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Abstract In the framework of an incomplete financial market where the stock price
dynamics are modeled by a continuous semimartingale (not necessarily Markovian),
an explicit second-order expansion formula for the power investor’s value function—
seen as a function of the underlying market price of risk process—is provided. This
allows us to provide first-order approximations of the optimal primal and dual con-
trols. Two specific calibrated numerical examples illustrating the accuracy of the
method are also given.
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1 Introduction

In an incomplete financial setting with noise governed by a continuous martingale and
in which the investor’s preferences are modeled by a negative power utility function,
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we provide a second-order Taylor expansion of the investor’s value function with
respect to perturbations of the underlying market price of risk process. We show
that tractable models can be used to approximate highly intractable ones as long as
the latter can be interpreted as perturbations of the former. As a by-product of our
analysis, we explicitly construct first-order approximations of both the primal and
the dual optimizers. Finally, we apply our approximation in two numerical examples.

There are two different ways of looking at our contribution: as a tool to approxi-
mate the value function and perform numerical computations, or as a stability result
with applications to statistical estimation. Let us elaborate on these, and the related
work, in order.

An approximation interpretation. The conditions for existence and uniqueness of
the investor’s utility optimizers are well established (see [21, 27]). However, in gen-
eral settings, the numerical computation of the investor’s value function and corre-
sponding optimal trading strategy remain a challenging problem. Various existing
approaches include the following:

1. In Markovian settings, the value function can typically be characterized by an
HJB equation. Its numerical implementation through a finite-grid approximation is
naturally subject to the curse of dimensionality. Many authors (see [23, 40, 7, 25, 33])
opt for affine and quadratic models for which closed-form solutions exist. Going
beyond these specifications in high-dimensional settings by using PDE techniques
seems to be very hard computationally. We refer to [26] and the references therein for
recent advances on numerically solving the PDE stemming from the HJB equation.

2. In general (i.e., not necessarily Markovian) complete models, [10] and [12]
provide efficient Monte Carlo simulation techniques based on the martingale method
for complete markets developed in [9] and [20].

3. Other approximation methods are based on various Taylor-type expansions.
The authors of [4] and [5] log-linearize the investor’s budget constraint as well as
the investor’s first-order condition for optimality. Kogan and Uppal [24] expand in
the investor’s risk-aversion coefficient around the log-investor (the myopic investor’s
problem is known to be tractable even in incomplete settings). When solving the HJB
equation numerically (using a Longstaff–Schwartz type of technique), Brandt et al.
[3] expand the value function in the wealth variable to a fourth-degree Taylor approx-
imation.

4. Based on the duality results in [21], Haugh et al. [14] provide an upper bound
on the error stemming from using suboptimal strategies. Bick et al. [2] propose a
method based on minimizing over a subset of dual elements. This subset is chosen
such that the corresponding dual utility can be computed explicitly and transformed
into a feasible primal strategy.

5. It is also important to mention the recent explosion in research in asymptotic
methods in a variety of different areas in mathematical finance (transaction costs,
pricing, ambiguity aversion, etc.). Since we focus on model expansion in utility max-
imization in this paper, we simply point the reader to some of the most recent papers,
namely [1, 18, 16], and the references therein, for further information.

In our work, no Markovian assumption is imposed and we deal with general, pos-
sibly incomplete markets with continuous price processes. We consider the utility
functions U(x) := xp/p for x > 0. We note that while our results apply only to
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p < 0, it is possible to extend them to p ∈ (0,1) at the cost of imposing additional
integrability requirements. We do not pursue such an extension because the param-
eter range p ∈ (0,1) which we leave out seems to lie outside the typical range of
risk-aversion parameters observed in practice (see e.g. [39]).

A stability interpretation. As mentioned above, our contribution can also be seen
as a stability result. It is well known (see e.g. [38]) that even in Samuelson’s model,
estimating the drift is far more challenging than estimating the volatility. Larsen and
Žitković [31] identify the kinds of perturbations of the market price of risk process
under which the value function behaves continuously. In the present paper, we take
the stability analysis one step further and provide a second-order Taylor expansion in
an infinite-dimensional space of market price of risk processes. In this way, we not
only identify the “continuous” directions, but also those features of the market price
of risk process that affect the solution of the utility maximization problem the most (at
least locally). Any statistical procedure which is performed with utility maximization
in mind should therefore focus on those salient features in order to use the scarce data
most efficiently.

Similar perturbations have been considered by [34], but in a somewhat different
setting. [34] is based on Malliavin calculus and produces a first-order expansion for
the utility indifference price of an exponential investor in an Itô-process driven mar-
ket; some of the ideas used can be traced to the related work [11].

Mathematical challenges. From a mathematical point of view, our approach is
founded on two ideas. One of them is to extend the techniques and results of [31];
indeed, the basic fact that the dual minimizers converge when the market price of risk
process does is heavily exploited. It does not, however, suffice to get the full picture.
For that, one needs to work on the primal and the dual problems simultaneously
and use a pair of bounds. The ideas used there are related to, and can be interpreted
as, a nonlinear version of the primal–dual second-order error estimation techniques
first used in [15] in the context of mathematical finance. The first-order expansion
in the quantity of the unspanned contingent claim developed in [15] was generalized
in [29] (see also [28]). The arguments in these papers rely on convexity and concavity
properties in the expansion parameter (wealth and number of unspanned claims).
This is not the case in the present paper; indeed, when seen as a function of the
underlying market price of risk process, the investor’s value function is neither convex
nor concave and a more delicate, local analysis needs to be performed.

Numerical examples. In Sect. 5, we use two examples to illustrate how our ap-
proximation performs under realistic conditions. First, we consider the Kim–Omberg
model (see [23]) which is widely used in the financial literature. Under a calibrated
set of parameters, we find that our approximation is indeed very accurate when com-
pared to the exact values.

Our second set of examples belongs to the class of extended affine models in-
troduced in [8]. The authors show that this class of models has superior empirical
properties when compared to popular affine and quadratic specifications (such as
those used e.g. in [33]). The resulting optimal investment problem for the extended
affine models unfortunately does not seem to be explicitly solvable. Our approxima-
tion technique turns out to be easily applicable, and our error bounds are quite tight
in the relevant parameter ranges. Furthermore, unlike numerical methods based on
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PDEs, our method’s computation time grows linearly in the number of underlying
factors. Therefore, we can and do apply our theory to a high-dimensional extended
affine model.

2 A family of utility maximization problems

2.1 The setup

We work on a filtered probability space (Ω,F ,F = (Ft )t∈[0,T ],P) with a finite time
horizon T > 0. We assume that the filtration F is right-continuous and that the
σ -algebra F0 consists of all P-trivial subsets of F .

Let M be a continuous local martingale, and let R(ε), ε ≥ 0, be a family of contin-
uous F-semimartingales given by

R(ε)
s := Ms +

∫ s

0
λ

(ε)
t d〈M〉t , s ∈ [0, T ], where λ(ε) := λ + ελ′, (2.1)

for a pair λ,λ′ ∈ P2
M , where P2

M denotes the collection of all progressively measur-

able processes π with
∫ T

0 π2
t d〈M〉t < ∞. Since S(ε) := E(R(ε)) (where E denotes the

stochastic exponential) will be interpreted as the price process of a financial asset, the
assumption that λ(ε) ∈P2

M can be taken as a minimal no-arbitrage-type condition. We
remark right away that further integrability conditions on λ and λ′ need to be imposed
below for our main results to hold.

2.2 The utility maximization problem

Given x > 0 and ε ≥ 0, let X (ε)(x) denote the set of all nonnegative wealth processes
starting from initial wealth x in the financial market consisting of S(ε) := E(R(ε)) and
a zero-interest bond, i.e.,

X (ε)(x) := {xE(π · R(ε))t , t ∈ [0, T ] : π ∈P2
M}.

Here, π is interpreted as the fraction of wealth invested in the risky asset S(ε). The
investor’s preferences are modeled by a CRRA (power) utility function with the risk-
aversion parameter p < 0, i.e.,

U(x) := xp

p
, x > 0.

The value function of the corresponding optimal investment problem is defined by

u(ε)(x) := sup
X∈X (ε)(x)

E[U(XT )], x > 0. (2.2)
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2.3 The dual of the utility maximization problem

As is usual in the utility maximization literature, a fuller picture is obtained if one
also considers an appropriate version of the optimization problem dual to (2.2). For
that, we need to examine the no-arbitrage properties of the set of models introduced
in Sect. 2.1 above.

We observe first that the assumptions we placed on the market price of risk pro-
cesses λ(ε) above are not sufficient to guarantee the existence of an equivalent mar-
tingale measure (and hence NFLVR). They do preclude so-called “arbitrages of the
first kind” and imply the related NUBPR condition. In particular, for all x, y > 0 and
ε ≥ 0, there exists a (strictly) positive càdlàg supermartingale Y with the property that
Y0 = y and YX is a supermartingale for each X ∈ X (ε)(x); we denote the set of all
such processes by Y(ε)(y). While this is a consequence of the NUBPR condition in
general, in our case, an example of a process in Y(ε)(y) is given explicitly as yZ(ε),
where Z(ε) is the minimal local martingale density, that is,

Z
(ε)
t = E(−λ(ε) · M)t .

Having described the dual domain, we remind the reader that the conjugate utility
function V : (0,∞) → R is defined by

V (y) := sup
x>0

(
U(x) − xy

) = y−q

q
, where q := p

1 − p
∈ (−1,0).

We define the dual value function v(ε) : (0,∞) →R by

v(ε)(y) := inf
Y∈Y (ε)(y)

E[V (YT )], y > 0, ε ≥ 0. (2.3)

Due to negativity (and a fortiori finiteness) of the primal value function u(ε), the (ab-
stract) Theorem 3.2 of [27] can now be applied (see also [35]). Its main assumption,
namely the bipolar relationship between the primal and dual domains, holds due to
the existence of the numéraire process given explicitly by 1/Z(ε) (see Theorem 4.12
in [19]). One can also use a simpler argument (see [30]), which applies only to the
case of a CRRA utility with p < 0, to obtain the following conclusions for all ε ≥ 0:

1. Both u(ε) and v(ε) are finite, and we have the conjugacy relationships

v(ε)(y) = sup
x>0

(
u(ε)(x) − xy

)
, u(ε)(x) = inf

y>0

(
v(ε)(y) + xy

)
. (2.4)

2. For all x, y > 0, there exist solutions X̂(ε)(x) ∈ X (ε)(x) and Ŷ (ε)(y) ∈ Y(ε)(y)

of (2.2) and (2.3), respectively, and they are related by

U ′(X̂(ε)
T (x)

) = Ŷ
(ε)
T

(
y(ε)(x)

)
, where y(ε)(x) := d

dx
u(ε)(x) = pxp−1u(ε)(1).

3. The product X̂(ε)Ŷ (ε) is a uniformly integrable martingale. In particular,

E[X̂(ε)
T Ŷ

(ε)
T ] = xy.
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The homogeneity of the utility function U and its conjugate V transfers to the value
functions u(ε) and v(ε) and the solutions X̂(ε) and Ŷ (ε), i.e.,

u(ε)(x) = xpu(ε), v(ε)(y) = y−qv(ε),

X̂(ε)(x) = xX̂(ε), Ŷ (ε)(y) = yŶ (ε),
(2.5)

where, to simplify the notation, we write u(ε), v(ε), X̂(ε), and Ŷ (ε) for u(ε)(1), v(ε)(1),
X̂(ε)(1), and Ŷ (ε)(1), respectively.

2.4 A change of measure

For ε = 0, we denote by π̂ (0) the primal optimizer, that is, the process in P2
M such

that

X̂
(0)
t = E(π̂ (0) · R(0))t .

We define the probability measure P̃
(0) by

dP̃(0)

dP
:= X̂

(0)
T Ŷ

(0)
T = 1

v(0)
V (Ŷ

(0)
T ) = 1

u(0)
U(X̂

(0)
T ), (2.6)

where the equalities follow from the identities xU ′(x) = pU(x), yV ′(y) = −qV (y)

and the relations between the value functions outlined above.
The measure P̃

(0) has been in the mathematical finance literature for a while (see
e.g. [27, Sect. 2]). The explicit form of P̃(0) is not generally available, but we note
that by Girsanov’s theorem, the process

M̃
p
s := Ms +

∫ s

0
(λt − π̂

(0)
t ) d〈M〉t (2.7)

is a P̃(0)-local martingale. This fact will be used below in the proof of Proposition 4.3.

3 The problem and the main results

We first provide first-order expansions and error estimates of the primal and dual
value functions. Secondly, we provide an expansion of the optimal controls in the
Brownian setting.

3.1 Value functions

At the basic level, we are interested in the first-order properties of the convergence,
as ε ↘ 0, of the value functions u(ε) and v(ε) to the value functions u(0) and v(0) of
the “base” model (corresponding to ε = 0). To familiarize ourselves with the flavor of
the results we can expect in the general case, we start by analyzing a similar problem
for logarithmic utility. It has the advantage that it admits a simple explicit solution.
Let u

(ε)
log(x) and v

(ε)
log(y) denote the value functions of the problems as in (2.2) and
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(2.3) above, but with U(x) := logx and V (y) := supx(U(x) − xy) = − logy − 1. It
is a classical result that as long as E[∫ T

0 (λ2
t + (λ′

t )
2) d〈M〉t ] < ∞, we have

u
(ε)
log(x) = logx + 1

2
E

[∫ T

0
(λ

(ε)
t )2 d〈M〉t

]
, v

(ε)
log = u

(ε)
log − 1.

The (exact) second-order expansion in ε of u
(ε)
log(x) is thus given by

u
(ε)
log(x) = u

(0)
log(x) + εE

[∫ T

0
λtλ

′
t d〈M〉t

]
+ 1

2
ε2
E

[∫ T

0
(λ′

t )
2 d〈M〉t

]

= u
(0)
log(x) + εE

[∫ T

0
λ′

t dR
(0)
t

]
+ 1

2
ε2
E

[∫ T

0
(λ′

t )
2 d〈M〉t

]
,

where R(0) is defined in (2.1). We cannot expect the value function to be a second-
order polynomial in ε in the case of a general power utility. We do obtain a formally
similar first-order expansion in Theorem 3.1 below and an analogous error estimate in
Theorem 3.2. Section 4 is devoted to their proofs. We remind the reader of the homo-
geneity relationships in (2.5); they allow us to assume from now on that x := y := 1.

Theorem 3.1 In the setting of Sect. 2, we assume that

∫ T

0
(λ′

t )
2 d〈M〉t ∈ L

1−p(P) and
∫ T

0
λ′

t dR
(0)
t ∈

⋃
s>(1−p)

L
s(P).

Then with �(0) := E
P̃

(0)[∫ T

0 λ′
t dR

(0)
t ], where P̃

(0) is defined by (2.6), we have

d

dε
u(ε)

∣∣∣∣
ε=0+

:= lim
ε↘0

1

ε
(u(ε) − u(0)) = pu(0)�(0), (3.1)

d

dε
v(ε)

∣∣∣∣
ε=0+

:= lim
ε↘0

1

ε
(v(ε) − v(0)) = qv(0)�(0). (3.2)

Theorem 3.2 In the setting of Sect. 2, we assume that

∫ T

0
(λ′

t )
2 d〈M〉t ,

∫ T

0
λ′

t dR
(0)
t ∈ L

2(1−p)(P) and Φ2eε0|p|Φ− ∈ L
1(P̃(0)) (3.3)

for some ε0 > 0, where Φ := ∫ T

0 π̂
(0)
t λ′

t d〈M〉t and Φ− := −min{Φ,0}. Then there
exist constants C > 0 and ε′

0 ∈ (0, ε0] such that for all ε ∈ [0, ε′
0], we have

|u(ε) − u(0) − εpu(0)�(0)| ≤ Cε2, (3.4)

|v(ε) − v(0) − εqv(0)�(0)| ≤ Cε2. (3.5)

Remark 3.3 1. It is perhaps more informative to think of the results in Theorems 3.1
and 3.2 on the logarithmic scale. As is evident from (3.1) and (3.2), the functions
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u(ε) and v(ε) admit the right logarithmic derivatives p�(0) and q�(0), respectively,
at ε = 0. Moreover, we have the small-ε asymptotics

u(ε) = u(0)eεp�(0)+O(ε2), v(ε) = v(0)eεq�(0)+O(ε2).

If one takes one step further and uses the certainty equivalent CE(ε) given by

U(CE(ε)) = u(ε),

we note that �(0) is precisely the infinitesimal growth rate of CE(ε) at ε = 0—
an ε-change of the market price of risk in the direction λ′ leads to an eε�(0)

-fold
increase in the certainty equivalent of the initial wealth.

2. A careful analysis of the proof of Theorem 3.2 below yields the following addi-
tional information:

(a) The proof of Proposition 4.3 reveals that �(0) = E
P̃

(0)[Φ].
(b) The condition involving Φ in (3.3) is needed only for the upper bound in (3.4)

and the lower bound in (3.5). The other two bounds hold for all ε ≥ 0, even if (3.3)
holds with ε0 = 0.

(c) The constants C and ε′
0 depend (in a simple way) on ε0, p and the

L
2(1−p)(P̃(0))- and L

1(P̃(0))-bounds of the random variables in (3.3). For two one-
sided bounds, explicit formulas are given in Propositions 4.2 and 4.3. The other two
bounds are somewhat less informative; so we do not compute them explicitly.

(d) Even though we cannot claim that the functions u(ε) and v(ε) are convex or con-
cave in ε, it is possible to show their local semiconcavity (see [6, Definition 1.1.1]).
This can be done via the techniques from the proof of Theorem 3.2.

3. The assumption of constant risk-aversion (power utility) allows us to incor-
porate many stochastic interest rate models into our setting. Indeed, provided that

c := E[ep
∫ T

0 rt dt ] < ∞, we can introduce the probability measure P
r defined by

dPr

dP
:= cep

∫ T
0 rt dt

on FT . For any admissible wealth process X, we then have

E[U(XT )] = cEP
r [U(XT e− ∫ T

0 ru du)].
In this way, the utility maximization under P

r with a zero interest rate becomes
equivalent to the utility maximization problem under P with the interest rate process
(rt )t∈[0,T ].

A practical implementation of the above idea depends on how explicit one can be
about the Girsanov transformation associated with P

r . It turns out, fortunately, that
many of the widely used interest rate models such as Vasiček, CIR or the quadratic
normal models (see e.g. [36, Chap. 7] for a textbook discussion of these models)
allow a fully explicit description (often due to their affine structure). For example, in
the Vasiček model, the Girsanov drift under Pr can be computed quite explicitly, due
to the underlying affine structure. Indeed, suppose that r has Ornstein–Uhlenbeck
dynamics of the form

drt = κ(θ − rt ) dt + β dBt , r0 ∈R,
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where B is a Brownian motion and κ > 0, θ,β ∈R. Then the process

B(p) := B −
∫ ·

0
b(T − t) dt, where b(t) := βp

κ
(1 − e−κt ),

is a P
r -Brownian motion.

3.2 Optimal controls

We use Landau notation in the following sense. The notation f ∈ O(εr) for r ∈ N

means that there exists a constant C ≥ 0 such that |f (ε)| ≤ Cεr for all ε small.
Therefore, the estimates (3.4) and (3.5) are of type O(ε2). To see this, we note that a
slight adjustment to the proof below of Proposition 4.3 shows that the wealth process
X̃ := E(

∫
π̂ (0)dR(ε)) satisfies (see (4.12))

|E[U(X̃T )] − u(0)(1 + εp�(0))| ≤ 1

2
p2ε2|u(0)|EP̃

(0)[Φ2eε|p|Φ−].

Therefore, under the conditions of Theorem 3.2, π̂ (0) is an O(ε2)-optimal control for
the ε-model because the triangle inequality produces a constant C > 0 such that

|E[U(X̃T )] − u(ε)| ≤ Cε2,

for all ε > 0 small enough. In this section, we provide a correction term to π̂ (0) such
that the resulting wealth process upgrades the convergence to o(ε2).

For simplicity, we consider the (augmented) filtration generated by (B,W), where
B and W are two independent Brownian motions with values in R and R

d , d ∈ N,
respectively. The scalar-valued Brownian motion B drives the stock returns, while the
presence of the multidimensional Brownian motion W allows model incompleteness.
More specifically, in (2.1) we take

dMt := σtdBt , M0 := 0,

for a process σ ∈P2
B with σ �= 0. We define P̃(0) by (2.6) and denote by (B P̃

(0)
,W P̃

(0)
)

the corresponding P̃
(0)-Brownian motions. Provided that Φ := ∫ T

0 π̂
(0)
t λ′

t σ
2
t dt is in

L
2(P̃(0)), Φ has under P̃(0) the unique representation

Φ = E
P̃

(0)[Φ] +
∫ T

0
γ B
t σtdB P̃

(0)

t +
∫ T

0
γ W
t dW P̃

(0)

t , (3.6)

where we have used σ �= 0. Because Φ ∈ L
2(P̃(0)), the two processes γ W and γ B in

(3.6) satisfy the integrability conditions

E
P̃

(0)

[∫ T

0

(
(γ B

t σt )
2 + (γ W

t )2)dt

]
< ∞.

These square-integrability properties are used in the proof of the next theorem.
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Theorem 3.4 In the above Brownian setting, we assume

∫ T

0
(λ′

t )
2σ 2

t dt ∈ L
1−p(P) ∩L

1(P̃(0)) and
∫ T

0
π̂

(0)
t λ′

t σ
2
t dt ∈ L

2(P̃(0)), (3.7)

as well as the existence of a constant ε0 > 0 such that

E

[
e
∫ T

0 (p(1−p)2επ̂(0)λ′+ 1
2 ε2p2γ B((p−2)pγ B−2λ′))σ 2dt

]
< ∞ (3.8)

for all ε ∈ (0, ε0). Then we have

u(ε) − u(0) − εpu(0)�(0) − 1

2
ε2pu(0)

(
�(00) + p(�(0))2) = O(ε3), (3.9)

v(ε) − v(0) − εqv(0)�(0) − 1

2
ε2qv(0)

(
�(00) + q(�(0))2) = O(ε3), (3.10)

as ε ↘ 0. In (3.9) and (3.10), we have defined

�(00) := E
P̃

(0)

[∫ T

0

(
p|γ W

t |2 + (λ′
t )

2 + pγ B
t (γ B

t + 2λ′
t )

1 − p
σ 2

t

)
dt

]
, (3.11)

where the processes γ B and γ W are given by the representation (3.6).

Remark 3.5 1. The proof of Theorem 3.4 below shows that the process

π̃ := π̂ (0) + ε
λ′ + pγ B

1 − p
(3.12)

is an O(ε3)-optimal control for the ε-model in the sense that the wealth process
X̃ := E(

∫
π̃dR(ε)) satisfies

E[U(X̃T )] − u(ε) = O(ε3) as ε ↘ 0.

2. Because the filtration is generated by (B,W), the orthogonal component Ĥ (0)

in the dual optimizer Z(0)Ĥ (0) for the dual problem (2.3) can be written in the form
Ĥ (0) = E(−ν̂(0) · W) for a d-dimensional process ν̂(0) in P2

W . The proof of Theo-
rem 3.4 below also shows that the process

ν̃ := ν̂(0) − εpγ W (3.13)

is an O(ε3)-optimal dual control in the ε-model.
3. Throughout the paper, we have considered ε = 0 as the base model. Because

we can write

λ + (ε̄ + ε)λ′ = λ + ε̄λ′ + ελ′

for any ε̄ ∈ [εL, εU ] with εL < εU , we can use Theorem 3.4 for the base model λ+ ε̄λ′
to provide a second-order Taylor expansion around any point ε̄. Therefore, whenever
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�(0) and �(00) are bounded uniformly in ε̄ ∈ [εL, εU ], Theorem 3 in [37] ensures that
u(ε) is twice differentiable in ε.

4. As illustrated in the examples in Sect. 5.3 below, the exponential moment condi-
tion (3.8) can often be made to hold by imposing some smallness condition on either
T > 0 or ε0 > 0.

4 Proofs of the main theorems

We start the proof with a short discussion of the special structure that the dual domain
Y(ε) has when the stock price process S(ε) = E(R(ε)) is continuous. Indeed, it has
been shown in [31, Proposition 3.2] that in that case, the maximal elements in Y(ε)

(for the pointwise order) are precisely local martingales of the form

Y = Z(ε)H, H ∈H,

where H denotes the set of all M-orthogonal strictly positive local martingales H

with H0 = 1. We remark that even though the results in [31] were written under the
NFLVR assumption, the proof of [31, Proposition 3.2] does not use this condition.
Hence we can write

v(ε) = inf
H∈H

E[V (Z
(ε)
T HT )],

and the minimizer Ŷ (ε) always has the form

Ŷ (ε) = Z(ε)Ĥ (ε) for some Ĥ (ε) ∈H. (4.1)

Finally, we introduce two shortcuts for expressions that appear frequently in the
proof, namely

η :=
∫ T

0
λ′

t dR
(0)
t , Λ :=

∫ T

0
(λ′

t )
2 d〈M〉t , (4.2)

and remind the reader that Φ := ∫ T

0 π̂
(0)
t λ′

t d〈M〉t and �(0) := E
P̃

(0)[η]. It will be
useful to keep in mind that p < 0, q ∈ (−1,0), (1 − p)(1 + q) = 1, and that −1/q

and 1 − p are conjugate exponents.

4.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the stability results of [31] and the following
lemma.

Lemma 4.1 Let (K(ε))ε≥0 be a family of positive random variables such that

1. E[Z(δ)
T K(ε)] ≤ 1 for all ε, δ ≥ 0;

2. K(ε) → K(0) in probability as ε ↘ 0.
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Then under the conditions of Theorem 3.1, we have

lim
ε↘0

1

ε
E

[
V (Z

(ε)
T K(ε)) − V (Z

(0)
T K(ε))

] = qE[V (Z
(0)
T K(0))η].

Proof The map ε 
→ Z
(ε)
T is almost surely continuously differentiable; indeed, we

have

logZ
(ε)
T = logZ

(0)
T − ε

∫ T

0
λ′

t dR
(0)
t − 1

2
ε2

∫ T

0
(λ′

t )
2 d〈M〉t ,

and so

d

dε
Z

(ε)
T = −Z

(ε)
T (η + εΛ) a.s.

Therefore, we have

V (Z
(ε)
T K) − V (Z

(0)
T K) =

∫ ε

0
qV (Z

(δ)
T K)(η + δΛ)dδ (4.3)

for each ε and each positive random variable K . Thus,

V (Z
(ε)
T K(ε)) − V (Z

(0)
T K(ε)) − εqV (Z

(0)
T K(0))η = Aε + Bε,

where

Aε :=
∫ ε

0
q
(
V (Z

(δ)
T K(ε)) − V (Z

(0)
T K(0))

)
η dδ,

Bε :=
∫ ε

0
qV (Z

(δ)
T K(ε))Λδ dδ.

(4.4)

Hölder’s inequality implies that (recall that q < 0)

E[Bε] ≤ 1

2
ε2 sup

δ∈[0,ε]
(E[Z(δ)

T K(ε)]−q
E[Λ1−p]1+q) ≤ 1

2
ε2
E[Λ1−p]1+q . (4.5)

Thus we have 1
ε
E[Bε] → 0 as ε ↘ 0. To show that 1

ε
E[Aε] → 0, we claim that

E[Aε] = ∫ ε

0 f (ε, δ) dδ, where the function f : [0,∞)2 → R is given by

f (ε, δ) := qE
[(

V (Z
(δ)
T K(ε)) − V (Z

(0)
T K(0))

)
η
]
. (4.6)

This claim follows from Fubini’s theorem which can be applied because Tonelli’s
theorem and Hölder’s inequality produce

E

[∫ ε

0
(Z

(δ)
T K(ε))−q |η|dδ

]
=

∫ ε

0
E[(Z(δ)

T K(ε))−q |η|]dδ ≤ εE[|η|1−p] 1
1−p .
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The expectation in the last term above is finite because η ∈ L
s for some s > 1 − p.

Because f (0,0) = 0, it will be enough to show that f is continuous at (0,0). By the
assumptions of the lemma and the definition of Z(δ), we have

V (Z
(δn)
T K(εn)) −→ V (Z

(0)
T K(0)) in probability

for each sequence (εn, δn) ∈ [0,∞)2 such (εn, δn) → (0,0). Therefore, it suffices
to establish uniform integrability of the expression inside the expectation in (4.6).
For that, we can use the theorem of de la Vallée-Poussin with exponent r > 1: For
conjugate exponents (α,α′) with α > 1 and α′ := α

α−1 , Hölder’s inequality produces

E
[
(Z

(δ)
T K(ε))−qr |η|r] ≤ E

[
(Z

(δ)
T K(ε))−qrα

] 1
α E[|η|rα′ ] 1

α′ .

Because s > 1 − p, we can find r > 1 and α > 1 such that

rα = − 1

q
, rα′ = s.

The conclusion then follows from the assumption that η ∈ L
s . �

Proof of Theorem 3.1 Thanks to the optimality of Z
(ε)
T Ĥ

(ε)
T , we have the upper esti-

mate

1

ε
E

[
V (Z

(ε)
T Ĥ

(ε)
T ) − V (Z

(0)
T Ĥ

(0)
T )

] ≤ 1

ε
E

[
V (Z

(ε)
T Ĥ

(0)
T ) − V (Z

(0)
T Ĥ

(0)
T )

]
. (4.7)

Similarly, by using the optimality of Z
(0)
T Ĥ

(0)
T , we get the lower estimate

1

ε
E

[
V (Z

(ε)
T Ĥ

(ε)
T ) − V (Z

(0)
T Ĥ

(0)
T )

] ≥ 1

ε
E

[
V (Z

(ε)
T Ĥ

(ε)
T ) − V (Z

(0)
T Ĥ

(ε)
T )

]
. (4.8)

Our next task is to prove that the limits of the right-hand sides of (4.7) and (4.8) exist
and both coincide with the right-hand side of (3.2). In each case, Lemma 4.1 can be
applied; in the first with K(ε) = Ĥ

(0)
T , and in the second with K(ε) = Ĥ

(ε)
T . In both

cases, assumption 1 of Lemma 4.1 follows directly from the fact that Z(ε)Ĥ (0) ∈ Y(ε)

and Z(ε)Ĥ (ε) ∈ Y(ε). As for assumption 2, it trivially holds in the first case. In the
second case, we need to argue that Ĥ

(ε)
T → Ĥ

(0)
T in probability as ε ↘ 0. That in turn

follows easily from [31, Lemma 3.10]; as mentioned above, the stronger NFLVR as-
sumption made in [31] is not necessary, and its results hold under the weaker NUBPR
condition.

Having proved (3.2), we turn to (3.1). Thanks to (2.5), the conjugacy relationship
(2.4) takes in our setting the simple form

pu(ε) = (qv(ε))1−p. (4.9)

Therefore, u(ε) is right-differentiable at ε = 0, and we have

p
d

dε
u(ε)

∣∣∣∣
ε=0+

= (1 − p)(qv(0))−p q2v(0)�(0) = p2u(0)�(0). �
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4.2 Remaining proofs

Proposition 4.2 Suppose that η ∈ L
2(1−p) and Λ,Λη ∈ L

1−p . Then for all ε ≥ 0,
we have

v(ε) − v(0) − εqv(0)�(0) ≤ 1

2
Cvε

2 + 1

2
C′

vε
3, (4.10)

where Cv = |q|‖η‖1/2
L2(1−p) + ‖Λ‖L1−p and C′

v = |q|‖ηΛ‖L1−p .

Proof The upper estimate (4.7) and the representation (4.3) imply that

E
[
V (Z

(ε)
T Ĥ

(ε)
T ) − V (Z

(0)
T Ĥ

(0)
T ) − εqV (Z

(0)
T Ĥ

(0)
T )η

] ≤ E[Aε] +E[Bε],

where Aε and Bε are defined by (4.4), with K(ε) = K(0) = Ĥ
(0)
T . As in (4.5), we have

E[Bε] ≤ 1

2
ε2‖Λ‖L1−p .

To deal with Aε we note that its structure allows us to apply the representation from
(4.3) once again to see that

1

q2
Aε =

∫ ε

0

∫ δ

0
V (Z

(β)
T Ĥ

(0)
T )η(η + βΛ)dβ dδ.

This in turn can be estimated via Hölder’s inequality, as in (4.5), by

E[Aε] ≤ 1

2
|q|ε2 sup

β∈[0,ε]
E

[(
η(η + βΛ)

)1−p]1+q ≤ 1

2
|q|ε2(‖η2‖L1−p + ε‖ηΛ‖L1−p ),

producing the bound in (4.10). �

Unfortunately, the same idea cannot be applied to obtain a similar lower bound.
Instead, we turn to the primal problem and establish a lower bound for it.

Proposition 4.3 Let Φ := ∫ T

0 π̂
(0)
t λ′

t d〈M〉t , let Λ be defined by (4.2) and P̃
(0) by

(2.6). Given ε0 > 0, assume that Λ ∈ L
1−p and Φ2eε0|p|Φ− ∈ L

1(P̃(0)). Then

u(ε) − u(0) − εpu(0)�(0) ≥ −Cu(ε)ε
2 for ε ∈ [0, ε0],

where Cu(ε) := 1
2p2|u(0)|EP̃

(0) [Φ2eε|p|Φ−].

Proof For X̃ := E(π̂ (0) · R(ε)), we have X̃ ∈ X (ε) so that by optimality,

u(ε) − u(0) − pεE[U(X̂
(0)
T )Φ] ≥ E[U(X̃T ) − U(X̂

(0)
T ) − pεU(X̂

(0)
T )Φ]. (4.11)
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Thanks to the form of X̃, the right-hand side of (4.11) can be written as
E[U(X̂

(0)
T )Dε], where Dε := exp(pεΦ)− 1 −pεΦ = ∫ ε

0

∫ δ

0 p2Φ2epβΦ dβ dδ. Thus,

E[U(X̂
(0)
T )Dε] = p2

∫ ε

0

∫ δ

0
E[U(X̂

(0)
T )Φ2epβΦ ]dβ dδ

≥ 1

2
p2ε2

E[U(X̂
(0)
T )Φ2eε|p|Φ−]. (4.12)

Therefore u(ε) −u(0) − εpE[U(X̂
(0)
T )Φ] ≥ −Cu(ε)ε

2 for ε ∈ [0, ε0] with Cu as in the
statement (here we use the change of measure in (2.6)).

It remains to show that E[U(X̂
(0)
T )Φ] = E[U(X̂

(0)
T )η], which is equivalent to

showing E
P̃

(0)[Φ] = E
P̃

(0)[η] by the definition of P̃(0). We define the local P̃(0)-mar-
tingale M̃p by (2.7). Therefore, N = ∫ ·

0 λ′
t dM̃

p
t is also a local martingale. The desired

equality is therefore equivalent to the equality E
P̃

(0)[NT ] = 0 by the definition of η

and Φ . In turn, it is sufficient to show that N is an H2-martingale under P̃(0). Since
〈N〉T = ∫ T

0 (λ′
t )

2 d〈M〉t = Λ, Hölder’s inequality implies that

E
P̃

(0)[〈N〉T ] = (qv(0))−1
E[(Ŷ (0)

T )−qΛ] ≤ (qv(0))−1
E[Λ1−p]1+q < ∞. �

Remark 4.4 If one is interested in an error estimate which does not feature the optimal
portfolio π̂ (0) (through Φ), one can adopt an alternative approach in the proof (and
the statement) of Proposition 4.3. More specifically, by using X̃ = X̂(0)E(ελ′ ·R(ε)) as
a test process (instead of E(π̂ (0) ·R(ε))), one obtains a constant Cu(ε) which depends
only on the primal and dual optimizers X̂(0) and Ŷ (0), in addition to λ′, η and Λ.

Proof of Theorem 3.2 Two of the four inequalities in Theorem 3.2 have been estab-
lished in Propositions 4.2 and 4.3. For the remaining two, we use the special form
(4.9) of the conjugacy relationship between u(ε) and v(ε). Thanks to Proposition 4.3
and the positivity of pu(ε), qv(ε) and 1 + q , we have

q
(
v(ε) − v(0) − εqv(0)�(0)

) = (pu(ε))1+q − (pu(0))1+q − εq(pu(0))1+q�(0).

The right-hand side above is further bounded from above, for ε in a (right) neighbor-
hood of 0, by

F(ε) := (pu(0) + εpu(0)�(0) − pCε2)1+q − (pu(0))1+q − εq(pu(0))1+q�(0),

where C := Cu(ε0) is from Proposition 4.3. Now F is a C2-function in some neigh-
borhood of 0 with F(0) = F ′(0) = 0; hence on each compact subset of that neigh-
borhood, it is bounded by a constant multiple of ε2. In particular, we have

v(ε) − v(0) − εqv(0)�(0) ≥ −Cε2

for some C > 0 and for ε in some (right) neighborhood of 0. A similar argument, but
based on Proposition 4.2, shows that (3.4) holds as well. �
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Proof of Theorem 3.4 The first part of (3.7) means that Λ ∈ L
1−p(P); hence the

second half of the proof of Proposition 4.3 shows that EP̃
(0)[Φ] = �(0). Therefore the

representation (3.6) can be written as

Φ = �(0) +
∫ T

0
γ B
t σtdB P̃

(0)

t +
∫ T

0
γ W
t dW P̃

(0)

t .

Because the filtration is generated by the Brownian motions (B,W), we can find
ν̂(0) ∈P2

W such that the dual optimizer Ĥ (0) can be represented as

Ĥ (0) = E(−ν̂(0) · W).

Therefore, Girsanov’s theorem ensures that under P̃(0), the processes

dB P̃
(0)

t := dBt + (λt − π̂
(0)
t )σtdt, dW P̃

(0)

t := dWt + ν̂
(0)
t dt (4.13)

are independent Brownian motions.
We start with the primal problem and define π̃ := π̂ (0) + εδ for ε ∈ (0, ε0) and

δ := qγ B + λ′
1−p

∈ P2
B . Then we have

(X̃)p := E(π̃ · R(ε))p = (X̂(0))pep
∫
(επ̂ (0)λ′+ε2(δλ′− 1

2 δ2))σ 2dt+pε
∫

δσdBP̃
(0)

.

To see that E[(X̃T )p] < ∞, we apply Hölder’s inequality twice with the exponents
−1/q and 1 − p to see that

E
P̃

(0)
[
ep

∫ T
0 (επ̂ (0)λ′+ε2(δλ′− 1

2 δ2))σ 2dt+pε
∫ T

0 δσdBP̃
(0)

t

]

= E
P̃

(0)
[
ep

∫ T
0 (επ̂ (0)λ′+ε2(δλ′− 1

2 δ2))σ 2dt+qε
∫ T

0 (λ′+pγ B)σdBP̃
(0)

t

]

≤ E
P̃

(0)
[
ep(1−p)

∫ T
0 (επ̂ (0)λ′+ε2(δλ′− 1

2 δ2))σ 2dt− 1
2 q(1−p)ε2

∫ T
0 (λ′+pγ B)2σ 2dt

] 1
1−p

= E
P̃

(0)
[
ep

∫ T
0 ((1−p)(επ̂(0)λ′+ε2(δλ′− 1

2 δ2))− 1
2 ε2(λ′+pγ B)2)σ 2dt

] 1
1−p

≤ E

[
ep(1−p)

∫ T
0 ((1−p)(επ̂(0)λ′+ε2(δλ′− 1

2 δ2))− 1
2 ε2(λ′+pγ B)2)σ 2dt

] 1
(1−p)2 .

By inserting δ := qγB + λ′
1−p

, we see that the coefficient in front of (λ′)2 inside the

exponent is −εp2σ 2/2 < 0. Consequently, by deleting the (λ′)2-term, we see that
(3.8) is an upper bound for E[X̃p

T ].
For any random variable A with E[eε0A] < ∞, the representation

ex = 1 + x + 1

2
x2 +

∫ ∫ ∫
[0,1]3

tsx3erstxdrdsdt, x ∈R,

allows us to find a constant C > 0 such that

E

[∣∣∣∣eεA − 1 − εA − 1

2
ε2A2

∣∣∣∣
]

≤ ε3C

∫ ∫
[0,1]2

tsE[eε0A]dsdt
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for all ε ∈ (0, ε0) sufficiently small. Consequently, we can find a function Cu(ε)

which is in O(ε3) such that

E[U(X̃T )] = u(0)
E
P̃

(0)
[
ep

∫ T
0 (επ̂ (0)λ′+ε2(δλ′− 1

2 δ2))σ 2dt+pε
∫ T

0 δσdBP̃
(0) ]

= u(0)

(
1 + pε�(0) + 1

2
pε2(p(�(0))2 + �(00)

)) + Cu(ε). (4.14)

We then turn to the dual problem. For the perturbed dual control ν̃ := ν̂(0) −εpγ W

in P2
W , we have

(
Z(ε)E(−ν̃ · W)

)−q

= eq
∫
(λ+ελ′)σdB+q

∫
(ν̂(0)−εpγ W )dW+q 1

2

∫
((λ+ελ′)σ 2+|ν̂(0)−εqγ W |2)dt

= (Z(0)Ĥ (0))−qeεq
∫

λ′σdBP̃
(0)−εqp

∫
γ W dW P̃

(0)+q 1
2

∫
(ε2(λ′)2σ 2+ε2p2|γ W |2+2ελ′π(0)σ 2)dt .

Since ν̃ is admissible in the ε-problem, we find

v(ε)

≤ 1

q
E

[(
Z

(ε)
T E(−ν̃ · W)T

)−q]

= v(0)
E
P̃

(0)
[
eεq

∫ T
0 λ′σdBP̃

(0)−εqp
∫ T

0 γ W dW P̃
(0)+q 1

2

∫ T
0 (ε2(λ′)2σ 2+ε2p2|γ W |2+2ελ′π(0)σ 2)dt

]
.

Finiteness of v(ε) ensures that the P̃
(0)-expectation appearing in the last line above

is also finite. Indeed, because q < 0, we have v(ε), v(0) ∈ (−∞,0), and so the P̃
(0)-

expectation is bounded from above by v(ε)

v(0) . As in the primal problem, this allows us
to replace ex with its Taylor series and in turn implies that we can find a function
Cv(ε) ∈ O(ε3) such that

v(0)
E
P̃

(0)
[
eεq

∫ T
0 λ′σdBP̃

(0)−εqp
∫ T

0 γ W dW P̃
(0)+q 1

2

∫ T
0 (ε2(λ′)2σ 2+ε2p2|γ W |2+2ελ′π(0)σ 2)dt

]

= v(0)

(
1 + qε�(0) + 1

2
qε2(q(�(0))2 + �(00)

)) + Cv(ε).

By combining this estimate and (4.14) with the primal–dual relation (4.9), we find

u(0)

(
1 + pε�(0) + 1

2
pε2(p(�(0))2 + �(00)

)) + Cu(ε)

≤ u(ε)

= 1

p
(qv(ε))1−p

≤ 1

p

(
qv(0)

(
1 + qε�(0) + 1

2
qε2(q(�(0))2 + �(00)

) + Cv(ε)
))1−p

. (4.15)



K. Larsen et al.

The function x 
→ x1−p is real analytic on (0,∞). Therefore, the fact that Cv ∈ O(ε3)

ensures that the last line of (4.15) agrees with the first line of (4.15) up to
O(ε3)-terms. This establishes (3.9). A similar argument produces (3.10). �

5 Examples

5.1 First examples

We start this section with a short list of trivial and extreme cases. They are not here to
illustrate the power of our main results, but simply to help the reader understand them
better. They also tell a similar qualitative story: loosely speaking, the improvement
in the utility (on a log-scale) is proportional both to the base market price of risk
process and to the size of the deviation. Locally around λ, the value function of the
utility maximization problem—parametrized by the market price of risk process λ̃—
is well approximated by an exponential function of the form

u(λ̃) ≈ u(λ)e〈λ̃−λ,π̂(0)〉0 , with 〈ρ,π〉0 = E
P̃

(0)

[∫ T

0
ρtπt dt

]
, (5.1)

where u(λ̃) and u(λ) denote the values of the utility maximization problems with
market price of risk processes λ̃ and λ, respectively.

Example 5.1 (Small market price of risk) Suppose that λ ≡ 0 so that we can think of
S(ε) as the stock price in a market with a “small” market price of risk. Since Z(0) ≡ 1,
it is clearly the dual optimizer at ε = 0 and we have π̂ (0) ≡ 0. Consequently, under
the assumptions of Theorem 3.2, we have P̃

(0) = P and

�(0) = E
P̃

(0)

[∫ T

0
λ′

t dMt

]
= 0.

It follows that

u(ε) = u(0) + O(ε2), v(ε) = v(0) + O(ε2),

and the effects of ελ′ are felt only to the second order, regardless of the risk-aversion
coefficient p < 0.

Example 5.2 (Deviations from the Black–Scholes model) Suppose that M = B is an
F-Brownian motion and λ �= 0 is a constant process (we also use λ for the value of
the constant). In that case, it is classical that the dual minimizer in the base market is

Z(0) = E(−λB), and consequently that dP̃(0)

dP
= E(qλB). It follows that

�(0) = λ

1 − p
E
P̃

(0)

[∫ T

0
λ′

t dt

]
.

As we shall see below, this form is especially convenient for computations.
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Example 5.3 (Uniform deviations) Another special case where it is particularly easy
to compute the (logarithmic) derivative �(0) is when the perturbation λ′ is a constant
process (whose value is also denoted by λ′). Indeed, in that case,

�(0) = λ′
E
P̃

(0)

[∫ T

0
π̂

(0)
t dt

]
. (5.2)

It is especially instructive to consider the case where the base model is the Black–
Scholes model since everything becomes explicit: the optimal portfolio is given by
the Merton proportion π̂

(0)
t = λ/(1 − p), and the values u(0) and v(0) are given by

pu(0) = exp

(
1

2
qλ2T

)
, qv(0) = exp

(
1

2

q

1 − p
λ2T

)
.

Using (5.2) or by performing a straightforward direct computation, we easily get

p�(0) = qλ′λT ,

making the approximation in (5.1) exact.

5.2 The Kim–Omberg model

The Kim–Omberg model (see [23]) is one of the most widely used models for the
market price of risk process. Because it allows explicit expressions for all quanti-
ties involved in CRRA utility maximization, it serves as an excellent test case for
the practical implementation of our main results. Appendix A contains all technical
details.

We assume that F is the augmentation of the filtration generated by two indepen-
dent one-dimensional Brownian motions B and W and define λKO to be the Ornstein–
Uhlenbeck process given by

dλKO
t = κ(θ − λKO

t )dt + βdBt + γ dWt, λKO
0 ∈R, (5.3)

where κ , θ , β and γ are constants. We define the volatility Mt := Bt in what follows.
The closed-form expressions for the primal value function and the primal optimizer
can be found in Theorem A.1 in Appendix A (the result is proved in [23]).

To illustrate our approximation, we think of the Kim–Omberg model as a perturba-
tion of a base model. As base model, we consider a model with “totally unhedgeable
coefficients” (see [22, Example 6.7.4]), namely

dλt = κ(θ − λt )dt + γ dWt , λ0 = λKO
0 ∈R. (5.4)

In this way, λKO = λ + ελ′, where ε := β and

dλ′
t = −κλ′

t dt + dBt , λ′
0 = 0. (5.5)

Based on Theorem A.1, Lemma A.2 in Appendix A provides a coupled system of
ODEs for smooth deterministic functions Cj : [0, T ] → R, Cj (T ) = 0, such that the
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integrands appearing in the representation (3.6) of Φ := ∫ T

0 π
(0)
t λ′

t dt are given by

γ B
t = 1

p − 1

(
C2(t) + C6(t)λt

)
, (5.6)

γ W
t = γ

p − 1

(
C4(t) + 2C5(t)λt + C6(t)λ

′
t

)
. (5.7)

5.2.1 Exact computations

The proof of Lemma A.2 in Appendix A shows that

�(0) := E
P̃

(0)

[∫ T

0
λ′

s π̂
(0)
s ds

]
= 1

p − 1

(
C1(0) + C4(0)λ0 + C5(0)λ2

0

)
.

This relation, a similar one (whose exact form and derivation we omit) for the second-
order term �(00) of (3.11), and the availability of an exact expression for the value
function allow an efficient numerical computation of the zeroth-, first- and second-
order approximation, and their comparison with the exact values. The model param-
eters used in Table 1 below are the calibrated model parameters for the market port-
folio reported in Sect. 4.2 in [32] (we ignore the constant interest rate and constant
volatility used in Sect. 4 in [32]). Moreover, we use negative values of ε because
the empirical covariation between the excess return and the stock’s return is typically
negative (see e.g. the discussion in [32, Sect. 4.2]).

Instead of hard-to-interpret expected utility values, we report their certainty equiv-
alents (i.e., their compositions with the function CE := U−1; see Remark 3.3, 1). We
set

δ(0) := u(0) + εpu(0)�(0),

δ(00) := u(0) + εpu(0)�(0) + ε2

2
pu(0)

(
�(00) + p(�(0))2).

This gives the following table:

Table 1 Certainty equivalents for the zeroth-, first- and second-order approximations and the exact val-
ues in the Kim–Omberg model with β := ε and unit initial wealth. The model parameters used are
γ = 0.04395, κ = 0.0404, θ = 0.117, p = −1 and T = 10

ε λ0 CE(u(0)) CE(δ(0)) CE(δ(00)) CE(u(ε))

−0.01 0.1 1.046 1.047 1.048 1.048

−0.05 0.1 1.046 1.054 1.081 1.084

−0.10 0.1 1.046 1.063 1.181 1.206

−0.01 0.5 1.614 1.647 1.648 1.649

−0.05 0.5 1.614 1.794 1.850 1.846

−0.10 0.5 1.614 2.020 2.339 2.272
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5.2.2 Monte Carlo-based computations

One of the advantages of our approach is that it lends itself easily to computational
methods based on Monte Carlo (MC) simulation. For the Kim–Omberg model, we
use the standard explicit Euler scheme from MC simulation to compute the involved
quantities of interest. In other words, we do not rely on the availability of exact ex-
pressions for the value functions or the correction terms �(0) and �(00).

For a portfolio π and the model perturbation parameter ε, we define the constant
CE(ε)(π) ∈ (0,∞) uniquely by

U
(
CE(ε)(π)

) = E
[
U

(
E(π · R(ε))T

)]
.

In other words, CE(ε)(π) is the dollar amount whose utility value matches that of the
expected utility an investor would obtain in the ε-model when using the strategy π .
We remind the reader that π̂ (0) denotes the optimizer in the base (ε = 0) model,
π̃ (ε) is the second-order improvement (as in (3.12) above) of π̂ (0), and π̂ (ε) is the
exact optimizer in the ε-model. Both quantities CE(ε)(π̂ (0)) and CE(ε)(π̃ (ε)) serve as
lower bounds for the exact value CE(u(ε)). The second one, which we also denote by

LB := CE(ε)(π̃ (ε)),

is second-order optimal and appears in our simulations. To obtain a corresponding
upper bound, we simulate the dynamics of the dual process, based on (4.9) and the
second-order optimal dual control ν̃ defined by (3.13). We define

UB := U−1
(

1

p
E

[(
Z

(ε)
T E(−ν̃ · W)T

)−q]1−p
)

.

To quantify the simulation errors, we report the 95%-confidence intervals based
on MC-simulated values of CE(ε)(π̂ (0)), LB and UB in Table 2 below. The value
CE(u(ε)), computed without MC simulation and included for comparison only, is
exact to 3 decimal places.

Table 2 95%-confidence intervals for certainty equivalents for the upper and lower bounds as well as the
base model optimizer π̂ (0) for the Kim–Omberg model. The true exact values for the ε-model are included
in the last column for comparison. Except for the last column, the numbers are based on MC simulation
using an Euler scheme with one million paths each with time-step size 0.001. The model parameters are
the same as in Table 1

ε λ0 CE(ε)(π̂ (0)) LB UB CE(u(ε))

−0.01 0.10 [1.047,1.048] [1.048,1.049] [1.048,1.049] 1.048

−0.05 0.10 [1.052,1.053] [1.083,1.084] [1.083,1.085] 1.084

−0.10 0.10 [1.057,1.058] [1.200,1.201] [1.204,1.208] 1.206

−0.01 0.50 [1.644,1.649] [1.647,1.653] [1.646,1.657] 1.649

−0.05 0.50 [1.760,1.764] [1.844,1.850] [1.843,1.857] 1.846

−0.10 0.50 [1.868,1.871] [2.248,2.256] [2.266,2.286] 2.272
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In Table 2, we note the significant difference between the performance of the base-
model optimizer π̂ (0) and its second-order improvement π̃ (ε), especially for larger
values of ε. Furthermore, the lower and upper bounds appear to be quite tight.

5.3 Extended affine models

The two models considered in this section do not have closed-form expressions for
the value functions u and v. We consider models belonging to the class of extended
affine specifications of the market price of risk process developed in [8]. The second
example is based on a high-dimensional underlying Markov process which prevents
PDE methods from being applicable. Appendix B contains all technical details. In
particular, as we explain in Appendix B, in these affine models, the integrability con-
ditions (3.7) and (3.8) hold provided that T > 0 is sufficiently small.

5.3.1 One-dimensional extended affine model

As in the Kim–Omberg model above, we let the augmented filtration be generated by
two independent Brownian motions B and W . A central role is played by the Feller
process F given by

dFt = κ(θ − Ft )dt + √
Ft (βdBt + γ dWt), F0 > 0,

where κ , θ , β , and γ are strictly positive constants such that the (strict) Feller con-
dition 2κθ > β2 + γ 2 holds. This ensures in particular that F is strictly positive on
[0, T ] (in Appendix B, we show that the strict Feller condition also ensures that (3.7)
holds whenever T > 0 is small). Unlike in the Kim–Omberg model, the appropriate
volatility normalization turns out to be

√
Ft ; that is, we define

Ms :=
∫ s

0

√
Ft dBt .

A particular extended affine specification for the market price of risk process which
was considered in [8] is given by

λCFK
t := ε

Ft

+ 1,

where ε is a (positive or negative) constant. Unless ε = 0, there is currently no known
closed-form solution to the corresponding optimal investment problem.1 However,
for ε = 0, the resulting model is covered by the analysis in [25] (see Theorem B.1 in
Appendix B which is from [25]). Therefore, we choose the constant market price of
risk process

λt := 1 (5.8)

1Theorem 4.5 in [13] expresses the corresponding value function as an infinite sum of weighted general-
ized Laguerre polynomials.
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Table 3 95%-confidence intervals for certainty equivalents for the upper and lower bounds as well as the
base model optimizer π̂ (0) for the extended affine model. The parameter values are κ = 5, θ = 0.0169,
β = −0.1, γ = 0.1744, p = −1 and T = 10. The numbers are based on MC simulation using an Euler
scheme with one million paths each with time-step size 0.001

ε F0 CE(ε)(π̂ (0)) LB UB CE(0)(π̂ (0))

0.10 0.01 [1.724,1.726] [10.159,10.399] [10.226,10.481] 1.043

0.05 0.01 [1.342,1.343] [2.141,2.151] [2.131,2.149] 1.043

0.01 0.01 [1.097,1.098] [1.118,1.119] [1.117,1.120] 1.043

0.10 0.05 [1.728,1.729] [9.660,9.877] [9.766,10.000] 1.045

0.05 0.05 [1.344,1.345] [2.105,2.115] [2.102,2.120] 1.045

0.01 0.05 [1.099,1.100] [1.119,1.121] [1.117,1.121] 1.045

for the base model, whereas we define the perturbation process λ′ by

λ′
t := 1

Ft

.

Table 3 is the analogue of Table 2 for the extended affine model with parameters
taken from Fig. 4 in [32, Sect. 3.3]. The methodology and the simulated quantities
are the same as for Table 2.

Perhaps even more than in the Kim–Omberg model, the numbers in Table 3 above
illustrate the superiority of the second-order approximations (columns 4 and 5) over
its first-order version (column 3) as well as the zeroth order values (column 6). Again,
the bounds in Table 3 appear quite tight when compared to the first-order approxima-
tions for moderate values of ε.

5.3.2 High-dimensional extended affine model

We now let the augmented filtration be generated by three independent Brownian
motions (W(1),W(2),W(3)) (in the notation of Sect. 3.2, we have B := W(2) and
W := (W(1),W(3))). We consider the class A1(3) from Appendix B of [8], where the
central role is played by the three processes

dF
(1)
t = (a1 + b11F

(1)
t )dt +

√
F

(1)
t dW

(1)
t , F

(1)
0 > 0,

dF
(2)
t = (a2 + b21F

(1)
t + b22F

(2)
t + b23F

(3)
t )dt +

√
1 + F

(1)
t dW

(2)
t , F

(2)
0 ∈R,

dF
(3)
t = (a3 + b31F

(1)
t + b32F

(2)
t + b33F

(3)
t )dt +

√
1 + F

(1)
t dW

(3)
t , F

(3)
0 ∈R.

In these dynamics, the constants ai and bij satisfy the Feller condition 2a1 ≥ 1, but
are otherwise arbitrary. We use from Appendix B of [8] the model specification

λCFK
t := λ20 + λ21F

(1)
t + λ22F

(2)
t + λ23F

(3)
t

1 + F
(1)
t

, M :=
∫ ·

0

√
1 + F

(1)
t dW

(2)
t , (5.9)
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Table 4 95%-confidence intervals for certainty equivalents for the upper and lower bounds as well as
the base model optimizer π̂ (0) for the model (5.10), (5.11). The factor process parameter values are taken
from Table 8 in Sect. 5 in [8], p = −1 and T = 10. The numbers are based on MC simulation using an
Euler scheme with one million paths each with time-step size 0.001

ε (F
(i)
0 )3

i=1 CE(ε)(π̂ (0)) LB UB CE(0)(π̂ (0))

0.05 0.01 [2.420,2.427] [6.600,6.646] [6,682,6.802] 2.313

0.01 0.01 [2.382,2.392] [2.474,2.485] [2.471,2.495] 2.313

0.005 0.01 [2.347,2.356] [2.371,2.382] [2.361,2.383] 2.313

0.05 0.05 [2.423,2.429] [6.618,6.664] [6.776,6.896] 2.315

0.01 0.05 [2.382,2.391] [2.479,2.491] [2.474,2.489] 2.315

0.005 0.05 [2.354,2.364] [2.370,2.381] [2.376,2.398] 2.315

where λ20, . . . , λ23 are some constants (and σ := √
1 + F (1) in the notation of

Sect. 3.2). In general, there is no closed-form solution available for the power in-
vestor’s optimal investment problem for this model. However, the following sub-
model of (5.9) is covered by the closed-form expressions provided in [25] (constant
market price of risk process):

λt := λ21, (5.10)

with the corresponding volatility M as in (5.9). Therefore, we choose the model
(5.10) for the base model, whereas we define the perturbation process by

λ′
t := λ20 − λ21 + λ22F

(2)
t + λ23F

(3)
t

1 + F
(1)
t

. (5.11)

Theorem B.1 in Appendix B is from [25] and provides the primal and dual optimizers
for the base model (5.10) in closed form (we note that (5.10) is another example of a
model with completely unhedgeable coefficients).

Table 4 is the analogue of Tables 2 and 3 for the model (5.10) and (5.11) with
parameter coefficients taken from Table 8 in [8, Sect. 5].
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Appendix A: Details on the Kim–Omberg model

The following result summarizes the main properties in [23].

Theorem A.1 (Kim and Omberg 1996) Let the market price of risk process be de-
fined by (5.3), M := B , and let p < 0. Then there exist continuously differentiable
functions b, c : [0,∞) → R such that for t ∈ [0, T ), we have

b′(t) = −α4 b(t) − α1 c(t) + α2 b(t)c(t), b(T ) = 0,

c′(t) = q − 2α4 c(t) + α2 c2(t), c(T ) = 0,

where α1 := θκ , α2 := (1 + q)β2 + γ 2, α3 := β2 + γ 2 and α4 := qβ − κ . Further-
more, the primal optimizer is given by

π̂KO
t = b(t)β + (c(t)β − 1)λKO

t

p − 1
, t ∈ [0, T ].

For p < 0, the above Riccati equation describing c has a “normal non-exploding
solution” as defined in the Appendix of [23]. Therefore, all three functions a, b and
c are bounded on any finite subinterval [0, T ] of [0,∞).

Lemma A.2 Let (λ,λ′) be defined by (5.4) and (5.5) and let p < 0. For the basis
model λ, the primal and dual optimizers are given by

π̂
(0)
t = λt

1 − p
, ν̂

(0)
t = γ

(
b(t) + c(t)λt

)
, t ∈ [0, T ].

Furthermore, the processes (γ B, γ W ) appearing in the representation (3.6) of Φ are
given by (5.6) and (5.7), where the functions Cj satisfy the ODEs

−C′
1(t) = b̃(t)C4(t) + γ 2 C5(t), C1(T ) = 0,

−C′
2(t) = b̃(t)C6(t) − κ C2(t), C2(T ) = 0,

−C′
4(t) = q C2(t) − c̃(t)C4(t) + 2b̃(t)C5(t), C4(T ) = 0,

−C′
5(t) = q C6(t) − 2c̃(t)C5(t), C5(T ) = 0,

−C′
6(t) = −(

κ + c̃(t)
)
C6(t) − 1, C6(T ) = 0

on [0, T ), with (a, b, c) as in Theorem A.1 with β := 0, b̃(t) := κθ − γ 2b(t) and
c̃(t) := κ + γ 2c(t). Furthermore, for the measure P̃

(0) defined by (2.6) and for all
T > 0, we have

�(0) := E
P̃

(0)

[∫ T

0
λ′

s π̂
(0)
s ds

]
= − 1

1 − p

(
C1(0) + C4(0)λ0 + C5(0)λ2

0

)
.

Proof The first part follows from Theorem A.1 applied to the case β := 0. To find
the representation (3.6), we define the function

f (t, x, λ) := xp

p
e−a(t)−b(t)λ− 1

2 c(t)λ2
, t ∈ [0, T ], x > 0, λ ∈R,
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where the functions (b, c) are as in Theorem A.1 and a is given by

a′(t) = −α1 b(t) − 1

2
α3 c(t) + 1

2
α2 b2(t), a(T ) = 0.

The martingale properties of (f (t, X̂
(0)
t , λt )) and (X̂

(0)
t Ŷ

(0)
t ) as well as the propor-

tionality property (X̂
(0)
T )p ∝ X̂

(0)
T Ŷ

(0)
T produce

pf (t, X̂
(0)
t , λt ) = pE[f (T , X̂

(0)
T , λT )|Ft ] ∝ E[Ŷ (0)

T X̂
(0)
T |Ft ] = X̂

(0)
t Ŷ

(0)
t .

By computing the dynamics of the left-hand side, we see from Girsanov’s theorem
that the two processes (see (4.13))

dB P̃
(0)

t = −qλtdt + dBt ,

dW P̃
(0)

t = (
b(t) + c(t)λt

)
γ dt + dWt ,

are independent Brownian motions under P̃(0). These dynamics and Itô’s lemma en-
sure that

Nt :=
∫ t

0
λ′

sλsds − C1(t) − C2(t)λ
′
t − C4(t)λt − C5(t)λ

2
t − C6(t)λtλ

′
t

is a P̃
(0)-local martingale. Because the processes (λ,λ′) remain Ornstein–Uhlenbeck

processes under P̃
(0) and the functions C1, . . . ,C6 are bounded, N is indeed a

P̃
(0)-martingale. Furthermore, thanks to the zero terminal conditions imposed on

C1, . . . ,C6, we see that

Φ = 1

1 − p

∫ T

0
λtλ

′
t dt = 1

1 − p
NT = 1

1 − p
N0 +

∫ T

0
γ B
t dB P̃

(0)

t +
∫ T

0
γ W
t dW P̃

(0)

t

for (γ B, γ W ) defined by (5.6) and (5.7). �

Appendix B: Details on the extended affine models

The following result is from [25].

Theorem B.1 (Kraft 2005) Let p < 0 and consider the model (5.8) with λt := 1. The
primal optimal control is π̂

(0)
t = f (t)−1

p−1 , the dual optimal control corresponding to

W is ν̂
(0)
t = f (t)

√
Ft , and the deterministic function f is given by

f ′(t) = −f (t)(f (t)(β2 + γ 2) + 2κ) + p(f (t)2γ 2 − 1 + 2f (t)(β + κ))

2(p − 1)
,

f (T ) = 0.
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For the model (5.10) with λt := λ21, the primal optimal control is π̂
(0)
t = λ21

1−p
, the

dual optimal controls corresponding to (W(1),W(3)) are

ν̂
(0)
t =

(
f (t)

√
F

(1)
t ,0

)
,

and the deterministic function f is given by

f ′(t) = 1

2

(
− 2b11f (t) + f (t)2 + λ2

21p

1 − p

)
, f (T ) = 0.

We then turn to the representation (3.6) of Φ := ∫ T

0 π̂
(0)
t λ′

t σ
2
t dt . For the model

(5.8), this is trivial because
∫ T

0 π̂
(0)
t dt is deterministic (implying that γ B = γ W = 0).

The next lemma provides the representation for the model in (5.11).

Lemma B.2 Let p < 0, let (λ,λ′) be defined by (5.10) and (5.11), and define
π̂

(0)
t := λ21

1−p
. The integrands (γ B, γ W ) appearing in the representation (3.6) of

Φ :=
∫ T

0
π̂

(0)
t (λ20 − λ21 + λ22F

(2)
t + λ23F

(3)
t )dt

are given by

γ B
t = −C2(t), γ W

t = −
(
C1(t)

√
F

(1)
t ,C3(t)

√
1 + F

(1)
t

)
,

where the functions Cj satisfy on [0, T ] the ODEs

C′
1(t) = −b11C1 − b31C3(t) + C1(t)f (t) − C2(t)(b21 − λ21 + π̂

(0)
t ),

C1(T ) = 0,

C′
2(t) = −b22C2(t) − b32C3(t) + λ22π̂

(0)
t ,

C2(T ) = 0,

C′
3(t) = −b23C2(t) − b33C3(t) + λ23π̂

(0)
t ,

C3(T ) = 0.

Proof This is similar to the proof of Lemma A.2. Because the functions Cj satisfy
the above ODEs, we have that

Nt :=
∫ t

0
π̂ (0)

u (λ20 − λ21 + λ22F
(2)
u + λ23F

(3)
u )du

− C0(t) − C1(t)F
(1)
t − C2(t)F

(2)
t − C3(t)F

(3)
t
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is a P̃
(0)-martingale (here we use the P̃

(0)-Brownian motions defined in (4.13)). The
function C0 is given by

C′
0(t) = −a1C1(t) − a2C2(t) − a3C3(t) + C2(t)λ21 − (

C2(t) − λ20 + λ21
)
π̂

(0)
t

with C0(T ) = 0. Then we have

E
P̃

(0)[Φ|Ft ] = E
P̃

(0) [NT |Ft ] = Nt .

Hence, we find the integrands appearing in the representation (3.6) of Φ to be as in
the statement. �

Finally, we verify the integrability conditions (3.7) and (3.8) in Theorem 3.4, pro-
vided that T > 0 is small. We can define the second-order optimal controls (π̃ , ν̃) by
(3.12) and (3.13). We start by considering the model (5.8). Theorem 3.1 in [17] states
that the joint Laplace transform of

Λ :=
∫ T

0

1

Fs

ds, Q :=
∫ T

0
Fs ds

is finite for all T > 0 in some neighborhood of 0 as soon as the strict Feller condition
2κθ > 1 holds. This implies that both Λ and Q have some finite exponential positive
moments (and consequently, Λ and Q have all moments). Because the integrand
γ B appearing in the representation (3.6) of Φ is zero in this model, the integrand
appearing inside the exponential in (3.8) is deterministic. Consequently, (3.8) holds
for all ε > 0.

For the model (5.11), we have the estimate

∫ T

0
(λ′

t )
2(1 + F

(1)
t )dt ≤

∫ T

0
(λ20 − λ21 + λ22F

(2)
t + λ23F

(3)
t )2dt,

which shows that the moment requirements in (3.7) hold. Furthermore, by inserting
λ′ defined in (5.11) and σ 2

t = 1 + F
(1)
t into the exponent in (3.8), we see that this

exponent is affine in F (1), F (2) and F (3) (with time-dependent coefficients). Conse-
quently, the expectation in (3.8) is finite for small positive values of ε.
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