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in Power System
Hua Ye, Member, IEEE, Yutian Liu, Senior Member, IEEE, Peng Zhang, Senior Member, IEEE,
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Abstract—To mitigate forced oscillation and avoid confusion
with modal oscillation, fundamentals of forced oscillation in multi-
machine power system are investigated. First, the explicit formula-
tion of the oscillation is formulated in terms of forced disturbances
and system mode shapes. Then, forced oscillation amplitude,
components and envelope are intensively studied. Consequently,
measures for mitigating the oscillation are obtained. Forced os-
cillation can also be effectively detected and discriminated from
modal oscillation by utilizing its uniqueness of components prop-
erties and envelope shapes. Study results of the 10-machine 39-bus
New England test system and a real-life power system demonstrate
the correctness of theoretical analyses and effectiveness of detection
methods for forced oscillation.

Index Terms—Beat frequency oscillation, eigen-analysis, enve-
lope, Forced oscillation, low frequency oscillation, resonance.

I. INTRODUCTION

B
EYOND the well-known modal (or natural, free) oscil-

lations that are excited by random load fluctuations and

sudden network switchings [1], sustained forced oscillations

can emerge when power system is perturbed by periodic dis-

turbances at frequencies close or equal to natural frequencies

of system modes [2], [3]. Such oscillations have been observed

from the western North American Power System, US West-

ern Electricity Coordinating Council system, and the Nordic

power system [4]. Compared with modal oscillation, forced os-

cillation exhibits extremely higher amplitude and may cause

catastrophic blackout, especially in the poorly damped operat-

ing condition. The origins of forced oscillation are sinusoidal

in nature, including cyclic loads [5]–[8], electrical oscillations
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due to malfunction of power system stabilizer (PSS) [2] and me-

chanical oscillations of generator turbines [3], [9]. The causes

of mechanical oscillations are complex and strongly related to

thermal process. Specifically, the major contributors may

include unsteady combustion of boiler [10], turbo-pressure

pulsations [11], undesirable steam turbine valve discharge char-

acteristics [12]–[14], etc. Besides, wind power may fluctuate

periodically and becomes a potential forced oscillation source

because of wind shear and tower shadow effects [15], [16]

and vibration of floating offshore wind turbine [17]. There-

fore, forced oscillation becomes not only an important issue of

power system but also one concern of integrating wind energy

into modern power grid.

Since forced oscillation is significantly different from modal

oscillation in nature, sources and control strategies, it is essen-

tial to study its fundamentals and take unique countermeasures

to mitigate it. In addition, the rationale behind the similar ap-

pearances of forced oscillation and undamped modal oscilla-

tion should be fully understood to avoid possible confusion. So

far, forced oscillation is still an open problem in power system

community and few literatures are established on its fundamen-

tals. Methods for detection and frequency estimation of forced

oscillations are proposed in [18]–[21]. A spectral approach is

presented in [22] to distinguish forced and modal oscillations. In

[23], interactions between forced oscillation and system mode

in the context of resonance are studied by numerical simulations

rather than theoretical analyses.

To fill the gap in understanding forced oscillation, this paper

studies the fundamentals of forced oscillation in multi-machine

power system. First, its explicit expression is derived by directly

solving system state equation and formulated in terms of forced

disturbances and system mode shapes. Based on the expression,

amplitude, components and envelope of forced oscillation are

then intensively analyzed. Consequently, measures for mitigat-

ing the oscillation are obtained. Besides, two methods based

on uniqueness of components properties and envelope shapes

respectively are presented for detection of forced oscillation.

The contributions of this paper are threefold. First, how sys-

tem mode affects amplitude of forced oscillation is fully un-

derstood by formulating and analyzing its explicit expression.

Second, a distinction between forced and modal oscillations is

made by comparing their differences in component quantities,

frequencies and damping ratios. It enables one to detect forced

oscillation excited by multiple disturbance sources. Third, the

envelope of forced oscillation is intensively investigated. The
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resultant envelope shapes are desirable for detection of forced

oscillation in the case of single forced disturbance by visual

inspection.

The remainder of the paper is organized as follows.

Section II derives the explicit formulation of forced oscillation.

Its amplitude, components and envelope are analyzed in

Sections III–V, respectively. Studies of forced oscillations in

the 10-machine 39-bus New England test system and a practical

power system are given in Sections VI and VII, respectively.

Section VIII draws conclusions of this paper.

II. EXPLICIT FORMULATION OF FORCED OSCILLATION

In this section, the core of this paper, i.e., explicit formulation

of forced oscillation, is obtained by directly solving system state

equation and reducing the resultant solution.

A. Power System State Equation

The power system model for small signal stability analysis

can be formulated by a set of homogeneous differential and

algebraic equations linearized around an operating point [24]:
[

ẋ

0

]

=

[

J1 J2

J2 J4

][

∆x

∆z

]

(1)

where x ∈ R
n×1 is the vector of system state variables, and z

is the vector of algebraic variables. J1–J4 are sparse Jacobian

matrices. The system state equation can be obtained from (1) by

eliminating the vector of algebraic variables:

∆ẋ =
(

J1 − J2J
−1
4 J3

)

∆x = A∆x (2)

where A is the system state matrix.

B. Solution of System State Equation

Physically, periodic and forced disturbances mean there exists

a certain amount of disturbed mechanical or electromagnetic

power imposed on generator shaft. Accordingly, the dynamics

of the power system can be described by superimposing a non-

homogeneous term on (2).
{

∆ẋ(t) = A∆x(t) + Bu(t)

∆y(t) = C∆x(t)
(3)

where B and u(t) are identity input matrix and forced dis-

turbance vector, respectively. The forced disturbances on m
generators have the form of ul = ∆Pl sin(ωlt), l = 1, . . . , m.

∆Pl and ωl are magnitude and frequency (in rad/s) of the lth
disturbance, respectively. C = [c1 , · · · , cn ] is an output vector

and ∆y(t) is an observation of the resultant forced oscillation.

In mathematics, the solution of ∆x(t) in (3) is given as a

sum of two parts and shown in (4) [25]. Physically, the first

summand ∆x1(t) is zero-input response of the system, viz.,

the well-known modal oscillation. While the second summand

∆x2(t) describes zero-state response of the system, viz., forced

oscillation.

∆x(t) = ∆x1(t) + ∆x2(t)

= eAt∆x(0) +

∫ t

0

e−A(τ−t)Bu(τ)dτ . (4)

Since only the force oscillation is of our interests in this

paper, a zero initial state deviation ∆x(0) is assumed in (4).

Accordingly, only ∆x2(t) is presented in ∆x(t).
In the following Sections II-C and II-D, ∆x2(t) is first ex-

panded and then reduced by utilizing the eigen-analysis theory,

leading to an explicit expression of forced oscillation.

C. Expansion of Forced Oscillation

∆x2(t) can be reformulated as follows by substituting the

eigen-decomposition A = ΦΛΨ into (4):

∆x2(t) = Φ

∫ t

0

e−Λ(τ−t)
ΨBu(τ)dτ (5)

whereΛ is a diagonal matrix with the distinct conjugate complex

eigenvalue pairs (λr , λ
∗
r ), r = 1, . . . , q, as diagonal elements.

λr and λ
∗
r are also termed electromechanical oscillation modes

of the system. Φ = [φ1 , . . . , φq , φ∗
1 , . . . , φ∗

q ] and Ψ =

[ψT
1 , . . . , ψT

q , ψ∗T
1 , . . . ,ψ∗T

q ]T are the corresponding right

and left eigenvector matrices.

Equation (5) is further expanded and expressed in terms of

forced disturbances, system modes, and the associated left and

right eigenvectors.

∆x2(t) =

q
∑

r=1

m
∑

l=1

∆Pl

[

φirψrle
λr t

∫ t

0

e−λr τ sin(ωlτ)dτ

+ φ∗
irψ

∗
rle

λ
∗
r t

∫ t

0

e−λ
∗
r τ sin(ωlτ)dτ

]

=

q
∑

r=1

m
∑

l=1

∆Pl

×
{

φirψrl [(−λr sin ωlt − ωl cos ωlt) + ωle
λr t ]

λ2
r + ω2

l

+
φ∗

irψ
∗
rl [(−λ

∗
r sin ωlt − ωl cos ωlt) + ωle

λ
∗
r t ]

λ∗2
r + ω2

l

}

=

q
∑

r=1

m
∑

l=1

∆Pl

(λ2
r + ω2

l )(λ∗2
r + ω2

l )

×{
[

(λ∗2
r +ω2

l )φirψrle
λr t +(λ2

r +ω2
l )φ∗

irψ
∗
rle

λ
∗
r t

]

ωl −
[

(λ∗2
r + ω2

l )φirψrl + (λ2
r + ω2

l )φ∗
irψ

∗
rl

]

ωl cos ωlt −
[

(λ∗2
r + ω2

l )φirψrlλr + (λ2
r + ω2

l )φ∗
irψ

∗
rlλ

∗
r

]

sin ωlt }
(6)

where φir and ψrl are the ith and lth entry of the rth right and

left eigenvectors, respectively. They can be rewritten as:

φir = |φir |∠γir , ψrl = |ψrl |∠αrl . (7)

D. Explicit Expression of Forced Oscillation

To simplify ∆x2(t), the rth system mode λr is detailed as

follows [26]:

λr = σr + jωdr = −ζrωnr + j
√

1 − ζ2
r ωnr = ωnr∠θr (8)
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where ζr , ωnr , ωdr and θr are termed damping ratio, undamped

natural frequency (in rad/s), damped natural frequency (in rad/s)

and damping angle of the rth system mode, respectively.

By utilizing the notations defined in (7) and (8), ∆x2(t) can be

greatly reduced and the explicit expression of forced oscillation

∆y(t) is accordingly obtained:

∆y(t) = C∆x2(t)

=
n

∑

i=1

q
∑

r=1

m
∑

l=1

Z
[

e−ζr ωn r t sin(ωdr t + γir + αrl − ϕ)

−β sin(ωlt + γir + αrl − ϕ)
]

(9)

where Z is the amplitude of forced oscillation, ν is called as

amplification factor, ϕ is the phase shift between the forced

oscillation ∆y(t) and the lth forced disturbance ul ,

Z = ci |φir ||ψrl |∆Pl × ν, ν =
2ωl

η
(10)

ϕ = tan−1

(

ω2
nr − ω2

l

2ζrω2
nr

)

(11)

η =
√

(ω2
nr − ω2

l )2 + 4ζ2
r ω2

nrω
2
l (12)

β =

√

1 +

(

ω2
nr

ω2
l

− 1

)

cos2(γir + αrl − ϕ). (13)

More explanation on Z expressed in (10) is given as follows.

The first term ci |φir ||ψrl |∆Pl is identical to the amplitude of

modal oscillation [26], [27] under the same magnitude of state

deviation of ∆Pl . In this sense, the remaining term ν in Z rep-

resents the ratio of the amplitude of forced oscillation relative to

that of modal oscillation. The name amplification factor comes

from the fact that ν is generally greater than 1.0.

In summary, the explicit expressions of forced oscillation as

given in (9)–(13) are the core of this paper because they lay the

basis of forced oscillation amplitude, components and envelope

analyses, as elaborated in parallel Sections III-V.

III. FORCED OSCILLATION AMPLITUDE-ANALYSIS AND

MITIGATION

In this section, factors that affect the amplitude of forced oscil-

lation are studied from the two terms of Z, i.e., ci |φir ||ψrl |∆Pl

and ν, as expressed in (10) and (12).

A. Effects of Observability / Controllability of System Mode

Essentially, the term ci |φir ||ψrl |∆Pl in Z represents the ob-

servability and controllability of the rth system mode. On one

hand, ci |φir | measures observability of the rth system mode

from the state variable xi . On the other hand, |ψrl |∆Pl weighs

controllability (i.e., excitability) of the rth system mode by the

lth forced disturbance. Therefore, large magnitudes of ci and

∆Pl as well as high participating factor |φir ||ψrl | denote good

observability and strong controllability. Accordingly, they will

lead to remarkable amplitude of forced oscillation Z.

In practical power system, generators that strongly relate to a

weakly damped inter-area mode always have high participating

factors. If they are excited by injecting sustained and sinusoidal

disturbances with large magnitudes, strong forced oscillations

will emerge and can be easily captured at critical locations, e.g.,

tie-lines.

B. Effects of Frequency of Forced Disturbance and Damping

Ratio of System Mode

The impacts of frequency proximity of ωl to ωnr and damping

ratio of the rth system mode ζr on forced oscillation amplitude

Z are studied from η as expressed in (12).

To characterize the quantitative relationship between the two

terms under the square root sign of η, an index called Forced

Oscillation Ratio (FOR) is defined by using their ratios, i.e.,

FOR =
(ω2

nr − ω2
l )2

4ζ2
r ω2

nrω
2
l

=
(ωnr + ωl)

2(ωnr − ωl)
2

4ζ2
r ω2

nrω
2
l

≈
[

ωnr − ωl

ωnr

/

ζr

]2

≈
[

ωnr − ωl

ωl

/

ζr

]2

≥ 0.

(14)

The physical meaning of FOR is square of the ratio of relative

frequency difference between the lth disturbance ωl and the rth

system mode ωnr , i.e., ωn r −ω l

ω l
or ωn r −ω l

ωn r
, to damping ratio of

the rth system mode ζr .

With the help of FOR, the following statements can be made.

1) FOR � 1: This case denotes that the first item, i.e.,

(ω2
nr − ω2

l )2 , dominates the expression under the square root

sign of η. Therefore, closer proximity of ωl and ωnr will result

in smaller η and hence greater ν.

2) FOR � 1: In this case, the square-product 4ζ2
r ω2

nrω
2
l

dominates the expression under the square root sign of η. Thus,

it can be concluded that smaller ζr will also lead to smaller η and

greater ν. Actually, this statement can also be made by further

analyzing 4ζ2
r ω2

nrω
2
l .

First, identical to modal oscillation, forced oscillation occurs

when power system is in weakly damping condition, ζr < 3%.

Accordingly, we have ζ2
r < 9 × 10−4 . Second, as we know, both

ωl and ωnr fall into the low frequency interval [0.628, 12.56]
rad/s, then we get ω2

nrω
2
l ∈ [0.3948, 157.9137]. By qualitatively

comparing the orders of magnitude of ζ2
r and ω2

nrω
2
l , it is clear

that it is ζr the most important determinant of 4ζ2
r ω2

nrω
2
l . There-

fore, the same conclusion can be obtained as that derived from

FOR: smaller ζr will also lead to smaller η and greater ν.

3) Otherwise: It can be seen from FOR that the two terms

under the square root sign of η are comparable. That means that

both the relative frequency difference ωn r −ω l

ω l
(or ωn r −ω l

ωn r
) and

damping ratio of the rth system mode ζr will largely affect the

amplitude of forced oscillation Z.

In summary, closer proximity of ωl to ωnr in case FOR � 1
and smaller damping ratio of system mode ζr when FOR � 1
will result in smaller η and hence greater ν in Z.

C. Resonance and Beats

The maximums of ν and Z occur in the case of resonance.

Mathematically, they can be obtained by taking derivatives of ν
and Z with respect to ωl and making them equal zero. It shows

that the upper bounds of ν and Z are achieved when ωl coincides



1152 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 32, NO. 2, MARCH 2017

Fig. 1. Illustrative diagram of resonance curve, i.e., amplitude Z versus forced
disturbance frequency ωl , under a given damping ratio of ζr .

with ωnr , i.e.,

νmax =
1

ζrωnr
,

Zmax =
ci |φir ||ψrl |∆Pl

ζrωnr
, ωl,max = ωnr . (15)

At the resonant frequency ωl,max , both νmax and Zmax de-

crease as ζr increases. Besides, under a given damping ratio ζr ,

ν and Z decay rapidly if ωl goes far from ωl,max . In particular,

they decrease
√

2 times at two frequencies surrounding ωl,max ,

as shown in Fig. 1.

ω±
l = ωnr

√

1 + 2ζ2
r ± 2ζr

√

1 + ζ2
r . (16)

The distance between ω−
l and ω+

l is called resonance peak

width (in frequency) and can be approximated as 2ζrωnr [28].

Thus, the higher is the damping ratio ζr , the more is the reso-

nance peak width.

If the frequency difference |ωl − ωl,max | exceeds half of the

resonant peak width, i.e., ζrωnr , but is still less than a threshold,

the amplitude (envelope) of forced oscillation begins to oscil-

late. Accordingly, the forced oscillation becomes beat frequency

oscillation or beats [29] for simplicity. The envelope shapes of

both resonance and beats will be elaborated in Section V.

D. Measures for Mitigating Forced Oscillation

From Sections II-A to III-C, four theoretical measures can be

straightforwardly derived for mitigating forced oscillation, i.e.,

1) to correct or disconnect the apparatus (i.e., disturbance

sources) causing the oscillations,

2) to move the disturbance frequency ωl far away from nat-

ural frequency of the system ωnr ,

3) to reduce the amplitude of forced disturbance ∆Pl ,

4) and to improve damping ratio of system mode ζr .

Generally speaking, measures 1) to 3) are unique for miti-

gating forced oscillation. While measure 4) suits for damping

both forced and modal oscillations. In addition, it should be

emphasized that measure 1) is the root approach to eliminate

forced oscillation. While it can only be alleviated to some ex-

tent by measures 2) to 4) since forced disturbance source still

drives the system.

Successful implementation of measures 1)–3) highly depends

on two prerequisites: reliably locating forced disturbances to

different ranges in advance, specifically, a region, a generator

or even the control unit (i.e., governor, exciter and PSS) of a

generator [30]–[33], and accurately detecting forced oscillation

and discriminating it from modal oscillation. For the latter,

two methods will be presented in Sections IV-B and V-D,

respectively.

In the rest of this section, specific control strategies for miti-

gating forced oscillation are addressed in detail.

To implement the root measure 1), remedial actions should

be taken to amend malfunctions of generator control units ac-

cording to intensive post-fault analysis, so that desired control

performances are regained. In extremely emergent state, as a

final resort, measure 1) probably implies generator tripping or

load shedding by system operators, which will result in major

disturbances to power systems and consumers.

Practically, measures 2) and 4) are indirectly and implic-

itly realized by largely changing system operating conditions.

Specifically, when the system is in emergency, forced oscillation

can be alleviated by reducing the outputs of critical participating

generators and/or upgrading their terminal voltage [34]. In this

case, these operational actions are similar to those for modal

oscillation [35].

Actually, measure 4) is the root approach to damp modal os-

cillation. Thus, the specific control strategies for improve sys-

tem damping against forced and modal oscillation are identical.

Specifically, they include reducing system loading and feedback

controls, strengthening system structure, installing PSSs and

other supplementary controllers on FACTS devices and HVDC

systems.

IV. FORCED OSCILLATION COMPONENTS-ANALYSIS AND

DETECTION

This section analyzes the components of forced oscillation.

Based on uniqueness of component quantities, frequencies and

damping ratios, a method is presented to detect the oscillation.

A. Oscillation Components Analysis

The transient response of forced oscillation contains twin

components, corresponding to the two terms inside the square

bracket of (9). One is termed as forced component of zero damp-

ing and with the same frequency as the forced disturbance. The

other is called as free (or natural) component, whose oscillatory

frequency and damping ratio are identical to those of system

mode. In comparison, the well-known modal oscillation con-

tains only one free component.

The free component dies out some time after the forced distur-

bance has been introduced. After that forced oscillation arrives

in steady state and there leaves only the forced component.

Therefore, if one wants to extract oscillatory properties of the

system, data sampled at the initial stage of the forced oscillation

is necessary where the free component is involved.

B. Component-Analysis-Based Forced Oscillation Detection

Both forced oscillation and system mode are supposed to

be simultaneously and accurately estimated by certain modal
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Fig. 2. Flowchart of component-analysis-based oscillation detection and
discrimination.

estimation algorithm, such as stochastic subspace identification-

covariance and Prony [36], [37].

Subsequently, forced oscillations (resonance and beats) and

modal oscillation can be distinguished from each other accord-

ing to differences in the estimated oscillation component quan-

tities, frequencies and damping ratios. A flowchart for detecting

and discriminating various oscillations is given in Fig. 2, includ-

ing positive/zero damping resonances, positive/zero damping

beats, and negative/positive/zero damping modal oscillations.

C. Determination of Damping Ratio and Frequency

Thresholds

In Fig. 2, four additional symbols ωs , ωt , ζs , ζt are intro-

duced to denote frequencies and damping ratios of two arbitrary

estimated oscillation components s and t.
Considering there always exists some biased error in damping

estimation, a relaxed inequality |ζs | < ζth is utilized to identify

an oscillation component s of zero damping, where ζth is chosen

as a small positive number, e.g., 0.5%.

The thresholds ωth1 and ωth2 are employed to determine

whether the two components s and t are two distinct components

of a modal oscillation or twin components of a forced oscillation.

Specifically,

1) if |ωs − ωt | falls into the interval [0, ωth1), components

s and t are the twin components of resonance,

2) if |ωs − ωt | is a member of [ωth1 , ωth2), the two compo-

nents are the twin components of beats,

3) otherwise, they are two distinct components of a modal

oscillation.

To this end, ωth1 can be typically chosen as half of the res-

onant peak width ζrωnr (see Fig. 1). In the remainder of this

section, a practical method for determining ωth2 is presented.

The critical of this method is to derive the upper bound of

|ωdr − ωl |. To achieve this, a proposition is given at first.

Proposition 1: For beats, a basic relationship is actually un-

derlaid the waveforms, i.e., the difference between ωdr and ωl

should be less than either of the frequencies. Mathematically, it

can be expressed as:

|ωdr − ωl | < min(ωdr , ωl). (17)

Proof: Equation (17) can be expanded to two cases, i.e.,
⎧

⎨

⎩

ωdr

ωl
∈ (1, 2) if ωdr > ωl ,

ωl

ωdr
∈ (1, 2) if ωdr < ωl .

(18)

Define averages of the sum and absolute difference of ωdr

and ωl respectively as:

ωar =
ωdr + ωl

2
, ωbr =

|ωdr − ωl |
2

. (19)

By taking (18) into account, the ratio of ωar to ωbr is analyzed

as follows.

ωar

ωbr

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ωdr + ωl

ωdr − ωl

= 1 +
2

ωdr /ωl − 1
> 3 if ωdr > ωl ,

ωdr + ωl

ωl − ωdr

= 1 +
2

ωlωdr − 1
> 3 if ωdr < ωl .

(20)

The physical meaning of (20) is that for beat frequency oscil-

lation, there should be at least 3 peaks (or troughs) enclosed in

one beat. As an extreme case, when ωdr = ωl , resonance occurs

and it contains an infinite number of peaks and troughs. These

two conclusions can be verified from illustrative diagrams of

beats and resonance, as shown in Figs. 3 and 4. �

From (18), we have:
⎧

⎨

⎩

ωdr

ωl
< 2 ⇒ ωdr

2
< ωl ⇒ ωdr − ωl <

ωdr

2
if ωdr > ωl ,

ωl

ωdr
< 2 ⇒ ωl

2
< ωdr ⇒ ωl − ωdr <

ωl

2
if ωdr < ωl .

(21)

Combining the two cases in (21) yields the upper bound of

|ωdr − ωl |, i.e.,

|ωdr − ωl | < max
(ωdr

2
,

ωl

2

)

= 1.0 Hz or 2π rad/s. (22)

Equation (22) works for ωdr , ωl ∈ [0.1, 2.0] Hz. Based on

the equation, the threshold ωth2 can be determined. In this paper,

a relatively tight condition for detecting beats is used by setting

ωth2 as 0.2 Hz. Notice that it is consistent with the setting

in [28].
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Fig. 3. Illustrative diagram of positive damping beats with ωl < ωnr , β > 1
and M > N0 . ∆ye (t) is the waveform of beats and ∆yee (t) is its upper or
lower envelope. M , N0 and Nm ax are defined and evaluated in (24), (25) and
(30), respectively.

Fig. 4. Illustrative diagram of positive damping resonance. ∆ye (t) is the
waveform of resonance and ∆yee (t) is its upper or lower envelope. M ′ is
defined in (37).

V. FORCED OSCILLATION ENVELOPE-ANALYSIS

AND DETECTION

This section explores the envelope of forced oscillation.

Based on uniqueness of envelope shapes, forced oscillation can

be detected and distinguished from modal oscillation by visual

inspection in the presence of single forced disturbance.

A. Envelope of Forced Oscillation

Equation (9) can be rewritten in a more compact form:

∆y(t) =

n
∑

i=1

q
∑

r=1

m
∑

l=1

[

− M sin(ωlt + γir + αrl − ϕ)

+N sin(ωdr t + γir + αrl − ϕ)
]

(23)

by introducing amplitude constant M and variable N

M =
2ωlci |φir ||ψrl |∆Pl

η
β (24)

N(t) =
2ωlci |φir ||ψrl |∆Pl

η
e−ζr ωn r t . (25)

Substituting ωdr and ωl in (23) with ωar + ωbr and ωar −
ωbr , respectively, results in a reformulation of ∆y.

∆y(t) =

n
∑

i=1

q
∑

r=1

m
∑

l=1

∆y1e(t) cos(ωar t) + ∆y2e(t) sin(ωar t)

=

n
∑

i=1

q
∑

r=1

m
∑

l=1

∆ye(t) (26)

where

∆y1e(t) = M sin(ωbr t − γir − αrl + ϕ)

+ N sin(ωbr t + γir + αrl − ϕ) (27)

∆y2e(t) = −M cos(ωbr t − γir − αrl + ϕ)

+ N cos(ωbr t + γir + αrl − ϕ). (28)

Accordingly, the envelope that modulates the amplitude of

∆ye(t) can be obtained

∆yee(t) = ±
√

∆y2
1e(t) + ∆y2

2e(t)

= ±
√

M 2 + N 2 − 2MN cos(2ωbr t). (29)

In the following sections, ∆ye(t) and ∆yee(t) induced by a

single forced disturbance are detailed in the cases of beats and

resonance.

B. Envelope of Beats

In weakly damped and non-resonant operating condition, the

third term under the square root sign in (29) is nonzero. It means

that the amplitude of forced oscillation will vary or oscillate at

a frequency of 2ωbr , i.e., beat frequency.

It can be seen from Fig. 3 that there exist overshoots in the

upper envelope. It attains the minimum and maximum values at

t = 0 and π
2ωb r

, i.e., |M − N0 | and |M + Nmax |, where

N0 = N(0), Nmax = N
( π

2ωbr

)

. (30)

In the following, two special cases of beats are considered:

1) Beats arrive in steady state and N tends to N(∞) = 0.

2) In the absence of damping, undamped beats occur.

In the first case, ∆yee(t) is a constant and ∆ye(t) becomes

an undamped oscillation, i.e.,

∆ye(t) = ∆yee · sin(ωlt + γir + αrl − ϕ) (31)

∆yee = ±M. (32)

In the second case, ζr = 0, ϕ = π
2 . ∆yee(t) is an undamped

oscillation and ∆ye(t) becomes undamped beats, viz.,

∆ye(t) =
ci |φir ||ψrl |∆Pl

2ωbr

×
[

(β + 1) sin(ωbr t) sin(ωar t + γir + αrl)

− (β − 1) cos(ωbr t) cos(ωar t+ γir + αrl)
]

(33)

∆yee(t) =
ci |φir ||ψrl |∆Pl

2ωbr

√

β2 + 1 − 2β cos(2ωbr t). (34)
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C. Envelope of Resonance

As a special case of beats, when resonance occurs, quantities

in (11)–(13) can be reduced to η = 2ζrωnrωl , β = 1 and ϕ = 0,

respectively. Considering ωbr ≈ 0 and ωar ≈ ωnr = ωl , it can

be known from (23) and (29) that

∆ye(t) =
ci |φir ||ψrl |∆Pl

ζrωnr

×
[(

1 + e−ζr ωn r t
)

sin(ωbr t) cos(ωar t + γir + αrl)

−
(

1 − e−ζr ωn r t
)

cos(ωbr t) sin(ωar t + γir + αrl)
]

≈
n

∑

i=1

q
∑

r=1

m
∑

l=1

∆yee(t) sin(ωar t + γir + αrl) (35)

∆yee(t) = M − N = ±ci |φir ||ψrl |∆Pl

ζrωnr

(

e−ζr ωn r t − 1
)

. (36)

It can be seen from Fig. 4 that ∆yee(t) is non-oscillatory

and does not have any overshoot. Particularly, when resonance

reaches steady state, ∆yee(t) becomes a constant:

∆yee = M ′ = ±ciφirψrl∆Pl

ζrωnr
. (37)

Note that here M ′ is much greater than M given in (32) / (24).

In the case of zero damping, the envelope of resonance can

be obtained in two ways. On one hand, it is known that ωbr t
and sin(ωbr t) become two infinitesimals of the same order of

magnitudes as ωbr approaches zero. Accordingly, the envelope

of zero damping resonance can be derived from the limit of (34)

by making β = 1 and ωbr → 0:

∆yee(t) = ±ciφirψrl∆Pl · t. (38)

On the other hand, the envelope can also be obtained by taking

limit of (36) and considering the fact that e−ζr ωn r t − 1 and

−ζrωnr t are two infinitesimals of the same order of magnitudes

when ζr is sufficiently close to zero.

As it is seen from (38) that the envelope of zero damping res-

onance grows linearly with time t. Without taking any remedial

measures, the oscillation will grow unlimitedly. Ultimately, the

system will experience a catastrophic blackout.

D. Envelope-Shape-Analysis-Based Forced Oscillation

Detection

Mathematically, the shapes of envelopes can be determined

by signs of their first and second time derivatives, as summarized

in columns 4–7 of Table I.

Intuitively, the envelops of beats in Cases 1 and 2 are un-

damped and damped oscillations, respectively, corresponding

to their zero-crossing time derivatives. Case 3 shows that the

envelope of zero damping resonance is an oblique line. Case 4

implies a convex upper envelope of positive damping resonance.

Compared with forced oscillations, Cases 6 and 7 denote that

upper envelopes of modal oscillations are concave for the system

in both positive and negative damping conditions. For the zero

damping modal oscillation, its envelope is a horizontal line, as

given by Case 5.

TABLE I
UPPER ENVELOPE SHAPES OF FORCED AND MODAL OSCILLATIONS

Oscillation Case ζr ∆y ′
e e ∆y ′′

e e ∆y ′
e e ∗ ∆y ′′

e e Envelope

Type No. Shape

Forced Beats 1 = 0 ±, 0 ±, 0 ±, 0 Undamped

oscillation oscillation

2 > 0 ±, 0 ±, 0 ±, 0 Damped

oscillation

Resonance 3 = 0 + 0 0 Oblique

line

4 > 0 + − − Convex

5 = 0 0 0 0 Horizontal

line

Modal 6 > 0 − − + Concave and

oscillation growing

7 < 0 + + + Concave and

decaying

Therefore, by keeping the uniqueness of envelope shapes

(see column 7 of Table I) in mind and visually inspecting their

transient responses, forced and modal oscillations can be easily

detected and discriminated from each other.

E. Discussion

The component-analysis-based forced oscillation detection

method is capable of detecting forced oscillation in case of

multiple forced disturbances. It can even deal with the mixture

of forced and modal oscillations.

Compared with component-analysis-based forced oscillation

detection method, the envelope-shape-based method is intuitive.

However, the latter is of more theoretical value because it cannot

handle complex waveforms of oscillations in the circumstances

of multiple forced disturbances. For the realistic case, neither do

we know the number of forced oscillation sources in the system

nor their nature (i.e., resonance or beats) beforehand. Further-

more, for oscillations occurred in practical power system, the

captured signals contain non-oscillatory component and ambi-

ent noises. Because the envelope shapes of forced oscillations

are distorted from the ideal ones to some extent, the component-

analysis-based method is then preferred for the reliable detection

of forced oscillation.

VI. CASE STUDY I: FORCED OSCILLATIONS IN THE NEW

ENGLAND TEST SYSTEM

The 10-machine 39-bus New England test system as depicted

in Fig. 5 is employed to demonstrate the correctness of theo-

retical analyses and the effectiveness of detection methods for

forced oscillation. Various cases in which the system is dis-

turbed by single forced disturbance, two forced disturbances,

and two forced disturbances plus an exciter step are intensively

investigated.

A. Description of the Test System

Under normal operating condition, active power across tie-

lines {16–15, 16–17} is 3.91 p.u.. Generators are represented

by the two-axis model and equipped with IEEE type DC1A
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Fig. 5. One-line diagram of the 10-machine 39-bus New England test system.

excitation system. Loads are simulated by constant impedances.

Detail parameters of the system can be found in [27].

Two scenarios of different damping levels of the inter-area

mode, in which G10 oscillates against G1–G9, are built by

adjusting the gains of exciters. In the well-damped Scenario

1, parameters of exciters are the same as those shown in [27].

Frequency and damping ratio of the mode are 0.637 Hz and

5.32%, respectively. In the poorly damped Scenario 2, gains

of all exciters are replaced by a relatively high value of 40.

Accordingly, frequency of the mode becomes 0.615 Hz and the

damping ratio reduces to 0.38%.

B. Single Forced Disturbance

The forced disturbance is located on the dominant generator

G10 and has a small magnitude of 0.02 p.u.. The perturbation

is activated at t = 10 s. Four cases are studied. In Cases 1 and

2, frequencies of forced disturbances are set to the resonant

frequencies in Scenarios 1 and 2. They can be computed from

(8) and (15), viz., 0.638 and 0.615 Hz, respectively. In Cases

3 and 4, the disturbance frequencies are 0.05 Hz below the

two resonant frequencies, i.e., 0.588 and 0.565 Hz, respectively.

Accordingly, two beats are simulated. In all cases, deviations

of active power on tie-line 16–17 are shown in Fig. 6(a)–(d),

respectively.

First, forced oscillation amplitudes are analyzed. Compared

with Cases 1 and 3 in Scenario 1, Cases 2 and 4 in Scenario

2 clearly show that longer time is needed to reach steady state

due to smaller damping ratio of the inter-area mode. Besides,

the steady state amplitude of resonance in Case 2 is six times

of that in Case 1. For beats in Case 4, the maximum of the

transient amplitude is twice as much as that in Case 3. However,

their steady state amplitudes are nearly the same since they are

mainly determined by the same frequency differences between

Fig. 6. Deviations of active power on tie-line 16–17 when the forced dis-
turbance sits on G10. (a) Case 1: resonance under ζr = 5.32%; (b) Case 2:
resonance under ζr = 0.38%; (c) Case 3: beats under ζr = 5.32%; (d) Case
4: beats under ζr = 0.38%.

TABLE II
PRONY ANALYSIS FOR SYSTEM DISTURBED BY SINGLE FORCED DISTURBANCE

Case Component Amplitude Frequency Phase Damping

No. No. (Hz) (deg.) Ratio (%)

1 1 0.0089 0.6380 178.35 −0.0003

2 0.0091 0.6391 −4.54 5.6574

2 1 0.0492 0.6145 171.39 −0.0074

2 0.0545 0.6145 −13.72 1.2685

3 1 0.0053 0.5880 −125.68 −0.0011

2 0.0050 0.6394 50.04 5.3874

4 1 0.0061 0.5650 −87.18 −0.0001

2 0.0059 0.6116 91.18 0.7573

forced disturbance and system mode, i.e., 0.05 Hz. Additionally,

it is apparent that the steady state amplitudes of resonances

are greater than those of beats. Specifically, in Scenario 1, the

amplitude in Case 1 is almost 1.8 times as much as that in Case

3. While in the poorly damped Scenario 2, the amplitude ratio

of Case 2 to Case 4 exceeds 8.

Second, forced oscillation component analysis is carried out.

The well-known Prony algorithm [37] is employed to extract

oscillation components and simultaneously estimate system

modes and forced oscillations from deviations of active power

on the tie-line 16–17. The sample frequency is 20 Hz. For res-

onances and beats in Cases 1–4, their component quantities,

frequencies and damping ratios are listed in Table II. In each

case, two components with approximately the same amplitudes

but almost in antiphase are identified. The damping ratio of the

forced component is close to zero and its frequency is near that

of the forced disturbance. The damping ratio and frequency of

the free component are very close to those of the system mode.

In summary, these findings are in well accordance with the
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theoretical analyses for forced oscillation components presented

in Section IV. Therefore, based on unique component properties

of resonance and beats, they can be easily distinguished from

each other.

Next, the envelope shapes of forced oscillations are inspected.

For resonances in Cases 1 and 2, their upper envelopes are

convex without any overshoot. For beats in Case 3, since the free

component dies out rapidly, the overshoots in the envelope are

very small and the beats are negligible. In the poorly damped

Case 4, the oscillatory feature of envelopes is comparatively

impressive. Therefore, it can be claimed that resonances and

beats can be easily discriminated from each other according to

their unique envelope shapes.

Based on above analyses, it should be emphasized that, in the

case of single forced source disturbs the multimachine power

system, both component-analysis and envelope-shape-analysis

based method can accurately discriminate different types of

forced oscillations.

C. Two Forced Disturbances

In Scenario 2, another local mode is selected via modal anal-

ysis so that the location and frequency of the second forced

disturbance can be determined. The analysis reveals that G6

and G7 oscillate against G1, G5 and G8 at a frequency of

1.13 Hz and with a damping ratio of 1.74%. To sufficiently

excite the mode, this forced disturbance sits on the dominant

generator G6. Its magnitude is set as 0.02 p.u..

Another three cases are then studied. In Case 5, frequencies

of the two forced disturbances are identical to natural frequen-

cies of the inter-area and local modes, respectively, viz., 0.615

and 1.13 Hz, resulting in two resonances in the forced oscilla-

tion. Subsequently, in Case 6, the frequency of the first forced

disturbance on G10 is changed to 0.02 Hz below the resonant

frequency, i.e., 0.595 Hz. It is clear the resultant forced os-

cillation is a hybrid of beats and resonance. Lastly, in Case

7, both the frequencies of the two forced disturbances are set

to be 0.02 Hz below the resonant frequencies, i.e., 0.595 and

1.11 Hz, respectively. Accordingly, two beats occur.

The active power deviations on the tie-line 16–17 in Cases

5–7 are shown in Fig. 7(a)–(c), respectively. Notice that the

waveforms of the forced oscillations are more complex, com-

pared with those in Fig. 6 where the system is disturbed by only

one source. Taking Fig. 7(a) as an example, it can be seen that

the synthesis of two resonances present as beats. Therefore, the

component-analysis-based method is utilized to confirm these

forced oscillations.

Similar to the single forced disturbance case, again, the esti-

mation results listed in Table III show that the Prony algorithm

can estimate both system modes and forced oscillations in all

three cases. In each case, two pairs of free and forced oscillation

components are caused by the two forced disturbances.

D. Two Forced Disturbances and an Exciter Step

This section further investigates the capability of

the component-analysis-based method in detecting forced

Fig. 7. Deviation of active power on tie-line 16–17 when two forced distur-
bances are located on G10 and G6 in Scenario 2. (a) Case 5: two resonances;
(b) Case 6: hybrid of beats and resonance; (c) Case 7: two beats.

TABLE III
PRONY ANALYSIS FOR SYSTEM DISTURBED BY TWO FORCED DISTURBANCES

Case Component Amplitude Frequency Phase Damping

No. No. (Hz) (deg.) Ratio (%)

5 1 0.0491 0.6150 149.87 0.0003

2 0.0485 0.6114 −29.04 0.7594

3 0.0536 1.1300 −8.35 0.0007

4 0.0538 1.1296 −173.43 1.8774

6 1 0.0168 0.5950 −97.51 −0.0005

2 0.0179 0.6114 83.25 0.7613

3 0.0535 1.1300 −8.17 0.0005

4 0.0525 1.1308 −177.28 1.8861

7 1 0.0168 0.5950 −97.51 −0.0002

2 0.0180 0.6114 83.29 0.7628

3 0.0326 1.1100 26.37 −0.0010

4 0.0368 1.1302 −132.76 1.8511

oscillation when both forced and modal oscillations are simul-

taneously presented in the system.

To this end, besides the forced disturbances in Cases 5–7,

an extra exciter steps with 3% magnitude change is applied to

generator G6 to excite modal oscillation in each case. Accord-

ingly, another three Cases 8–9 are obtained. The active power

deviations on the tie-line 16–17 in all cases are analyzed by the

Prony algorithm. The estimated oscillations components and

their oscillatory properties are listed in Table IV.
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TABLE IV
PRONY ANALYSIS FOR SYSTEM DISTURBED BY TWO FORCED DISTURBANCES

AND A 3% EXCITER STEP

Case Component Amplitude Frequency Phase Damping

No. No. (Hz) (deg.) Ratio (%)

8 1 0.0438 0.6150 170.52 −0.0091

2 0.0416 0.6129 −20.64 1.0570

3 0.0543 1.1300 −1.08 0.0008

4 0.0578 1.1329 −167.89 1.8303

9 1 0.0151 0.5950 −100.63 −0.0015

2 0.0078 0.6129 106.16 1.0176

3 0.0541 1.1300 −1.33 0.0001

4 0.0620 1.1335 −173.05 1.9673

10 1 0.0119 0.5950 75.97 −0.0021

2 0.0062 0.6129 −77.21 1.0210

3 0.0117 1.1100 −164.21 0.0003

4 0.0176 1.1335 47.36 1.9669

It can be seen from the table that, in each case, two pairs of free

and forced oscillation components can be accurately and reliably

identified. The estimation results validate the capability of the

presented component-analysis-based method in detecting forced

oscillations in cases where both forced and modal oscillations

are involved in the system.

The estimation results in Table IV are then compared with

those in Table III. It can be found that amplitudes of the free

components for beats, i.e., component 2 in Case 9, components 2

and 4 in Case 10, are largely weakened by the newly introduced

modal oscillation due to possible anti-phase. Furthermore, since

the amplitudes of resonances in Cases 8 and 9 are much greater

than those of the modal oscillations, they are basically unaf-

fected by the exciter step.

VII. CASE STUDY II: FORCED OSCILLATION IN A REAL-LIFE

POWER SYSTEM

In this section, an active power oscillation occurred in Shan-

dong power system of China on June 18, 2012 is analyzed to

demonstrate the correctness of the component-analysis-based

method for detecting forced oscillation. Further, possible causes

of the oscillation are provided.

A. Description of the Oscillation

The oscillation occurred at the 670 MW tandem compound,

3000 rpm turbine-generator unit #5 in WH power plant. During

the event, active power output of the generator was captured

by the wide-area measurement system (WAMS), as shown in

Fig. 8.

Prior to experiencing the oscillation, the generator was op-

erated at its rated active power. From local time 17:09:51, the

power order (load reference) of the unit began to fluctuate and

active power generation oscillated accordingly. The peak-to-

peak amplitude of the oscillation was approximately 120 MW

and the frequency was about 1.0 Hz. Four more oscillations re-

curred on June 18 (once), 21 (twice) and 22 (once) when the

unit was operated at full load.

These oscillations could always decay by switching the dig-

ital electro-hydraulic governing system (DEH) of the unit from

Fig. 8. Active power output of unit #5 in WH power plant during the oscillation
event.

TABLE V
PRONY ANALYSIS OF THE ACTIVE POWER GENERATION

Case Component Amplitude Frequency Phase Damping

No. No. (Hz) (deg.) Ratio (%)

11 1 3.9837 0.9824 57.34 0.0624

2 4.5537 0.9984 −145.74 6.0993

3 0.4616 1.3184 −44.21 4.8489

4 0.1426 1.4356 157.21 22.3679

5 0.1969 2.4255 124.80 14.3171

12 1 0.3909 0.6835 13.89 52.4161

2 2.3857 0.9765 −134.43 7.3395

3 9.3272 0.9892 4.62 −0.3288

4 0.5729 1.9692 −65.65 8.6085

5 0.4384 2.3186 19.58 20.1382

coordinated control (CC) mode to boiler input (BI, i.e., turbine

following the boiler) control mode [38], [39].

B. Oscillation Component Analysis

To reduce the adverse effect of nonlinearity, active power

outputs of the unit at the early stage of the oscillation, viz.,

17:09:56-17:10:20 (24 s, Case 11) and 17:11:06-17:11:46 (40 s,

Case 12) are down-sampled at a frequency of 25 Hz for Prony

analyses. The first five oscillatory components with the lowest

frequencies are listed in Table V.

As can be seen from the table, the components 1 and 2 in

Case 11 have extremely larger amplitudes than the remaining.

In addition, the frequencies of the two components are very

close. The damping ratio of component 1 is determined as zero

and that of component 2 is greater than zero. The frequencies of

components 1 and 2 are nearly the same. Furthermore, the same

findings are obtained by analyzing the dominant components 2

and 3 in Case 12.

By using the component-analysis-based method presented in

Section IV-B, it can be claimed that the oscillation belongs to

forced oscillation. To be more exact, it is resonance.
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C. Possible Causes of the Oscillations

Up to the present, the exact causes of the successive five

forced oscillations are still unknown for two reasons. On one

hand, unlike WAMS, the sampling period of DEH of the unit

is relatively large (i.e., 0.2 s), resulting in an absence of high-

precision data required for joint thermal and electrical analyses.

On the other hand, oscillations did not recur in subsequent rou-

tine operation and filed tests. However, an attempted explanation

for possible causes of the oscillations is provided as follows,

based on post-incident analyses, field tests and practical reme-

dial actions for the unit. To some extent, these analyses and tests

support the assertion based on oscillation component analysis

as addressed in the last section.

First, the eigen-analysis revealed that the unit only dominated

a well-damped plant mode, whose frequency and damping ra-

tio were 0.988 Hz and 8.53%, respectively. They coincide with

the free component 2 in both Cases 11 and 12, as shown in

Table V. Thus, the practical oscillations were indeed forced os-

cillations rather than modal oscillations with negative damping.

Second, exciter step response tests with 3% magnitude change

were performed at different load levels, with or without PSSs.

Satisfactory damping of system responses in all cases excluded

the possibility of exciter and PSS being the oscillation sources.

Furthermore, it was observed that identical emergency controls

were carried out after the five forced oscillations, i.e., switch-

ing the control mode of the governing system from CC to BI.

Therefore, it is highly likely that the governing system amplified

some possible disturbance sources (e.g., the high penetration of

wind power in WH region) and caused the oscillations.

To reduce the over-sensitivity of governing system to exter-

nal load variations, two remedial actions were taken. First, an

inertial block (i.e., a low-pass filter) with a time constant of 2 s

was added in front of the active power measuring module of the

DEH. Second, both the proportional and integral gains of the

governor’s PID controller were slightly reduced. At this time,

the unit is able to operate at full load while the system is stabi-

lized and forced oscillations do not recur. However, one cannot

claim that the forced oscillations are thoroughly suppressed by

these remedial actions because the external forced disturbances

may be temporary in nature and have completely vanished.

Therefore, pursuit for the exact causes of these forced os-

cillations is part of our future work, including reproduction of

the recorded system response [1] and theoretical analysis by us-

ing other mechanisms of power system oscillation, e.g., strong

modal resonance [40].

VIII. CONCLUSION

This paper theoretically analyzes the explicit expression, am-

plitude, components and envelope of forced oscillation in mul-

timachine power system. Important conclusions are:

1) Higher observability/controllability, smaller damping ra-

tio of system mode, and closer proximity of frequencies

between forced disturbance and system mode, will result

in strong forced oscillation.

2) Forced oscillation can be alleviated by reducing the

amplitude of forced disturbance, eliminating its source,

increasing the frequency difference between forced dis-

turbance and system mode, and improving system

damping.

3) A forced disturbance leads to twin oscillation components.

The forced one is zero damping and of the same frequency

as forced disturbance. The free one is with the identical

modal properties as system mode.

4) Envelope shapes of forced oscillations are unique. The

upper envelope of resonance is non-oscillatory and can be

distinguished from modal oscillation by its convexity. In

comparison, the envelope of beats is always oscillatory.

Based on uniqueness of components properties and envelope

shapes, forced oscillation can be reliably detected and correctly

discriminated from modal oscillation.
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