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Abstract—Doubly fed induction generator-based wind turbines are
vulnerable to subsynchronous oscillations. Subsynchronous control
interaction is a recently emerging subsynchronous oscillation phe-
nomenon, which means the interaction between the rotor-side con-
verter of a doubly fed induction generator-based wind turbine and
a fixed series-compensated transmission line. In this article, sub-
synchronous control interaction is quantitatively analyzed, and an
subsynchronous control interaction-triggered condition is created to
detect the existence of subsynchronous control interaction. The sub-
synchronous control interaction-triggered condition is then combined
with impedance scanning to effectively identify the induction gener-
ator effect and subsynchronous control interaction. Further, a sub-
synchronous control interaction-triggered damping control strategy
is developed to effectively alleviate subsynchronous control interac-
tion. The mitigation ability and the robustness of the presented control
strategy are, respectively, verified by time-domain simulation.

1. INTRODUCTION

Due to the economic growth and environmental concerns for
traditonal power generation, renewable energies, such as pho-
tovoltaic [1], wind [2], and tide [3], have exhibited their
promising benefits for the electric power industry. Among
those renewables integrated into the power grid, wind power
generation has so far been the top choice due to its high tech-
nical viability and energy density [4]. Since wind energy is
normally generated in remote regions, in many cases, the elec-
tric power produced by wind farms has to be delivered to
load centers through long-distance transmission lines. A ma-
jor bottleneck of long-distance wind power delivery is the
limited transmission capacity of transmission lines. To solve
this problem, series capacitor compensation is widely used to
improve transmission capacity by reducing the equivalent re-
actance of a transmission line [5]. However, as do conventional
steam-turbine generators [6, 7], wind turbines also suffer from
the risk of subsynchronous oscillation (SSO) when they are
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connected radially by the fixed series-compensated transmis-
sion lines [8—11].

Unlike steam-turbine generators, the shaft stiffness of a
wind turbine is generally small; thus torsional interaction (TI)
is not the main SSO problem in a wind turbine. By contrast,
the induction generator effect (IGE) and subsynchronous con-
trol interaction (SSCI) would affect wind turbines more seri-
ously [12], which are not related to the shaft but determined
by the resonance frequency of the power grid. In this article,
the two types of SSO problems pertinent to wind generators,
i.e., IGE and SSCI, are referred to as non-torsional SSO. Of
the four major types of wind turbines, doubly fed induction
generator (DFIG) based wind turbines are most vulnerable to
non-torsional SSO [13] because the stator of the induction
generator is directly connected to the power grid. the SSCI is
a newly discovered SSO phenomenon for wind power plants,
which is primarily caused by the interaction between the rotor-
side converter (RSC) of a DFIG-based wind turbine and a
fixed series-compensated transmission line. In 2009, the first
practical experience of SSCI in a DFIG-based wind farm oc-
curred in the territory of the Electric Reliability Council of
Texas (ERCOT). It was caused by an unplanned outage that
resulted in fast-growing current and voltage oscillations and
the damage of crowbar circuits [14, 15]. That event motivated
relevant researchers to analyze and identify SSCI. A two-step
method that combines impedance scanning and time-domain
simulation to identify SSCI was introduced in [16]; however,
it is quite challenging to use this method to separately ob-
serve the SSCI due to similar characteristics with IGE. Also,
two kinds of steady-state models involving eigenvalue anal-
ysis were proposed to identify IGE and SSCI in [17]. The
authors demonstrated inconspicuous differences between the
two models, so SSCI related to the dynamic of the RSC could
not be emphasized. Thus, some other methods should be fur-
ther considered to separate SSCI from IGE more effectively.

On the other hand, mitigation of SSCI after detection should
be taken into consideration. Mitigation methods that focus on
the RSC, for example, regulating the controller parameters,
adding low-pass filters, and SSCI damping control in the RSC,
were introduced in [18]. However, these kinds of method may
influence the main function of the controller in normal op-
eration, since the SSCI mitigation function exists throughout
even when there is no SSCI. Another method was presented in
[18] that added extra devices, such as bypass filters, across the
series capacitor or installing protection into the system. The
disadvantage of these methods is the additional expenses. A
static VAR compensator (SVC) with a damping controller was
developed in [19], but like the latter method, it is costly due
to the addition of extra devices. A supplemental control was
introduced in the reactive power control loop of the grid-side

converter (GSC) of a DFIG-based wind turbine to solve the
SSO problem in [20]. However, for the SSCI problem, which is
mainly related to the RSC with higher controllability [17], the
damping capability from the GSC could not be provided suf-
ficiently, as analyzed in [21]. Hence, a two-degree-of-freedom
control strategy used in the RSC was proposed in [22] to im-
prove the IGE handing capability of the system, although its
handing capability for SSCI was not analyzed in detail.

In this article, the system including a single DFIG-based
wind turbine connected to a fixed series-compensated trans-
mission line is used to analyze the SSCI. According to the
analysis, an SSCI-triggered condition including the dynamic
of RSC is developed to identify the existence of SSCI. The
condition is combined with an impedance scanning approach
to effectively separate IGE and SSCI, which is verified by time-
domain simulation. A time-domain simulation is also utilized
to verify the SSCI-triggered condition with different wind
speeds, series compensation levels, as well as the outer and
inner gains of the RSC controller. An SSCI-triggered damp-
ing control strategy is proposed and designed to mitigate SSCI
effectively. The mitigation ability of the proposed control strat-
egy is verified by time-domain simulation with the changes of
wind speed and series compensation level. And the robustness
and advantage compared with other methods of the method
are analyzed.

This article is organized as follows. Section 2 elaborates on
the SSCI phenomenon and proposes an SSCI-triggered con-
dition. Section 3 presents a comprehensive method to identify
IGE and SSCI. Section 4 analyzes the characteristics of SSCI
and verifies the SSCI-triggered condition. An SSCI-triggered
damping control strategy is proposed in Section 5, followed
by Section 6, which concludes the article.

2. SSCI PHENOMENON ANALYSIS

SSCl is the interaction between the RSC controller of a DFIG-
based wind turbine and the series-compensated line. It can
cause fast undamped SSO of the voltage, current, and power
output by the DFIG-based wind turbine generator, as shown in
Figure 1 [14]. Recently, similar phenomena have happened in
some wind farms of China [23], so the problem is a concern.
In the following analysis, the mathematical model including a
DFIG-based wind turbine connected to a series-compensated
line is built, and the interacting path and the triggered condition
of SSCI are analyzed in detail.

The stator equations of a DFIG adopt a generator conven-
tion, while the rotor equations of DFIG adopt a motor conven-
tion. Under the dg rotating coordinate system, the equations
of the voltage and flux linkage in the stator and rotor [24] can
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FIGURE 1. Oscillography recorded in an SSCI event [14].

be expressed as

{ Usg = —Rgisq — p¥sa + wswsq (1)
Usqg = _Rsisq - pllfsq — Wy Wsa ’
{urd = Ryiyq + p¥ra — (05 — wr)%q )
Urg = Rrirq +pqu + (a)s - wr)wrd ’
wsd = Lsisd - Lmird
. . 9 3
{ wsq = lesq - Lmqu ®)
wrd = _Lmisd + L,iyq
, 4
{ qu = _Lmisq + Lrirq ( )

where

p is the differential operator;

Usg, Usq, Isq, and iy, are, respectively, the d and g components
of the voltage and current of the stator;

Uyd, Urg, 1rg, and i,, are, respectively, the d and g components
of the voltage and current of the rotor;

Vsd» Vs> ¥ra, and V¥, are, respectively, the d and ¢ compo-
nents of the flux linkage in the stator and rotor;

ws and o, are, respectively, the electrical angle speeds of the
stator and the rotor;

R, and R, are, respectively, the resistors of the stator and rotor;
and

Ly, L,,and L,, are, respectively, the equivalent self-inductances
of the stator and rotor and the mutual inductance.

Ly = Lg 4+ 1.5Lym, Ly = Lyy + 1.5Ly, and Ly, = 1.5L,,,
where Ly, L,,, and L,,, are, respectively, the leakage induc-
tances of the stator and rotor and the mutual inductance.

The DFIG adopts a stator flux oriented method by which
stator flux v, is forced to be in phase with the d-axis under the
dq rotating coordinate system. Therefore, d- and g-axis stator
flux components can be expressed as

{wstWI )

Vg =0 )

FIGURE 2. RSC control block diagram of a DFIG.

Assuming the stator flux is constant and the stator resistor
is omitted, according to Eq. (1), the d- and g-axis stator voltage
components are, respectively,

{ Ugg = 0
Usqg = —ws Yy -
With Egs. (5) and (6) substituted into Egs. (2)—(4), the d

and ¢ incremental components of the voltage and current can
be expressed as

(6)

{ Aupg = Ry Aipg — ar(w5 — 0, )Aipy + arpAiyg )
Aupy = R Aipy + ay(wy — w;)Airg + a pAiyy, |
Aipg = —Ai
{ R = Zqpar ®)
Aipy = —Aig/ay

where

Au,g and Au,, are, respectively, the d and ¢ incremental com-
ponents of the voltages in the rotor;

Ai,y and Ai,, are, respectively, the d and ¢ incremental com-
ponents of the currents in the rotor;

Aig and Al are, respectively, the d and g incremental com-
ponents of the currents in the stator; and

wyg and w, are, respectively, the electrical angle speeds of the
stator and rotor.

Additionally, a; =—L,,/Lyand a, = L, — L?,,/L,.

Since the SSCI is mainly caused by the interaction between
the RSC of the DFIG and the power grid, the RSC control of
the DFIG shown in Figure 2 is considered to analyze SSCI,
and the dg decoupling closed-loop control is adopted [21, 25].
In Figure 2, the constant reactive power control is used in the
d-axis, while the active power acquired from the maximum
wind tracking is provided as the reference value of the con-
trol in the g-axis to regulate the active power output by the
DFIG.

According to Eq. (7) and the control strategy shown in
Figure 2, the rotor incremental current equations in the d- and
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g-axes are

{ apAira=[—Aqs(kg1+ki1/p)/ar — Airal(kga + kiz/ p)
a2pAirq = [_Aps(kgl +kil/p)/al - Airq](ng + ki2/p) '

)
where Ag, and Ap; are, respectively, the incremental reactive
and active powers output by the DFIG; kg1,ki1,kg2, and k;»
are, respectively, the outer and inner loop gains of the RSC
controller.

The system structure diagram including a single DFIG-
based wind turbine connected to a fixed series-compensated
transmission line is shown in Figure 3.

Assuming the voltage at the terminal of the DFIG in Fig-
ure 3 is perfect sine, the a phase voltage can be expressed
as

Usqg = ﬁUS’ sin(wst + ¢us), (10)

where U, andg,, are, respectively, the RMS value and the
initial phase of the fundamental voltage.

When there are three-phase symmetrical resonance cur-
rents at the subsynchronous frequency w,, existing in the fixed
series-compensated transmission line caused by the system
disturbance, without considering the harmonic influence, the
a phase current output by the DFIG can be expressed as

isa = \/Els Sin(wst + ¢is) + ﬁln Sin(wnt + ¢in)’ (l 1)

where [ and ¢;; are, respectively, the RMS value and initial
phase of the fundamental current; /,,, w,, and ¢;, are, respec-
tively, the RMS value, angular frequency, and initial phase of
the a phase subsynchronous current.

According to the constant power transformation matrix C
from abc to dg as shown in Eq. (12), the voltages and currents
in the d- and g-axes can be expressed as Eqgs. (13) and (14):

-
3
cos(@st + dus)  cos(wst + us — F)
cos(wst + ¢us + 27”)
x| = sin(wst + dug) — sin(wyt + us — FF) :
— sin(wyt + dus + Z)
1 1 1

2 2 2

(12)

Usgqg = 0
1
{usq = _\/§Uv ' ( 3)

isa = =31 sin(us — ¢is) — /31, sin((@; — @)t +¢)

= I540 + Esd _sub

isq = _\/gls COS(¢L¢S - ¢is) - ‘/gln COS(((")S - a)n)t + ¢1) '

= iqu + iquub

(14)
where ¢; is the difference between ¢, and @;,; isq0 and igg0
are, respectively, the DC components of the stator currents in
the d- and g-axes; and ig 5 and iy, g are, respectively, the
subsynchronous components of the stator currents in the d-
and g-axes at the frequency wy; — w,. Due to the assumption
of symmetry, there is no supsynchronous current in the d- and
g-axes.

Assuming the controller can track the fundamental active
and reactive powers perfectly, in the dg frame, the incremental
active and reactive powers output by the DFIG can be calcu-
lated as

{ Aps = 3Us 1, cos[(ws — wp)t + ¢;] = _ﬁUsiquub
Agy = 3U 1, Sin[(ws - wn)t +¢il= _ﬁUsisdJub '
(15)

On one hand, the active and reactive power fluctuations in
Eq. (9) can be excited at the frequency wy; — w, by the three-
phase subsynchronous currents at the frequency w,. §¢g; and
dps are, respectively, used as the RSC controller inputs in the
d- and g-axes, passing through the proportional and integral
regulators in the inner loop and forming the reference values
of the rotor currents in the d- and g-axes.

On the other hand, the rotating magnetic field induced by
the three-phase subsynchronous currents of the stator cuts the
rotor windings of the DFIG. As a result, the three-phase sub-
synchronous currents at frequency w, — w, are induced in the
rotor windings, which have frequency w; — w, seen from the dg
frame. According to Egs. (2) and (8), the d and ¢ incremental
components in the rotor currents can be expressed as

{ Al:rd = l:rdJub = _l:sdJub/al ) (16)
Aqu = lrq_sub = _lquub/al

Actually, Eq. (7) could also describe the transfer path of
the subsynchronous components in the RSC control shown in
Figure 2 by substituting Egs. (9), (15), and (16) into Eq. (1).
Then the d and ¢ subsynchronous voltage components caused
by the RSC controller could be obtained as

{ Aurg = Reira_sup — a2(@ws — & )irg _sub — Kira_sup (17)

Attrg = Ryirg_up + arx(ws — & Yira_sup — Kirg_sup

where

k; k; K K
K= [ﬁux(kgw?l)ﬂ] (kg2+?2) =K, +?2+—3
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and

Kl = \/ikaglng + kg2
K> = V3U(kgikir + kirkg) + ki - (19)
K3 = /3Uski ki

The subsynchronous voltages at frequency w; — w, shown
in Eq. (17) are then imposed on the rotor windings, and new
subsynchronous currents are produced. Equation (17) is sub-
stituted into Eq. (7), and the first-order linear differential equa-
tions are solved, as shown in Eq. (20):

Rl‘Aird - aZ(a)s - wr)Airq + aZPAird
31, :
= a_l[R" sin((ws — wp)t + ¢;) — ax(wy — w;)
cos((wy — w,)t + &)
(K + £+ B sin((@, — o)1 + )]
RrAirq + a2(ws - a)r)Aird + aZPAirq =
BLIR, cos (@, — )t + ¢1) + ax(os — ;)
sin((wy — w,)t + ¢;)
—(K1 + 22 + 73) cos((@s — @)t + ¢))]

. (20)

Then the solution of the first-order linear differential equa-
tions is

Alyg = _ﬁ% sin((ws — wn)t + ¢i + @)

Airy = —VBUE cosw, —wnt + 91 +9) OV

where ¢ and |k| are, respectively, the phase deviation and
the amplified amplitude compared with the original resonance
current in Eq. (11). ¢ and |A| can be calculated by Egs. (22)
and (23):

Rw[K; — ar0i] — aawn[K3 — wi K]

B [Ks — axwio3] + R [0}(R, — K1) + 18]2)

¢ = tan~!

R, — K)o’ +K
h = | Doy K | (23)
wi[R, cos ¢ — arw, sin @]

where w;, w,, and w3 follow Eq. (24):

W) = wy — W,
w) = —w, . (24)
w3 = Wy — W

According to Eq. (16), the subsynchronous currents in the

rotor windings in Eq. (21) caused by the RSC controller further
induces the subsynchronous currents in the stator windings as

{ Aigg = N3 || I sin((w; — @)t + ¢; + ¢)
Aisq = \/3 |h] 1, cos((ws — wy)t + ¢i + @) '

Transforming the currents in Eq. (25) into the abc reference
frame, the a phase subsynchronous current induced in the
stator winding is

AiSaJllb = \/E |h| [n Sin(a)nt + ¢in - ¢ + 7[)' (26)

(25)

Grid with series

” f..m .\‘u{:(ﬂ)u)
| DFIG [ St jice __I" compensated

) I transmission lines
Rotor side

T
Measurement, abe-dq coordinate
transformation and power calculation

Ap\( Wy~ a)n) | AQ\( - a)h‘)

- Controller system of
Measurement and &I.,,,(( @, (0”) rotor side converter and
= abc-dq coordinate -, — ——— —7" dg-abc coordinate
transformation éi"ff( Wy~ a)”)
i .\-r:_.\'uh{ (/S (UH)

AH ru( W= a}n)

transformation
T
|

Firing pulses |

—

Rotor side converter

FIGURE 4. SSCI block diagram.

If the current in Eq. (26) increases the original resonance
current containing the current in Eq. (11), the disturbance
will be further amplified and the subsynchronous current at
frequency w, will be gradually increased due to the pos-
itive feedback. Subsequently, the mutual excitation will be
formed between the RSC controller of the DFIG and the series-
compensated transmission line, which can lead to fast-growing
oscillations of the active and reactive powers output by the
DFIG-based wind turbine. According to the analysis above,
the condition that triggers the fast growing oscillation can be
expressed as

Mag V2 1] Ly sinnt + Gy — ¢+ 7) + ~/21, sin(et

+ ¢} > Mag {V21, sin(@,t +¢in)| = V2L, 27)

Then the following can be obtained:

cos¢p < |Z—| (28)

Hence, the SSCI can be illustrated using the diagram shown
in Figure 4. When there is subsynchronous current in the series-
compensated transmission line due to the disturbance, the RSC
controller will be influenced due to the introduced active and
reactive power controls. On the other hand, the subsynchronous
current can also affect the inner loop of the RSC controller by
inducing the subsynchronous current into the rotor. As a result,
the RSC controller feeds back its influence to the DFIG and
the grid; it then increases the subsynchronous current in the
transmission line if the condition in Eq. (27) or (28) is satisfied.
Figure 5 shows different curves of the variable cosg-|k|/2 as a
function of the resonance frequency with different wind speeds
and different inner and outer loop gains. It can be seen from
Figure 5 that the system is vulnerable to SSCI with larger
resonanace frequency, i.e., higher compensation level, lower
wind speed, and larger inner and outer loop gains.
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function of the resonance frequency: (a) different wind speeds,
(b) different outer loop gains, and (c) different inner loop gains.

3. IDENTIFICATION FOR IGE AND SSCI

IGE and SSCI can be both classified into a non-torsional
SSO, which is irrelevant to the shaft of the DFIG. TI, which
rarely happens for DFIG-based wind turbines, can be easily
identified due to its frequency correlation with the natural

R/s L, Ly Lr R, L, C

Yy A——Y Y

]
R svslem

::> y - ’
L.\j 'stem
i

FIGURE 6. Equivalent circuit used for IGE analysis.

frequency of the shaft. However, according to the analysis pre-
sented in Section 2, SSCI happens among the DFIG, the RSC
and its controller, and the series-compensated transmission
lines. While the IGE is just the interaction between the DFIG
and series-compensated transmission lines. This concludes
that the path of the IGE is contained in the path of the SSCI,
as shown in Figure 3. Hence, an effective method should be
proposed to identify the real reason of non-torsional SSO and
proper mitigation methods adopted separately. Impedance
scanning and the SSCI-triggered condition are combined
to separate the two non-torsional SSO phenomena in this
section. Furthermore, the shaft model with a single cylinder
for excluding TI is used to do the time-domain simulation to
verify the proposed method.

3.1. IGE identification

The equivalent circuit of the induction generator shown in
Figure 6 is used to identify IGE by impedance scanning. In
Figure 6, L7 denotes the leakage inductance of the transformer;
R;, L;, and C; are, respectively, the resistance, inductance
and capacitance of the series-compensated transmission line;
Rgysiem and L. are, respectively, the equivalent resistance
and inductance of the system. If the equivalent resistance is
negative at the point where the equivalent reactance approaches
to zero, according to the principle of IGE, it will appear in this
system.

The parameters of the induction generator are shown in
Table 1, where the impedance of the induction generator is
normalized by the rated power and voltage of the DFIG. With
a 40% series compensation level, the equivalent reactance and
equivalent resistance varying with the frequency are shown
in Figure 7, respectively, under the ratios of the reactance
to resistance 1.5 and 3.0. When the ratio of the reactance
to resistance is 1.5, the equivalent resistance is positive at the
resonance frequency of 11 Hz, meaning there is no risk of IGE.
When the ratio of the reactance to resistance is increased to
3.0, the equivalent resistance shows negative at the resonance
frequency, meaning that there is a risk of IGE.

Time-domain simulation is used to further verify the con-
clusion above. To exclude the SSCI, the RSC and GSC con-
trollers are both blocked, and the three-phase rotor windings
are shorted. Now the DFIG is equivalent to a general induc-
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Parameter Value Parameter Value
Rated power 1.5 MW Rated power 1.5 MW
Rated voltage 0.69 kV Blade length 35m
Grid frequency 50 Hz Maximum performance coefficient 0.44
Leakage reactance of the stator 0.177 p.u. Air density 1.225 kg/m3
Resistance of the rotor 0.1 pu.
Leakage reactance of the rotor 0.116 p.u.
Excitation reactance 4.68 p.u. TABLE 2. Parameters of the wind turbine.
Parameter Value
TABLE 1. Parameters of the Induction generator.
k1 0.05
0.01 = T T - ki 1.0
= g, | X/Ri=1.5
o T Equivalent reactance kg2 0.075
w S Equivalent resistance ki 1.0
2 0 -
E e TABLE 3. PI parameters of the RSC controller.
-0.01 = — 2
5 15 20 25
0.0l T T -
-~ X/Ri=3.0
C: \“\- . lr lr
= L Equivalent reactance
2 0 = / ’/Equi\-'alcnt resistance .
= s
3 - 2
2 T | X/R=15
P e N = :
-0.0 15 |‘5 N 2-0 = g E 1 /Actwe power
Frequency (Hz) £ E Reactive power
FIGURE 7. Impedance-frequency characteristic of the system - .
at subsynchronous frequencies. 04 4.5
2 :
=z A/R=30 Active power
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risk of SSCI under the two different ratios of the reactance to
resistance, which is further verified using time-domain simula-
tion. Considering the RSC and GSC controllers, when series-
compensated capacitor bank I is switched on, the active and
reactive power oscillations are shown in Figure 8(b).

Time (s)

(b)

FIGURE 8. Active and reactive power with different ratios of
reactance to resistance: (a) analysis for IGE and (b) analysis
for both IGE and SSCI.
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When the ratio of the reactance to resistance is 1.5, in which
condition there is no IGE, the fast-growing oscillations of the
active and reactive powers shown in Figure 8(b) conclude the
existence of SSCI. If the ratio of the reactance to resistance
is increased to 3.0, in which condition IGE exists as shown
in Figure 8(a), the active and reactive powers have significant
fast-growing oscillations over that in Figure 8(a), indicating
that IGE and SSCI are determined to coexist. Therefore, SSCI
can be identified effectively, regardless of whether IGE exists.

4. CHARACTERISTIC ANALYSIS OF SSCI

As it can be seen from Egs. (22), (23), and (28), the existence
of SSCI mainly depends on the rotating speed of the DFIG,
which can also reflect wind speed V, the disturbance frequency
(i.e., the series compensation level k), and the RSC controller
parameters, especially the controller gains. The system in
Figure 3 is used to further verify Eq. (28) by time-domain
simulation.

It can be seen from Figures 9(a) and 9(b) that the effect
of SSCI is gradually reduced as the wind speed increases.
And as the series compensation level in the transmission line
increases, shown in Figures 10(a) and 10(b), the effect of SSCI
is gradually increased. Moreover, as seen from Figures 11(a),
11(b), 11(c), and 11(d), the increase of the outer or inner gain
in the RSC controller may also lead to SSCI. Compared with
the outer gain, the seriousness of SSCI is more sensitive to the
change of the inner gain. Additionally, the occurrence of SSCI
in the time-domain simulation shown in Figures 8—10 is totally
consistent with the SSCI-triggered condition in Eq. (28) and
Figure 5.

5. SSCI-TRIGGERED DAMPING CONTROL
STRATEGY

According to the characteristics analysis presented in Sec-
tion 4, the inner and outer gains in the RSC controller could
be properly reduced in the allowed ranges to mitigate SSCI.
However, this kind of method is limited, so a supplementary
damping control strategy should be proposed.

Based on the analysis in Section 2 and the simulation veri-
fication in Section 4, the SSCI-triggered condition in Eq. (28)
can be accurately used to decide whether SSCI has happened
in the system. Therefore, the condition can also be adopted
to start a damping control in the RSC controller. This way,
the influence of damping control on the controller can be re-
duced to the minimum in a normal operating condition when
no SSCI exists. On the other hand, the damping control will
not frequently take up the capacity of the DFIG when there is
no risk of SSCI.

The RSC control diagram with the SSCI-triggered damp-
ing control strategy is shown in Figure 12. The RSC control
consists of four parts: the SSCI frequency acquisition, the
SSCI judgment, the damping control, and the dg decoupling
control.

Since the frequency of SSCI varies with the structure or op-
erating condition of the power grid, a method based on a single
SSCI frequency is used in this study to acquire the oscillation
frequency. When there is only one oscillation frequency w, in
the transmission line current, as shown in Eq. (11), the active
and reactive powers could be used to acquire the oscillation
frequency more easily. As shown in Figure 12, the high-pass
filters are used to remove the DC component in the active
power, which corresponds to the fundamental component in
the three-phase currents. The amplitude-frequency and phase-
frequency characteristics of the high-pass filter are shown in
Figure 13. Then oscillation component 5p; in the active power
with frequency w; — w, shown in Eq. (15) remains, and w,, can
be further calculated by the division between the derivative of
dps and itself as shown in Figure 12.

w, and the rotating speed of DFIG w, are both required
to calculate cosg and |4|/2 based on Egs. (22) and (23), and
the status of the damping control can then be determined
according to the condition shown in Eq. (28). A hysteresis
module is adopted in the control strategy shown in Figure 12
with two input thresholds: ¥ min and y max. The input threshold
¥ min 18 properly chosen as a margin considering the parameter
uncertainties, so ¥ mip must be positive. The hysteresis region,
i.e., Ymax — Ymin, 18 properly chosen to avoid a continuous
switching condition. The values of y i, and y max are shown in
Table 4. When the condition is satisfied, the damping control
is inserted into the RSC controller by setting K to 1. The
damping control acquires oscillation components of the active
and reactive powers of the wind turbine by the band-pass
filters. The parameters of the damping control are shown in
Table 4. Since the frequency of the SSCI must be measured
on-line, not every resonance frequency could get the optimal
damping effect. Therefore, fourth-order Butterworth filters
with a wide band are adopted in this control strategy. The
upper and lower cutoff frequencies of the band-pass filters are
designed according to the frequency w; — w, in the range of
subsynchronous frequency shown in Table 4. Furthermore,
the amplitude-frequency and phase-frequency characteristics
shown in Figure 14 are designed to keep the phase variation
and amplified gain as small as possible in the range of the sub-
synchronous frequency. Also, to further enhance the damping
effect, the gains of the damping control in the d- and g-axes are
properly increased without influencing the normal function of
the RSC controller, which are shown in Table 4. Each of the
oscillation components is used as one of the inner loop inputs
in the d- and g-axes, which involve the feedback control for
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damping SSCI. When the condition is not satisfied, the damp-
ing control is blocked by setting K to 0 and the RSC controller
works in normal operating condition (i.e., the constant reactive
power control and the maximum wind tracking control).

The simulation system shown in Figure 3 is used to ver-
ify the effectiveness of the above-mentioned SSCI-triggered
damping control. Assuming IGE and TI problems are better
resolved, the ratio of the reactance to resistance is set to 3.0,
and the shaft model with a single cylinder is adopted in the
simulation. The parameters in Tables 1—4 are adopted in the
following simulation.

Y min 0.05
Hysteresis ¥ max 0.07
Band-pass filter Type Fourth-order Butterworth
Upper cutoff frequency 45 Hz
Lower cutoff frequency 10 Hz
d-axis gain 3
g-axis gain 4

TABLE 4. Parameters of the SSCI-triggered damping controller
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FIGURE 14. Amplitude-frequency and phase-frequency char-
acteristics of the band-pass filter.

Figure 15(a) shows the oscillations of the active and reactive
powers output by the wind turbine and the change of the SSCI-
triggered condition following the change of the wind speed
before the mitigation measure is taken. When the wind speed
is 11 m/s, cosg is bigger than |4|/2, meaning no SSCI will
happen. So at time 10 sec, when series-compensated capacitor
bank I is switched on the transmission lines, the oscillations
of the active and reactive powers are convergent. Hence, with
the decrease of the wind speed, the active power output by the
DFIG decreases and cosg decreases. When cosg goes across
|2]/2, meaning the SSCI-triggered condition is satisfied, the
oscillations of the active and reactive powers begin to grow
and diverge gradually.

Figure 15(b) shows the power oscillations output by the
wind turbine and the change of the SSCI-triggered condition
following the change of the wind speed after the mitigation
measure is taken. When cosg-|A|/2 is equal to ypmin, K is
switched to 1, the damping control is enabled, and the power
oscillations are damped successfully. When the wind speed
stays at 9 m/s, a condition at which the system is vulnerable to
SSCI, the damping control remains able to stabilize the sys-
tem. As the wind speed increases, cosg goes across |4|/2 again,
meaning the SSCI-triggered condition is not satisfied. When
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cosg-|h|/2 is equal to Y max, the damping control is blocked and
the system is still stable.

Figure 15(c) shows the power oscillations output by the
DFIG and the SSCI-triggered condition with the change of the
wind speed as well as capacitor banks I and II switched when
the SSCI-triggered damping control strategy is adopted. Simi-
lar to the scenario above, capacitor bank I is switched on from
time 10 sec. At time 15 sec, when capacitor bank II is switched
on, the power oscillations with the series compensation level
increased, and lower wind speed can still converge quickly
since the damping control remains enabled in the controller,
indicating the effectiveness of the proposed control strategy.

To analyze effects of the parameter uncertainty and verify
the robustness of the proposed method, a 10% increase and
reduction of the original values of the leakage reactance in the
stator and the rotor are, respectively, used in the simulation. It
can been seen from the simulation result in Figure 16 that the
changes in the leakage reactance have small effect on the trig-
gering of the SSCI damping control, and the damping ability
is still very strong.

The method proposed in [18] is used to compare with the
proposed method herein, which respectively, added low-pass
filters to the Py, i,4, and i,, measurement signals in the RSC
controller. It can be seen from Figure 17(a) that the method
of adding low-pass filters could mitigate SSCI with a 40%
compensation level. As the compensation level increases to
60%, as shown in Figure 17(b), however, the method could
not mitigate SSCI effectively compared with the proposed
method, which has better mitigation ability. In addition, since
the damping control is active only if SSCI happens, the
method proposed herein does not influence the work of the
RSC controller in normal conditions compared with other
damping control methods.
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6. CONCLUSION

This article elaborates on SSCI phenomenon that occurs be-
tween the RSC controller of a DFIG-based wind turbine and a
fixed series-compensated transmission line. According to the
analysis, if the original disturbance current is amplified due to
the mutual excitation, SSCI will happen. An SSCI-triggered
condition is proposed by the SSCI analysis. And a method com-
bining the SSCI-triggered condition with impedance scanning
is presented to identify IGE and SSCI, which have a similar
interaction path. Time-domain simulation indicates that the
decrease of the wind speed, the increase of the series compen-
sation level, and the RSC controller gains can increase the risk
of SSCI. Furthermore, time-domain simulation also indicates
that the SSCI-triggered condition can exactly identify the SSCI
problem with the changes of the wind speed, series compensa-
tion level, and RSC controller gains. Also, a damping control
strategy based on the SSCI-triggered condition is proposed and
designed to mitigate SSCI. The simulation results demonstrate
that the SSCI-triggered damping control could effectively mit-
igate SSCI even under the condition of parameter variation.
Compared with other methods, the damping control proposed
in this article could effectively mitigate SSCI at higher series
compensation level.
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