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Analysis and Detection of Forced Oscillation
in Power System
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Abstract—To mitigate forced oscillation and avoid confusion
with modal oscillation, fundamentals of forced oscillation in multi-
machine power system are investigated. First, the explicit formula-
tion of the oscillation is formulated in terms of forced disturbances
and system mode shapes. Then, forced oscillation amplitude,
components and envelope are intensively studied. Consequently,
measures for mitigating the oscillation are obtained. Forced os-
cillation can also be effectively detected and discriminated from
modal oscillation by utilizing its uniqueness of components prop-
erties and envelope shapes. Study results of the 10-machine 39-bus
New England test system and a real-life power system demonstrate
the correctness of theoretical analyses and effectiveness of detection
methods for forced oscillation.

Index Terms—Beat frequency oscillation, eigen-analysis, enve-
lope, Forced oscillation, low frequency oscillation, resonance.

1. INTRODUCTION

EYOND the well-known modal (or natural, free) oscil-

lations that are excited by random load fluctuations and
sudden network switchings [1], sustained forced oscillations
can emerge when power system is perturbed by periodic dis-
turbances at frequencies close or equal to natural frequencies
of system modes [2], [3]. Such oscillations have been observed
from the western North American Power System, US West-
ern Electricity Coordinating Council system, and the Nordic
power system [4]. Compared with modal oscillation, forced os-
cillation exhibits extremely higher amplitude and may cause
catastrophic blackout, especially in the poorly damped operat-
ing condition. The origins of forced oscillation are sinusoidal
in nature, including cyclic loads [5]-[8], electrical oscillations
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due to malfunction of power system stabilizer (PSS) [2] and me-
chanical oscillations of generator turbines [3], [9]. The causes
of mechanical oscillations are complex and strongly related to
thermal process. Specifically, the major contributors may
include unsteady combustion of boiler [10], turbo-pressure
pulsations [11], undesirable steam turbine valve discharge char-
acteristics [12]-[14], etc. Besides, wind power may fluctuate
periodically and becomes a potential forced oscillation source
because of wind shear and tower shadow effects [15], [16]
and vibration of floating offshore wind turbine [17]. There-
fore, forced oscillation becomes not only an important issue of
power system but also one concern of integrating wind energy
into modern power grid.

Since forced oscillation is significantly different from modal
oscillation in nature, sources and control strategies, it is essen-
tial to study its fundamentals and take unique countermeasures
to mitigate it. In addition, the rationale behind the similar ap-
pearances of forced oscillation and undamped modal oscilla-
tion should be fully understood to avoid possible confusion. So
far, forced oscillation is still an open problem in power system
community and few literatures are established on its fundamen-
tals. Methods for detection and frequency estimation of forced
oscillations are proposed in [18]—[21]. A spectral approach is
presented in [22] to distinguish forced and modal oscillations. In
[23], interactions between forced oscillation and system mode
in the context of resonance are studied by numerical simulations
rather than theoretical analyses.

To fill the gap in understanding forced oscillation, this paper
studies the fundamentals of forced oscillation in multi-machine
power system. First, its explicit expression is derived by directly
solving system state equation and formulated in terms of forced
disturbances and system mode shapes. Based on the expression,
amplitude, components and envelope of forced oscillation are
then intensively analyzed. Consequently, measures for mitigat-
ing the oscillation are obtained. Besides, two methods based
on uniqueness of components properties and envelope shapes
respectively are presented for detection of forced oscillation.

The contributions of this paper are threefold. First, how sys-
tem mode affects amplitude of forced oscillation is fully un-
derstood by formulating and analyzing its explicit expression.
Second, a distinction between forced and modal oscillations is
made by comparing their differences in component quantities,
frequencies and damping ratios. It enables one to detect forced
oscillation excited by multiple disturbance sources. Third, the
envelope of forced oscillation is intensively investigated. The
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resultant envelope shapes are desirable for detection of forced
oscillation in the case of single forced disturbance by visual
inspection.

The remainder of the paper is organized as follows.
Section II derives the explicit formulation of forced oscillation.
Its amplitude, components and envelope are analyzed in
Sections III-V, respectively. Studies of forced oscillations in
the 10-machine 39-bus New England test system and a practical
power system are given in Sections VI and VII, respectively.
Section VIII draws conclusions of this paper.

II. EXPLICIT FORMULATION OF FORCED OSCILLATION

In this section, the core of this paper, i.e., explicit formulation
of forced oscillation, is obtained by directly solving system state
equation and reducing the resultant solution.

A. Power System State Equation

The power system model for small signal stability analysis
can be formulated by a set of homogeneous differential and
algebraic equations linearized around an operating point [24]:

T J1 Ax
o =

J 2 J 4 Az
where € R"*! is the vector of system state variables, and z
is the vector of algebraic variables. J;—J, are sparse Jacobian
matrices. The system state equation can be obtained from (1) by
eliminating the vector of algebraic variables:

A = (J, — JoJ ' J3) Az = AAx )

ey

where A is the system state matrix.

B. Solution of System State Equation

Physically, periodic and forced disturbances mean there exists
a certain amount of disturbed mechanical or electromagnetic
power imposed on generator shaft. Accordingly, the dynamics
of the power system can be described by superimposing a non-
homogeneous term on (2).

Az(t) = AAz(t) + Bu(t) 3
Ay(t) = CAx(t) ©)

where B and w(t) are identity input matrix and forced dis-
turbance vector, respectively. The forced disturbances on m
generators have the form of u; = AP, sin(w;t), [ =1, ..., m.
AP, and w; are magnitude and frequency (in rad/s) of the ith
disturbance, respectively. C = [¢1, -+, ¢,] is an output vector
and Ay(t) is an observation of the resultant forced oscillation.

In mathematics, the solution of Az(t) in (3) is given as a
sum of two parts and shown in (4) [25]. Physically, the first
summand A (t) is zero-input response of the system, viz.,
the well-known modal oscillation. While the second summand
Az, (t) describes zero-state response of the system, viz., forced
oscillation.

Ax(t) = Az (t) + Axy(t)

¢
= eAtAw(O)—i-/ eiA(Tft)Bu(T)dT. 4)
0
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Since only the force oscillation is of our interests in this
paper, a zero initial state deviation Az(0) is assumed in (4).
Accordingly, only A, (t) is presented in Ax(t).

In the following Sections II-C and II-D, Az, (t) is first ex-
panded and then reduced by utilizing the eigen-analysis theory,
leading to an explicit expression of forced oscillation.

C. Expansion of Forced Oscillation

Az, (t) can be reformulated as follows by substituting the
eigen-decomposition A = ® AW into (4):

t
Axy(t) = ® / e AW Bu(r)dr (5)
0

where A is a diagonal matrix with the distinct conjugate complex
eigenvalue pairs (A, A*),r =1, ..., g, as diagonal elements.
A, and A} are also termed electromechanical oscillation modes
of the system. @ = [¢1, ..., Py, @7, ..., ¢;] and ¥ =
[T, ..., 4y, ", ... ;"] are the corresponding right
and left elgenvector matrices.

Equation (5) is further expanded and expressed in terms of
forced disturbances, system modes, and the associated left and
right eigenvectors.

q
Z z AP, {qb,, et / e ™7 sin(w;T)dr

r=11=1

A(BQ (t) =

'
+ ¢L,w*le’\'f / AT sin(wlT)dT}
0

q m
-y San
r=11[1=1
y Girthr[(—Ar sinwit — wy coswit) + wyetr!]
A2+ w}

+

wUh [(—Ak sinwyt — wy coswit) + wyer ] }
32
At w

(A2 +wP) (A2 +w?)

r=11[=1
X (A2 4w ) gir bt + (2 +wi )b i e wy —
[ )"*2 +wl @Hﬁrl + ()L2 +wl )@r?ﬁm}wl coswit —
[(A22 + W) irtbrihr + (A2 + W)l abiAr] sinwgt }
(6)

where ¢;, and 1,; are the ith and /th entry of the rth right and
left eigenvectors, respectively. They can be rewritten as:

¢ r = |¢ir|47ira wrl = |¢rl|4arl~ (7)

D. Explicit Expression of Forced Oscillation

To simplify Az (), the rth system mode A, is detailed as
follows [26]:

)‘r = Oy +jwdr = _Crwnr +J V 1- (,2""}117' = Wm'le’r' (8)
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where (., wy,, wq, and 6, are termed damping ratio, undamped
natural frequency (in rad/s), damped natural frequency (in rad/s)
and damping angle of the rth system mode, respectively.

By utilizing the notations defined in (7) and (8), Az, (¢) canbe
greatly reduced and the explicit expression of forced oscillation
Ay(t) is accordingly obtained:

Ay(t) = CAxy(t)
n q m
= Z Z Z Z [e’C"”“t sin(wart 4+ vir + @i — @)
i=1r=11[=1
—fBsin(wit + yir + o — @) ] 9)

where Z is the amplitude of forced oscillation, v is called as
amplification factor, ¢ is the phase shift between the forced
oscillation Ay(t) and the /th forced disturbance w;,

2
Z = cilgillon| AP x v, v = "2 (10)
n
(UQ —w2
— -1 nr l 11
o= (S20) a
= (@B, - wP)? +4Cu2, w7 (12)

B =

2
\/1 + (‘:jz - 1) cos?(ir + o — ). (13)
1

More explanation on Z expressed in (10) is given as follows.
The first term ¢;|d;, |11 AP, is identical to the amplitude of
modal oscillation [26], [27] under the same magnitude of state
deviation of AP,. In this sense, the remaining term v in Z rep-
resents the ratio of the amplitude of forced oscillation relative to
that of modal oscillation. The name amplification factor comes
from the fact that v is generally greater than 1.0.

In summary, the explicit expressions of forced oscillation as
given in (9)—(13) are the core of this paper because they lay the
basis of forced oscillation amplitude, components and envelope
analyses, as elaborated in parallel Sections III-V.

III. FORCED OSCILLATION AMPLITUDE-ANALYSIS AND
MITIGATION

In this section, factors that affect the amplitude of forced oscil-
lation are studied from the two terms of Z, i.e., ¢;|d;,||1r1| AP,
and v, as expressed in (10) and (12).

A. Effects of Observability / Controllability of System Mode

Essentially, the term ¢;|¢;, |11 AP, in Z represents the ob-
servability and controllability of the rth system mode. On one
hand, ¢;|¢;,| measures observability of the rth system mode
from the state variable x;. On the other hand, |¢,;|A P, weighs
controllability (i.e., excitability) of the rth system mode by the
lth forced disturbance. Therefore, large magnitudes of ¢; and
AP, as well as high participating factor |¢;, ||¢),;| denote good
observability and strong controllability. Accordingly, they will
lead to remarkable amplitude of forced oscillation Z.

In practical power system, generators that strongly relate to a
weakly damped inter-area mode always have high participating
factors. If they are excited by injecting sustained and sinusoidal
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disturbances with large magnitudes, strong forced oscillations
will emerge and can be easily captured at critical locations, e.g.,
tie-lines.

B. Effects of Frequency of Forced Disturbance and Damping
Ratio of System Mode

The impacts of frequency proximity of w; to wy,,- and damping
ratio of the rth system mode (. on forced oscillation amplitude
Z are studied from 7 as expressed in (12).

To characterize the quantitative relationship between the two
terms under the square root sign of 7, an index called Forced
Oscillation Ratio (FOR) is defined by using their ratios, i.e.,

FOR = (wIQ”' — WIQ)Q _ (wnr + wl)Q(u}m. — wl)z
G
Why — Wy 2 Wy — Wy 2
M| |G| 20
wllr wl
(14)

The physical meaning of F'O R is square of the ratio of relative
frequency difference between the [th disturbance w; and the rth
system mode wy,,, i.e., “’wil’”’ or %, to damping ratio of
the rth system mode (..

With the help of F'O R, the following statements can be made.

1) FOR > 1: This case denotes that the first item, i.e.,
(w?, — w?)?, dominates the expression under the square root
sign of 7. Therefore, closer proximity of w; and wy,, will result
in smaller 77 and hence greater v.

2) FOR < 1: In this case, the square-product 4¢?w?, w}
dominates the expression under the square root sign of 7). Thus,
it can be concluded that smaller ¢, will also lead to smaller 77 and
greater v. Actually, this statement can also be made by further
analyzing 4¢?w?, w}.

First, identical to modal oscillation, forced oscillation occurs
when power system is in weakly damping condition, ¢, < 3%.
Accordingly, we have (> < 9 x 10~%. Second, as we know, both
w; and wy, fall into the low frequency interval [0.628, 12.56]
rad/s, then we getw? w? € [0.3948, 157.9137]. By qualitatively
comparing the orders of magnitude of ¢? and w2, w?, it is clear
that it is ¢, the most important determinant of 4¢?w?, w?. There-
fore, the same conclusion can be obtained as that derived from
FOR: smaller (, will also lead to smaller 7 and greater v.

3) Otherwise: It can be seen from FOR that the two terms
under the square root sign of 7 are comparable. That means that
both the relative frequency difference “»-—=L (or “2:—=L) and
damping ratio of the rth system mode ¢, will largely affect the
amplitude of forced oscillation Z.

In summary, closer proximity of w; to wy, incase FOR > 1
and smaller damping ratio of system mode ¢, when FOR < 1
will result in smaller 7 and hence greater v in Z.

C. Resonance and Beats

The maximums of v and Z occur in the case of resonance.
Mathematically, they can be obtained by taking derivatives of v/
and Z with respect to w; and making them equal zero. It shows
that the upper bounds of v and Z are achieved when w; coincides
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Fig. 1. Illustrative diagram of resonance curve, i.e., amplitude Z versus forced
disturbance frequency w;, under a given damping ratio of ¢, .

with wy,,., i.e.,

1
Vi - =
e Crwnr '
cildir 19| AP
Zma‘x = A, I,max = Wnr- (15)

C’f‘ wn r

At the resonant frequency wy max, both 14,.x and 2, de-
crease as (, increases. Besides, under a given damping ratio (.,
v and Z decay rapidly if w; goes far from wj .. In particular,
they decrease V/2 times at two frequencies surrounding wy i ax,
as shown in Fig. 1.

W :wn,.\/l +2¢2 +2¢, /1 + C2.

The distance between w; and w;" is called resonance peak
width (in frequency) and can be approximated as 2¢, wy, [28].
Thus, the higher is the damping ratio ¢, the more is the reso-
nance peak width.

If the frequency difference |w; — wy max| exceeds half of the
resonant peak width, i.e., {,wy,, but is still less than a threshold,
the amplitude (envelope) of forced oscillation begins to oscil-
late. Accordingly, the forced oscillation becomes beat frequency
oscillation or beats [29] for simplicity. The envelope shapes of
both resonance and beats will be elaborated in Section V.

(16)

D. Measures for Mitigating Forced Oscillation

From Sections II-A to III-C, four theoretical measures can be
straightforwardly derived for mitigating forced oscillation, i.e.,
1) to correct or disconnect the apparatus (i.e., disturbance
sources) causing the oscillations,
2) to move the disturbance frequency w; far away from nat-
ural frequency of the system wy,,
3) to reduce the amplitude of forced disturbance AP,
4) and to improve damping ratio of system mode (..
Generally speaking, measures 1) to 3) are unique for miti-
gating forced oscillation. While measure 4) suits for damping
both forced and modal oscillations. In addition, it should be
emphasized that measure 1) is the root approach to eliminate
forced oscillation. While it can only be alleviated to some ex-
tent by measures 2) to 4) since forced disturbance source still
drives the system.
Successful implementation of measures 1)-3) highly depends
on two prerequisites: reliably locating forced disturbances to
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different ranges in advance, specifically, a region, a generator
or even the control unit (i.e., governor, exciter and PSS) of a
generator [30]-[33], and accurately detecting forced oscillation
and discriminating it from modal oscillation. For the latter,
two methods will be presented in Sections IV-B and V-D,
respectively.

In the rest of this section, specific control strategies for miti-
gating forced oscillation are addressed in detail.

To implement the root measure 1), remedial actions should
be taken to amend malfunctions of generator control units ac-
cording to intensive post-fault analysis, so that desired control
performances are regained. In extremely emergent state, as a
final resort, measure 1) probably implies generator tripping or
load shedding by system operators, which will result in major
disturbances to power systems and consumers.

Practically, measures 2) and 4) are indirectly and implic-
itly realized by largely changing system operating conditions.
Specifically, when the system is in emergency, forced oscillation
can be alleviated by reducing the outputs of critical participating
generators and/or upgrading their terminal voltage [34]. In this
case, these operational actions are similar to those for modal
oscillation [35].

Actually, measure 4) is the root approach to damp modal os-
cillation. Thus, the specific control strategies for improve sys-
tem damping against forced and modal oscillation are identical.
Specifically, they include reducing system loading and feedback
controls, strengthening system structure, installing PSSs and
other supplementary controllers on FACTS devices and HVDC
systems.

IV. FORCED OSCILLATION COMPONENTS-ANALYSIS AND
DETECTION

This section analyzes the components of forced oscillation.
Based on uniqueness of component quantities, frequencies and
damping ratios, a method is presented to detect the oscillation.

A. Oscillation Components Analysis

The transient response of forced oscillation contains twin
components, corresponding to the two terms inside the square
bracket of (9). One is termed as forced component of zero damp-
ing and with the same frequency as the forced disturbance. The
other is called as free (or natural) component, whose oscillatory
frequency and damping ratio are identical to those of system
mode. In comparison, the well-known modal oscillation con-
tains only one free component.

The free component dies out some time after the forced distur-
bance has been introduced. After that forced oscillation arrives
in steady state and there leaves only the forced component.
Therefore, if one wants to extract oscillatory properties of the
system, data sampled at the initial stage of the forced oscillation
is necessary where the free component is involved.

B. Component-Analysis-Based Forced Oscillation Detection

Both forced oscillation and system mode are supposed to
be simultaneously and accurately estimated by certain modal
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Sample transient
oscillation response data
for modal estimation

Oscillation components
analysis: component quantities,
frequencies and damping ratios

O0=0y, G=C,
negative damping
modal oscillation

Exist component s
satisfying {<—(w?
A4 N

N Exist components s, ¢
satisfying |w,—o,|<wm ?

WOy =Ws=W=w0),
=, positive
damping resonance

WOy =Ws=W= W),
(=0, zero damping
resonance

Exist components s, ¢

—
N
_<satisfying o) e[on, a)|h2)?>

On=wy, (=G,
wFw,, positive
damping beats

(=0, zero
damping beats

=05, §5s
positive damping
modal oscillation

Exist component s
satisfying |([<¢n?

=0y, (0,
zero damping
modal oscillation

&<

Fig. 2. Flowchart of component-analysis-based oscillation detection and
discrimination.

estimation algorithm, such as stochastic subspace identification-
covariance and Prony [36], [37].

Subsequently, forced oscillations (resonance and beats) and
modal oscillation can be distinguished from each other accord-
ing to differences in the estimated oscillation component quan-
tities, frequencies and damping ratios. A flowchart for detecting
and discriminating various oscillations is given in Fig. 2, includ-
ing positive/zero damping resonances, positive/zero damping
beats, and negative/positive/zero damping modal oscillations.

C. Determination of Damping Ratio and Frequency
Thresholds

In Fig. 2, four additional symbols wy, wy, (s, (; are intro-
duced to denote frequencies and damping ratios of two arbitrary
estimated oscillation components s and ¢.

Considering there always exists some biased error in damping
estimation, a relaxed inequality |(s| < (i is utilized to identify
an oscillation component s of zero damping, where (1, is chosen
as a small positive number, e.g., 0.5%.

The thresholds wyy; and w2 are employed to determine
whether the two components s and ¢ are two distinct components
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of amodal oscillation or twin components of a forced oscillation.
Specifically,
1) if |ws — wy| falls into the interval [0, wiy1), components
s and ¢ are the twin components of resonance,

2) if |ws — wy| is @ member of [wiy1, wine ), the two compo-

nents are the twin components of beats,

3) otherwise, they are two distinct components of a modal

oscillation.

To this end, w1 can be typically chosen as half of the res-
onant peak width (,wy,, (see Fig. 1). In the remainder of this
section, a practical method for determining wyy2 is presented.
The critical of this method is to derive the upper bound of
|war — wi|. To achieve this, a proposition is given at first.

Proposition 1: For beats, a basic relationship is actually un-
derlaid the waveformes, i.e., the difference between wy, and wj
should be less than either of the frequencies. Mathematically, it
can be expressed as:

|war — wi| < min(wg,, w). 17
Proof: Equation (17) can be expanded to two cases, i.e.,
U (1, 2) i war > w,
wy
% . (18)
— € (1, 2) if wyr < wy.
wdr

Define averages of the sum and absolute difference of wy,
and w; respectively as:

wdr + wy War — Wy
War = o Wy = '72' (19)

By taking (18) into account, the ratio of w,, towy, is analyzed
as follows.

war +w 2 .
ATy >3 if wqr > wy,

War _ Wdr — Wi wdr/wl_l

Wiy Wy +w 2 .

br AT+ —= >3 if wq, < w.
wp — Wy wiwgr — 1

(20)
The physical meaning of (20) is that for beat frequency oscil-
lation, there should be at least 3 peaks (or troughs) enclosed in
one beat. As an extreme case, when wg, = wj, resonance occurs
and it contains an infinite number of peaks and troughs. These
two conclusions can be verified from illustrative diagrams of
beats and resonance, as shown in Figs. 3 and 4. O
From (18), we have:

wq wdr wq .
T <2= 7<w1:>wdr—wg<7r if war > wy,
w
of W W
— < 2= —<wir 2w —Wwir < — if war <wy.
wqdr 2 2
2n

Combining the two cases in (21) yields the upper bound of
Ji.e.,

‘wdr — W
wdr Wi

lwar —wi] < max( 5 ?) = 1.0Hz or 2w rad/s. (22)

Equation (22) works for wq,, w; € [0.1, 2.0] Hz. Based on
the equation, the threshold wy},5 can be determined. In this paper,
arelatively tight condition for detecting beats is used by setting
win2 as 0.2 Hz. Notice that it is consistent with the setting
in [28].
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One beat

Fig. 3. Illustrative diagram of positive damping beats with w; < wy,, 5 > 1
and M > Nj. Aye(t) is the waveform of beats and Aye, (¢) is its upper or
lower envelope. M, No and Ny, .x are defined and evaluated in (24), (25) and
(30), respectively.

t

Fig. 4. Tllustrative diagram of positive damping resonance. Ay, (t) is the
waveform of resonance and Aye.(¢) is its upper or lower envelope. M’ is
defined in (37).

V. FORCED OSCILLATION ENVELOPE-ANALYSIS
AND DETECTION

This section explores the envelope of forced oscillation.
Based on uniqueness of envelope shapes, forced oscillation can
be detected and distinguished from modal oscillation by visual
inspection in the presence of single forced disturbance.

A. Envelope of Forced Oscillation

Equation (9) can be rewritten in a more compact form:

Ay(t) = )

i=1r=11

[ — M sin(wit + yir + @ — )

n q m
=1

+ N Sin(wdrt + Yir + Qpp — 90)] (23)
by introducing amplitude constant M and variable N
2 i |Pir T AP,
M= wici|ir |11 lﬂ (24)
Ui
2 1| Pir T AP, —
N(t) _ wiC |¢ ||1/}l| le (,.w,,,.t' (25)

Ul
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Substituting wg, and w; in (23) with w,, + wp, and w,, —
wy, respectively, results in a reformulation of Ay.

Z Z Z Ay (t) cos(wa, t) + Ayae (t) sin(wart)

Ay(t) =
i=1r=1]=1
n q m
- S S aui @)
i=1r=1]=1
where
Ayle(t) = MSiIl(wat — Yir — Q] + 90)
+ N sin(wh,t + Yir + ) — ©) 27
Ayse(t) = —M cos(wprt — Yir — @y + @)
+ N cos(whrt + vir + i — ). (28)

Accordingly, the envelope that modulates the amplitude of
Ay, (t) can be obtained

Ayee(t) = %/ AR, (1) + Ag3, (1)

= +/M?2 + N2 — 2MN cos(2wy, t).

(29)

In the following sections, Ay, (t) and Ay, (t) induced by a
single forced disturbance are detailed in the cases of beats and
resonance.

B. Envelope of Beats

In weakly damped and non-resonant operating condition, the
third term under the square root sign in (29) is nonzero. It means
that the amplitude of forced oscillation will vary or oscillate at
a frequency of 2wy, i.e., beat frequency.

It can be seen from Fig. 3 that there exist overshoots in the
upper envelope. It attains the minimum and maximum values at
t=0and 57—, ie,|[M — No|and |[M + Nyax|, where

No = N(0), Nypax = N( T ) (30)
2wb7’
In the following, two special cases of beats are considered:
1) Beats arrive in steady state and N tends to N(co) = 0.
2) In the absence of damping, undamped beats occur.
In the first case, Aye. () is a constant and Ay, (¢) becomes
an undamped oscillation, i.e.,

Ay, (t) =
AYee =

3D
(32)

AYee - sin(wit + vir + arp — @)
+M.

In the second case, ¢, = 0, ¢ = 5. Aye(t) is an undamped
oscillation and Ay, (t) becomes undamped beats, viz.,

Ci |¢1?r | W}rl |AP)Z

2wb r

X [ (B+ 1) sin(wh,t) sin(wart + i + o0y)

Aye(t) =

- (/8 - 1) COS(be‘t) COS(Wart+ Yir + arl) ] (33)

Ayee(t) = %‘W\/@ 11— 28 cos(2wnt). (34)
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C. Envelope of Resonance

As a special case of beats, when resonance occurs, quantities
in (11)—(13) can be reduced to n = 2(, wy,w;, = land ¢ = 0,
respectively. Considering wy,, ~ 0 and w,, ~ wy,, = wy, it can
be known from (23) and (29) that

Ci |Qir T AP,
Ae(t) = GlOurl¥nlARt qtf a0

X [(1 + e’c"“’“"f’) sin(wp,t) cos(Wart + Yir + ayp)

_(1_

n

A DD Ayee(t) sin(wart + 5ir + 1) (35)

i=1r=11[=1

Cj |¢7T ‘ |¢7-1 ‘API

CT wHT

e_c"w‘”'t) cos(wpyt) sin(wart + Yir + arz)]

Ayee(t) = M — N ==+ (e=Srenrt —1). (36)

It can be seen from Fig. 4 that Aye.(t) is non-oscillatory
and does not have any overshoot. Particularly, when resonance
reaches steady state, Ay..(t) becomes a constant:

i GirPr1 AP,
C’rwnr '

Note that here M’ is much greater than M given in (32) / (24).

In the case of zero damping, the envelope of resonance can
be obtained in two ways. On one hand, it is known that wy,, ¢
and sin(wy,, t) become two infinitesimals of the same order of
magnitudes as wy,, approaches zero. Accordingly, the envelope
of zero damping resonance can be derived from the limit of (34)
by making 5 = 1 and wy, — 0:

Aycc (t) = icid)irwrlAPl - t.

Ayeo = M' =+ 37)

(38)

On the other hand, the envelope can also be obtained by taking
limit of (36) and considering the fact that e ¢“»»* — 1 and
—(,wy,t are two infinitesimals of the same order of magnitudes
when (. is sufficiently close to zero.

As itis seen from (38) that the envelope of zero damping res-
onance grows linearly with time ¢. Without taking any remedial
measures, the oscillation will grow unlimitedly. Ultimately, the
system will experience a catastrophic blackout.

D. Envelope-Shape-Analysis-Based Forced Oscillation
Detection

Mathematically, the shapes of envelopes can be determined
by signs of their first and second time derivatives, as summarized
in columns 4-7 of Table I.

Intuitively, the envelops of beats in Cases 1 and 2 are un-
damped and damped oscillations, respectively, corresponding
to their zero-crossing time derivatives. Case 3 shows that the
envelope of zero damping resonance is an oblique line. Case 4
implies a convex upper envelope of positive damping resonance.

Compared with forced oscillations, Cases 6 and 7 denote that
upper envelopes of modal oscillations are concave for the system
in both positive and negative damping conditions. For the zero
damping modal oscillation, its envelope is a horizontal line, as
given by Case 5.
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TABLE I
UPPER ENVELOPE SHAPES OF FORCED AND MODAL OSCILLATIONS

Oscillation Case ¢, Ay., Ayl, Ayl.,=Ay!, Envelope
Type No. Shape
Forced Beats 1 =0 =£,0 £,0 +,0 Undamped
oscillation oscillation
2 >0 +£,0 =+,0 +,0 Damped
oscillation
Resonance 3 =10 + 0 0 Oblique
line
4 >0 + — - Convex
5 =0 0 0 0 Horizontal
line
Modal 6 >0 — — + Concave and
oscillation growing
7 <0 + + + Concave and
decaying

Therefore, by keeping the uniqueness of envelope shapes
(see column 7 of Table I) in mind and visually inspecting their
transient responses, forced and modal oscillations can be easily
detected and discriminated from each other.

E. Discussion

The component-analysis-based forced oscillation detection
method is capable of detecting forced oscillation in case of
multiple forced disturbances. It can even deal with the mixture
of forced and modal oscillations.

Compared with component-analysis-based forced oscillation
detection method, the envelope-shape-based method is intuitive.
Howeyver, the latter is of more theoretical value because it cannot
handle complex waveforms of oscillations in the circumstances
of multiple forced disturbances. For the realistic case, neither do
we know the number of forced oscillation sources in the system
nor their nature (i.e., resonance or beats) beforehand. Further-
more, for oscillations occurred in practical power system, the
captured signals contain non-oscillatory component and ambi-
ent noises. Because the envelope shapes of forced oscillations
are distorted from the ideal ones to some extent, the component-
analysis-based method is then preferred for the reliable detection
of forced oscillation.

VI. CASE STUDY I: FORCED OSCILLATIONS IN THE NEW
ENGLAND TEST SYSTEM

The 10-machine 39-bus New England test system as depicted
in Fig. 5 is employed to demonstrate the correctness of theo-
retical analyses and the effectiveness of detection methods for
forced oscillation. Various cases in which the system is dis-
turbed by single forced disturbance, two forced disturbances,
and two forced disturbances plus an exciter step are intensively
investigated.

A. Description of the Test System

Under normal operating condition, active power across tie-
lines {16-15, 16-17} is 3.91 p.u.. Generators are represented
by the two-axis model and equipped with IEEE type DCIA
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Fig.5. One-line diagram of the 10-machine 39-bus New England test system.

excitation system. Loads are simulated by constant impedances.
Detail parameters of the system can be found in [27].

Two scenarios of different damping levels of the inter-area
mode, in which G10 oscillates against G1-G9, are built by
adjusting the gains of exciters. In the well-damped Scenario
1, parameters of exciters are the same as those shown in [27].
Frequency and damping ratio of the mode are 0.637 Hz and
5.32%, respectively. In the poorly damped Scenario 2, gains
of all exciters are replaced by a relatively high value of 40.
Accordingly, frequency of the mode becomes 0.615 Hz and the
damping ratio reduces to 0.38%.

B. Single Forced Disturbance

The forced disturbance is located on the dominant generator
G10 and has a small magnitude of 0.02 p.u.. The perturbation
is activated at t = 10 s. Four cases are studied. In Cases 1 and
2, frequencies of forced disturbances are set to the resonant
frequencies in Scenarios 1 and 2. They can be computed from
(8) and (15), viz., 0.638 and 0.615 Hz, respectively. In Cases
3 and 4, the disturbance frequencies are 0.05 Hz below the
two resonant frequencies, i.e., 0.588 and 0.565 Hz, respectively.
Accordingly, two beats are simulated. In all cases, deviations
of active power on tie-line 16—17 are shown in Fig. 6(a)—(d),
respectively.

First, forced oscillation amplitudes are analyzed. Compared
with Cases 1 and 3 in Scenario 1, Cases 2 and 4 in Scenario
2 clearly show that longer time is needed to reach steady state
due to smaller damping ratio of the inter-area mode. Besides,
the steady state amplitude of resonance in Case 2 is six times
of that in Case 1. For beats in Case 4, the maximum of the
transient amplitude is twice as much as that in Case 3. However,
their steady state amplitudes are nearly the same since they are
mainly determined by the same frequency differences between
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Fig. 6.

Deviations of active power on tie-line 16—-17 when the forced dis-
turbance sits on G10. (a) Case 1: resonance under ¢, = 5.32%; (b) Case 2:
resonance under ¢, = 0.38%; (c) Case 3: beats under ¢, = 5.32%; (d) Case
4: beats under ¢, = 0.38%.

TABLE I

PRONY ANALYSIS FOR SYSTEM DISTURBED BY SINGLE FORCED DISTURBANCE

Case  Component  Amplitude  Frequency Phase Damping
No. No. (Hz) (deg.) Ratio (%)
1 1 0.0089 0.6380 178.35 —0.0003
2 0.0091 0.6391 —4.54 5.6574
2 1 0.0492 0.6145 171.39 —0.0074
2 0.0545 0.6145 —13.72 1.2685
3 1 0.0053 0.5880 —125.68  —0.0011
2 0.0050 0.6394 50.04 5.3874
4 1 0.0061 0.5650 —87.18  —0.0001
2 0.0059 0.6116 91.18 0.7573

forced disturbance and system mode, i.e., 0.05 Hz. Additionally,
it is apparent that the steady state amplitudes of resonances
are greater than those of beats. Specifically, in Scenario 1, the
amplitude in Case 1 is almost 1.8 times as much as that in Case
3. While in the poorly damped Scenario 2, the amplitude ratio
of Case 2 to Case 4 exceeds 8.

Second, forced oscillation component analysis is carried out.
The well-known Prony algorithm [37] is employed to extract
oscillation components and simultaneously estimate system
modes and forced oscillations from deviations of active power
on the tie-line 16-17. The sample frequency is 20 Hz. For res-
onances and beats in Cases 1-4, their component quantities,
frequencies and damping ratios are listed in Table II. In each
case, two components with approximately the same amplitudes
but almost in antiphase are identified. The damping ratio of the
forced component is close to zero and its frequency is near that
of the forced disturbance. The damping ratio and frequency of
the free component are very close to those of the system mode.
In summary, these findings are in well accordance with the
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theoretical analyses for forced oscillation components presented
in Section I'V. Therefore, based on unique component properties
of resonance and beats, they can be easily distinguished from
each other.

Next, the envelope shapes of forced oscillations are inspected.
For resonances in Cases 1 and 2, their upper envelopes are
convex without any overshoot. For beats in Case 3, since the free
component dies out rapidly, the overshoots in the envelope are
very small and the beats are negligible. In the poorly damped
Case 4, the oscillatory feature of envelopes is comparatively
impressive. Therefore, it can be claimed that resonances and
beats can be easily discriminated from each other according to
their unique envelope shapes.

Based on above analyses, it should be emphasized that, in the
case of single forced source disturbs the multimachine power
system, both component-analysis and envelope-shape-analysis
based method can accurately discriminate different types of
forced oscillations.

C. Two Forced Disturbances

In Scenario 2, another local mode is selected via modal anal-
ysis so that the location and frequency of the second forced
disturbance can be determined. The analysis reveals that G6
and G7 oscillate against G1, G5 and G8 at a frequency of
1.13 Hz and with a damping ratio of 1.74%. To sufficiently
excite the mode, this forced disturbance sits on the dominant
generator G6. Its magnitude is set as 0.02 p.u..

Another three cases are then studied. In Case 5, frequencies
of the two forced disturbances are identical to natural frequen-
cies of the inter-area and local modes, respectively, viz., 0.615
and 1.13 Hz, resulting in two resonances in the forced oscilla-
tion. Subsequently, in Case 6, the frequency of the first forced
disturbance on G10 is changed to 0.02 Hz below the resonant
frequency, i.e., 0.595 Hz. It is clear the resultant forced os-
cillation is a hybrid of beats and resonance. Lastly, in Case
7, both the frequencies of the two forced disturbances are set
to be 0.02 Hz below the resonant frequencies, i.e., 0.595 and
1.11 Hz, respectively. Accordingly, two beats occur.

The active power deviations on the tie-line 16—17 in Cases
5-7 are shown in Fig. 7(a)—(c), respectively. Notice that the
waveforms of the forced oscillations are more complex, com-
pared with those in Fig. 6 where the system is disturbed by only
one source. Taking Fig. 7(a) as an example, it can be seen that
the synthesis of two resonances present as beats. Therefore, the
component-analysis-based method is utilized to confirm these
forced oscillations.

Similar to the single forced disturbance case, again, the esti-
mation results listed in Table III show that the Prony algorithm
can estimate both system modes and forced oscillations in all
three cases. In each case, two pairs of free and forced oscillation
components are caused by the two forced disturbances.

D. Two Forced Disturbances and an Exciter Step

This section further investigates the capability of
the component-analysis-based method in detecting forced

1157

x1071
2 T T T T
1 - B
B g
1}
) L L L L
10 20 40 60 80 100
t(s)
x1072 (a)
16 T T T T
8 -
2 o
Y
<
-8
~16 L L L L
10 20 40 60 80 100
%102 (b)
12 T T T T
6 -
2 o ,
—6 F H
—~12 L L L L
10 20 40 60 80 100
t(s)
(©)
Fig. 7. Deviation of active power on tie-line 16—17 when two forced distur-

bances are located on G10 and G6 in Scenario 2. (a) Case 5: two resonances;
(b) Case 6: hybrid of beats and resonance; (c) Case 7: two beats.

TABLE III
PRONY ANALYSIS FOR SYSTEM DISTURBED BY TWO FORCED DISTURBANCES

Case Component Amplitude Frequency Phase Damping
No. No. (Hz) (deg.) Ratio (%)
5 1 0.0491 0.6150 149.87 0.0003
2 0.0485 0.6114 —29.04 0.7594
3 0.0536 1.1300 —8.35 0.0007
4 0.0538 1.1296 —173.43 1.8774
6 1 0.0168 0.5950 —97.51 —0.0005
2 0.0179 0.6114 83.25 0.7613
3 0.0535 1.1300 —8.17 0.0005
4 0.0525 1.1308 —177.28 1.8861
7 1 0.0168 0.5950 —97.51 —0.0002
2 0.0180 0.6114 83.29 0.7628
3 0.0326 1.1100 26.37 —0.0010
4 0.0368 1.1302 —132.76 1.8511

oscillation when both forced and modal oscillations are simul-
taneously presented in the system.

To this end, besides the forced disturbances in Cases 5-7,
an extra exciter steps with 3% magnitude change is applied to
generator G6 to excite modal oscillation in each case. Accord-
ingly, another three Cases 8-9 are obtained. The active power
deviations on the tie-line 16—17 in all cases are analyzed by the
Prony algorithm. The estimated oscillations components and
their oscillatory properties are listed in Table I'V.
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TABLE IV
PRONY ANALYSIS FOR SYSTEM DISTURBED BY TWO FORCED DISTURBANCES
AND A 3% EXCITER STEP
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Case Component Amplitude Frequency Phase Damping
No. No. (Hz) (deg.) Ratio (%)
8 1 0.0438 0.6150 170.52 —0.0091
2 0.0416 0.6129 —20.64 1.0570
3 0.0543 1.1300 —1.08 0.0008
4 0.0578 1.1329 —167.89 1.8303
9 1 0.0151 0.5950 —100.63  —0.0015
2 0.0078 0.6129 106.16 1.0176
3 0.0541 1.1300 —1.33 0.0001
4 0.0620 1.1335 —173.05 1.9673
10 1 0.0119 0.5950 75.97 —0.0021
2 0.0062 0.6129 —77.21 1.0210
3 0.0117 1.1100 —164.21 0.0003
4 0.0176 1.1335 47.36 1.9669

It can be seen from the table that, in each case, two pairs of free
and forced oscillation components can be accurately and reliably
identified. The estimation results validate the capability of the
presented component-analysis-based method in detecting forced
oscillations in cases where both forced and modal oscillations
are involved in the system.

The estimation results in Table IV are then compared with
those in Table III. It can be found that amplitudes of the free
components for beats, i.e., component 2 in Case 9, components 2
and 4 in Case 10, are largely weakened by the newly introduced
modal oscillation due to possible anti-phase. Furthermore, since
the amplitudes of resonances in Cases 8 and 9 are much greater
than those of the modal oscillations, they are basically unaf-
fected by the exciter step.

VII. CASE STUDY II: FORCED OSCILLATION IN A REAL-LIFE
POWER SYSTEM

In this section, an active power oscillation occurred in Shan-
dong power system of China on June 18, 2012 is analyzed to
demonstrate the correctness of the component-analysis-based
method for detecting forced oscillation. Further, possible causes
of the oscillation are provided.

A. Description of the Oscillation

The oscillation occurred at the 670 MW tandem compound,
3000 rpm turbine-generator unit #5 in WH power plant. During
the event, active power output of the generator was captured
by the wide-area measurement system (WAMS), as shown in
Fig. 8.

Prior to experiencing the oscillation, the generator was op-
erated at its rated active power. From local time 17:09:51, the
power order (load reference) of the unit began to fluctuate and
active power generation oscillated accordingly. The peak-to-
peak amplitude of the oscillation was approximately 120 MW
and the frequency was about 1.0 Hz. Four more oscillations re-
curred on June 18 (once), 21 (twice) and 22 (once) when the
unit was operated at full load.

These oscillations could always decay by switching the dig-
ital electro-hydraulic governing system (DEH) of the unit from
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Fig.8.  Active power output of unit #5 in WH power plant during the oscillation
event.
TABLE V
PRONY ANALYSIS OF THE ACTIVE POWER GENERATION
Case Component Amplitude Frequency Phase Damping
No. No. (Hz) (deg.) Ratio (%)
11 1 3.9837 0.9824 57.34 0.0624
2 4.5537 0.9984 —145.74  6.0993
3 0.4616 1.3184 —44.21 4.8489
4 0.1426 1.4356 157.21 22.3679
5 0.1969 24255 124.80 143171
12 1 0.3909 0.6835 13.89 52.4161
2 2.3857 0.9765 —13443  7.3395
3 9.3272 0.9892 4.62 —0.3288
4 0.5729 1.9692 —65.65 8.6085
5 0.4384 23186 19.58 20.1382

coordinated control (CC) mode to boiler input (BI, i.e., turbine
following the boiler) control mode [38], [39].

B. Oscillation Component Analysis

To reduce the adverse effect of nonlinearity, active power
outputs of the unit at the early stage of the oscillation, viz.,
17:09:56-17:10:20 (24 s, Case 11) and 17:11:06-17:11:46 (40 s,
Case 12) are down-sampled at a frequency of 25 Hz for Prony
analyses. The first five oscillatory components with the lowest
frequencies are listed in Table V.

As can be seen from the table, the components 1 and 2 in
Case 11 have extremely larger amplitudes than the remaining.
In addition, the frequencies of the two components are very
close. The damping ratio of component 1 is determined as zero
and that of component 2 is greater than zero. The frequencies of
components 1 and 2 are nearly the same. Furthermore, the same
findings are obtained by analyzing the dominant components 2
and 3 in Case 12.

By using the component-analysis-based method presented in
Section IV-B, it can be claimed that the oscillation belongs to
forced oscillation. To be more exact, it is resonance.
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C. Possible Causes of the Oscillations

Up to the present, the exact causes of the successive five
forced oscillations are still unknown for two reasons. On one
hand, unlike WAMS, the sampling period of DEH of the unit
is relatively large (i.e., 0.2 s), resulting in an absence of high-
precision data required for joint thermal and electrical analyses.
On the other hand, oscillations did not recur in subsequent rou-
tine operation and filed tests. However, an attempted explanation
for possible causes of the oscillations is provided as follows,
based on post-incident analyses, field tests and practical reme-
dial actions for the unit. To some extent, these analyses and tests
support the assertion based on oscillation component analysis
as addressed in the last section.

First, the eigen-analysis revealed that the unit only dominated
a well-damped plant mode, whose frequency and damping ra-
tio were 0.988 Hz and 8.53%, respectively. They coincide with
the free component 2 in both Cases 11 and 12, as shown in
Table V. Thus, the practical oscillations were indeed forced os-
cillations rather than modal oscillations with negative damping.
Second, exciter step response tests with 3% magnitude change
were performed at different load levels, with or without PSSs.
Satisfactory damping of system responses in all cases excluded
the possibility of exciter and PSS being the oscillation sources.
Furthermore, it was observed that identical emergency controls
were carried out after the five forced oscillations, i.e., switch-
ing the control mode of the governing system from CC to BI.
Therefore, it is highly likely that the governing system amplified
some possible disturbance sources (e.g., the high penetration of
wind power in WH region) and caused the oscillations.

To reduce the over-sensitivity of governing system to exter-
nal load variations, two remedial actions were taken. First, an
inertial block (i.e., a low-pass filter) with a time constant of 2 s
was added in front of the active power measuring module of the
DEH. Second, both the proportional and integral gains of the
governor’s PID controller were slightly reduced. At this time,
the unit is able to operate at full load while the system is stabi-
lized and forced oscillations do not recur. However, one cannot
claim that the forced oscillations are thoroughly suppressed by
these remedial actions because the external forced disturbances
may be temporary in nature and have completely vanished.

Therefore, pursuit for the exact causes of these forced os-
cillations is part of our future work, including reproduction of
the recorded system response [1] and theoretical analysis by us-
ing other mechanisms of power system oscillation, e.g., strong
modal resonance [40].

VIII. CONCLUSION

This paper theoretically analyzes the explicit expression, am-
plitude, components and envelope of forced oscillation in mul-
timachine power system. Important conclusions are:

1) Higher observability/controllability, smaller damping ra-
tio of system mode, and closer proximity of frequencies
between forced disturbance and system mode, will result
in strong forced oscillation.

2) Forced oscillation can be alleviated by reducing the
amplitude of forced disturbance, eliminating its source,
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increasing the frequency difference between forced dis-
turbance and system mode, and improving system
damping.

3) A forced disturbance leads to twin oscillation components.
The forced one is zero damping and of the same frequency
as forced disturbance. The free one is with the identical
modal properties as system mode.

4) Envelope shapes of forced oscillations are unique. The
upper envelope of resonance is non-oscillatory and can be
distinguished from modal oscillation by its convexity. In
comparison, the envelope of beats is always oscillatory.

Based on uniqueness of components properties and envelope

shapes, forced oscillation can be reliably detected and correctly
discriminated from modal oscillation.
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