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Abstract—A salient feature of a renewable energy power
supply system (REPSS) on islands is the high level of uncertain-
ties caused by high penetration of volatile power sources, such
as wind and solar photovoltaic farms. This creates large forecast
errors under some conditions and makes the fixed time-scale dis-
patch impotent in maintaining system reliability. To tackle this
challenge, a time-scale adaptive dispatch method is developed
in this paper. The time-scale for dispatch REPSS on islands is
adjusted online according to the confidence interval of forecast
error predicted by neural network. Extensive tests have vali-
dated the effectiveness of the presented method in offsetting the
uncertainties in the system and improving the system reliability.

Index Terms—Energy management system, forecast,
microgrid, reliability, spinning reserve capacity.

I. INTRODUCTION

R
ENEWABLE energy power supply system (REPSS) is an

emerging paradigm for electrifying small and medium-

sized power systems on islands [1]. It is a real-life hybrid sys-

tem integrating renewable sources such as wind power, solar

photovoltaic (PV), and ocean current generation, with stabiliz-

ing resources including diesel generators and batteries [2], [3].

REPSS becomes an increasingly appealing off-shore energy

solution because it takes advantage of the immediately avail-

able renewables offering clean energy consumption and low

carbon footprint [4].

REPSS on islands is actually a special type of microgrid.

Different from other microgrids, REPSS has the following

features.

1) REPSS has high penetration of renewable generation

(sometimes near 100%), causing highly intermittent and

uncertain operational conditions [5].
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2) REPSS normally operates in the islanding mode, which

means the reliability is of top priority. On the other hand,

land-based microgrids might mainly operate in the grid-

connected mode, which take the economical operation

as their prioritized objective [6].

3) REPSS is frequently exposed to extreme weather and

natural disasters (e.g., typhoon and tsunami).

As a comparison, grid-connected microgrids usually operate

under normal conditions [7]. Therefore, dealing with uncer-

tainties is a major challenge for the energy management in

REPSS. The analysis methods of REPSS can draw on the

experience of traditional microgrids technology.

Extensive research has been conducted to deal with fluc-

tuating loads and random renewable generation in microgrid

for reliable and economical operation. References [8] and [9]

aim to increase the accuracy of load forecast in microgrid

while [10] focuses on improving the forecast of renew-

able generation. Reference [11] quantifies forecast errors.

A stochastic optimal power flow suited for short-term oper-

ation is developed in [12] considering forecast errors for

renewable generation. Optimal allocation of energy storage

is presented to offset the effect of variable generation [13].

Unit commitment [14] and economic dispatch are studied to

cope with uncertainties in microgrid [15], [16].

Recent research shows that the multitime-scale dispatch

could be an effective strategy to tackle the challenges caused

by load and generation uncertainties. Originally, multitime-

scales were introduced to capture long-term dynamics and

short-term dynamics in power systems [17]. Recently, this

philosophy was introduced to develop more realistic dis-

patch strategies for transmission system under uncertain

environment, with more time-scale dispatch schedules being

introduced [18]. For instance, a weekly dynamic rolling

approach has been used to coordinate long-term and short-time

wind generation scheduling [19]. Similar approach has been

implemented for dispatch thermal units [20] and interruptible

loads [21]. However, all these approaches adopt a few fixed

time-scales predetermined for different scenarios.

In this paper, a time-scale adaptive dispatch method is

developed to achieve reliable and economic dispatch for

island-based REPSS. The major contribution is an automatic

adjustment method that determines the look-ahead dispatch

horizon along the timeline based on the confidence coefficient
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Fig. 1. Schematic of REPSS on islands.

and confidence interval of forecast error. With the dynamic

time-scale adjustment, higher system reliability of REPSS is

achieved under uncertain and even extreme situations.

The rest of the paper is organized as follows. The influ-

ence of confidence interval of forecast error is introduced in

Section II. An adaptive adjustment method for time-scales dis-

patch is described in Section III. Comparative studies between

the adaptive time-scale approach and the traditional fixed

time-scale dispatch are provided in Section IV. The paper is

concluded in Section V.

II. INFLUENCE OF FORECAST ERROR ON REPSS

A large degree of forecast error could occur in REPSS

because of high levels of uncertainties in load and nondispatch-

able renewable generation. Obviously, an effective dispatch

schedule depends on a credible forecast. Therefore, it is impor-

tant to measure the degree of forecast error so that effective

measures could be taken to decide an appropriate time-scale

in system dispatch. Here, the confidence coefficient and con-

fidence interval are adopted to assess the credibility level of

forecasts error.

A. Confidence Coefficient and Confidence Interval of

Forecast Error

The loads in REPSS can be classified into nondispatch-

able loads and dispatchable loads. Here the dispatchable loads

include the interruptible and deferrable load (such as heating

load and seawater desalination). Similarly, REPSS genera-

tion can be divided into nondispatchable and dispatchable

generation. Intermittent renewable sources including wind tur-

bine (WT) and PV generator belong to the former category,

while micro turbine (MT), fuel cell (FC) and storage bat-

tery (BT) normally belong to the latter. A typical structure

of REPSS is given in Fig. 1. The uncertainties mainly come

from the load and nondispatchable renewable generation, and

shutdown of dispatchable generation caused by faults.

Obviously, the major sources of forecast error are the

nondispatchable load and the nondispatchable renewable gen-

eration. If we treat the nondispatchable generation as neg-

ative load, the equivalent nondispatchable load (we use

“equivalent load” for brevity) can be expressed as follows:

LGf ,t = Lf ,t − Gf ,t = Lf ,t −
(

Wf ,t + PVf ,t

)

(1)

LGa,t = La,t − Ga,t = La,t −
(

Wa,t + PVa,t

)

(2)

where LGf ,t and LGa,t are the forecast and actual equiva-

lent load at time t, respectively, Lf ,t and Gf ,t are the forecast

load and nondispatchable generation at time t, respectively,

Wf ,t and PVf ,t are the forecast wind power and solar power

at time t, respectively, La,t and Ga,t are the actual load and

nondispatchable generation at time t, respectively, Wa,t and

PVa,t are the actual wind power and solar power at time t,

respectively.

The confidence coefficient and confidence interval of the

forecast error are then estimated by

α = p
{
∣

∣LGf ,t − LGa,t

∣

∣ ≤ LGc,T

}

(3)

where α is the confidence coefficient of forecast error for the

equivalent load during time-scale T , p{•} is the probability

of {•}, LGc,T is the confidence interval of forecast error for

the equivalent load during time-scale T .

Notice that α ∈ (0, 1). For a given confidence coefficient,

the value of confidence interval implies the following.

1) A small confidence interval corresponds to concentrated

forecast errors, meaning a low degree of uncertainties.

2) A large confidence interval corresponds to well dis-

persed forecast errors, meaning a high degree of uncer-

tainties.

B. Influence of Confidence Interval on the Power

System Reliability

In order to ensure the system reliability, a certain reserve

capacity is needed to offset the forecast error. Reliability

will not be compromised when the forecast error can be

neutralized. When the forecast error is higher than the avail-

able reserve, a certain amount of load needs to be curtailed

and the system reliability will decline.

Assume f (x) is the density function of the forecast error for

the equivalent load during time-scale T . Notice that f (x) can

be obtained by fitting the observed forecast error values. Here

x ∈ X is the random variable for the forecast error and X is

the set of the observed forecast errors during time-scale T .

Equation (3) can also be estimated as

α =

∫ LGc,T

−LGc,T

f (x)dx. (4)

Meanwhile

x = LGf ,t − LGa,t (5)

where x is the forecast error for the equivalent load, f (x) is the

density function of the forecast error for the equivalent load

under time-scale T .

The density function is supposed to be a certain distribution.

The loss of load probability (LOLP) can then be expressed as

pload = 1 −

(

∫ LGc,T

−∞

f (x)dx +

∫ Rl,t

LGc,T

f (x)dxz

)

(6)

where pload is the LOLP and Rl,t is the load reserve capacity

at time t.

LOLP is determined by reserve capacity; however, it is

also affected by the confidence interval of forecast error on

the condition that the reserve capacity is certain while the
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forecast error is uncertain. As can be seen from (6), for

given confidence coefficient and available reserve capacity,

the confidence interval of forecast error LGc,T can be cal-

culated according to (4) when obtain the density function of

the forecast error, then
∫ LGc,T

−∞
f (x)dx in (6) can be acquired.

Because
∫ LGc,T

−∞
f (x)dx is determined by the confidence coef-

ficient, LOLP is affected by
∫ Rl,t

LGc,T
f (x)dx, which becomes

small when the confidence interval is large. As a result, large

confidence interval leads to high LOLP.

On the other hand, the spinning reserve is normally used as

both the load reserve and the emergency reserve to offset the

power shortage caused by random events in REPSS. Here the

random events include the forced outage of dispatchable gener-

ators and the forecast error of the equivalent load. The system

reliability can then be expressed as [22]

1 − γ =

(

m
∏

i=1

(1 − λi)

)

×

(

1 −

(

∫ LGc,T

−∞

f (x)dx +

∫ Rs,t

LGc,T

f (x)dx

))

+

n
∑

i=1

λi

⎛

⎝

m
∏

j=1,j �=i

(

1 − λj

)

⎞

⎠

×

(

1 −

(

∫ LGc,T

−∞

f (x)dx +

∫ Rs,t−Pi,max

LGc,T

f (x)dx

))

(7)

where γ is the system reliability, m is the number of dispatch-

able generators, n is the number of dispatchable generators

unavailable due to forced outages, λi is the forced outage

rate of dispatchable generator i, Rs,t is the spinning reserve

capacity at time t, and Pi,max is the maximal output of the ith

dispatchable generator.

It can similarly be inferred from (6) that, when the spin-

ning reserve capacity is only provided by the available reserve

capacity, large confidence interval of forecast error leads to low

power supply reliability.

C. Influence of Confidence Interval on the Economic

Operation of Power System

The confidence interval of forecast error also influences the

economic operation of power system.

For fixed system reliability and confidence coefficient, the

spinning reserve capacity and confidence interval shall vary

together in order to keep
∫ Rs,t

LGc,T
f (x)dx or

∫ Rs,t−Pi,max

LGc,T
f (x)dx

constant, as shown in (6) and (7). This means that a large confi-

dence interval leads to a high level of required spinning reserve

capacity. Large confidence interval, therefore, increases the

operational costs of power system.

III. TIME-SCALE ADJUSTMENT FOR ADAPTIVE DISPATCH

When the spinning reserve for offsetting the forecast error is

in excess of the available reserve, the spinning reserve could

no longer compensate for the excessive forecast error, lead-

ing to unreliable operation or even blackout. In this case, the

confidence interval has to be reduced in order to decrease

the spinning reserve requirement to an acceptable level.

(In this paper, the spinning reserve requirement refers to the

required capacity of spinning reserve to ensure a certain level

of system reliability, e.g., 0.98.) Therefore, we need to search

for a threshold, a maximum tolerable confidence interval for

the system, which can then be required to determine whether

the time-scale would be adjusted in certain situations.

A. Threshold for Confidence Interval of Forecast Error

The procedure to find the threshold for confidence interval

of forecast error is elaborated as below.

The available reserve refers to the total reserve provided by

the dispatchable generators and it can be estimated by

Ra,t =

m
∑

i=1

Si,t

(

Pi,max − Pi,t

)

(8)

where Ra,t is the available reserve at time t, Si,t is the

operational state of the ith dispatchable generators at time t

(0 for turn off, 1 for turn on) and Pi,t is the planned output of

the ith dispatchable generators at time t.

The power balance constraints can be expressed as

m
∑

i=1

Si,t × Pi,t = Lf ,t − Wf ,t − PVf ,t. (9)

Based on (1), (8) can also be expressed as

Ra,t =

m
∑

i=1

Si,t × Pi,max − LGf ,t. (10)

In general, the number of dispatchable generators which are

turned on (e.g., as shown in Figs. 5 and 6) should be as less

as possible. The operational state of dispatchable generators

is determined as follows.

1) An operation priority of dispatchable generators from

high to low is set based on engineering practice

in order to determine the number of dispatchable

generators which are turned on (e.g., the opera-

tion priority of dispatchable generators is set as

MT1>FC1>BT>MT2>FC2).

2) If the calculation of adaptive time-scale has no solution,

more dispatchable generators should be turned on in

terms of their operation priority in order to increase the

available reserve.

Once the operational states of dispatchable generators are

made, the threshold for confidence interval of forecast error

LGc,max could be assessed considering two different scenarios.

1) The available reserve is inadequate to meet the spin-

ning reserve requirement. In this situation, power system

operates with low reliability. The spinning reserve is

provided by the minimum available reserve

Rs,t =
Ta

min
t=1

Ra,t (11)

where Ta is the adaptive time-scale. Substitute Rs,t

into (7), for a given reliability level γ , LGc,T could

be obtained. This value is the threshold of confidence

interval, also denoted as LGc,max.
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2) The available reserve is able to satisfy the spinning

reserve requirement. In this situation, the spinning

reserve is equal to the minimum available reserve

Rs,t =
Ts

min
t=1

Ra,t (12)

where Ts is the fixed time-scale.

Similar to Scenario 1, the threshold for confidence interval

of forecast error can be obtained by using (7), that is, the

obtained LGc,T is also denoted as LGc,max.

A time-scale is divided into a number of time periods.

In this paper, the spinning reserve is determined by the

minimum available reserve of one time period during a

time-scale. If the minimum available reserve can meet the

requirement, other time periods can meet the requirement even

better. Therefore, the available reserve in this time-scale can

meet the spinning reserve requirement.

B. Adaptive Adjustment of Dispatch Time-Scale

The prediction for confidence interval of forecast error for

the equivalent load during time-scale T (LGc,f ) can be pre-

dicted by a neural network (NN) detailed in the Appendix.

For a given confidence coefficient, the prediction for the con-

fidence interval of forecast error will vary in response to

the changes in ambient environment. When ambient environ-

ment becomes harsh, the confidence interval would increase.

Then it is necessary to reduce time-scale. When the avail-

able reserve is equal to or larger than the spinning reserve

requirement, the time-scale would remain unchanged. Below

elaborates how the time-scale is adjusted under different

scenarios.

Scenario 1: The relationship between the prediction for con-

fidence interval of forecast error LGc,f and the threshold for

confidence interval of forecast error LGc,max is satisfied the

following conditions:

LGc,f ≤ LGc,max. (13)

When the prediction for confidence interval of forecast

error LGc,f is equal to or less than the threshold for con-

fidence interval of forecast error LGc,max, this means the

environment is “friendly” because the system has sufficient

available reserve and can withstand higher forecast error.

For this case, we choose to keep the time-scale unchanged;

otherwise it would result in frequent adjustment during the

dispatch.

Scenario 2: The relationship between the prediction for con-

fidence interval of forecast error LGc,f and the threshold for

confidence interval of forecast error LGc,max is satisfied the

following conditions:

LGc,f > LGc,max. (14)

If (14) holds, the time-scale would be reduced, otherwise

the available reserve would be insufficient.

The time-scale adjustment is performed by the NN from the

Appendix. A group of historical data (e.g., 5-day data) is used

to train the NN in order to obtain the NNs connection weights

with a fixed time-scale value Ts (e.g., 6 h). Then the trained

NN is employed to adaptively adjust the time-scale Ta

Ta = k × Ts (15)

where k is the adjustment coefficient.

The time-scale is changed every 5 min in Scenario 2. The

step of adjustment coefficient refers to the change size of

the adjustment coefficient every time in order to change the

time-scale every 5 min. Therefore, the step of adjustment

coefficient is expressed as

J =
5 min

Ts × 60 min
=

1

12 × Ts

(16)

where J is the step of adjustment coefficient [e.g., (1/72) when

the fixed time-scale is 6 h].

The adjustment coefficient k is changed as follows.

Scenario 1: The time-scale is unchanged

k = 1. (17)

Scenario 2: The time-scale would be reduced

k = J × h h = 1, 2, 3, . . . , H (18)

where h is the number of times to change the adjustment

coefficient. H is the total number of times (e.g., the maximum

value of H is 72).

Sometimes, it is hard to make the LGc,f based on NN just

equal to the LGc,max, with the increase of h, the time-scale

aims to satisfy

η × LGc,max ≤ LGc,f ≤ LGc,max (19)

where η is the judgment coefficient close to 1. At this

time-scale, the prediction for confidence interval of forecast

error LGc,f is just equal to or a bit less than the threshold for

confidence interval of forecast error LGc,max.

In Scenario 2, the time-scale is constantly changed with

respect to the corresponding wind speed, solar radiation, fore-

cast method, and day types (see the Appendix); when the

prediction for confidence interval of forecast error LGc,f and

the threshold for confidence interval of forecast error LGc,max

firstly satisfy (19), Ta is kept unchanged, and then goes to next

dispatch schedule.

The above procedure for adaptively adjusting dispatch

time-scale is illustrated in Fig. 2.

The developed time-scale adaptive dispatch method is par-

ticularly suitable for look-ahead dispatch [23], [24], which

makes dispatch schedules for future horizons ranging from

minutes to hours.

It is worth noting that not all the scheduled points will be

fully executed within a time-scale. To better follow the indus-

try practices, the dispatch schedule is triggered according to

the following situations.

1) New dispatch schedule should be worked out when

the current dispatch schedule is near the end. In order

to facilitate the transition, the new dispatch schedule

is worked out when the current scheduled points are

executed at 80% of its whole cycle (0.8 × Ta).

2) Considering the high volatility in the REPSS, the new

dispatch schedule should be worked out immediately
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Fig. 2. Prediction for confidence interval of forecast error and adaptive
adjustment of dispatch time-scale.

when there is a large deviation between the actual oper-

ation situation and the planed operation situation. For

example, the system has a transition between island

mode and grid-connected mode, the unit operation state

is different from the dispatch schedule.

To summarize, not all the scheduled points will be

executed in practice, and the reschedule of dispatch should

be considered. However, those unexecuted points could still be

useful. On the one hand, how many scheduled points will be

not executed in practice is unknown in advance. On the other

hand, it is beneficial to connect the current dispatch schedule

to the next dispatch schedule since the planed dispatch sched-

ule has a longer time horizon than practical dispatch schedule.

So as to avoid condition that the dispatchable resources are

exhausted in current dispatch schedule and make the next

dispatch schedule infeasible or has a low optimization level.

C. Economy Analysis of Spinning Reserve

The spinning reserve is mainly aimed at improving the sys-

tem reliability and reducing the power loss. However, it cannot

be taken for granted that the more spinning reserve, the better.

1) If the spinning reserve is insufficient, it would be diffi-

cult to meet the load demand, thus resulting in a lack

of ability to deal with emergencies. It is not conducive

to the safe and economical operation of power system,

as it reduces the system reliability and increases the

unreliability cost.

2) If the spinning reserve is redundant, the reliability of

the system would be improved. However, some spin-

ning reserve will be idle and do not really participate in

practical scheduling to balance load, leading to the waste

of reserve resources and the increase of operation costs.

The spinning reserve will not bring direct economic benefits,

if it does not participate in the practical dispatch schedule.

Because the REPSS is far from main grid and mainly operates

in island mode, one mainly considers the fuel cost (assume all

the spinning reserve participates in practical scheduling) but

do not consider the opportunity cost between REPSS and the

main grid.

The economic problem of spinning reserve is the total cost

of dispatchable generators which satisfy the operation con-

straints of power system in a time-scale. Therefore, it can be

formulated as follows:

Ai,t = ai

(

Pi,t + Fi,t

)2
+ bi

(

Pi,t + Fi,t

)

+ ci (20)

Bi,t = aiP
2
i,t + biPi,t + ci (21)

Ci,t = Ai,t − Bi,t (22)

where Ai,t is the cost of ith dispatchable generator after con-

sidering the spinning reserve at time t, Bi,t is the cost of

ith dispatchable generator before considering the spinning

reserve at time t, Ci,t is the cost of ith dispatchable gener-

ator for provide spinning reserve at time t, ai, bi, and ci are

the cost coefficient of ith dispatchable generator, and Fi,t is

the spinning reserve of ith dispatchable generator at time t.

The objective function about economy of spinning reserve

under the reliability is estimated as follows:

min

T
∑

t=1

m
∑

i=1

Ci,t. (23)

IV. CASE STUDY

A. System Data

The test case consists of 550 kW nondispatchable generation

composed by a 200 kW PV farm and a 350 kW WT. The dis-

patchable generators include two micro gas turbines, two FCs

and a BT. Table I summarizes the system parameters, which

are adopted from [25]. Here confidence coefficient α is 0.96,

power system reliability γ is 0.98, and judgment coefficient

η is 0.98.

Forecast error of load, wind power, and PV can be expressed

by zero mean normal distribution as shown in [26]–[28].

Assuming that the forecast errors of loads and nondispatch-

able renewable generation are unrelated, the total forecast error
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TABLE I
PARAMETERS FOR THE TEST REPSS

Fig. 3. Forecast and actual of load and nondispatchable generation during
five days.

of the equivalent load in REPSS can be modeled by normal

distribution function.

The 5-day forecast and actual values of load and nondis-

patchable renewable generation are illustrated in Fig. 3.

B. Dispatch Schedules With Fixed and Adaptive Time-Scale

The probability of losing two or more generators simultane-

ously is very low. Therefore, it is assumed that only one unit

(e.g., one of MT1) may have forced outage (Si,t = 0).

Fig. 4 shows the forecasted load and nondispatchable

renewable generation in the sixth day.

Initially, a fixed time-scale Ts is set to be 6 h in the study.

An optimization algorithm (optimal power flow based on

particle swarm optimization) is applied for dispatch sched-

ule to account for uncertainties to the balance of reliability

and economy. On the condition of reliability, and considering

the relevant operation constraints (power balance constraints,

generator output constraint, spinning reserve constraints, and

ramp rate constraints), the optimization algorithm is intent

to iteratively search the global optimal solution for the pur-

pose of spinning reserve economy. In addition, when a certain

time-scale is made, some other optimization methods can also

Fig. 4. Forecasted load and nondispatchable generation in the sixth day.

Fig. 5. Dispatch schedules with a fixed 6 h time-scale.

TABLE II
CONFIDENCE INTERVAL AND RESERVE CAPACITY WITH

A FIXED DISPATCH TIME-SCALE OF 6 h

be used to work out the dispatch schedule, such as robust

optimization method or interval-based method [29]–[33].

Based on the forecast data in Fig. 4, the dispatch schedules

of load and generators with the fixed time-scale are shown

in Fig. 5. It can be observed that the dispatch constraints

have been considered in the study. Also, it can be seen from

Fig. 5 that the time-scale and time interval are fixed all the

time when dispatch time-scale is adopted. And the test system

is dispatched four times per day.
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TABLE III
CONFIDENCE INTERVAL AND RESERVE CAPACITY WITH ADAPTIVE DISPATCH TIME-SCALE

The confidence intervals and reserves with fixed dispatch

time-scale are shown in Table II.

It can be observed from Table II that the forecasted

confidence interval is less than the threshold in dispatch

time-scale T1, larger than that in dispatch time-scale T2, T3,

and a little less than that in dispatch time-scale T4 when the

fixed time-scale is adopted. The relative error E (detailed in

the Appendix and considered in Scenario 2) is quite unsta-

ble under fixed time-scale. Spinning reserve requirements are

related to forecasted confidence interval. When the forecasted

confidence interval is large than threshold, it means the avail-

able reserve is insufficient. When the forecasted confidence

interval is equal to or less than threshold, it means the available

reserve is sufficient.

As a comparison, the confidence intervals and reserves with

the adaptive dispatch time-scales are summarized in Table III.

It can be observed from Table III that the forecasted confi-

dence interval is much larger than threshold before time-scale

is adjusted. The relative error E is quite unstable before

time-scale is adjusted, but becomes stable and smaller after

time-scale is adjusted in Scenario 2. Spinning reserve require-

ments are related to threshold [forecasted confidence interval

after time-scale adjustment should satisfy (15)]. Under the

restriction of threshold, available reserve is sufficient all the

time with adaptive time-scale.

By comparing Tables II and III, it can be observed that

available reserve is sufficient all the time with adaptive time-

scale, but, insufficient when forecasted confidence interval is

large than threshold with fixed time-scale (e.g., 06:00–12:00

and 12:00–18:00). When the prediction for the confidence

interval of forecast error LGc,f gravitates toward the thresh-

old for confidence interval of forecast error LGc,max, the

relative error drops to E ∈ [−0.02, 0.02](e.g., 06:00–09:00,

09:00–12:30, 12:30–17:30, and 17:30–18:00). Therefore, the

forecast error of NN is acceptable, and the system reli-

ability can meet the requirement after time-scale adaptive

adjustment.

The dispatch schedules of loads and generators with adap-

tive time-scales are shown in Fig. 6.

The key point of this paper is to obtain a certain time-

scale after time-scales adaptive adjustment. It can be seen from

Fig. 6 that the time-scales are adjusted in different scenarios.

Fig. 6. Dispatch schedules with adaptive time-scales.

Meanwhile, the time intervals would be reduced when the

dispatch time-scale is reduced.

By comparing Figs. 5 and 6, it can be concluded that the

length of adaptive time-scale is uncertain and it can be equal

to or less than fixed time-scale. The results are based on the

comparison between the prediction for confidence interval of

forecast error LGc,f and the threshold for confidence interval

of forecast error LGc,max.

C. Comparison Between Fixed and Adaptive Dispatch

Time-Scale

1) Reliability of Power System: Under the required confi-

dence coefficient (0.96) and REPSS system reliability (0.98),

the actual power supply reliabilities of the two dispatch sched-

ules based on available reserve capacity are shown in Fig. 7.

When the fixed dispatch time-scale is adopted, the actual

reliability of the system is much lower than the expected

value (0.98) during several time intervals (e.g., 8:30–12:00

and 17:00–18:00 under fixed time-scale). On the other hand,

the actual reliability of the system is always higher than

the required value when the adaptive dispatch time-scale is

adopted.
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Fig. 7. Comparison of power system reliability.

Fig. 8. Comparison of reserve requirements.

2) Economy of Power System: Under the required confi-

dence coefficient (0.96) and power system reliability (0.98),

the available reserve capacity and spinning reserve require-

ments with fixed and adaptive dispatch time-scale are shown

in Fig. 8. Spinning reserve capacity with fixed dispatch time-

scale often exceeds the available reserve capacity when actual

power system reliability is lower than the required value.

On the other hand, the time-scale adaptive dispatch ensures

that the spinning reserve requirement is lower than the avail-

able reserve all the time.

It can be seen from the above comparisons that the

time-scale adaptive dispatch can significantly improve the reli-

ability and operational performance of REPSS where large

uncertainties permeate.

Since the REPSS is far from the main grid and mainly oper-

ates in island state, an assumption is made to turn on the dis-

patchable generator (MT2), offsetting the load demand when

the spinning reserve is insufficient, and not from main grid.

The economy comparison of spinning reserve between fixed

time-scale and adaptive time-scale is shown in Table IV.

It can be observed from Table IV that: in Scenario 1,

when the time-scale is equal to the fixed time-scale

(e.g., 00:00–06:00 and 18:00–24:00), both the cost and aver-

age cost of spinning reserve under adaptive time-scale is equal

to that in fixed time-scale. In Scenario 2, when the time-

scale is reduced (e.g., 06:00–09:00, 09:00–12:30, 12:30–17:30,

and 17:30–18:00), both the cost and average cost of spinning

TABLE IV
COMPARISON OF SPINNING RESERVE ECONOMY BETWEEN

FIXED TIME-SCALE AND ADAPTIVE TIME-SCALE

reserve under adaptive time-scale is lower than that in fixed

time-scale. For the large uncertainties in REPSS on islands in

a longer time horizon which contains the reduced time-scale

(e.g., 00:00–24:00), both the cost and average cost of spinning

reserve under adaptive time-scale could be lower than the cost

of spinning reserve under fixed time-scale.

V. CONCLUSION

An effective dispatch schedule depends on a credible fore-

cast which is mainly influenced by time-scale and ambient

environment. In order to improve the reliability and achieve

an economic dispatch of REPSS, a time-scale adaptive dis-

patch method is presented to deal with the uncertainties of

power and renewable power output. The confidence coefficient

and confidence interval are adopted to assess the credibil-

ity level of forecasts error. It has been worked out that the

time-scale of dispatch schedules for REPSS would be dynam-

ically adjusted to improve system reliability and economy.

To achieve adaptive dispatch, the prediction for confidence

interval of forecast error should be forecasted at first. Then

the dispatch time-scale is adjusted online by comparing the

forecasted confidence interval with an appropriate threshold.

The adaptive time-scale is adjusted under two different sce-

narios. And the length of adaptive time-scale can be equal to

or less than the fixed time-scale. Comparative studies for the

fixed time-scale dispatch and the adaptive time-scale dispatch

are performed. The results show that the adaptive time-scale

dispatch significantly dominates the fixed time-scale dispatch

in terms of system reliability and spinning reserve efficiency.

The method can also be applied to other microgrids and

active distribution network where there is high penetration of

distributed generation.

APPENDIX

PREDICTION FOR CONFIDENCE INTERVAL OF

FORECAST ERROR

The method of the prediction for confidence interval of

forecast error LGc,f based on NN is shown as follows.

The confidence interval of forecast error is an impor-

tant parameter for credible and efficient system operations.
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Fig. 9. NN for forecasting of the confidence interval.

Typically, predicting the confidence interval is a critical step

in the time-scale adaptive dispatch schedule.

The confidence interval of forecast error is mainly influ-

enced by the following factors.

1) Time-Scale: With the growth of the time-scale, the fore-

cast error will gradually increase, and the confidence

interval will increase. The shorter the time-scale, the

smaller the forecast error, and the smaller the confidence

interval.

2) Ambient Environment (Solar Radiation and Wind

Speed): Generally speaking, when ambient environment

becomes harsh, the forecast error will increase and the

confidence interval will increase.

3) Other Factors (Forecast Method and Day Types): The

forecast accuracy is decreasing in the sequence of

ultra short term forecast method, extended short term

forecast method, and short term forecast method. The

change of day types can also influence the forecast

error.

Basically, the confidence interval is a highly nonlinear func-

tion of these factors. For this reason, NN can be a potent

approach to predict the confidence interval.

So far, back propagation (BP) algorithm has been the

most successful method for NN. Reference [34] introduces

a Levenberg–Marquardt-based (LM) BP algorithm, which

combines the advantages of the steepest descent method with

the Gauss–Newton method and has fast convergence speed

and high prediction accuracy. Therefore, the LM-based NN is

adopted to predict the confidence interval.

The forecasted confidence interval can be expressed as

LGc,f = g
(

T, Sf ,T , Wf ,T , MT , DT

)

(24)

where LGc,f is the prediction for confidence interval of fore-

cast error, T is the time-scale for dispatch, Sf ,T and Wf ,T

are the forecasted solar radiation and wind speed during T ,

respectively, MT and DT are the forecasted method and day

types during T , respectively. Notice that more factors can be

added in g(•) for higher granularity analysis.

The NN consists of input layer, hidden layer, and output

layer [35], as shown in Fig. 9. Here the input and output

vectors of the NN are expressed as follows:

Y =
[

T, Sf ,T , Wf ,T , MT , DT

]

(25)

O =
[

LGc,f

]

(26)

where Y and O are the input and output vectors, respectively.

When the time-scale needs to be reduced, the forecast error

of NN is estimated as follows:

E =
LGc,max − LGc,f

LGc,max
× 100% (27)

where E is the relative error about the confidence interval of

forecast error.

The threshold for confidence interval of forecast error

LGc,max is restricted by the available reserve. Constantly

adjust the time-scale and its corresponding solar radiation,

wind speed, forecast method, and day types, and until

E ∈ [−0.02, 0.02]. In this way, we think that the forecast

error of NN can be acceptable.
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