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UTILITY MAXIMIZATION IN A LARGE MARKET

OLEKSII MOSTOVYI

University of Connecticut

We study the problem of expected utility maximization in a large market, i.e., a
market with countably many traded assets. Assuming that agents have von Neumann-—
Morgenstern preferences with stochastic utility function and that consumption occurs
according to a stochastic clock, we obtain the “usual” conclusions of the utility maxi-
mization theory. We also give a characterization of the value function in a large market
in terms of a sequence of value functions in finite-dimensional models.

KEY WORDS: utility maximization, large markets, incomplete markets, convex duality, optimal in-
vestment, stochastic clock.

1. INTRODUCTION

In the mathematical finance literature, the notion of large security market was introduced
by Kabanov and Kramkov (1994) as a sequence of probability spaces with corresponding
time horizons and semimartingales representing the traded assets.

Investigation of the no-arbitrage conditions in large market settings has naturally at-
tracted the attention of the research community and is done in Klein and Schachermayer
(1996a,b), Kabanov and Kramkov (1998), and Klein (2000, 2003, 2006), whereas ques-
tions related to completeness are considered in Bjork et al. (1997a), Bjork, Kabanov,
and Runggaldier (1997b), De Donno (2004), De Donno and Pratelli (2004), and Taflin
(2005).

In contrast to Kabanov and Kramkov (1994, 1998), Bjork and Néslund (1998) assumed
that a large market consists of one probability space, but the number of traded assets is
countable, and among other contributions developed the arbitrage pricing theory results
in such settings. Note that the models with countably many assets embrace the ones with
the stochastic dimension of the stock price process (considered, e.g., in Strong 2014).
De Donno et al. (2005) extended the formulation in Bjork and Naslund (1998) to a
model driven by a sequence of semimartingales and established the standard conclusions
of the theory for the utility maximization from terminal wealth as well as obtained
the dual characterization of the superreplicable claims. Their results are based on the
notion of a stochastic integral with respect to a sequence of semimartingales from De
Donno and Pratelli (2006). The Merton portfolio problem in the settings with infinitely
many traded zero-coupon bonds is investigated in Ekeland and Taflin (2005), and Ringer
and Tehranchi (2006). Other applications of large market models in the analysis of fixed
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income securities are considered in Bjork et al. (1997a,b), Carmona and Tehranchi (2004,
2006), De Donno and Pratelli (2004), and Taflin (2005).

We consider a market with countably many traded assets driven by a sequence of
semimartingales (as in De Donno, Guasoni, and Pratelli, 2005). In such settings, we
formulate Merton’s portfolio problem for a rational economic agent whose preferences
are specified via a stochastic utility of Inada’s type defined on the positive real line and
whose consumption follows a stochastic clock. We establish the standard existence and
uniqueness results for the primal and dual optimization problems under the condition
of finiteness of both primal and dual value functions.

We also characterize the primal and dual value functions in terms of the appropriate
limits of the sequences of the value functions in the finite-dimensional models.

In particular, we extend the utility maximization results in De Donno et al. (2005) by
adding intermediate consumption and assuming randomness of the agent’s preferences.

The proof of our results hinges on the dual characterization of the admissible con-
sumption processes given in Proposition 3.1, which allows to link the present model with
the abstract theorems of Mostovyi (2015). Note that our formulation of admissible con-
sumption and trading strategies relies on the notion of stochastic integral with respect to
a sequence of semimartingales in the sense of De Donno and Pratelli (2006).

We believe that our results provide a convenient set of conditions for analyzing other
problems in the settings of the large markets with or without intermediate consumption,
such as robust utility maximization, optimal investment with random endowment, utility-
based pricing, and existence of equilibria.

The remainder of the paper is organized as follows. Section 2 contains the model
formulation and the main results, which are formulated in Theorem 2.2 and Lemma 2.4.
Their proofs are given in Section 3.

2. THE MODEL AND THE MAIN RESULT

We consider a filtered probability space (2, .#, (%)ie0.17, P), where the filtration
(Z1)iepo, 1) satisfies the usual conditions, % is the completion of the trivial o-algebra.
As in Bjork and Néslund (1998) and De Donno et al. (2005), we assume that there is
one fixed market which consists of a riskless bond and a sequence of semimartingales
S= (81 = ((S)iefo, )2, that describes the evolution of the stocks. The price of the
bond is supposed to be equal to 1 at all times.

The notion of a strategy in the large market relies on the finite-dimensional coun-
terparts, whose definitions we specify first. For n € N, an n-elementary strategy is an
R"-valued, predictable process, which is integrable with respect to (S5);<,. An elemen-
tary strategy is a strategy which is n-elementary for some n. For x > 0, an n-elementary
strategy H is x-admissible if H-S=Y_._, H'- S is uniformly bounded from below by
the constant —x P-a.s. Let . denote the set of n-clementary strategies that are also
x-admissible for some x > 0.

In the present setting, specification of the admissible wealth processes and trading
strategies is based on integration with respect to a sequence of semimartingales in the
sense of De Donno and Pratelli (2006). Thus, we recall several definitions from De Donno
and Pratelli (2006), upon which the formulation of the set of admissible consumptions is
based. The reader familiar with this construction might proceed to the definition of an
x-admissible generalized strategy. Recall that RY is the space of all real sequences.
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An unbounded functional on RY is a linear functional F, whose domain Dom(F) is a
subspace of RY. A simple integrand is a finite sum of bounded predictable processes of
the form )", _, h'e’, where (¢') is the canonical basis for R and /' are one-dimensional
bounded and predictable processes.

A process H with values in the set of unbounded functionals on R" is predictable if there
exists a sequence of simple integrands (H"), such that H = lim,,_, ., H"P — a.s., which
means that x € Dom(H) if the sequence (H") converges and lim,,_, ., H"(x) = H(x).

A predictable process H with values in the set of unbounded functionals on RY is
integrable with respect to S if there exists a sequence (H") of simple integrands, such
that (H") converges to H and the sequence of semimartingales (H" - S) converges to a
semimartingale Y in the semimartingale topology. In this case, we define the stochastic
integral H - Sto be Y.

For every x > 0, a process H is an x-admissible generalized strategy if H is integrable
with respect to the semimartingale S and there exists an approximating sequence ( H")
of x-admissible elementary strategies, such that (H” - S) converges to H - Sin the semi-
martingale topology. Note that this is definition 2.5 from De Donno et al. (2005).

Let us define a portfolio T1 as a triple (x, H, ¢), where the constant x is an initial
value, H is a predictable and admissible S-integrable process (with values in the set of
unbounded functionals on RY) specifying the amount of each asset held in the portfolio,
and ¢ = (¢;)ep0, 77 1S @ nonnegative and optional process that specifies the consumption
rate in units of the bond.

Hereafter, we fix a stochastic clock « = (k;),ep0, 1), Which is a nondecreasing, cadlag,
adapted process such that

2.1 ko =0,Plkr >0] >0, andkr < 4

for some finite constant A. The stochastic clock represents the notion of time according
to which consumption occurs. Note that, in view of the utility maximization problem
(2.3) defined, we will only consider consumption processes that are absolutely continuous
with respect to dk, i.e., of the form ¢ - , as other ones are suboptimal.

For a portfolio (x, H, c), we define the wealth process as

X&2x+H-S—c- k.

Note that the closure of the sets of wealth processes in the semimartingale topology
is investigated in De Donno et al. (2005) and Kardaras (2013) (with the definition of
a wealth process being different from the one here). For x > 0, we define the set of
x-admissible consumptions as

o/ (x) & {c > 0: cis optional, and there exists
an x-admissible generalized strategy H,
st.x+H-S—c-x>0}.

Thus, a constant strictly positive consumption ¢ £ x/ 4, t € [0, T], belongs to <7(x)
for every x > 0.

For n > 1, let Z" denote the set of cadlag densities of equivalent local martingale
measure for n-elementary strategies, i.e.,

2" £{Z>0: Zisacadlag martingale, s.t. Z) = land
(14 H - S)Zis alocal martingale for every H € 57",
His 1 —admissible} .
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Note that 2"t € 2" n > 1. We also define
&2z,

n>1

and assume that
2.2) Z + 0,

which coincides with the no-arbitrage condition in De Donno et al. (2005).
The preferences of an economic agent are modeled via a stochastic utility U : [0, 7] x
Q x [0, 00) = R U {—o0} that satisfies the conditions below.

ASSUMPTION 2.1. For every (t,w) € [0, T] x Q the function x — U(t, w, X) is strictly
concave, increasing, continuously differentiable on (0, 00) and satisfies the Inada conditions:

11?3 U(t,w,x)=+o00 and lim U'(z, w, x)=0,

where U’ denotes the partial derivative with respect to the third argument. At x = 0 we
suppose, by continuity, U(t, w, 0) = li?(} U(t, w, x), this value may be —oo. For every x > 0,
X

the stochastic process U(-, -, x) is optional.

The conditions on U coincide with the ones in Mostovyi (2015) (on the finite time
horizon). For simplicity of notations for a nonnegative optional process ¢, the processes
with trajectories (U(t, , c/(®)))epo, 11, (U'(t, @, ci(@)))iepo, 11, and (U™ (t, w, c,(@)))efo, 11
(where U~ designates the negative part of U) will be denoted by U(c), U'(c), and U~ (c),
respectively.

For a given initial capital x > 0, the goal of the agent is to maximize his expected
utility. The value function of this problem is denoted by

(2.3) u(x) = sup E[U(c) k7], x>0.
cedd (x)

We use the convention
(2.4) E[U(c)-k7] & —00 if E [U’(c) . KT] = +4o00.

To study (2.3), we employ standard duality arguments as in Kramkov and Schacher-
mayer (1999) and Zitkovic (2005) and define the conjugate stochastic field V to U as

V(t, w, y) £ sup (U(t, w, x) — xy), (t,w,y) €[0,T] x Q x [0, c0).
x>0

It is well known that — V" satisfies Assumption 2.1. For y > 0, we also denote

Y(y) £ cl { Y : Yis cadlag adapted and
0<Y=<yZ (dc xP) a.e. forsome Ze Z},

where the closure is taken in the topology of convergence in measure (dk x P) on the
space of finite-valued optional processes. We will denote this space L(dk x P) or L. for
brevity.

Similar to the composition of U with ¢, for a nonnegative optional pro-
cess Y, the stochastic processes, whose realizations are (V(¢, ®, Y(®)))e,77 and
(VH(t, w, Yi(w)))iepo, 1] (Where V' is the positive part of V), will be denoted by V(Y)
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and V*(Y), respectively. After these preparations, we define the value function of the
dual optimization problem as

A .
2.5) £ inf Bkl >0

where we use the convention:
(2.6) E[V(Y) k7] & 400 if E[V+(II)-KT]:+OO.

The following theorem constitutes the main contribution of this paper.

THEOREM 2.2. Assume that conditions (2.1) and (2.2) and Assumption 2.1 hold true and
suppose

v(y) <o forall y>0 and u(x)> —oo for all x> 0.
Then we have

(1) u(x) < oo for all x>0, v(y) > —o0 for all y > 0. The functions u and v are
conjugate, i.e.,

v(y) = sup ((x) —xy), y>0,

u(x) = ing v +xy), x>0
y>

The functions u and —v are continuously differentiable on (0, 00), strictly increasing,
strictly concave and satisfy the Inada conditions:

u'(0) 2 limu'(x) = +o0, —v'(0) £ lim —v(y) = +o0,
X y
w'(00) = lim u/(x) =0, —v/(c0) = lim —v/(») = 0.
X— 00 y—00
(2) For every x > 0 and y > 0, the optimal solutions &(x) to (2.3) and Y(y) to (2.5)
exist and are unique. Moreover, if y = u'(x) we have the dual relations
Y(y) = Ue(x), (dk x P)a.e.

and

E[(€¥0on «) | =x.
(3) We have,

v(y) = Inf E[V(y2) k7], y> 0.

2.1. Large Market as a Limit of a Sequence of Finite-Dimensional Markets

Motivated by the question of liquidity, we discuss the convergence of the value func-
tions as the number of available traded securities increases. For this purpose, we need the
following definitions. For every n > 1, we set
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</"(x) £ {optional ¢ > 0 : there exists H € H" s.1.
x+ H-Sr—c-kr>0P-as.},

2.7 u'(x) 2 sup E[U(c) k7], x>0,
cedl"(x)

@"(y) = cl{Y: Yis cadlig adapted and
0<Y=<yZ(dc xP) a.e. forsome Ze Z"},

where the closure is taken in I.°,

2.8 "(y) & inf E[V(Y)- 0

2.8) Vo) 2 inf E[V() -kl y >0,

and assume the conventions (2.4) and (2.6). Note that for every z > 0, both (1"(z)) and
(v"(z)) are increasing sequences. We suppose that

2.9) (1 —¢)Ccl U " (1) for every ¢ € (0, 1],

n>1

where the closure is taken in L°.
Let 1 denotes the indicator function of a set E.

REMARK 2.3. It follows from Proposition 3.1 and Fatou’s lemma that cl(| ] «7"(1)) C
n>1

27 (1). Assumption (2.9) gives a weaker version of the reverse inclusion. Note that (2.9)
holds if either of the conditions below is valid.

(1) «, =17(2), t €[0, T), i.e., if (2.3) defines the problem of optimal investment from
terminal wealth. Then, (2.9) follows from lemma 3.4 in De Donno et al. (2005),
which also contains the proof of u”(x) — u(x).

(2) The process S'is (componentwise) continuous. This is the subject of Lemma 3.7.

LEMMA 2.4. Assume that there exists n € N, such that
(2.10) u'(x) > —oo for every x>0, v(y)<-+4oo forevery y>0.
Then, under conditions (2.1), (2.2), and (2.9) as well as Assumption 2.1, we have

2.1D) u(x) = lim v"(x), x>0, and v(y)= lim v'(y), y>0.

REMARK 2.5. Condition (2.10) implies finiteness of v, —u, v", and —u" (for every n
greater than some constant) that are also convex. Theorem 3.1.4 in Hiriart-Urrut and
Lemaréchal (2004) ensures that convergence in (2.11) is uniform on compact subsets of
(0, 00). Moreover, theorem 25.7 in Rockafellar (1970) asserts that the derivatives (v")
and ("), n > 1, also converge uniformly on compact intervals in (0, co) to v' and u’,
respectively.

Lemma 2.4 shows that the value function in the market with countably many assets is
the limit of the value functions of the finite dimensional models. The following example
demonstrates that in general the optimal portfolio and the optimal consumption in the
market with infinitely many traded assets are not limits of the optimal portfolios and
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optimal consumptions in the finite dimensional markets, respectively. The important
technical feature in the construction of this example is that in each finite dimensional
market the last stock has the highest expected return.

EXAMPLE 2.6. Let us consider an economic agent, whose preferences are specified by
a bounded utility function U defined on the positive real line that is strictly increasing,
strictly concave, continuously differentiable, and satisfies the Inada conditions. We con-
sider a one-period model, where there is a riskless bond with S° = 1, and a sequence
of stocks (5), such that § = 1 for every i and (S}) are independent random variables
taking values in {%, s;}, where

(2.12) 51=9, sia=(+2)Q2s+1), i>1,

(we will also denote sy = 1) with probabilities 1 — p; and p;, respectively, where (p;) is
an increasing sequence such that

— Di

i

(2.13)

> 1.

! S; + 8- 1
< min (2(Si _ 1)U(9+—9‘+)7 15) L

7 (1
U'(3)
As (p;) and (s;) are increasing, we have

— n
kEI{Ill?%n}E[Sﬂ _E[Sl], n>1,

i.e., the last stock of each finite dimensional market has the greatest expected return.
Let the stochastic clock « correspond to the problem of utility maximization of terminal
wealth. Note that (2.2) holds, (2.9) is valid by the first item of Remark 2.3, and bounded-
ness of U implies (2.10). Therefore, the assertions of Lemma 2.4 hold. Condition (2.13)
results in

(2.14) U(l)=E[U(S)] <E[US))].

For simplicity of notation, we will assume that the initial wealth of the agent equals
to 1. Let 41 be the optimal number of shares of the ith asset in the market, where N
stocks are available for trading, N > 1. The admissibility condition implies that 7}’ > —1.
Monotonicity of (s;) and (p;) results in the following inequalities:

(2.15) WY <h) <...<hy, N=>1.

It follows from convexity and monotonicity of U as well as (2.13) that 2V > 0 (if, by
contradiction, ¥ < 0, via (2.13) one can show that the portfolio with 0 units of ith stock
and h) + hY units of the riskless asset is admissible, it corresponds to the same initial
wealth and gives a higher value of the expected utility). Nonnegativity of 4)¥’s and (2.15)
give

2
W< _—-__ i=1,..,N, N>1
N—-i+1
Consequently, we get

(2.16) lim A¥ =0, i>1.

N—oo
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Note that the corresponding wealth processes at time O equal 1 = Y"," | 4. Consequently,
in the market with countably many stocks, a portfolio that is a limit of the optimal finite
dimensional portfolios (i.e., such that (2.16) holds) can have a nontrivial allocation only
in the riskless asset. This gives the value of the expected utility U(1). In view of (2.14),
such a portfolio is suboptimal.

Moreover, we show below that the sequence of optimizers corresponding to the initial
wealth 1, (X’N ), is not a Cauchy sequence in the semimartingale topology. It follows from
(2.13) that kY > Al (if by contradiction 4}’ > h%, an application of (2.13) implies that the
portfolio with /% units of the riskless bond and A’ units of the Nth stock gives a higher
expected utility). Accordingly, in view of (2.15) and nonnegativity of 4", i =1,..., N,
we get

1

hY >
N=N+1

, N=>1.

Combining this with (2.12), we obtain

XN > hsy +h) =25y, with probability py,

whereas XV~! < 25V-1 — 1. Consequently,

P -X""1=1]=py, N=z2

Therefore, (/)\(N ) is not a Cauchy sequence in the semimartingale topology.

3. PROOFS
At the core of the proof of Theorem 2.2 lies the following result.
PrOPOSITION 3.1. Let conditions (2.1) and (2.2) hold. Then a nonnegative optional

process ¢ belongs to <7 (1) if and only if

(3.1) sup E[(¢2) - k)7] < 1.
ZeZ

The proof of Proposition 3.1 will be given via several lemmas.

LEmMMA 3.2. Let H be a I-admissible generalized integrand. Under the conditions
of Proposition 3.1, X2 1+ H- S is nonnegative P-a.s. and for every Ze 2%, ZX is a
supermartingale.

As the proof of Lemma 3.2 is straightforward, it is skipped. Note that a discussion of
the second assertion of the lemma is presented on p. 2011 of De Donno et al. (2005).

LeEmMMA 3.3. Let H be a 1-admissible generalized strategy, ¢ be a nonnegative optional
process. Under the conditions of Proposition 3.1, the following statements are equivalent.
(@)
c-kr<1+H-Sr, P-as.,
(ii)
c-k<1+H-S P-as.
(ie., c-x, <1+ H-S foreverytel0,T], P-as.).
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Proof. Let us assume that (i) holds and fix Z € 2. It follows from Lemma 3.2 that
Z(1 + H - S)is a supermartingale. Therefore, using monotonicity of ¢ - k, foreveryt < T
we have

Zi(c- k) =E[Zr(c - k)|.F] < E[Zr(c - k7)|.71]
<E[Zr(1+H - Sp)IF]1< Z(1+ H-S),

which implies (i1). O

Proof of Proposition 3.1. Let ¢ € &/(1). Fix Ze€ 2 and T > 0. Then there exists a
1-admissible generalized strategy H, such that

1+H-Sr>c-k7.
Multiplying both sides by Z and taking the expectation, we get
(3.2) E[Z(1+ H- Sp)] = E[Zr(c - k7)],

where the right-hand side (via monotonicity of ¢ - k and an application of theorem 1.4.49
in Jacod and Shiryaev, 1980) can be rewritten as

(3.3) E[Zr(c - kr)] =E[(Ze) - 1)1].

By definition of H, there exists a sequence (H") of 1-admissible elementary strategies,
such that

(H" - S),>1 convergesto H-S in the semimartingale topology.

Consequently, (H" - Sy) converges to H - Sy in probability, and therefore there exist a
subsequence, which we still denote (H” - S), such that (H" - Sy) converges to H - Sy P-
a.s. Therefore, for every Z € 2 we obtain from the definition of 1-admissibility and
Fatou’s lemma

1 > liminf E[Z7(1 4+ H" - Sp)] > E[Zr(1 + H- Sp)].

n—00

Combining this with (3.2) and (3.3), we conclude that
1= E[((Ze) - ©)1],

which holds for every Z € 2.
Conversely, let (3.1) holds. Using the same argument as in (3.3), we obtain from (3.1)
that

1> sup E[Zr(c-x)7].
ZeZ

Consequently, the random variable ¢ - k7 satisfies the assumption (i) of theorem 3.1 in De
Donno et al. (2005) with x = 1. Therefore, we obtain from this theorem that there exists
a l-admissible generalized strategy H such that

c-kr <14+ H-Sr.

By Lemma 3.3, this implies that ¢ € 7(1). This concludes the proof of the proposition.[J
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Let LY denote the positive orthant of L°. We recall that a subset 4 of LY. is called solid
if fe A gel’, and g < f implies that g € A4, a subset B C ]L:)L is the polar of A, if
B={hel’ : E[((hf) k)r] <1, forevery f € A}, in this case we denote B = A°.

LEMMA 3.4. Under the conditions of Proposition 3.1, we have

(i) The sets <7(1) and % (1) are convex, solid, and closed subsets of ..
(i) /(1) and % (1) satisfy the bipolar relations

ce d(1) s E[(cY)-«)7] <1, forevery Y e (1),
YeZ(1) & E[(cY)-k)r] <1, forevery Y € &/(1).

(ii1) Both <7 (1) and %/ (1) contain strictly positive elements.

The proof goes along the lines of the proof of proposition 4.4 in Mostovyi (2015). It
is therefore omitted here.

LEMMA 3.5. Under the conditions of Proposition 3.1, we have

(1) sup E[((c2) - k)7] = sup E[((cY)-k)r] forevery c € </(1),
Ze%¥ Ye/ (1)
(1) the set & is closed under the countable convex combinations, i.e. for every sequence

(Z") in Z and a sequence of positive numbers (a™) such that ), . a" =1, the
process Z= Y, a" Z" belongs to Z .

Proof. Let(Z")beasequencein 2" and Z =} ., a"Z". By monotone convergence,
Z is a cadlag martingale. Let X =1+ H - S be a nonnegative wealth process, where
H e 7" (for somen > 1),

N
M2 XZ, and MNéX(Za’”Z’”>,N21.

m=1

As XZ" is a local martingale for each m, we have that M" (being a finite sum of local
martingales) is a local martingale as well. Moreover, M" > 0 for every N and as a” > 0
and XZ" > 0, for every m, we have that MY 1 M,, for each ¢. By proposition 5.1 in Klein,
Lepinette, and Perez-Ostafe (2014), we get that M is a local martingale, and therefore
Z € Z. This implies (ii), whereas (i) results from Fatou’s lemma and the definitions of
the sets 27 and #/(1). O

Proof of Theorem 2.2. By Lemma 3.4, the sets </(1) and %/(1) satisfy the assumptions
of theorem 3.2 in Mostovyi (2015) that implies the assertions (i) and (ii) of Theorem 2.2.
The conclusions of item (iii) supervene from Lemma 3.5 and theorem 3.3 in Mostovyi
(2015). This completes the proof of Theorem 2.2. O

For the proof of Lemma 2.4, we need the following technical result.

LEMMA 3.6. Under the conditions of Lemma 2.4, for every ¢ € (0, 1) we have
1

2" Hco|—).

n>1 I—e

Proof. Observe that by proposition 4.4 in Mostovyi (2015), for every n > 1, the
sets @7"(1) and #"(1) satisfy the bipolar relations, likewise by Lemma 3.4, we have
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(1) = #(1). Fix an ¢ € (0, 1). From (2.9) using Fatou’s lemma, we obtain

8)0 U ﬂ”(l)

n>1

Therefore, we conclude

o

» (ﬁ) =d(1—e) > |Jo"D)| =&y =(2"0).

n>1 n>1 n=1

This concludes the proof of the lemma. |

Proof of Lemma 2.4. Without loss of generality, we will assume that u!(x) > —o0, x >
0. We will only show the second assertion, as the proof of the first one is similar. Also, for
convenience of notation, we will assume that y = 1. Let Z" be a minimizer to the dual
problem (2.8), n > 1, where the existence of the solutions to (2.8) follows from theorem
2.3 in Mostovyi (2015).

It follows from (2.1) that the set 2! is bounded in L'(dx x P). This in particular
implies that 2/!(1) is bounded in L(dx x P). Therefore, by lemma Al.1 in Delbaen and
Schachermayer (1994), there exists a sequence 7' e conv(Z', Z'*',..),n>1, and an
element Z € L%(dk x P), such that (Z” ) converges to Z (dk x P)-a.e. We also have

1
= lim Z' € ﬂ@/”(l) C ?!/< ) for every ¢ € (0, 1),
n—oo n>l 8

where the latter inclusion follows from Lemma 3.6. By convexity of V', we get

(3.9 hmsupIE[V(Z”) KT] < hm v"(1).

n—oo

Note that &2”) C #''(1). Consequently, using lemma 3.5 in Mostovyi (2015), we conclude
that (V= (Z")) is uniformly integrable (here '~ denotes the negative part of the stochastic
field V). Therefore, from Fatou’s lemma and (3.4) we deduce

(1) 220@ el < imintE[VZ) -] < im o)

for every ¢ € (0, 1). Taking the limit as ¢ | 0 and using the continuity of v (by convexity,
see Theorem 2.2), we obtain that

v(1) < lim v"(1).
Also, since Z' (1) € #"(1) for every n > 1, we have
v(1) > lim v"(1).
n—0o0
Thus, v(1) = lim v"(1). The proof of the lemma is now complete. a

LEMMA 3.7. Let S be a continuous process (i.e., every component of S is continuous)
that satisfies (2.2). Then, under (2.1), (2.9) holds.



12 0. MOSTOVYI

Proof. Fixane € (0,1]and ¢ € &/(1 —¢). Let H be a (1 — ¢)-admissible generalized
strategy, such that

c-k<l—e+ H-S P-as.

Let (H") be a sequence of (1 — ¢)-admissible elementary strategies, such that H" - S
converges to H - Sin the semimartingale topology. Let us define a sequence of stopping
times as

, 2inf{re[0,T]: ¢k, > 14+ H' - S} A(T+1).

Then, we have

Plt, <T+1] <P sup(c-/c,—l—f—s—H”-S,)ze:|
1€[0, T}

<P|sup(H-S—H"-S§)>¢|,
t€l0, 7]

which converges to 0 asn — o0. Let us define a sequence of consumptions (¢") as follows:
C;z £ C,l[oqfn)(l), te [0, T], n>1.

Then, on {r, < T} we have ¢" - k;,_ = ¢" - k;,. By continuity of S, we get

" k<1+H-S on[0,7, AT] P-as., n>1.

As H"1jy ] is a 1-admissible elementary strategy, we deduce that ¢” € «/"(1),n > 1. One
can also see that (¢”") converges to ¢ in L.
This concludes the proof of the lemma. O
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