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Abstract—A salient feature of a renewable energy power
supply system (REPSS) on islands is the high level of uncertain-
ties caused by high penetration of volatile power sources, such
as wind and solar photovoltaic farms. This creates large forecast
errors under some conditions and makes the fixed time-scale dis-
patch impotent in maintaining system reliability. To tackle this
challenge, a time-scale adaptive dispatch method is developed
in this paper. The time-scale for dispatch REPSS on islands is
adjusted online according to the confidence interval of forecast
error predicted by neural network. Extensive tests have vali-
dated the effectiveness of the presented method in offsetting the
uncertainties in the system and improving the system reliability.

Index  Terms—Energy management system,
microgrid, reliability, spinning reserve capacity.

forecast,

I. INTRODUCTION

ENEWABLE energy power supply system (REPSS) is an
Remerging paradigm for electrifying small and medium-
sized power systems on islands [1]. It is a real-life hybrid sys-
tem integrating renewable sources such as wind power, solar
photovoltaic (PV), and ocean current generation, with stabiliz-
ing resources including diesel generators and batteries [2], [3].
REPSS becomes an increasingly appealing off-shore energy
solution because it takes advantage of the immediately avail-
able renewables offering clean energy consumption and low
carbon footprint [4].

REPSS on islands is actually a special type of microgrid.
Different from other microgrids, REPSS has the following
features.

1) REPSS has high penetration of renewable generation

(sometimes near 100%), causing highly intermittent and

uncertain operational conditions [5].
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2) REPSS normally operates in the islanding mode, which
means the reliability is of top priority. On the other hand,
land-based microgrids might mainly operate in the grid-
connected mode, which take the economical operation
as their prioritized objective [6].

3) REPSS is frequently exposed to extreme weather and
natural disasters (e.g., typhoon and tsunami).

As a comparison, grid-connected microgrids usually operate
under normal conditions [7]. Therefore, dealing with uncer-
tainties is a major challenge for the energy management in
REPSS. The analysis methods of REPSS can draw on the
experience of traditional microgrids technology.

Extensive research has been conducted to deal with fluc-
tuating loads and random renewable generation in microgrid
for reliable and economical operation. References [8] and [9]
aim to increase the accuracy of load forecast in microgrid
while [10] focuses on improving the forecast of renew-
able generation. Reference [11] quantifies forecast errors.
A stochastic optimal power flow suited for short-term oper-
ation is developed in [12] considering forecast errors for
renewable generation. Optimal allocation of energy storage
is presented to offset the effect of variable generation [13].
Unit commitment [14] and economic dispatch are studied to
cope with uncertainties in microgrid [15], [16].

Recent research shows that the multitime-scale dispatch
could be an effective strategy to tackle the challenges caused
by load and generation uncertainties. Originally, multitime-
scales were introduced to capture long-term dynamics and
short-term dynamics in power systems [17]. Recently, this
philosophy was introduced to develop more realistic dis-
patch strategies for transmission system under uncertain
environment, with more time-scale dispatch schedules being
introduced [18]. For instance, a weekly dynamic rolling
approach has been used to coordinate long-term and short-time
wind generation scheduling [19]. Similar approach has been
implemented for dispatch thermal units [20] and interruptible
loads [21]. However, all these approaches adopt a few fixed
time-scales predetermined for different scenarios.

In this paper, a time-scale adaptive dispatch method is
developed to achieve reliable and economic dispatch for
island-based REPSS. The major contribution is an automatic
adjustment method that determines the look-ahead dispatch
horizon along the timeline based on the confidence coefficient
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Fig. 1. Schematic of REPSS on islands.

and confidence interval of forecast error. With the dynamic
time-scale adjustment, higher system reliability of REPSS is
achieved under uncertain and even extreme situations.

The rest of the paper is organized as follows. The influ-
ence of confidence interval of forecast error is introduced in
Section II. An adaptive adjustment method for time-scales dis-
patch is described in Section III. Comparative studies between
the adaptive time-scale approach and the traditional fixed
time-scale dispatch are provided in Section IV. The paper is
concluded in Section V.

II. INFLUENCE OF FORECAST ERROR ON REPSS

A large degree of forecast error could occur in REPSS
because of high levels of uncertainties in load and nondispatch-
able renewable generation. Obviously, an effective dispatch
schedule depends on a credible forecast. Therefore, it is impor-
tant to measure the degree of forecast error so that effective
measures could be taken to decide an appropriate time-scale
in system dispatch. Here, the confidence coefficient and con-
fidence interval are adopted to assess the credibility level of
forecasts error.

A. Confidence Coefficient and Confidence Interval of
Forecast Error

The loads in REPSS can be classified into nondispatch-
able loads and dispatchable loads. Here the dispatchable loads
include the interruptible and deferrable load (such as heating
load and seawater desalination). Similarly, REPSS genera-
tion can be divided into nondispatchable and dispatchable
generation. Intermittent renewable sources including wind tur-
bine (WT) and PV generator belong to the former category,
while micro turbine (MT), fuel cell (FC) and storage bat-
tery (BT) normally belong to the latter. A typical structure
of REPSS is given in Fig. 1. The uncertainties mainly come
from the load and nondispatchable renewable generation, and
shutdown of dispatchable generation caused by faults.

Obviously, the major sources of forecast error are the
nondispatchable load and the nondispatchable renewable gen-
eration. If we treat the nondispatchable generation as neg-
ative load, the equivalent nondispatchable load (we use
“equivalent load” for brevity) can be expressed as follows:

LGyy = Lys = Gr.o = Ly.s — (Wra + PVy) M
LGa,t - La,t - Ga,t = La,t - (Wa,t + Pva,t) (2)
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where LGy, and LG, are the forecast and actual equiva-
lent load at time ¢, respectively, Ly, and Gy, are the forecast
load and nondispatchable generation at time ¢, respectively,
Wy, and PVy,; are the forecast wind power and solar power
at time 1, respectively, L,; and G, are the actual load and
nondispatchable generation at time ¢, respectively, W, , and
PV, are the actual wind power and solar power at time ¢,
respectively.

The confidence coefficient and confidence interval of the
forecast error are then estimated by

o = p{|LGp — LGuy| < LG..1} 3)

where « is the confidence coefficient of forecast error for the
equivalent load during time-scale 7, p{e} is the probability
of {e}, LG, r is the confidence interval of forecast error for
the equivalent load during time-scale 7.
Notice that o € (0, 1). For a given confidence coefficient,
the value of confidence interval implies the following.
1) A small confidence interval corresponds to concentrated
forecast errors, meaning a low degree of uncertainties.
2) A large confidence interval corresponds to well dis-
persed forecast errors, meaning a high degree of uncer-
tainties.

B. Influence of Confidence Interval on the Power
System Reliability

In order to ensure the system reliability, a certain reserve
capacity is needed to offset the forecast error. Reliability
will not be compromised when the forecast error can be
neutralized. When the forecast error is higher than the avail-
able reserve, a certain amount of load needs to be curtailed
and the system reliability will decline.

Assume f(x) is the density function of the forecast error for
the equivalent load during time-scale 7. Notice that f(x) can
be obtained by fitting the observed forecast error values. Here
x € X is the random variable for the forecast error and X is
the set of the observed forecast errors during time-scale 7.
Equation (3) can also be estimated as

LGC,T
o= / fx)dx. 4)
_LGC.T
Meanwhile
X = LGfJ — LGa’[ (5)

where x is the forecast error for the equivalent load, f(x) is the
density function of the forecast error for the equivalent load
under time-scale 7.

The density function is supposed to be a certain distribution.
The loss of load probability (LOLP) can then be expressed as

LG 1 Ri;
Piows = 1 - ( | rwas f(x)dxz> ©)
—00 LG

where pioaq 1s the LOLP and R;; is the load reserve capacity
at time .

LOLP is determined by reserve capacity; however, it is
also affected by the confidence interval of forecast error on
the condition that the reserve capacity is certain while the
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forecast error is uncertain. As can be seen from (6), for
given confidence coefficient and available reserve capacity,
the confidence interval of forecast error LG. 1 can be cal-
culated according to (4) when obtain the density function of
the forecast error, then f_Lgo” f(x)dx in (6) can be acquired.
Because ffg;T f(x)dx is determined by the confidence coef-
ficient, LOLP is affected by fLRé:T f(x)dx, which becomes
small when the confidence interval is large. As a result, large
confidence interval leads to high LOLP.

On the other hand, the spinning reserve is normally used as
both the load reserve and the emergency reserve to offset the
power shortage caused by random events in REPSS. Here the
random events include the forced outage of dispatchable gener-
ators and the forecast error of the equivalent load. The system
reliability can then be expressed as [22]

1—V=<TR1—MO
i=1

LG T Ry,
X <1 — (/ fx)dx + f(x)dx))
—00 LG. 1

n m
e T 0-2)
i=1 j=1,j#i

LGC,T R.v,[*Pi,max
x (1 - ( / f@)dx + / f(x)dx)) @)
—00 LG. T

where y is the system reliability, m is the number of dispatch-
able generators, n is the number of dispatchable generators
unavailable due to forced outages, A; is the forced outage
rate of dispatchable generator i, Ry, is the spinning reserve
capacity at time ¢, and P; max is the maximal output of the ith
dispatchable generator.

It can similarly be inferred from (6) that, when the spin-
ning reserve capacity is only provided by the available reserve
capacity, large confidence interval of forecast error leads to low
power supply reliability.

C. Influence of Confidence Interval on the Economic
Operation of Power System

The confidence interval of forecast error also influences the
economic operation of power system.

For fixed system reliability and confidence coefficient, the
spinning reserve capacity and confidence interval shall vary
together in order to keep |, LR(‘;’:.T f(x)dx or |, LRG“C’;P""“” f(x)dx
constant, as shown in (6) and (7). This means that a large confi-
dence interval leads to a high level of required spinning reserve
capacity. Large confidence interval, therefore, increases the
operational costs of power system.

III. TIME-SCALE ADJUSTMENT FOR ADAPTIVE DISPATCH

When the spinning reserve for offsetting the forecast error is
in excess of the available reserve, the spinning reserve could
no longer compensate for the excessive forecast error, lead-
ing to unreliable operation or even blackout. In this case, the
confidence interval has to be reduced in order to decrease
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the spinning reserve requirement to an acceptable level.
(In this paper, the spinning reserve requirement refers to the
required capacity of spinning reserve to ensure a certain level
of system reliability, e.g., 0.98.) Therefore, we need to search
for a threshold, a maximum tolerable confidence interval for
the system, which can then be required to determine whether
the time-scale would be adjusted in certain situations.

A. Threshold for Confidence Interval of Forecast Error

The procedure to find the threshold for confidence interval
of forecast error is elaborated as below.

The available reserve refers to the total reserve provided by
the dispatchable generators and it can be estimated by

m
Rai =) Sit(Pimax — Pis) ®)
i=1

where R,; is the available reserve at time ¢, S;; is the
operational state of the ith dispatchable generators at time ¢
(O for turn off, 1 for turn on) and P;, is the planned output of
the ith dispatchable generators at time .

The power balance constraints can be expressed as

m
Zsi,t x Py = Lf,t - Wf,t - PVf,t- )

i=1

Based on (1), (8) can also be expressed as

m
Ry = ZS,',; X Pimax — LGy ;.

i=1

(10)

In general, the number of dispatchable generators which are
turned on (e.g., as shown in Figs. 5 and 6) should be as less
as possible. The operational state of dispatchable generators
is determined as follows.

1) An operation priority of dispatchable generators from
high to low is set based on engineering practice
in order to determine the number of dispatchable
generators which are turned on (e.g., the opera-
tion priority of dispatchable generators is set as
MT1>FC1>BT>MT2>FC2).

2) If the calculation of adaptive time-scale has no solution,
more dispatchable generators should be turned on in
terms of their operation priority in order to increase the
available reserve.

Once the operational states of dispatchable generators are
made, the threshold for confidence interval of forecast error
LG, max could be assessed considering two different scenarios.

1) The available reserve is inadequate to meet the spin-
ning reserve requirement. In this situation, power system
operates with low reliability. The spinning reserve is
provided by the minimum available reserve

Ty
Ry = minRy, (1D
=
where T, is the adaptive time-scale. Substitute R;;
into (7), for a given reliability level y, LG, 7 could
be obtained. This value is the threshold of confidence
interval, also denoted as LG. max.
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2) The available reserve is able to satisfy the spinning
reserve requirement. In this situation, the spinning
reserve is equal to the minimum available reserve

T,
Rx,t = I;Ill{l Ra,t (12)
where Ty is the fixed time-scale.

Similar to Scenario 1, the threshold for confidence interval
of forecast error can be obtained by using (7), that is, the
obtained LG, 7 is also denoted as LG, max.

A time-scale is divided into a number of time periods.
In this paper, the spinning reserve is determined by the
minimum available reserve of one time period during a
time-scale. If the minimum available reserve can meet the
requirement, other time periods can meet the requirement even
better. Therefore, the available reserve in this time-scale can
meet the spinning reserve requirement.

B. Adaptive Adjustment of Dispatch Time-Scale

The prediction for confidence interval of forecast error for
the equivalent load during time-scale 7" (LG, y) can be pre-
dicted by a neural network (NN) detailed in the Appendix.
For a given confidence coefficient, the prediction for the con-
fidence interval of forecast error will vary in response to
the changes in ambient environment. When ambient environ-
ment becomes harsh, the confidence interval would increase.
Then it is necessary to reduce time-scale. When the avail-
able reserve is equal to or larger than the spinning reserve
requirement, the time-scale would remain unchanged. Below
elaborates how the time-scale is adjusted under different
scenarios.

Scenario 1: The relationship between the prediction for con-
fidence interval of forecast error LG,y and the threshold for
confidence interval of forecast error LG, max is satisfied the
following conditions:

LGc,f =< LGc,max- (13)

When the prediction for confidence interval of forecast
error LG,y is equal to or less than the threshold for con-
fidence interval of forecast error LG, max, this means the
environment is “friendly” because the system has sufficient
available reserve and can withstand higher forecast error.
For this case, we choose to keep the time-scale unchanged;
otherwise it would result in frequent adjustment during the
dispatch.

Scenario 2: The relationship between the prediction for con-
fidence interval of forecast error LG,y and the threshold for
confidence interval of forecast error LG, max is satisfied the
following conditions:

LGef > LG max- (14)

If (14) holds, the time-scale would be reduced, otherwise
the available reserve would be insufficient.

The time-scale adjustment is performed by the NN from the
Appendix. A group of historical data (e.g., 5-day data) is used
to train the NN in order to obtain the NNs connection weights
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with a fixed time-scale value 7y (e.g., 6 h). Then the trained
NN is employed to adaptively adjust the time-scale T,

T, =kxT; (15)

where k is the adjustment coefficient.

The time-scale is changed every 5 min in Scenario 2. The
step of adjustment coefficient refers to the change size of
the adjustment coefficient every time in order to change the
time-scale every 5 min. Therefore, the step of adjustment
coefficient is expressed as

J— 5 min _ 1
~ Ty x 60 min - 12 x T
where J is the step of adjustment coefficient [e.g., (1/72) when
the fixed time-scale is 6 h].

The adjustment coefficient k is changed as follows.
Scenario 1: The time-scale is unchanged

(16)

k=1. (17)
Scenario 2: The time-scale would be reduced
k=Jxh h=1,2,3,...,H (18)

where / is the number of times to change the adjustment
coefficient. H is the total number of times (e.g., the maximum
value of H is 72).

Sometimes, it is hard to make the LG, s based on NN just
equal to the LG, max, With the increase of A, the time-scale
aims to satisfy

N X LGe max < LGc,f < LG¢ max (19)

where 7 is the judgment coefficient close to 1. At this
time-scale, the prediction for confidence interval of forecast
error LGy is just equal to or a bit less than the threshold for
confidence interval of forecast error LG max-

In Scenario 2, the time-scale is constantly changed with
respect to the corresponding wind speed, solar radiation, fore-
cast method, and day types (see the Appendix); when the
prediction for confidence interval of forecast error LGy and
the threshold for confidence interval of forecast error LG, max
firstly satisfy (19), T, is kept unchanged, and then goes to next
dispatch schedule.

The above procedure for adaptively adjusting dispatch
time-scale is illustrated in Fig. 2.

The developed time-scale adaptive dispatch method is par-
ticularly suitable for look-ahead dispatch [23], [24], which
makes dispatch schedules for future horizons ranging from
minutes to hours.

It is worth noting that not all the scheduled points will be
fully executed within a time-scale. To better follow the indus-
try practices, the dispatch schedule is triggered according to
the following situations.

1) New dispatch schedule should be worked out when
the current dispatch schedule is near the end. In order
to facilitate the transition, the new dispatch schedule
is worked out when the current scheduled points are
executed at 80% of its whole cycle (0.8 x T,).

2) Considering the high volatility in the REPSS, the new
dispatch schedule should be worked out immediately
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Fig. 2. Prediction for confidence interval of forecast error and adaptive
adjustment of dispatch time-scale.

when there is a large deviation between the actual oper-
ation situation and the planed operation situation. For
example, the system has a transition between island
mode and grid-connected mode, the unit operation state
is different from the dispatch schedule.

To summarize, not all the scheduled points will be
executed in practice, and the reschedule of dispatch should
be considered. However, those unexecuted points could still be
useful. On the one hand, how many scheduled points will be
not executed in practice is unknown in advance. On the other
hand, it is beneficial to connect the current dispatch schedule
to the next dispatch schedule since the planed dispatch sched-
ule has a longer time horizon than practical dispatch schedule.
So as to avoid condition that the dispatchable resources are
exhausted in current dispatch schedule and make the next
dispatch schedule infeasible or has a low optimization level.
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C. Economy Analysis of Spinning Reserve

The spinning reserve is mainly aimed at improving the sys-
tem reliability and reducing the power loss. However, it cannot
be taken for granted that the more spinning reserve, the better.

1) If the spinning reserve is insufficient, it would be diffi-
cult to meet the load demand, thus resulting in a lack
of ability to deal with emergencies. It is not conducive
to the safe and economical operation of power system,
as it reduces the system reliability and increases the
unreliability cost.

2) If the spinning reserve is redundant, the reliability of
the system would be improved. However, some spin-
ning reserve will be idle and do not really participate in
practical scheduling to balance load, leading to the waste
of reserve resources and the increase of operation costs.

The spinning reserve will not bring direct economic benefits,
if it does not participate in the practical dispatch schedule.
Because the REPSS is far from main grid and mainly operates
in island mode, one mainly considers the fuel cost (assume all
the spinning reserve participates in practical scheduling) but
do not consider the opportunity cost between REPSS and the
main grid.

The economic problem of spinning reserve is the total cost
of dispatchable generators which satisfy the operation con-
straints of power system in a time-scale. Therefore, it can be
formulated as follows:

2
Air = ai(Pi,t + Fi,t) + bi(Pi,t + Fi,t) + ¢ (20)
Biy = aiP}, + biPis + ci 1)
Ciy = Ay — Biy (22)

where A;; is the cost of ith dispatchable generator after con-
sidering the spinning reserve at time ¢, B;, is the cost of
ith dispatchable generator before considering the spinning
reserve at time f, C;; is the cost of ith dispatchable gener-
ator for provide spinning reserve at time ¢, a;, b;, and c¢; are
the cost coefficient of ith dispatchable generator, and F;; is
the spinning reserve of ith dispatchable generator at time z.

The objective function about economy of spinning reserve
under the reliability is estimated as follows:

T m
min Z Z Ci.

=1 i=1

(23)

IV. CASE STUDY
A. System Data

The test case consists of 550 kW nondispatchable generation
composed by a 200 kW PV farm and a 350 kW WT. The dis-
patchable generators include two micro gas turbines, two FCs
and a BT. Table I summarizes the system parameters, which
are adopted from [25]. Here confidence coefficient « is 0.96,
power system reliability y is 0.98, and judgment coefficient
n is 0.98.

Forecast error of load, wind power, and PV can be expressed
by zero mean normal distribution as shown in [26]-[28].
Assuming that the forecast errors of loads and nondispatch-
able renewable generation are unrelated, the total forecast error
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TABLE I
PARAMETERS FOR THE TEST REPSS

Powersource =~ PV~ WT MTI MT2 FCl  FC2 BT
Minimum
outpat (kW) 0 0 10 5 4 3 30
Maximal
outpat(EW) 4 50 100 80 80 30 30
Ramp % %
ratocW/E) 180 160 160 150 200
F"rcer‘it‘;“tage 0003 004 001 0006 0006 0015 0.002
a(¥/AkWh) 003 006 004 005 003 0035 0.05
b (¥/kWh) 0 0 026 03 02 0225 0
¢ (¥/h) 0 0 7 6.1 12 75 0
Number 5 7 2 1 1 1 1
600

500
400
300t o A}
200

100

Forecast and actual value of load and
non-dispatchable renewable generation (kW)

Sy T S TR S BN N

0 06 12 18 24 06 12 18 24 06 12 18 24 06 12 18 24 06 12 18 24
Time (Hours)
--------- forcast of load e forcast of wind power wm forcast of solar power

= actual of load === actual of wind power
= system forecast error

= gctual of solar power

Fig. 3.
five days.

Forecast and actual of load and nondispatchable generation during

of the equivalent load in REPSS can be modeled by normal
distribution function.

The 5-day forecast and actual values of load and nondis-
patchable renewable generation are illustrated in Fig. 3.

B. Dispatch Schedules With Fixed and Adaptive Time-Scale

The probability of losing two or more generators simultane-
ously is very low. Therefore, it is assumed that only one unit
(e.g., one of MT1) may have forced outage (S;; = 0).

Fig. 4 shows the forecasted load and nondispatchable
renewable generation in the sixth day.

Initially, a fixed time-scale T is set to be 6 h in the study.

An optimization algorithm (optimal power flow based on
particle swarm optimization) is applied for dispatch sched-
ule to account for uncertainties to the balance of reliability
and economy. On the condition of reliability, and considering
the relevant operation constraints (power balance constraints,
generator output constraint, spinning reserve constraints, and
ramp rate constraints), the optimization algorithm is intent
to iteratively search the global optimal solution for the pur-
pose of spinning reserve economy. In addition, when a certain
time-scale is made, some other optimization methods can also
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Fig. 4. Forecasted load and nondispatchable generation in the sixth day.
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TABLE 11
CONFIDENCE INTERVAL AND RESERVE CAPACITY WITH
A FIXED DISPATCH TIME-SCALE OF 6 h
) G G Needed Minimum
imosele S e B R.R,
(kW) (kW) kW) (W)
(00-0(;[—2)6-00) 32.22 51.51 -- 132.34 151.26
(06‘0(121200) 77.46 41.20 -88.01% 177.08 141.03
(12,00T_318.00) 66.95 20.67 -223.90% 166.63 120.57
Ty 29.98 30.25 -- 129.11 130.09

(18:00-24:00)

be used to work out the dispatch schedule, such as robust
optimization method or interval-based method [29]-[33].

Based on the forecast data in Fig. 4, the dispatch schedules
of load and generators with the fixed time-scale are shown
in Fig. 5. It can be observed that the dispatch constraints
have been considered in the study. Also, it can be seen from
Fig. 5 that the time-scale and time interval are fixed all the
time when dispatch time-scale is adopted. And the test system
is dispatched four times per day.
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TABLE III
CONFIDENCE INTERVAL AND RESERVE CAPACITY WITH ADAPTIVE DISPATCH TIME-SCALE
Time-scale . Needed ~ Minimum
before LG&/’ (kW) L Gc,max (kW) E Tlr:grlig?rfei?er LGC:/ (kW) L Gc,max (kW) E Rs,t Ra,t

adjustment J W W)
T,

00:00-06:00 3222 51.51 - 00:00-06:00 3222 51.51 - 132.34 151.26
T, o X

06:00-12:00 77.46 41.20 -88.01% 06:00-09:00 65.39 66.72 1.99% 166.31 166.52
Ts o .

09:00-15:00 61.85 41.20 -50.12% 09:00-12:30 40.61 41.20 1.43% 140.93 141.10
T, ) .

12:30-18:30 60.11 20.67 -190.80% 12:30-17:30 45.38 46.20 1.77% 14586 145.98
Ts o 0

17:30-23:30 50.92 20.67 -146.35% 17:30-18:00 20.27 20.67 1.94% 12032 120.57
Ts

18:00-24-00 29.98 30.25 -- 18:00-24:00 29.98 30.35 - 129.11 130.09

The confidence intervals and reserves with fixed dispatch
time-scale are shown in Table II.

It can be observed from Table II that the forecasted
confidence interval is less than the threshold in dispatch
time-scale 77, larger than that in dispatch time-scale T, T3,
and a little less than that in dispatch time-scale 74 when the
fixed time-scale is adopted. The relative error E (detailed in
the Appendix and considered in Scenario 2) is quite unsta-
ble under fixed time-scale. Spinning reserve requirements are
related to forecasted confidence interval. When the forecasted
confidence interval is large than threshold, it means the avail-
able reserve is insufficient. When the forecasted confidence
interval is equal to or less than threshold, it means the available
reserve is sufficient.

As a comparison, the confidence intervals and reserves with
the adaptive dispatch time-scales are summarized in Table III.

It can be observed from Table III that the forecasted confi-
dence interval is much larger than threshold before time-scale
is adjusted. The relative error E is quite unstable before
time-scale is adjusted, but becomes stable and smaller after
time-scale is adjusted in Scenario 2. Spinning reserve require-
ments are related to threshold [forecasted confidence interval
after time-scale adjustment should satisfy (15)]. Under the
restriction of threshold, available reserve is sufficient all the
time with adaptive time-scale.

By comparing Tables II and III, it can be observed that
available reserve is sufficient all the time with adaptive time-
scale, but, insufficient when forecasted confidence interval is
large than threshold with fixed time-scale (e.g., 06:00-12:00
and 12:00-18:00). When the prediction for the confidence
interval of forecast error LG,y gravitates toward the thresh-
old for confidence interval of forecast error LG, max, the
relative error drops to E € [—0.02,0.02](e.g., 06:00-09:00,
09:00-12:30, 12:30-17:30, and 17:30-18:00). Therefore, the
forecast error of NN is acceptable, and the system reli-
ability can meet the requirement after time-scale adaptive
adjustment.

The dispatch schedules of loads and generators with adap-
tive time-scales are shown in Fig. 6.

The key point of this paper is to obtain a certain time-
scale after time-scales adaptive adjustment. It can be seen from
Fig. 6 that the time-scales are adjusted in different scenarios.

600 LA B s s B B B B s s s

5001

N

2 3001

Load and generations output (kW)
o 4
(

1001.\_\_\‘_‘\‘—};?4 ﬁﬁ
prdl b
por il
= = = =_“
Tl T2 T3 T4 s T6

_100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

012345678 91011121314151617 181920212223 24

Time (Hours)

==Load ====WT ====PV ====MT] ===MT2 FC1 ===BT

Fig. 6. Dispatch schedules with adaptive time-scales.

Meanwhile, the time intervals would be reduced when the
dispatch time-scale is reduced.

By comparing Figs. 5 and 6, it can be concluded that the
length of adaptive time-scale is uncertain and it can be equal
to or less than fixed time-scale. The results are based on the
comparison between the prediction for confidence interval of
forecast error LG,y and the threshold for confidence interval
of forecast error LG, max.

C. Comparison Between Fixed and Adaptive Dispatch
Time-Scale

1) Reliability of Power System: Under the required confi-
dence coefficient (0.96) and REPSS system reliability (0.98),
the actual power supply reliabilities of the two dispatch sched-
ules based on available reserve capacity are shown in Fig. 7.
When the fixed dispatch time-scale is adopted, the actual
reliability of the system is much lower than the expected
value (0.98) during several time intervals (e.g., 8:30-12:00
and 17:00-18:00 under fixed time-scale). On the other hand,
the actual reliability of the system is always higher than
the required value when the adaptive dispatch time-scale is
adopted.
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Fig. 8. Comparison of reserve requirements.

2) Economy of Power System: Under the required confi-
dence coefficient (0.96) and power system reliability (0.98),
the available reserve capacity and spinning reserve require-
ments with fixed and adaptive dispatch time-scale are shown
in Fig. 8. Spinning reserve capacity with fixed dispatch time-
scale often exceeds the available reserve capacity when actual
power system reliability is lower than the required value.
On the other hand, the time-scale adaptive dispatch ensures
that the spinning reserve requirement is lower than the avail-
able reserve all the time.

It can be seen from the above comparisons that the
time-scale adaptive dispatch can significantly improve the reli-
ability and operational performance of REPSS where large
uncertainties permeate.

Since the REPSS is far from the main grid and mainly oper-
ates in island state, an assumption is made to turn on the dis-
patchable generator (MT?2), offsetting the load demand when
the spinning reserve is insufficient, and not from main grid.

The economy comparison of spinning reserve between fixed
time-scale and adaptive time-scale is shown in Table IV.

It can be observed from Table IV that: in Scenario 1,
when the time-scale is equal to the fixed time-scale
(e.g., 00:00-06:00 and 18:00-24:00), both the cost and aver-
age cost of spinning reserve under adaptive time-scale is equal
to that in fixed time-scale. In Scenario 2, when the time-
scale is reduced (e.g., 06:00-09:00, 09:00-12:30, 12:30-17:30,
and 17:30-18:00), both the cost and average cost of spinning

IEEE TRANSACTIONS ON SMART GRID, VOL. 7, NO. 2, MARCH 2016

TABLE IV
COMPARISON OF SPINNING RESERVE ECONOMY BETWEEN
FIXED TIME-SCALE AND ADAPTIVE TIME-SCALE

Fixed Cost Average Adaptive Cost Average
time-scale (¥) cost time-scale (¥) cost
(X/h) (¥ /h)
T, T
00:00-06:00 225598 376.00 00:00-06:00 2255.98 376.00
T, T,
06:00-12.00 357500 59585 | B 124816 41605
T; T
12:00-18:00 3209.62 534.94 09:00-12:30 1324.93 378.55
Ty T,
Is00ma00 2178836310 | b 193486 38697
Ts
730800 14905 298.10
Ts
8005400 217858 363.10
00:00-24:00 11219.27 467.47 00:00-24:00 9091.56 378.82

reserve under adaptive time-scale is lower than that in fixed
time-scale. For the large uncertainties in REPSS on islands in
a longer time horizon which contains the reduced time-scale
(e.g., 00:00-24:00), both the cost and average cost of spinning
reserve under adaptive time-scale could be lower than the cost
of spinning reserve under fixed time-scale.

V. CONCLUSION

An effective dispatch schedule depends on a credible fore-
cast which is mainly influenced by time-scale and ambient
environment. In order to improve the reliability and achieve
an economic dispatch of REPSS, a time-scale adaptive dis-
patch method is presented to deal with the uncertainties of
power and renewable power output. The confidence coefficient
and confidence interval are adopted to assess the credibil-
ity level of forecasts error. It has been worked out that the
time-scale of dispatch schedules for REPSS would be dynam-
ically adjusted to improve system reliability and economy.
To achieve adaptive dispatch, the prediction for confidence
interval of forecast error should be forecasted at first. Then
the dispatch time-scale is adjusted online by comparing the
forecasted confidence interval with an appropriate threshold.
The adaptive time-scale is adjusted under two different sce-
narios. And the length of adaptive time-scale can be equal to
or less than the fixed time-scale. Comparative studies for the
fixed time-scale dispatch and the adaptive time-scale dispatch
are performed. The results show that the adaptive time-scale
dispatch significantly dominates the fixed time-scale dispatch
in terms of system reliability and spinning reserve efficiency.

The method can also be applied to other microgrids and
active distribution network where there is high penetration of
distributed generation.

APPENDIX
PREDICTION FOR CONFIDENCE INTERVAL OF
FORECAST ERROR

The method of the prediction for confidence interval of
forecast error LG,y based on NN is shown as follows.

The confidence interval of forecast error is an impor-
tant parameter for credible and efficient system operations.
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Fig. 9. NN for forecasting of the confidence interval.

Typically, predicting the confidence interval is a critical step
in the time-scale adaptive dispatch schedule.

The confidence interval of forecast error is mainly influ-
enced by the following factors.

1) Time-Scale: With the growth of the time-scale, the fore-
cast error will gradually increase, and the confidence
interval will increase. The shorter the time-scale, the
smaller the forecast error, and the smaller the confidence
interval.

2) Ambient Environment (Solar Radiation and Wind
Speed): Generally speaking, when ambient environment
becomes harsh, the forecast error will increase and the
confidence interval will increase.

3) Other Factors (Forecast Method and Day Types): The
forecast accuracy is decreasing in the sequence of
ultra short term forecast method, extended short term
forecast method, and short term forecast method. The
change of day types can also influence the forecast
error.

Basically, the confidence interval is a highly nonlinear func-
tion of these factors. For this reason, NN can be a potent
approach to predict the confidence interval.

So far, back propagation (BP) algorithm has been the
most successful method for NN. Reference [34] introduces
a Levenberg—Marquardt-based (LM) BP algorithm, which
combines the advantages of the steepest descent method with
the Gauss—Newton method and has fast convergence speed
and high prediction accuracy. Therefore, the LM-based NN is
adopted to predict the confidence interval.

The forecasted confidence interval can be expressed as

LGC.f = g(T7 Sf,T’ Wf,Ta MT9 DT) (24)

where LG,y is the prediction for confidence interval of fore-
cast error, T is the time-scale for dispatch, Sy 7 and Wy r
are the forecasted solar radiation and wind speed during T,
respectively, M7 and D7 are the forecasted method and day
types during 7, respectively. Notice that more factors can be
added in g(e) for higher granularity analysis.

The NN consists of input layer, hidden layer, and output
layer [35], as shown in Fig. 9. Here the input and output
vectors of the NN are expressed as follows:

Y= [T, St.r. Wr.r, M7, DT] 25)
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0 = [LG.y] (26)

where Y and O are the input and output vectors, respectively.
When the time-scale needs to be reduced, the forecast error
of NN is estimated as follows:

27

where E is the relative error about the confidence interval of
forecast error.

The threshold for confidence interval of forecast error
LG max 1s restricted by the available reserve. Constantly
adjust the time-scale and its corresponding solar radiation,
wind speed, forecast method, and day types, and until
E € [-0.02,0.02]. In this way, we think that the forecast
error of NN can be acceptable.
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