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Abstract

We consider the problem of optimal investment with intermediate consumption in

a general semimartingale model of an incomplete market, with preferences being

represented by a utility stochastic field. We show that the key conclusions of the utility

maximization theory hold under the assumptions of no unbounded profit with bounded

risk and of the finiteness of both primal and dual value functions.
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1. Introduction

Since the pioneering work of Harrison and Kreps [13], equivalent (local/sigma) martingale

measures have played a prominent role in the problems of pricing and portfolio optimization.

Their existence is equivalent to the absence of arbitrage in the sense of no free lunch with

vanishing risk (NFLVR) (see [6] and [8]), and this represents the standard no-arbitrage type

assumption in the classical duality approach to optimal investment problems; see, e.g. [17],

[24], [25], and [32]. In a general semimartingale setting, necessary and sufficient conditions

for the validity of the key assertions of the utility maximization theory (with the possibility

of intermediate consumption) have been recently established in [29]. More specifically, such

assertions were proven in [29] under the assumptions that the primal and dual value functions

are finite and that there exists an equivalent martingale deflator. In particular, in a finite time

horizon, the latter assumption is equivalent to the validity of NFLVR.

In this paper we consider a general semimartingale setting with an infinite time horizon where

preferences are modelled via a utility stochastic field, allowing for intermediate consumption.

Building on the abstract theorems of [29], in our main result we show that the standard assertions

of the utility maximization theory hold as long as there is no unbounded profit with bounded
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Optimal investment with intermediate consumption 711

risk (NUPBR) and the primal and dual value functions are finite. In general, NUPBR is

weaker than NFLVR and can be shown to be equivalent to the existence of an equivalent

local martingale deflator. Our results give a precise and general form to a widespread meta-

theorem in the mathematical finance community stating that the key conclusions of the utility

maximization theory hold under NUPBR. Even though such a result has been proven in some

specific formulations of the utility maximization problem (see the discussion below), to the

best of the authors’ knowledge, it has not been justified in general semimartingale settings with

an arbitrary consumption clock and a stochastic Inada utility.

The proofs rely on certain characterizations of the dual feasible set. Thus, in Lemma 1

we state a polarity description, show its closedness under countable convex combinations in

Lemma 2, and demonstrate in Proposition 1 that nonemptyness of the set that generates the dual

domain is equivalent to NUPBR. Upon that, we prove the bipolar relations between primal and

dual feasible sets and apply the abstract theorems from [29]. As an implication of the bipolar

relations, we also show how [24, Theorem 2.2] can be extended to hold under NUBPR (instead

of NFLVR); see Remark 2 for details.

Neither NFLVR, nor NUPBR by itself, guarantee the existence of solutions to utility maxi-

mization problems; see [24, Example 5.2] and [5, Example 4.3] for counterexamples. This is

why finiteness of the value functions is needed in the formulation of our main result. However,

it was shown in [4] that NUPBR holds if and only if, for every sufficiently nice deterministic

utility function, the problem of maximizing the expected utility from terminal wealth admits a

solution under an equivalent probability measure, which can be chosen to be arbitrarily close

to the original measure; see [4, Theorem 2.8] for details. Besides, NUPBR represents the

minimal no-arbitrage type assumption that allows for the standard conclusions of the theory

to hold for the problem of maximization of expected utility from terminal wealth. Indeed,

by [16, Proposition 4.19], the failure of NUPBR implies that there exists a time horizon such

that the corresponding utility maximization problem either does not have a solution, or has

infinitely many. Our work complements these papers by providing the convex duality results

under NUPBR, also allowing for stochastic preferences as well as intermediate consumption.

The problem of utility maximization without relying on the existence of martingale measures

has already been addressed in the literature. In the very first paper [28] on expected utility

maximization in continuous-time settings, an optimal investment problem was explicitly solved

even though an equivalent martingale measure did not exist, in general, in the infinite time

horizon case. In an incomplete Itô process setting under a finite time horizon, Karatzas et al. [18]

considered the problem of maximization of expected utility from terminal wealth and established

the existence results for an optimal portfolio via convex duality theory without the full strength

of NFLVR; see also [15, Section 10.3] and [11, Section 4.6.3]. In particular, in view of [19,

Theorem 4], [18, Assumption 2.3] is equivalent to the nonemptyness of the set of equivalent

local martingale deflators. Passing from an Itô process to a continuous semimartingale setting,

the results of [24] have been extended in [26] by weakening the NFLVR requirement (note that

[26, Assumption 2.1] is equivalent to NUPBR). In a general semimartingale setting, Larsen and

Žitković [27] established convex duality results for the problem of maximizing the expected

utility from terminal wealth (for a deterministic utility function) in the presence of trading

constraints without relying on the existence of martingale measures. In particular, in the

absence of trading constraints, the no-arbitrage type requirement adopted in [27] turns out

to be equivalent to NUPBR. Indeed, [27, Assumption 2.3] requires the L
0
+-solid hull of the

set of all terminal wealths generated by admissible strategies with initial wealth x, denoted

by C(x), to be convexly compact for all x ∈ R and nonempty for some x ∈ R. As usual, L
0
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712 H. N. CHAU ET AL.

denotes the space of equivalence classes of real-valued random variables on the probability

space (!, F , P), equipped with the topology of convergence in probability; L
0
+ is the positive

orthant of L
0. We recall that, by [33, Theorem 3.1], a closed convex subset of L

0
+ is convexly

compact if and only if it is bounded in L
0. In the absence of trading constraints, Kardaras [19,

Theorem 2] showed that the boundedness in L
0 of C(x) already implies its closedness in L

0,

thus, in such a framework the convex compactness of C(x) holds if and only if the NUPBR

condition does.

The paper is structured as follows. In Section 2 we begin with a description of the general

setting (Subsection 2.1), introduce and characterize the NUPBR condition (Subsection 2.2),

and then proceed with the statement of the main results (Subsection 2.3). Section 3 contains

the proofs of our results.

2. Setting and main results

2.1. Setting

Let (!, F , (Ft )t∈[0,∞), P) be a complete stochastic basis, with F0 being the completion

of the trivial σ -algebra, and S = (St )t≥0 an Rd -valued semimartingale, representing the

discounted prices of d risky assets. As explained in [29, Remark 2.2], there is no loss

of generality in assuming that asset prices are discounted, since we allow for preferences

represented by utility stochastic fields (see Section 2.3 below). We fix a stochastic clock

κ = (κt )t≥0, which is a nondecreasing, càdlàg adapted process such that

κ0 = 0, P(κ∞ > 0) > 0 and κ∞ ≤ A (1)

for some finite constant A. The stochastic clock κ represents the notion of time according to

which consumption is assumed to occur. By suitably specifying the clock process κ , several

different formulations of investment problems, with or without intermediate consumption, can

be recovered from the present setting; see [29, Examples 2.5–2.9] and [32, Section 2.8].

A portfolio is defined by a triplet $ = (x, H, c), where x ∈ R represents an initial capital,

H = (Ht )t≥0 is an Rd -valued predictable S-integrable process representing the holdings in the d

risky assets, and c = (ct )t≥0 is a nonnegative optional process representing the consumption

rate. The discounted value process V = (Vt )t≥0 of a portfolio $ = (x, H, c) is defined as

Vt := x +

∫ t

0

Hu dSu −

∫ t

0

cu dκu, t ≥ 0.

Let X be the collection of all nonnegative value processes associated to portfolios of the form

$ = (1, H, 0), i.e.

X :=

{
X ≥ 0 : Xt = 1 +

∫ t

0

Hu dSu, t ≥ 0

}
.

For a given initial capital x > 0, a consumption process c is said to be x-admissible if there

exists an Rd -valued predictable S-integrable process H such that the value process V associated

to the portfolio $ = (x, H, c) is nonnegative. The set of x-admissible consumption processes

corresponding to a stochastic clock κ is denoted by A(x). For brevity, we let A := A(1).

2.2. No unbounded profit with bounded risk

In this paper we shall assume the validity of the following no-arbitrage type condition:

(NUPBR) the set XT := {XT : X ∈ X} is bounded in L
0 for every T ∈ R+.
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Optimal investment with intermediate consumption 713

For each T ∈ R+, the boundedness in probability of the set XT was termed no unbounded

profit with bounded risk in [16] and, as shown in [19, Proposition 1], is equivalent to the absence

of arbitrages of the first kind on [0, T ]. Hence, condition (NUPBR) above is equivalent to the

absence of arbitrages of the first kind in the sense of [22, Definition 1].

We define the set of equivalent local martingale deflators as

Z := {Z > 0 : Z is a càdlàg local martingale such that Z0 = 1 and

ZX = (ZtXt )t≥0 is a local martingale for every X ∈ X}.

The following result is already known in the one-dimensional case in a finite time horizon;

see [20, Theorem 2.1]. The extension to the multidimensional infinite horizon case relies on [31,

Theorem 2.6]; see also [1, Proposition 2.3].

Proposition 1. Condition (NUPBR) holds if and only if Z ̸= ∅.

Remark 1. In [29], it was assumed that

{Z ∈ Z : Z is a martingale} ̸= ∅, (2)

which is stronger than (NUPBR) by Proposition 1. A classical example where (NUPBR) holds

but (2) fails is provided by the three-dimensional Bessel process; see, e.g. [7], [16, Example

4.6], and [26, Example 2.2].

2.3. Optimal investment with intermediate consumption

We now proceed to show that the key conclusions of the utility maximization theory can be

established under condition (NUPBR). We assume that preferences are represented by a utility

stochastic field U = U(t, ω, x) : [0, ∞) × ! × [0, ∞) → R ∪ {−∞} satisfying the following

assumption.

Assumption 1. For every (t, ω) ∈ [0, ∞)×!, the function x +→ U(t, ω, x) is strictly concave,

strictly increasing, continuously differentiable on (0, ∞), and satisfies the Inada conditions

lim
x↓0

U ′(t, ω, x) = +∞ and lim
x→+∞

U ′(t, ω, x) = 0,

with U ′ denoting the partial derivative of U with respect to its third argument. By continuity,

at x = 0 we suppose that U(t, ω, 0) = limx↓0 U(t, ω, x) (note that this value may be −∞).

Finally, for every x ≥ 0, the stochastic process U(·, ·, x) is optional.

To a utility stochastic field U satisfyingAssumption 1, we associate the primal value function,

defined as

u(x) := sup
c∈A(x)

E

[∫ ∞

0

U(t, ω, ct ) dκt

]
, x > 0, (3)

with the convention E[
∫ ∞

0 U(t, ω, ct ) dκt ] := −∞ if E[
∫ ∞

0 U−(t, ω, ct ) dκt ] = +∞.

In order to construct the dual value function, we define as follows the stochastic field V

conjugate to U :

V (t, ω, y) := sup
x>0

(U(t, ω, x) − xy), (t, ω, y) ∈ [0, ∞) × ! × [0, ∞).

We also introduce the following set of dual processes (where ‘a.e.’ is short for almost every-

where):

Y(y) := cl{Y : Y is càdlàg adapted and 0 ≤ Y ≤ yZ (dκ × P)-a.e. for some Z ∈ Z},
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714 H. N. CHAU ET AL.

where the closure is taken in the topology of convergence in measure (dκ × P) on the space

of real-valued optional processes. We write Y := Y(1) for brevity. The value function of the

dual optimization problem (dual value function) is then defined as

v(y) := inf
Y∈Y(y)

E

[∫ ∞

0

V (t, ω, Yt ) dκt

]
, y > 0, (4)

with the convention E[
∫ ∞

0 V (t, ω, Yt ) dκt ] := +∞ if E[
∫ ∞

0 V +(t, ω, Yt ) dκt ] = +∞. We are

now in a position to state the following theorem, which is the main result of this paper.

Theorem 1. Assume that conditions (1) and (NUPBR) hold and let U be a utility stochastic

field satisfying Assumption 1. Let us also suppose that

v(y) < ∞ for every y > 0 and u(x) > −∞ for every x > 0.

Then the primal value functionuand the dual value functionv defined in (3) and (4), respectively,

satisfy the following properties:

(i) u(x) < ∞ for every x > 0, and v(y) > −∞ for every y > 0. The functions u and v are

conjugate, i.e.

v(y) = sup
x>0

(u(x) − xy), y > 0, u(x) = inf
y>0

(v(y) + xy), x > 0;

(ii) the functions u and −v are continuously differentiable on (0, ∞), strictly concave, strictly

increasing, and satisfy the Inada conditions

lim
x↓0

u′(x) = +∞, lim
y↓0

− v′(y) = +∞,

lim
x→+∞

u′(x) = 0, lim
y→+∞

− v′(y) = 0.

Moreover, for every x > 0 and y > 0, the solutions ĉ(x) to (3) and Ŷ (y) to (4) exist and are

unique and, if y = u′(x), we have the dual relations

Ŷt (y)(ω) = U ′
(
t, ω, ĉt (x)(ω)

)
, dκ × P-a.e., and E

[∫ ∞

0

ĉt (x)Ŷt (y) dκt

]
= xy.

Finally, the dual value function v can be represented as

v(y) = inf
Z∈Z

E

[∫ ∞

0

V (t, ω, yZt ) dκt

]
, y > 0.

Remark 2. For κ corresponding to the maximization of utility from terminal wealth, it can be

checked that the sets A and Y satisfy the assumptions of [24, Proposition 3.1]. This implies

that for a deterministic utility U satisfying the Inada conditions and such that AE(U) < 1 (in

the terminology of [24]), under the additional assumption of finiteness of u(x) for some x > 0,

the assertions of [24, Theorem 2.2] hold under (NUPBR) (and possibly without NFLVR). This

is a consequence of the abstract Theorems 3.1 and 3.2 of [24] that also apply under (NUPBR).

Note also that the condition u(x) > −∞ for all x > 0 trivially holds if U is a deterministic

real-valued utility function. In particular, this is the case in the setting of [25], where it was

shown that the finiteness of the dual function v acts as a necessary and sufficient condition for

the validity of the key assertions of the theory.

/%/79/09��/#��## "
��CCC 1/:0!725� �!5�1�!��#�!:" ��## "
��2�7 �!5��� ���
�8 ! ���
 ��
,�C�9�/2�2�4!�:��## "
��CCC 1/:0!725� �!5�1�!� �.�7%�!"7#D��4������1#71$#���������/�������/#���
	�
	���"$08�1#�#��#����/:0!725����!��#�!:"��4�$"��



Optimal investment with intermediate consumption 715

3. Proofs

Proof of Proposition 1. Suppose that (NUPBR) holds. Then, for every n ∈ N, the set Xn

is bounded in L
0 and, by [31, Theorem 2.6], there exists a strictly positive càdlàg local

martingale Zn such that Zn
0 = 1 (since F0 is trivial) and the Rd -valued process ZnS is a

sigma-martingale on [0, n]. As a consequence of [2, Corollary 3.5] (see also [4, Remark 2.4]),

it holds that ZnX is a local martingale on [0, n] for every X ∈ X and n ∈ N. For all t ≥ 0, let

then n(t) := min{n ∈ N : n > t} and define the càdlàg process Z = (Zt )t≥0 via

Zt :=

n(t)∏

k=1

Zk
k∧t

Zk
(k−1)∧t

, t ≥ 0.

We now claim that Z ∈ Z. Since X ≡ 1 ∈ X and in view of [14, Lemma I.1.35], it suffices to

show that, for every X ∈ X, the process ZX is a local martingale on [0, m] for each m ∈ N.

Fix m ∈ N. Consider an arbitrary X ∈ X and let {τn
k }k∈N be a localizing sequence for the local

martingale ZnX on [0, n] for each n ∈ {1, . . . , m}. Let τ
j

k{τ
j
k <j}

:= τ
j

k 1
{τ

j
k <j}

+∞ 1
{τ

j
k ≥j}

for

j = 1, . . . , m and k ∈ N, and define the stopping times

T m
k := min{τ 1

k{τ 1
k <1}

, . . . , τm
k{τm

k <m}, m}, k ∈ N.

Similarly as in [12, Theorem 4.10], it can be readily verified that the stopped process (ZX)T
m
k

is a martingale on [0, m] for all k ∈ N. Since limk→+∞ P(T m
k = m) = 1, this shows that ZX

is a local martingale on [0, m]. By the arbitrariness of m, this proves the claim.

To prove the converse implication, note that, for any X ∈ X and Z ∈ Z, the process ZX is

a supermartingale and, hence, for every T ∈ R+, it holds that E[ZT XT ] ≤ 1. This shows that

the set ZT XT is bounded in L
1 and, hence, the set XT is bounded in L

0. !

Let us now turn to the proof of Theorem 1. Together with the abstract results established in

[29, Section 3], the key step is represented by Lemma 1 below, which generalizes [29, Lemma

4.2] by relaxing the no-arbitrage type requirement into condition (NUPBR).

Lemma 1. Let c be a nonnegative optional process and κ a stochastic clock. Under assump-

tions (1) and (NUPBR), the following conditions are equivalent:

(i) c ∈ A;

(ii) supZ∈Z E[
∫ ∞

0 ctZt dκt ] ≤ 1.

Proof. If c ∈ A, there exists an Rd -valued predictable S-integrable process H such that

1 +

∫ t

0

Hu dSu ≥

∫ t

0

cu dκu ≥ 0, t ≥ 0.

We define Ct :=
∫ t

0 cu dκu, t ≥ 0, and observe that C is an increasing process. For an arbitrary

Z ∈ Z, the process (
∫ t

0 Cu− dZu)t≥0 is a local martingale and we let {τn}n∈N be a localizing

sequence such that (
∫

C− dZ)τn is a uniformly integrable martingale for every n ∈ N. Using

the supermartingale property of Z(1 +
∫

H dS), we obtain, for every n ∈ N,

1 ≥ E

[
Zτn

(
1 +

∫ τn

0

Hu dSu

)]
≥ E[ZτnCτn ] = E

[∫ τn

0

Zu dCu +

∫ τn

0

Cu− dZu

]
,
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716 H. N. CHAU ET AL.

where the last equality follows from integration by parts. Since {τn}n∈N is a localizing sequence

for
∫

C− dZ, it holds that E[
∫ τn

0 Cu− dZu] = 0 for every n ∈ N. Hence,

1 ≥ E

[∫ τn

0

Zu dCu

]
for every n ∈ N.

By the monotone convergence theorem, we obtain

1 ≥ lim
n→∞

E

[∫ τn

0

Zu dCu

]
= E

[∫ ∞

0

Zu dCu

]
.

Since Z ∈ Z is arbitrary, this proves the implication (i)⇒(ii).

Suppose now that supZ∈Z E[
∫ ∞

0 ctZt dκt ] ≤ 1. Take an arbitrary Z ∈ Z and let {ϱn}n∈N be

a sequence of bounded stopping times increasing to infinity, P-a.s., such that Zϱn is a uniformly

integrable martingale for each n ∈ N. Denoting

Mσ (S) := {Q ∼ P : S is a Q-sigma-martingale},

we can show that Mσ (Sϱn) ̸= ∅ for every n ∈ N. Let Q ∈ Mσ (Sϱn) and denote by

M = (Mt )t≥0 its càdlàg density process (i.e. Mt = dQ|Ft / dP|Ft , t ≥ 0). Letting Z′ :=

MϱnZ(Zϱn)−1, [30, Lemma 2.3] implies that Z′ ∈ Z. Therefore, for any stopping time τ ,

EQ[Cτ∧ϱn ] = E[Mτ∧ϱnCτ∧ϱn ] = E[Z′
τ∧ϱn

Cτ∧ϱn ] ≤ 1,

where the last inequality follows from the assumption that supZ∈Z E[
∫ ∞

0 ctZt dκt ] ≤ 1 by the

same arguments used in the first part of the proof together with an application of Fatou’s lemma.

As a consequence, we have

sup
Q∈Mσ (Sϱn )

sup
τ∈T

EQ[Cτ∧ϱn ] ≤ 1,

where T is the set of all stopping times. An application of [10, Proposition 4.2] then yields the

existence of an adapted càdlàg process V n such that V n
t ≥ Ct∧ϱn for every t ≥ 0 and admitting

a decomposition of the form

V n
t = V n

0 +

∫ t

0

H n
u dS

ϱn
u − An

t , t ≥ 0,

where H n is an Rd -valued predictable Sϱn -integrable process, An is an adapted increasing

process with An
0 = 0, and V n

0 = supQ∈Mσ (Sϱn ),τ∈T EQ[Cτ∧ϱn ] ≤ 1. Therefore, for every

n ∈ N, we obtain

1 +

∫ t

0

H n
u dSu ≥ V n

0 +

∫ t

0

H n
u dSu = V n

t + An
t ≥ V n

t ≥ Ct , 0 ≤ t ≤ ϱn.

Let H̄ n := H n 1[[0,ϱn]] for all n ∈ N. By [10, Lemma 5.2], we can construct a sequence of

processes {Y n}n∈N, with Y n ∈ conv(1 +
∫

H̄ n dS, 1 +
∫

H̄ n+1 dS, . . .), n ∈ N, and a càdlàg

process Y such that {ZY n}n∈N is Fatou convergent to a supermartingale ZY for every strictly

positive càdlàg local martingale Z such that ZX is a supermartingale for every X ∈ X. Note

that Yt ≥ Ct for all t ≥ 0 and Y0 ≤ 1. Similarly as above, applying [10, Theorem 4.1] to the

stopped process Y ϱn for n ∈ N, we obtain the decomposition

Y
ϱn
t = Y0 +

∫ t

0

Gn
u dS

ϱn
u − Bn

t , t ≥ 0,
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where Gn is an Rd -valued predictable Sϱn -integrable process and Bn is an adapted increasing

process with Bn = 0 for n ∈ N. Letting

G := G1 +

∞∑

n=1

(Gn+1 − Gn) 1[[ϱn,+∞]] = G1 1[[0,ϱ1]] +

∞∑

n=1

Gn+1 1[[ϱn,ϱn+1]],

it follows that 1 +
∫ t

0 Gu dSu ≥ Ct for all t ≥ 0, thus establishing the implication (ii)⇒(i) and

completing the proof. !

We are now in a position to complete the proof of Theorem 1, which generalizes the results

of [29, Theorems 2.3 and 2.4] to the case where only (NUPBR) is assumed to hold.

Lemma 2. Under (NUPBR), the set Z is closed under countable convex combinations. If, in

addition, (1) holds then, for every c ∈ A, we have

sup
Z∈Z

E

[∫ ∞

0

ctZt dκt

]
= sup

Y∈Y

E

[∫ ∞

0

ctYt dκt

]
≤ 1. (5)

Proof. Let {Zn}n∈N be a sequence of processes belonging to Z and {λn}n∈N a sequence of

positive numbers such that
∑∞

n=1 λn = 1. Letting Z :=
∑∞

n=1 λnZn, we need to show that

Z ∈ Z. For each N ∈ N, define Z̃N :=
∑N

n=1 λnZn. For every X ∈ X, {Z̃NX}N∈N is an

increasing sequence of nonnegative local martingales (i.e. Z̃N+1
t Xt ≥ Z̃N

t Xt for all N ∈ N

and t ≥ 0), such that Z̃N
t Xt converges almost surely to ZtXt as N → +∞ for every

t ≥ 0 and Z0X0 = 1. The local martingale property of ZX then follows from [23, Propo-

sition 5.1] (note that its proof carries over without modifications to the infinite horizon case),

whereas [9, Theorem VI.18] implies that ZX is a càdlàg process. Since X ∈ X is arbitrary and

X ≡ 1 ∈ X, this proves the claim. Relation (5) follows by the same arguments used in [29,

Lemma 4.3]. !

We denote by L
0(dκ × P) the linear space of equivalence classes of real-valued optional

processes on the stochastic basis (!, F , (Ft )t∈[0,∞),P), equipped with the topology of con-

vergence in measure (dκ × P). Let L
0
+(dκ × P) be the positive orthant of L

0(dκ × P).

Proof of Theorem 1. The sets A and Y are convex solid subsets of L
0
+(dκ × P). By defi-

nition, Y is closed in the topology of convergence in measure (dκ × P). A simple application

of Fatou’s lemma together with Lemma 1 allows us to show that A is also closed in the same

topology. Moreover, by the same arguments used in [29, Proposition 4.4(ii)], Lemma 1 and the

bipolar theorem of [3] imply that A and Y satisfy the bipolar relations

c ∈ A ⇐⇒ E

[∫ ∞

0

ctYt dκt

]
≤ 1 for all Y ∈ Y,

Y ∈ Y ⇐⇒ E

[∫ ∞

0

ctYt dκt

]
≤ 1 for all c ∈ A.

Since X ≡ 1 ∈ X and Z ̸= ∅, both A and Y contain at least one strictly positive element.

In view of Lemma 2, Theorem 1 then follows directly from [29, Theorems 3.2 and 3.3]. !

Remark 3. We want to mention that Theorem 1 can also be proved by means of a change of

numéraire argument. Indeed, one can consider the market where quantities are denominated in

units of the numéraire portfolio (whose existence is equivalent to NUPBR; see [16]) and apply
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[29, Theorems 2.3 and 2.4] directly in that market, for which the set (2) is nonempty. In this

regard, see [16, Section 4.7] and [21] in the case of maximization of expected (deterministic)

utility from terminal wealth.
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