-
electronic-dominant system. Parameters for inverter controllers
are summarized in Appendix B and the rest of microgrid
parameters can be found in [9].

There are 132 eigenvalues in the test system. QR method
is adopted first to calculate the eigenvalues and eigenvectors
at the initial operation point [10]. Critical eigenvalues whose
real parts are within the range [—25, 1] are shown in Fig. 2.

As the microgrid is islanded, the disturbances of power
exchange at PCC become zero. Further, sensitivity analysis

978-1-5090-4168-8/16/$31.00 ©2016 IEEE

Main Grid

1 (PCO)
20/0.4kV,50Hz,400kVA
w=4%,r,=1%,Dyn11

Circuit Breaker

Microgrid

Batteryl —
20 6 7 8 9

13
10
BatteryZ 12 |
11
FC1 [©]
V2 E'_@_ 14
Load 2 <— —@—b Load 4
15

Load 5 <G—
16 17 _@_@ PV3
=
A Battery3

Fig. 1 Benchmark low-voltage microgrid network

Load 3

19 18

60
xx x %
40
20
>
£ o x }%ﬂ—x—%
[=)
R x *
— 20
-40
*r* ¢
-60
.25 -20 -15 -10 -5 0

Real

Fig. 2 Critical eigenvalues of the microgrid at initial state

shows that less stable eigenvalues are dominated by the power-
electronic-interfaced DERs and loads including their controller
parameters [8]. Thus eigen-analysis is focused on disturbances
from these units.

A. Disturbances from DERs and Loads

The bounds for disturbances of PV irradiance and load
power are shown in Table I. To better demonstrate the
Gersgorin disk calculation, the initial values in Table I are
set either as the lower bound or as the upper one. However,
the GerSgorin approach is not limited to this boundary setting.
Fig. 3 shows the comparison of GerS§gorin disk calcula-
tions with and without quasi-diagonalization. Without quasi-
diagonalization where A ;¢ is used directly for calculation,
the calculated GerSgorin disk is too conservative to be useful
(see the largest green circle in Fig. 3); on the contrary, tight



Table I Disturbances of PV Irradiance and Load Power

—— Disturbance 1
. p . . 4 — Disturbance2 |
DlstuNrbdnce Object Initial Disturbance @ Disturbance 3
0. Value Bounds ——  Disturbance 4
1 Irradiance of PV1 (W/m?) 1000.00 | [970.00, 1000.00] ) — Disturbance 5
2 Irradiance of PV2 (W/m?) 1000.00 | [1000.00, 1050.00] 2 —— Disturbance 6 H
3 Trradiance of PV3 (W/m?) 1000.00 | [960.00, 1000.00] Y L
Active Power (W) 12.75 [12.75, 14.00] o
4 Loadl e cfive Power (VAR) | 7.90 [7.50, 7.90] S ] : \
Active Power (W) 61.15 61.15, 65.00 = 14 (=D
5 Load3 g Ctive Power (VAR) | 37.90 36.00,37.90 g \ V \— 4
Active Power (W) 12.75 12.00, 12.75 -
6 Load4 Reactive Power (VAR) 7.90 [7.90, 8.50] 2 \
1
regions are obtained with quasi-diagonalization (see the red 47 3 12 " 10 9 8 7 6
circles). This verifies the necessity and effectiveness of the Real
quasi-diagonalization devised in Section III. Fig. 4 GerSgorin disks due to disturbances shown in Table I
X Initial Eigenvalue 5 - - Table II Eigenvalues Calculation by Perturbation Theory
—_-‘x;::o?lrg::;iztﬁ'i]:a(:::ltilzo;iun . | il Initial Value Disturbance No. 1 | Disturbance No. 2 | Disturbance No. 4
8 0 FanY & —8.4140 + j0 —8.4133 + 40 —8.4141 + j0 —8.4204 + j0
200 e = R N/ —9.6505 + ;0 —9.6506 + j0 —9.6499 + j0 —9.6124 + j0
L b —0.6926 + 50 | —9.6869 + jO —9.6867 + jO —0.6421 + j0
R 1P - —90.7305 + 50 | —9.7307 + jO —9.7303 + 50 —0.7446 + j0O
1002 e —9.7540 + j0 | —9.7643 1 jO —9.7605 + j0 —9.7416 + jO
, % * Real ) —9.7540 + j0 | —9.7643 + jO —9.7605 + j0 —9.7416 + j0
) n . —0.8989 + j0 | —9.8952 + 4O —0.8960 + jO —9.9057 + jO
© 5.8
8 .
‘G 0 5.6 2
R s |
£ = I S I A . . . .
g 5-§ E AR dk S system§ are influenced primarily b){ the droop coefﬁments. The

<1007 = , o RN uncertainty bounds of these coefficients are shown in Table III.

-18.6 -18.4 -18.2 _.,"" Fig. 5 shows GerSgorin disk comparison between parameter

20015 ; Rea', J A=l disturbances and DERs (Loads) disturbances, providing the

-300 -250 -200 -150 -100  -50 0 50 100 following insights:
Real . . .

. . o ) ¢ Droop coefficients have stronger impact on eigenvalues
Fig. 3 Comparison of GerSgorin disks due to disturbance No. 1 than disturbances in DERs and loads. It can be seen that
Different GerSgorin disks of the critical eigenvalues under GerSgorin disks due to DERs (Loads) disturbances are all

disturbances are shown in Fig. 4, which offers the following covered by those due to parameter disturbances.
insights: o Eigenvalues which are more sensitive to a specific param-

eter disturbance can be easily selected through GerS§gorin
disks analysis. For instance, the disk of the eigenvalue
—23.0368 + 79.2424 is larger than that of —18.3862 +
75.2594, implying the former eigenvalue is more sensitive
to this disturbance than the latter.

o GerSgorin disks due to parameter disturbances are more
closely coupled with each other than those due to DERs
(Loads) disturbances. For instance, the disks of eigenval-

o Gersgorin theory provides a useful tool to analyze the im-
pact levels of different disturbances. For instance, in this
test, eigenvalue disks corresponding to the disturbance
No. 4 are larger than the others, meaning this disturbance
has a greater impact on the microgrid stability.

o GerSgorin theory can be combined with other methods
to get a more accurate location for each eigenvalue [8].
For example, Fig. 4 shows that disks of seven eigenvalues
84140+ §0, —9.6505+70, —9.6926+ 70, —9.7305-+50, ues whose real parts are within [—18.3862, —4.9148] are

—9.7540 + 70, —9.7540 + jO, and —9.8989 + ;O are
overlapped with each other. In this case, perturbation
theory can then be utilized to focus on these eigenvalues
calculation, instead of computing the entire system again
when disturbances occur. As a demonstration, Table II
gives the perturbation calculation results of these eigen-
values under the disturbances No. 1, No. 2, and No. 4. It
verifies all eigenvalues are within their GerSgorin disks
in Fig. 4.

B. Disturbances from Controller Parameters

We use Gersgorin theory to investigate the impact of droop

coefficients on microgrid stability, because less stable modes in
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overlapped with each other.

o GerSgorin theory also offers a tool to investigate the re-
lationship between droop coefficients and critical modes,
and such quantitative information can be further used to
tune droop coefficients to better stabilize microgrid.

V. CONCLUSIONS

Uncertainties are widespread in microgrids. This prob-
lem becomes particularly challenging when heterogeneous
unknown-but-bounded uncertainties exist in a microgrid. To
tackle the challenge, an enhanced GerSgorin theory is pre-
sented for eigen-analysis of mcirogrids subject to uncertainties.
With quasi-diagonalization, this method calculates GerSgorin



Table III Disturbances of Droop Coefficients

Unit Parameter | Initial Value Disturbance Bounds
Battery | ky 9.4001 [9.4001, 9.6030]
ko 10.3644 [10.2541, 10.3644]
Battery? ky 3.7136 3.5145, 3.7136
ko 8.0110 8.0110, 8.5105
Battery3 ky 6.0346 6.0346, 6.3480
ko 4.9836 4.7789, 4.9836
FCl ky 0.4661 0.4661,0.5657
ko 1.3947 1.3947,1.7537
FC2 ky 0.4061 0.4311,0.4061
ko 6.1507 6.0593, 6.1507

X Initial Eigenvalue
— Disturbance 1 in Part A
107 . Parameter Disturbance
s yom
L (A
£ 0 ( \ o A9
fe)] .
: o (& )
-5 / t
-10
50 -45 -40 -35 -30 -25 20 15 -10 -5
Real

Fig. 5 Comparison of GerSgorin disks between parameter distur-
bances and DERs (Loads) disturbances

disks which give the distribution of microgrid eigenvalues
under multiple disturbances. This robust stability analysis
method is both mathematically rigorous and computationally
efficient, offering a powerful tool for uncertainties analysis for
microgrids. The GerSgorin based approach has been tested and
verified via a typical microgrid with DERs.

APPENDIX

A. Sub-matrices Expression

Mg, =Fxc, — Fy.6,Gy'Gxa, — Fy.6.Gy'Gxo — Fy,cGy'Gxa,
MLj = Fx,LJ — FnyJ G;lnyLj — Fnyj G;IGX,C — FyycG;lGx’Li
MPk = lrx,P;C - ]::‘y,P;C G;IGX,Pk - Fy,Pk G;IGX,C - :Fy,CG;IGx,P;C

Mg =Fxp—Fy 5G;'Gyxp — Fy 5G;'Gx o —Fy cG;'Gy
MGi,L]- - 7Fy,GzG;1Gx,L] - Fy,Lj G;lGx,Ch
MszPk =-Fyq, G;IGX,Pk —Fyp, GJIGX,Gi
MGuE =-Fyq, G;lGX,E - Fy,EGglGxGi
My, p, = —Fy1,Gy'Gxp, — Fy p,Gy'Gxr,
My, p=-Fy1,G;'Gxp—Fy £G,'Gyx L,
Mp, g = —Fy p, Gy Gy — Fy 5Gy'Gxp,
B. Parameters for Inverter Controller
The controller of inverters adopted in this paper can be
found in [7]. Controller parameters are given in Table IV.
ACKNOWLEDGMENT

This work was supported in part by the U.S. National
Science Foundation under Grant CNS-1419076. The authors
would also like to thank Eversource Energy for supporting our
microgrid research.

978-1-5090-4168-8/16/$31.00 ©2016 IEEE

Table IV Parameters for Inverter Controllers in the Microgrid

DERs (Loads) Parameters
Outer Tf Kp Tp KQ TQ
Battery 1 Loop 0.01 0.40 0.02 0.40 0.02
Inner T Kq Tq K, Ty
Loop 0.008 0.10 0.02 0.10 0.02
Outer Tf Kp Tp KQ TQ
Battery 2 Loop 0.01 0.45 0.02 0.45 0.02
Inner T Ka Ty Ky Ty
Loop 0.008 0.12 0.02 0.12 0.02
Outer Tf Kp Tp KQ TQ
Battery 3 Loop 0.01 0.50 0.02 0.50 0.02
Inner T Kq Tq K, Ty
Loop 0.008 0.13 0.02 0.13 0.02
Outer Tf Kp Tp KQ TQ
PV 1 Loop 0.01 2.00 0.80 1.00 0.80
Inner T Ka Ty Ky Ty
Loop 0.01 0.10 0.05 0.10 0.05
Outer Tf Kp Tp KQ TQ
PV 2 Loop 0.01 1.50 0.80 1.00 0.80
Inner T Kq Tq K, Ty
Loop 0.01 0.10 0.06 0.10 0.06
Outer Tf Kp Tp KQ TQ
PV 3 Loop 0.01 2.00 0.80 1.00 0.80
Inner T Kq Ty Ky Ty
Loop 0.01 0.12 0.05 0.12 0.05
Outer Tf Kp Tp KQ TQ
EC 1 Loop 0.01 0.80 0.01 0.80 0.01
Inner T Kq Tq K, Ty
Loop 0.008 0.10 0.02 0.10 0.02
Outer Tf Kp Tp KQ TQ
FC 2 Loop 0.01 0.30 0.02 0.30 0.02
Inner T Ka Ty Ky Ty
Loop 0.008 0.10 0.02 0.10 0.02
Outer Tf Kp Tp KQ TQ
Load 1 Loop 0.01 0.20 0.05 0.20 0.05
Inner T Kq Tq K, Ty
Loop 0.008 0.80 0.02 0.05 0.05
Outer Tf Kp Tp KQ TQ
Load 3 Loop 0.01 0.10 0.005 0.20 0.05
Inner T Ka Ty Ky Ty
Loop 0.008 0.20 0.10 0.10 0.05
Outer Tf Kp Tp KQ TQ
Load 4 Loop 0.01 0.40 0.05 0.20 0.01
Inner T Kq Tq K, Ty
Loop 0.008 0.80 0.02 0.05 0.05
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