
1

Security Vulnerabilities of Internet of Things: A

Case Study of the Smart Plug System
Zhen Ling∗, Junzhou Luo∗, Yiling Xu∗, Chao Gao†, Kui Wu‡ and Xinwen Fu†

∗Southeast University, Email: {zhenling, jluo, ylxu}@seu.edu.cn
‡University of Victoria, Email: wkui@uvic.ca

†University of Massachusetts Lowell, Email: {cgao, xinwenfu}@cs.uml.edu

Abstract—With the rapid development of the Internet of
Things (IoT), more and more small devices are connected into
the Internet for monitoring and control purposes. One such
type of devices, smart plugs, have been extensively deployed
worldwide in millions of homes for home automation. These
smart plugs, however, would pose serious security problems if
their vulnerabilities were not carefully investigated. Indeed, we
discovered that some popular smart home plugs have severe
security vulnerabilities which could be fixed but unfortunately
are left open. In this paper, we case study a smart plug system
of a known brand by exploiting its communication protocols and
successfully launching four attacks: device scanning attack, brute
force attack, spoofing attack, and firmware attack. Our real-world
experimental results show that we can obtain the authentication
credentials from the users by performing these attacks. We also
present guidelines for securing smart plugs.

Keywords—Internet of Things, Vulnerabilities, Attacks, Counter-
measures

I. INTRODUCTION

The emergence of Internet of Things (IoT) provides the
capabilities of connecting smart devices, small actuators, and
people anywhere and anytime to the Internet. Gartner forecasts
that the number of IoT grows 31% from 6.4 billion in 2016
to 8.4 billion in 2017, and will reach 20.4 billion by 2020 [1].
Smart plugs, as one type of fast emerging IoT devices, are
gaining increasing popularity in home automation, with which
users can remotely monitor and control their homes. Figure 1
shows an example smart plug, i.e., Edimax SP-2101W, and
the iPad that is installed with the control application, i.e.,
EdiPlug. Various applications can be implemented over such a
system. For instance, in winter time users can turn on the heater
with a smartphone in advance to warm up their homes before
they return home. They can also rely on smart plugs with the
energy management function to accurately monitor the energy
consumption. Medical equipment may also be connected to
smart plugs for smart health. Due to the tremendous benefit,
smart plugs have been deployed worldwide in millions of
homes.

Security concerns come along with the popularity of smart
plugs. Compromised smart plugs would lead to both security
and privacy breach of home users. If smart plugs are used in
commercial or industrial buildings for demand response [2],
the consequences of smart plugs being compromised and con-
trolled by attackers could be disastrous. A disrupted medical

Fig. 1. Edimax plug and iPad installed with the control application

equipment connected to smart plugs may threaten a patient’s
life. In recent years, the security concerns of smart plugs
have received substantial consideration in both industry and
academic communities [3], [4].

Despite the importance and broad concern of security prob-
lems in smart plugs, we found their vulnerabilities are still
prominently exposed. As an evidence, we in this paper case
study the security problems of a typical smart plug system, i.e.,
Edimax SP-2101W. With reverse engineering, we disclose its
entire communication protocols and identify its vulnerabilities
that could open the door to different attacks. We propose four
attacks: device scanning attack, brute force attack, spoofing
attack and firmware attack. Extensive real-world experiments
show that we can effectively and efficiently obtain a victim’s
authentication credentials via these attacks. As a remedy, we
present defense guidelines to mitigate these attacks.

The goal of this paper is to send out a strong message
to the IoT community and hopefully to enforce smart plug
manufacturers/developers to put security at a higher priority.
As such, the code of our attacks will not be disclosed.

Our main findings regarding the vulnerabilities of the Edi-
max plug system in question can be summarized as follows.

Insecure communication protocols. Since the communi-
cation protocols do not rely on cryptographic mechanisms, an
attacker could capture network traffic and reverse engineer the
communication protocols. In this case, the system is subject
to various eavesdropping attacks.



2

Lack of device authentication. The remote server used by
an app communicating with plugs does not authenticate the
plugs. This widely opens the door for an attacker to perform
our four attacks.

1) The Edimax plug system uses the MAC address of a
plug as the identity of the plug. We are able to use
the device scanning attack and scan the MAC address
space of the vendor in order to find the online status
of all smart plugs made by the vendor. The device
scanning attack can also reveal if users use the default
password of a plug since many users do not change the
default password of their smart devices [3] due to lack
of security awareness.

2) If the plug is online and the password is changed,
we can perform the brute force attack to infer the
passwords. Given a default password of “1234”, it is
likely that a user may change it to a 4-digit one since
the vendor does not explicitly list their password policy
in their documentation. The remote server does not limit
the password attempts by an app.

3) If long passwords are employed by users, we can launch
the device spoofing attack, which blocks the genuine
plug and pretends to be a legal one, waiting for the
remote application to send the authentication credential
of a user for login and use of the plug. In this attack, the
users leak their authentication credentials once opening
the plug control applications. The attack is also stealthy
and the users can hardly realize that they are attacked.
Using the credential, the attacker can completely control
the genuine plug.

4) Moreover, we study the firmware update process and
perform the firmware attack to upload a malicious
firmware to the plug. With such a malicious firmware,
an attacker can create a reverse tunnel from the plug to
a desired server and gain the root access on the plug
system.

For countermeasures to the potential attacks exploiting the
above vulnerabilities, we present the following guidelines to
protect smart plug systems, including secure communication
protocols to block eavesdropping attacks, mututal authentica-
tion between the control app and plug through the remote serv-
er, intrusion detection system for abnormal behavior detection,
anti-bot mechanisms, and validation of data integrity.

The rest of this paper is organized as follows: We give an
overview of our protocol analysis strategy and the discovered
Edimax plug system architecture in Section II. In Section III,
we present the detailed communication protocol, including the
registration phase, authentication phase, control phase, and
firmware update. In Section IV, we introduce four attacks.
In Section V, we perform extensive empirical experiments to
demonstrate the feasibility and effectiveness of our attacks.
In Section VI, we discuss the corresponding countermeasures.
Related work is presented in Section VII. Finally, we conclude
the paper in Section VIII.

II. PROTOCOL ANALYSIS OVERVIEW

In this section, we first briefly introduce the smart plugs we
will exploit. We then introduce our platform that is used to

analyze this Edimax plug system. We also discuss strategies
to analyze the content of the communication traffic. Finally
we introduce the big picture of the smart home plug system
architecture of interest.

A. Smart Plugs of Interest

A smart home plug is an electric device that can be plugged
into an ordinary outlet. It provides outlets for other electronic
devices, e.g., lamps and fans. It is often designed to connect to
the wireless home network so that a user can install an app on
her smart device, e.g., smartphone, and control the electronic
device plugged into the smart plug over the Internet. Smart
plugs are gaining popularity for building a home automation
system.

We selected a typical smart plug, i.e., Edimax SP-2101W,
as shown in Figure 1. The device is available from Amazon
and Walmart and has a rating of more than 4.0 out of 5.0. The
app for controlling the plug supports both Android and iOS
platforms. The plug provides the power meter functionality and
allows users to manage the energy consumption. For instance,
a user can monitor the power usage of the plugged appliance
and make a schedule to turn on/off the appliance via the
app. Moreover, a user can set up email information, including
username, password, SMTP (Simple Mail Transfer Protocol)
server, etc., for the plug so that the plug can send alert emails
to the users.

B. Network Traffic Acquisition and Analysis Platform

To analyze the network traffic and learn the architecture of
the Edimax plug system, we establish an experiment network
platform to capture the traffic at both the smart plug and the
app. We use two machines to set up two wireless APs with
wireless USB adapters. We install the Ubuntu 14.04 operation
system on these two machines, which are connected to the
Internet through Ethernet network cards to obtain public IP
addresses. To establish wireless local area network (WLAN),
the NAT function is configured using the Linux firewall, i.e.,
iptables. Moreover, we set up a dynamic host configuration
protocol (DHCP) service to automatically assign local IP
addresses to the devices connected to our APs. We then use
the network traffic sniffer, tcpdump, to capture the incoming
and outgoing traffic at the smartphone and the smart plug.

One of these two APs is used for the smart plug while
the other is for the smartphone. Since these APs obtain two
different public IP addresses, we can use the platform to study
the remote control communication protocol of the Edimax plug
system. We can also connect the smartphone directly to the AP
used by the smart plug in order to investigate the local control
communication protocol of this plug system.

C. Reverse Engineering Smart Plug Communication Protocols

We observed two types of network traffic in the Edimax
plug communication, i.e., the plaintext packets and obfuscated
packets. We first study the plaintext packets and then present
the solution to decode obfuscated packets.



3

Analyzing plaintext packets. When the plug and the
controller are located in the same WLAN, we find that the
traffic between the plug and the controller is not encrypted.
HTTP is used as the communication protocol between the plug
and controller. The plug uses the HTTP basic authentication
method to authenticate the controller.

The controller sends a HTTP POST request that contains
an authentication field. The authentication field contains the
username and password that are concatenated with a single
colon and are encoded with the Base64 scheme. The URL link
in the HTTP header is http://host:10000/smartplug.cgi, where
host is the local IP address of the plug.

The payload of the HTTP POST packet contains a plaintext
message encapsulated in the XML format. The message con-
sists of several fields, including command, the state of device,
power, current, schedule, time, SMTP server information, and
so on. By enumerating all of the plug operations, we can learn
the entire control protocol when the plug and the controller are
in the same WLAN. To be specific, the controller sends two
types of command messages, the get command and the setup
command, where the former is used to obtain information from
the plug and the latter is to control the plug, e.g., turning it
on/off. The plug will respond with the corresponding messages
to the command messages from the controller. The plaintext
messages also help us decode the obfuscated packets among
the remote servers, the plug, and the controller.

Decoding obfuscated packets. We study the firmware of
the plug and find that the messages are not encrypted. Since
the latest firmware can be downloaded from the plug’s official
website, we can extract the binary code that is responsible
for communication between a plug and remote servers. We
use IDA Pro to carefully inspect the binary code and find
that bitwise shifting is used to obfuscate the messages. The
message is encapsulated using the XML format. Brackets
“<>” are used to separate key-value pairs. The first byte of
the message is <. To obfuscate the message, a sender (e.g.,
the plug or the controller) randomly selects the number of
positions, between 1 and 7, and then performs the bitwise
right shift operation to the message except the first byte <.
She then adds the number of positions for the left shifting to
the ascii code of <. A receiver (e.g., the controller or the plug)
compares the first byte of the content with the ascii code of <
to derive the number of positions for right shifting, and then
performs the corresponding right shifting for the rest of the
bytes in the message in order to decode the entire message.

D. Architecture of Smart Home Plug System

By analyzing the communication between the plug and
smartphone, we find that the Edimax plug system consists of
three components: smart plugs, controllers, and remote cloud
servers. Figure 2 illustrates the architecture of the Edimax plug
system. The plug can connect to a wireless home access point
(AP) for Internet access. The controller is a smart device,
e.g., smartphone, that is installed with the plug app. If the
controller and the plug are in the same local network, the app
can directly communicate with the plug through the local AP.
If the controller and the plug are in different networks, the

Smart Plug

Internet

Remote Controller

via WiFi

AP

S t Pl

Cloud Server

Remote Controller

via Cellular Network

AP

Base Station

Local Controller

via WiFi

Home

Fig. 2. The architecture of the Edimax plug system

controller can communicate with the smart plug through the
cloud servers on Amazon EC2. We find two types of servers in
the cloud, i.e., authentication server and command relay server.
The authentication server is used to authenticate both the plug
and the controller. Since most of the plugs located in home
networks are behind a network address translation (NAT), the
command relay server can work as a relay server to forward
command messages between the plug and the controller.

III. DETAILED COMMUNICATION PROTOCOL OF SMART

PLUG SYSTEM

By performing extensive exploratory experiments, we find
that the communication protocol of the Edimax plug system
has three phases: smart plug registration phase, authentication
phase, and communication phase. In this section, we present
these three phases in detail.

A. Smart Plug Registration Phase

When the plug connects to an outlet and powers up for the
first time, it works as a wireless access point (AP). We call it
the plug AP to differentiate it from a home wireless router. A
user can use her smartphone to connect to the plug AP. After
the smartphone is associated with the plug AP, the smartphone
searches the home wireless router and can connect the plug to
the home wireless router. Once the plug can access the Internet,
it will register with a remote authentication server. The detailed
procedure is introduced as follows.

STEP 1: The smart plug establishes a TCP connection to
www.google.com. In this step, the smart plug performs the
network reachability test to check if the plug can access the
Internet. If it could not access the Google website, the plug
will stop working. Apparently, this strategy of testing Internet
connection is not robust since a number of countries such as
China block Google services [5].

STEP 2: The smart plug connects to a time server
pool.ntp.org, using the network time protocol (NTP) to syn-
chronize the clock of the plug. A synchronized clock is nec-
essary since the plug system uses the time information for its
communication and task scheduling service, e.g., periodically
turning on/off the plug on time.

STEP 3: The smart plug sends datagram packets to a remote
server and registers with the server. According to our analysis,
this remote server is deployed on Amazon EC2 and is only
used for relaying UDP packets for authentication, we call it



4

Smart Plug 
Controller

Authentication Server

3 4 6a 7a 8a

9a9a

Home WLAN Amazon Cloud Mobile Internet

11a 10a 10a

 Command Relay Server

11a

5a

Fig. 3. Edimax Plug and controller in different networks

the authentication server. The UDP port of the authentication
server for the plug is 8765.

The smart plug sends two consecutive UDP packets to
the authentication server. The content in these packets are
encapsulated using the XML format. The first datagram packet
sent by the plug contains a value of “3000” in the “code value”
field to inform the authentication server for the registration.
This field is referred to as “command type” in our paper.
The second datagram packet includes a command type of
“1010” and the plug information including the plug model,
MAC address, type, alias, LAN IP address and port of this
plug and device firmware version. The second packet is used to
notify the authentication server that the plug is online. The plug
sends a “1010” datagram packet every 20 minutes periodically
to keep the server informed of the online status of the plug.

STEP 4: Upon receiving the messages with the command
type “1010” from the plug, the authentication server sends a
response UDP packet. The command type of this response
packet is “1020”. This packet contains the smart plug’s MAC
address (sent to the server in STEP 3) and the status value.

B. Authentication Phase

There are two different scenarios in the authentication phase.
In the first scenario, the plug and the controller are located in
different networks. In the other scenario, they are in the same
wireless local area network. We elaborate the communication
procedure of these scenario.

1) Plug and Controller in Different Networks: Figure 3
illustrates the authentication procedure between the smart
plug and the controller that are in different networks. For
example, the smart plug is located in the home network and
connects to the home WLAN while the controller accesses the
Internet through the cellular network or another WLAN. In
this case, the smart plug authenticates the controller via the
authentication server.

STEP 5a: The controller sends a UDP request with a
command type of “1030” to the authentication server. The
UDP port of the authentication server for the controller is 8766.
The request packet contains a credential in the “auth value”

Smart Plug Authentication Server

Command Relay ServerController

8b 6b 5b 5a

6a

7a

8a

9a

9a

7b

Home WLAN Amazon Cloud

Fig. 4. Edimax Plug and controller in the same WLAN

field for authentication and information of the MAC address.
The value of the credential is hashed with the MD5 hashing
algorithm. The credential consists of the user account and
password. The format of this value is username:password. The
default username and password is admin and 1234 respectively.
A user can change the password via the app installed on the
smartphone. However, the username, i.e., admin, is hard-coded
into the application. The request packet also contains the plug’s
MAC address and timestamp.

STEP 6a: In this step, the authentication server processes
the UDP request and forwards it to the right smart plug.
Once receiving the datagram request from the controller, the
authentication server first checks the status of the plug with
the MAC address sent from the controller. If the plug is online
at that point, the server changes the command type to “1040”
and then adds additional information to the original request
and forwards it to the smart plug. The additional information
includes the IP address and port of the controller, the IP address
and port of the command relay server, the relay ID, and the
credential from the controller. The relay ID is a 24 character
hex string that is generated by the authentication server. It is
used at the control phase to correlate the TCP connections
between the controller and the plug. If the plug is offline, the
authentication server will send back a datagram packet with a
command type “5000” to the controller.

STEP 7a: In this step, the smart plug authenticates the con-
troller and sends back a datagram response to the authentica-
tion server. After receiving the request from the authentication
server, the smart plug will check the credential to authenticate
the identity of the remote controller. If the credential from the
controller is correct, the plug will send a response packet with
a command type “1060”. The “1060” packet includes the IP
address and port of the command relay server, relay ID, etc.
If the credential is incorrect, the plug will send a datagram
packet with a command type of “1120” to the authentication
server. However, the server will not forward this message to
the controller.

STEP 8a: In this step, the authentication server forwards
this datagram response packet (except the “1120” packet) to
the controller. Upon receiving the UDP response from the



5

plug, the authentication server modifies the command type to
“1070”, adds additional information, and then forwards the
response package to the controller. The additional information
includes the IP address and port of both the plug and the
command relay server, the relay ID, and the information of
the plug including the model, type, alias, firmware version,
etc. Once the controller receives this “1070” packet, the entire
authentication procedure between the plug and the controller
completes.

2) Plug and Controller in the Same WLAN: Assume that the
plug and controller are in the same wireless local area network
as shown in Figure 4. The detailed authentication process
between the plug and the controller is introduced below.

STEP 5b: Once a controller manages to connect to a
WLAN, the controller broadcasts two consecutive 22-byte
datagram packets in order to determine if the plug and the
controller are in the same WLAN. These packets are used
for discovering the plug, in case both the plug and controller
are located in the same WLAN. The destination port of this
broadcast packets is 20560. The controller also continues the
authentication phase introduced in Section III-B1 sending
the credential to the smart plug via the remote authentication
server.

STEP 6b: Upon receiving the broadcast datagram packets,
the plug will respond immediately. The plug sends back a
datagram packet to the controller. The information in the
packet includes model, MAC address, IP address, firmware
version, and alias of this plug. In this way, both the plug and
the controller know that they are located in the same WLAN.

STEP 7b: The controller establishes a TCP connection to a
server deployed on the plug and leverages the HTTP protocol
to communicate with the local smart plug. The destination port
of this HTTP server is 10000. Once the TCP connection is
built, the controller sends the authentication information, i.e.,
user name and password, using the HTTP basic authentication
method. The payload contains a get command to obtain the
state of the plug so that the app will be able to display the
current status of the plug.

STEP 8b: The smart plug responds with a HTTP packet to
the controller. The message shows the state of the power, (i.e.,
on or off). The controller obtains this response message and
shows the information to the user via the app. Therefore, after
the authentication phase, the user can perform various control
operations through the app. For instance, the user can reset the
password or the SMTP server.

C. Control Phase

In the control phase, if the controller and the plug are
located in the same WLAN, they can directly communicate
with each other using the HTTP protocol introduced in STEP
7b and STEP 8b. If the controller and the plug are in different
networks, the communication traffic between the controller and
the plug passes through a remote server as shown in Figure
3. The command messages are encapsulated using the XML
format. The content of the traffic from and to the plug, the
controller, and the server is obfuscated but not encrypted.

STEP 9a: Both the smart plug and the controller establish
TCP connections to a rendezvous server deployed in the

Amazon cloud. We call this server as a command relay
server as it is used to relay the commands between plugs
and controllers. Recall that authentication server selects this
rendezvous server and generates a relay ID, and then sends the
relay ID to both the plug and the controller. Thus, after the
plug and the controller build the connections to the command
relay server, both the plug and the controller send a message
composed of the MAC address of the plug and the relay ID
to the command relay server. The relay server correlates these
two TCP connections using the relay ID and MAC address.
The relay server does not respond to either the plug nor the
controller after receiving the messages.

STEP 10a: After sending the relay ID and plug MAC
address to the relay server, the controller sends a command
to the relay server. The message uses the XML format that is
the same as the one used in the WLAN. For instance, to get the
status of the plug, the controller will send a get command to the
relay server. After receiving the command from the controller,
the relay server will forward the command message to the plug
without any change.

STEP 11a: Upon obtaining the message from the controller,
the plug responds to this command. According to the command
message, the plug sends back the corresponding information
to the relay server. For example, the plug may report the state
of the plug. The command relay server forwards the response
to the controller without any change.

The controller can send a setup command to control the
plug. For instance, if the state of the plug is on, the controller
can send an off command to the plug through the relay server
in order to change the plug’s state. The plug executes the setup
command and turns off the plug after receiving the command
message. The plug will then send the execution result to
the controller via the relay server to inform that the setup
command has been successfully executed. After the controller
receives the execution result from the relay server, the control
phase completes.

D. Firmware Update

The firmware of the plug can be updated through a firmware
upgrade tool, which is designed for the Microsoft Windows
operating system. The Windows system and the plug should
connect to a same local network. Once the tool is opened, it
performs the operation in STEP 5b to determine if the plug
and the controller are in the same WLAN. The plug performs
STEP 6b to send the information of the plug to the tool.
After receiving the plug information, the tool displays the plug
model, MAC address, IP address, firmware version and the
upgrade status. If a new version is available, the upgrade status
shows that a new firmware version can be used. The user can
click the new version on the tool, which pops up a prompt
box and asks the user to input the password of the plug. After
gaining the password from the user, the firmware upgrade tool
generates a firmware (i.e., a Linux bin file) in a temp file folder
and then uploads this firmware to the HTTP server on this plug.
The password is encoded in the HTTP header using the HTTP
basic authentication method. The plug installs this firmware
after receiving the file and restarts. Once this firmware upgrade



6

process is completed, the plug automatically connects to the
AP and the user can use the controller to access the plug again.

IV. SECURITY VULNERABILITIES OF SMART PLUG

In this section, we introduce four attacks, i.e., device s-
canning attack, brute force attack, device spoofing attack and
firmware attack in detail. We also discuss the possible impact
after an attacker can access the plugs. Please note that we use
our own smart plugs for security analysis in order to avoid
legal issues.

A. Device Scanning Attack

In a device scanning attack, the attacker can scan all plugs
by enumerating possible MAC addresses of the smart plugs
from this vendor. According to recent research [3], many users
do not change the default password after deploying their IoT
devices. They expect the vendor takes care of the security.
Recall that in the authentication phase between the plug and
the controller, the controller can receive the “1070” packet as
discussed in STEP 8a if the plug is online and the password
is correct. An attacker can craft an authentication message
that specifies the plug MAC address, the default username and
password, i.e., admin:1234, and check if any victim is using a
plug with the specified MAC and the default password. Here
“admin” is hard coded and actually does not play the role
as a username since the username is not used to differentiate
different controllers or users. The MAC address of the plug
works as kind of username.

The key to a successful device scanning attack is to know
the MAC address space of the smart plug. Luckily for the
attacker (unluckily for the manufacturer), MAC addresses are
predictable. We can search the MAC address spaces allocated
to a company/manufacturer on the Internet [6]. The first 6
digits of a MAC address indicate the device manufacturer
and the other 6 digits refer to a specific MAC address given
to the manufacturer. A manufacturer often gives a block of
sequential MAC addresses to the same product. Therefore, if
we buy a few smart plugs, we can guess at least portions of
MAC addresses allocated to smart plugs of this model. The
attacker can enumerate the whole MAC address space of a
manufacturer in a brute force attack.

Table I shows the possible responses to a controller that
sends an authentication message to a plug with a specified
MAC address and password. If the plug with the specified
MAC address is online and the password is correct, the
adversarial controller can receive the “1070” packet. If the plug
with the specified MAC address is online and the password is
wrong, the plug sends a packet with a command type of “1120”
to the authentication server and the authentication server will
not forward the message to the controller. To deal with this case
in programming, the attacker should set a timer and try more
times if the attacker does not obtain a response packet in case
that the “1070” UDP packet is lost during the transmission.
If the plug with the specified MAC address is offline or does
not exist, the authentication server sends a “5000” packet to
the attacker. Therefore, when a “5000” packet is received, the
attacker cannot tell if the plug with the specified MAC address

TABLE I. RESPONSE TO CONTROLLER THAT SENDS AUTHENTICATION

MESSAGES TO PLUG

Password Correct Password Wrong

Plug Online 1070 no response

Plug Offline or N/A 5000 5000

is offline or there is no plug with that MAC address. However,
this does not affect the device scanning attack. Based on Table
I, the attacker can leverage the server response in order to find
plugs with default passwords and plugs not using the default
password/specified password.

B. Brute Force Attack

After deploying the scanning attack, the attacker can dis-
cover all the online plugs using non-default passwords. Then
the attacker can select those plugs, construct “1030” packets,
and enumerate all possible passwords. The attacker just needs
to wait until she receives the right response. At the time of the
writing, our experiments show that the authentication server
does not block this brute force password attack.

However, our experiments show that the Edimax plug sys-
tem actually allows a password of 20 characters, including
digits and upper-case and lower-case alphabetic letters. This
password policy is not written in any of the provided manual
and we cannot find it online either. If a user indeed inputs
a long and complicated password, the brute force attack does
not work anymore. Unluckily, the plug system suffers from the
following device spoofing attack, which can expose any plug
credential.

C. Device Spoofing Attack

1) Attack Process: In the device spoofing attack, we create
a software bot that mimics a plug and performs the authen-
tication with the remote controller in order to directly obtain
the credential from the controller. It works as follows.

a) The attacker first selects a target plug with a specific
MAC address. Recall the attacker knows this plug is
online and this plug does not use the default password
by using the device scanning attack. If the attacker has
sufficient resources, she can simultaneously choose as
many targets as she wants.

b) The attacker registers the spoofed plug by performing
STEP 3 in Section IV. In particular, the attacker can
emulate the communication behavior of a real plug and
send a packet with a command type of “1010” to the
authentication server. Since the server does not provide
any authentication method to authenticate the plug, it
registers this spoofed plug and sends back the response
packet with the command type of “1020” as introduced
in STEP 4 in Section IV. At this point, the spoofed
plug is online.

c) When a victim opens her app on the smartphone, the
app will automatically send the “1030” packet to the
authentication server as introduced in STEP 5a in
Section IV. The authentication server will forward this
message to the attacker’s spoofed plug as introduced
in STEP 6a in Section IV. Since the “1030” packet



7

y y y y y y

x 20 20 20 20 20 20

Fig. 5. An example of device spoofing attack

contains the credential, the attacker can effectively
derive the credential.

d) To keep the victim from discovering the abnormal
authentication process, the attacker continues to execute
STEP 7a in Section IV. The app will receive the desired
packet as introduced in STEP 8a in Section IV. At this
time, the entire authentication phase completes.

Regardless of whether the plug and the controller are in the
same WLAN or not, the controller always authenticates with
the plug through the remote authentication server! As a result,
the spoofed plug can always derive the credential during the
authentication phase.

If the attacker wants to hide the spoofing attack from the
victim, more has to be done by the spoofed plug. There are
two cases. In the first case, the real plug and the controller are
in the same WLAN. In this case, actually, the spoofed plug
will not affect the real plug control procedure at all, since the
controller will authenticate with the real plug in the WLAN
as introduced in STEP 5b and STEP 6b in Section IV. The
controller can control the plug with STEP 7b and STEP 8b
in Section IV. Consequently, the victim will not realize this
attack at all.

In the second case, the plug and controller are in different
networks. In this case, when the spoofing attack is deployed,
the victim controller communicates with the spoofed plug. The
challenge for the attack being stealthy is how the spoofed
plug relays the victim’s commands to the real plug so that the
plug control looks normal to the victim, who will not realize
she is being attacked. To this end, the attacker first needs to
stop sending the “1010” packets to the authentication server.
This is to stop the spoofing attack and allow the real plug to
register to the authentication server as soon as possible. The
attacker should then move on to build a TCP connection to
the command relay server and send the MAC address of the
target plug and the right relay ID with STEP 9a in Section
IV. Therefore, the victim will send the command message
to the spoofed plug. The attacker should record the victim’s
operations, e.g., turning on/off the plug. Recall that the real
plug sends a “1010” packet every 20 minutes with STEP 3
in Section IV. When the authentication server receives this
packet, the real plug is online again. At this time, the attacker
can then access the real plug using the credential and replay
the victim’s commands to the real plug.

2) Issues: In the spoofing attack, the real plug sends the
“1010” packet to the authentication server every 20 minutes
in order to keep its online status. To address this issue,
the attacker should periodically send “1010” packets to the
authentication server so as to keep the spoofed plug online.
The attacker may want to keep the spoofed plug online as
long as possible in order to increase the success rate of the
attack.

We now compute the attack success rate when a user opens
the plug control app. Denote x as the time between the

first “1010” packet from the attacker and the first “1010”
packet of the genuine plug sent during the attack process,
where x < 20. Denote y as the time interval between two
consecutive “1010” datagram packets sent by the attacker.
During the spoofing attack, assume that the total number of
“1010” datagram packets sent by the genuine plug is n. Then
the total time of this attack is ⌈(x + 20 ∗ n) /y⌉ ∗y. As shown
in Figure 5, the shaded parts marked with solid lines and
dash lines are controlled by the genuine plug, while the blank
parts are controlled by the spoofed plug. The time duration
corresponding to the shaded parts can be computed by

n−1∑
i=0

T(i)=

n−1∑
i=0

min {⌈(x + 20i) /y⌉ y− (x + 20i), 20} (1)

The time duration corresponding to the dash line shaded part
can be computed by

T(n) = ⌈(x + 20n) /y⌉ y− (x + 20n) (2)

Hence, we can derive the average online rate of the genuine
plug during the attack by

G =

∫ 20

0

n−1∑
i=0

T(i)+T(n)

20 ⌈(x + 20n) /y⌉ y
dx, (n ≥ 1) (3)

We define the success rate of this attack as the online time
of the spoofed plug over the length of the attack process. The
success rate evaluates the probability that the spoofed plug
gets a victim’s credential when the victim randomly wakes up
and sends a command during the attack process. Therefore,
success rate S can be computed as follows,

S = 1−G. (4)

We will evaluate the success rate in Section V.

D. Firmware attack

The attacker can install a malicious firmware on the smart
plug so that she can remotely control it. Once the malicious
firmware is installed to the plug, it can establish a reverse
tunnel back to a remote malicious server and open a reverse
shell. Therefore, the attacker can remotely access the plug sys-
tem and perform further attacks, e.g. installing various malware
into the plug. In this attack, we assume the attacker can access
the local network of the plug and monitor the traffic between
plug and controller so as to derive the encoded WiFi username
and password in the HTTP header as presented in STEP 7b.
The attacker can then leverage the username and password for
the authentication purpose and upload the malicious firmware
to the HTTP server on the plug as illustrated in III-D.

The attacker is capable of modifying the firmware in order
to add the malicious functionality since the vendor of the
smart plug provides the open source code of the firmware.
We find that some of the crucial functionalities of the plug,
e.g., the light weight HTTP server and communication protocol
of the plug, is prebuilt so as to hide the plug communication
protocol and functionalities to some extent. Moreover, we find



8

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Interval(min)

S
u

cc
es

s 
R

a
te

Fig. 6. Relationship between the success rate and the time interval

that BusyBox is used to provide some basic Linux tools and
its source code is available. As a result, we can reconfigure
BusyBox to enable Netcat. To establish a reverse tunnel to the
attacker’s desired server, she can utilize a Netcat command
like nc [IP address] [port]-e /bin/sh, where the IP address and
the port are those of the attacker’s remote server.

The attacker can embed a piece of malicious code into the
source code of the DHCP service so that the DHCP can execute
the malicious command of Netcat at startup. We find that
the system of the plug uses the DHCP service provided by
BusyBox to assign an IP address to the associated controller.
Consequently, the attacker can modify the source code of the
DHCP service to add the malicious code and then recompile
the source code of the firmware. In this way, the attacker
can have a customized firmware and upload it to the HTTP
server of the plug. The plug will automatically install the
malicious firmware and restart the system. The DHCP service
automatically starts at the boot up time and executes the
malicious command of Netcat.

V. EVALUATION

We have implemented the four attacks introduced in Section
IV and performed real-world experiments to demonstrate the
feasibility and effectiveness of the attacks against the Edimax
plug of interest. In this section, we first introduce the experi-
ment setup and then present the experimental results.

A. Experiment Setup

We deployed 5 plugs and connected them to the Internet via
wireless routers. Three plugs were deployed on a university
campus in North America while the rest were deployed in
Asia. iPads are installed with the plug control app and are
used as the controller. Our attack program was implemented
in Python.

B. Experimental Results

We first test the scanning attack on the 5 plugs. Two plugs
use the default password, i.e. “1234”, two plugs use non-
default passwords, and the fifth plug is not connected to the
Internet. Our Python controller program sends the “1030”
packet to the authentication server every 10 seconds if the
program cannot obtain a response packet within 20 seconds.
The total number of transmissions is limited to 5 times. From

our experimental results, we can obtain the correct response
from the two plugs using the default password and obtain
the “5000” packet when scanning the offline plug. It is also
observed that we do not get response packets from the plugs
that do not use the default password. These results verify the
findings in Section IV-A.

We then perform the brute force attack against the two plugs
not using the default password. Since the default password
“1234” includes only numbers and the length is 4, it may
mislead users to set a 4-digit passcode. Therefore, we give
the two plugs a password of four random numbers. Our
Python controller program performs the brute force attack and
we can get the right response within several minutes. This
demonstrates the feasibility of the brute force attack. Recall
that as a matter of fact, the maximum length of the password
is 20. The brute force attack would be ineffective if such long
passwords are used for plugs.

Finally, we perform the device spoofing attack using our
own plugs in case that long passwords are used for plugs and
the brute force attack does not work practically. We evaluate
the feasibility of this attack in two scenarios: (i) the plug and
the iPad located in the same network and (ii) the plug and the
iPad located in different networks. The experimental results
show that, in both scenarios, our Python program that works
as a spoofed plug, denoted as Python plug, can obtain the
credential from the controller as described in Section IV-C
whatever the password is.

Figure 6 illustrates the relationship between the success rate
and the time interval of sending the “1010” packets by our
Python plug. As shown in Figure 6, the faster the transmission
frequency, the higher the success rate. For instance, if the time
interval of sending the “1010” packets is 3 minutes, the chance
of successfully obtaining the credential from the controller is
above 90%.

We are able to perform the firmware attack as introduced
in Section IV. The firmware can be customized with various
applications including netcat. With such a malicious firmware,
an attacker can create a reverse tunnel from the plug to a
desired server and gain the root access on the plug system.
However, this firmware attack has to be deployed locally at
this time.

VI. DEFENSE STRATEGIES

In this section, we present guidelines of the defense strate-
gies to mitigate the risks from the Edimax plug vulnerabilities
exposed in this paper.

A. Secure Communication Protocol

Cryptography has to be employed to encrypt communica-
tion. Encoding and obfuscation are not enough to provide
secret communication. In this paper, we can see that an attacker
can crack the obfuscation algorithm by analyzing the network
traffic. With an eavesdropping attack, she can observe all the
plaintext transmitted between the plugs and the controller. To
mitigate these threats, secure communication protocols should
be adopted, e.g., DTLS, TLS/SSL, and HTTPS, to encrypt
the content transmitted between the plug, the controller, the
authentication server, and the command relay server.



9

B. Mutual Authentication between Plugs and Servers

The spoofing attack stems from the fact that the authen-
tication server does not authenticate the genuine plug. The
attacker only needs to send a legitimate datagram using a
command type of “1010” and the MAC address of the victim’s
plug in order to fool the authentication server. The device
authentication mechanism should be adopted at both the server
side and the plug side. For example, the device vendor can
assign a public/private key pair to a device before it leaves the
factory. The authentication server hosts a database of public
keys of all the plugs. Therefore, the authentication server can
adopt the public-key authentication to authenticate the genuine
devices.

There is a possibility of spoofed server attacks against the
authentication server and relay server. An attacker may employ
DNS poisoning or man-in-the-middle attacks and pretend to be
the two servers. To counter the attack, plugs and control apps
should be pre-installed with public keys of the two servers
and verity certificates of the two servers before transmitting
authentication credentials and data.

C. Intrusion Detection System

To thwart the scanning attack, an intrusion detection system
should be employed at the server side. The intrusion detection
system should be able to identify extensive scanning attacks.
For example, it should detect the continuous and rapid pass-
word attempts. Moreover, the intrusion detection system can
be used to detect abnormal behaviors. For instance, during
the spoofing attack, the authentication server can identify the
attack by simply tracking the geolocation of the registered
plugs. If the geolocation information shows that two consec-
utive physical locations of a registered plug is far away in a
short time period, the spoofing attack may be underway.

D. Anti-bot Mechanisms

To prevent the brute force attack, the authentication server
should adopt methods to determine if the login is performed by
a human or a bot. For instance, the CAPTCHA can be used to
mitigate the brute force attack conducted with bots. Limiting
the number of login attempts can be an effective way to prevent
this type of attack.

E. Data Integrity

According to our experiments, we can change the IP address
of the rendezvous server, i.e., the command relay server. Recall
that the authentication server generates the IP address of the
rendezvous server and the relay ID in STEP 6a. If the message
is received by our spoofed plug, we can modify the IP address
of the rendezvous server and send the message back to the
authentication server. The server does not check the data
integrity. As a result, the controller receives the IP address
of our desired server and then establish a TCP connection to
our server. This attack is possible since an attacker can tamper
with the data from the authentication server at the spoofed
plug side. Message authentication codes should be adopted.

VII. RELATED WORK

IoT systems are similar to traditional information systems
that consist of software, hardware, data, communication, and
end users. Therefore, IoT systems are subject to the similar
set of attacks against traditional information systems. In a
typical smart home automation system [4], the components
such as the smart device, house gateway, cloud server, API,
mobile device, and application, may all cause security and
privacy problems. Existing work relevant to our study roughly
fall into the following categories: software-related attacks,
hardware-level attacks, data-related attacks, communication-
related attacks, and end users-related attacks.

Software-related security issues [7], [8] are similar to the
traditional computer systems. For example, a buffer overflow
exploit is found by analyzing Home Network Administration
Protocol (HNAP) [7] so that it can be used to execute any code
on the device. A stack-based buffer overflow of the general
library, glibc [9], is exploited to attack several home hubs [8].

Hardware-level attacks [10]–[12] concentrate on compro-
mising the hardware, e.g., tampering external flash memories
and glitching address lines. For instance, Hernandez et al. [10]
use a USB stick connecting to a home automation device, the
Nest Thermostat, so that the device will load the code stored on
the stick without any check. Thus, an attacker could exploit the
security hole to install a malware on the device. Ly et al. [11]
study the Itron Centron smart meter. They found that the device
ID is stored in an external EEPROM that does not provide
read/write protection. By rewriting the ID on the EEPROM,
they can use one meter to forge another meter.

Data-related security problems are investigated as well [13]–
[17]. For example, Ronen et al. [16] exploit the smart lights
to establish a covert light channel to leak data from a secure
place. The receiver could be deployed at a long distance.

Communication-related security vulnerabilities have also
been substantially studied [3], [18]–[24]. For instance, Rouf
et al. [18] reverse-engineer the unsecured wireless commu-
nication protocol of automatic meter reading and discovered
the lack of security mechanisms to protect user security
and privacy. Dhanjani [19] hacks the Phillips Hue lightbulb
system and finds that the authentication mechanisms are not
strong. Molina [20] exploits the KNX, a standardized home
automation communication protocol, and finds that the lack of
authentication and encryption allows an attacker to remotely
control the appliances in a hotel. Rahman et al. [21] finds the
communication protocol vulnerabilities of the wearable device
(Fitbit). Various attacks, e.g., eavesdropping and injection,
could be performed to impair the security and privacy of
the victim. By automatically analyzing the applications and
forging the authentication messages, Zuo et al. [24] design
an authentication message generator to perform brute force
attacks against the corresponding remote application server.
Obermaier and Hutle [22] investigate the vulnerabilities of
communication protocols of four surveillance camera systems.

End users-related security threats often come from various
side channel attacks, e.g., vision-based attacks [25], [26] and
residues-based attacks [27], [28], to obtain users’ passwords.
For example, Yue et al. [26] investigate attacks that can capture



10

a victim’s password without observing the text on the screen of
a smart device. Zhang et al. [28] utilize the fingerprint powder
to derive the tapped keys on the surface of a mobile device
and infer the victim’s password.

To mitigate these threats, researchers also propose various
guidelines [29]–[32]. For example, an overview of security and
privacy of cyber physical systems can be found in [32]. A
security architecture [33]–[35] for IoT systems can be used to
provide comprehensive security protection. Secure hardware
[36] and trusted [37], [38] software can be applied to provide
data integrity verification to defend against malware. The se-
curity of end users can be significantly improved by educating
users to employ a secure input method [26] to enhance the
interface security between human and IoT systems. To address
the device authentication issues, the device fingerprinting [39],
[40] from different layers could be leveraged to identify the
genuine smart device for fraud protection.

VIII. CONCLUSION

In this paper, we send out a strong warning message on
the security problems of Edimax plug system and hope that
Edimax plug and other IoT device manufacturers enhance the
security of their systems. We study the vulnerabilities of a
smart plug system by reverse engineering its communication
protocols. After we obtain the details of its communication
protocols, we are able to identify several security vulner-
abilities, including insecure communication protocols, lack
of device authentication, and a weak password policy. We
propose four attacks, device scanning attack, brute force attack,
device spoofing attack, and firmware attack, to demonstrate the
severity of these security risks. We have implemented these
attacks and performed real-world experiments. Our analysis
and experimental results show that an attacker is able to control
these smart plugs completely. The device scanning attack can
find all online plugs. The brute force attack and device spoofing
attack can obtain the device password whatever it is. The
firmware attack can obtain the root access on the plug system.
To thwart these serious threats, we present the guidelines for
corresponding countermeasures.

ACKNOWLEDGMENTS

This work was supported in part by National Natu-
ral Science Foundation of China under grants 61502100,
61402104, 61572130, 61632008, 61602111, 61532013, and
61320106007, by US NSF grants 1461060, 1642124, and
1547428, by the Natural Sciences and Engineering Research
Council of Canada under the grants 261409-2013, by Jiangsu
Provincial Natural Science Foundation of China under Grant
BK20150637 and BK20140648, by Jiangsu Provincial Key
Laboratory of Network and Information Security under grants
BM2003201, by Key Laboratory of Computer Network and
Information Integration of Ministry of Education of China
under grants 93K-9 and by Collaborative Innovation Center
of Novel Software Technology and Industrialization. Any
opinions, findings, conclusions, and recommendations in this
paper are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] Gartner, “8.4 billion connected ’things’ will be in use in 2017, up
31 percent from 2016,” http://www.gartner.com/newsroom/id/3598917,
February 2017.

[2] P. Siano, “Demand response and smart grids - A survey,” Renewable
and Sustainable Energy Reviews, vol. 30, pp. 461–478, 2014.

[3] Mario Ballano Barcena and Candid Wueest, “Insecurity in the inter-
net of things,” https://www.symantec.com/content/dam/symantec/docs/
white-papers/insecurity-in-the-internet-of-things-en.pdf, 2015.

[4] A. Jacobsson, M. Boldt, and B. Carlsson, “A risk analysis of a smart
home automation system,” Future Generation Computer Systems, 2016.

[5] Google, “Known disruptions of traffic to google products and services,”
https://www.google.com/transparencyreport/traffic/disruptions/#group=
REGION, August 2016.

[6] A. John, “Mac address and oui lookup,” http://aruljohn.com/mac.pl,
August 2016.

[7] /DEV/TTYS0, “Hacking the d-link dsp-w215 smart plug,”
http://www.devttys0.com/2014/05/hacking-the-d-link-dsp-w215-
smart-plug/, 2014.

[8] M. Smith, “Security holes in the 3 most popular smart home hubs
and honeywell tuxedo touch,” http://www.networkworld.com/article/
2952718/microsoftsubnet/security-holes-in-the-3-most-popular-smart-
home-hubsand-honeywell-tuxedo-touch.html, 2015.

[9] “Critical security flaw: glibc stack-based buffer overflow in getad-
drinfo() (cve-2015-7547),” https://access.redhat.com/articles/2161461,
2015.

[10] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest thermo-
stat: A smart spy in your home,” in Proceedings of the Black Hat USA,
2014.

[11] J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, and Y. Jin, “Security
analysis on consumer and industrial iot devices,” in Proceedings of the

21st Asia and South Pacific Design Automation Conference (ASP-DAC,
2016.

[12] O. Arias, J. Wurm, K. Hoang, and Y. Jin, “Privacy and security in
internet of things and wearable devices,” IEEE Transactions on Multi-

Scale Computing Systems, 2015.

[13] J. Lin, W. Yu, X. Yang, G. Xu, and W. Zhao, “On false data injection
attacks against distributed energy routing in smart grid,” in Proceedings

of the 3rd ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), 2012.

[14] Q. Yang, J. Yang, D. A. W. Yu, N. Zhang, and W. Zhao, “On false
data-injection attacks against power system state estimation: Modeling
and countermeasures,” IEEE Transactions on Parallel and Distributed

Systems (TPDS), 2014.

[15] J. Lin, W. Yu, and X. Yang, “On false data injection attack against
multistep electricity price in electricity market in smart grid,” IEEE

Transactions on Parallel and Distributed Systems (TPDS), 2016.

[16] E. Ronen and A. Shamir, “Extended functionality attacks on iot devices:
The case of smart lights,” in Proceedings of IEEE European Symposium

on Security and Privacy (EuroS&P), 2016.

[17] Q. Yang, J. Yang, D. A. W. Yu, N. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, 2017.

[18] I. Rouf, H. Mustafa, M. Xu, W. Xu, R. Miller, and M. Gruteser,
“Neighborhood watch: Security and privacy analysis of automatic meter
reading systems,” in Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS), 2012.

[19] N. Dhanjani, “Security evaluation of the philips hue personal
wireless lighting system,” http://www.dhanjani.com/docs/Hacking%
20Lighbulbs%20Hue%20Dhanjani%202013.pdf, 2013.

[20] J. Molina, “Learn how to control every room at a luxury
hotel remotely,” https://www.defcon.org/images/defcon-22/dc-22-
presentations/Molina/DEFCON-22-Jesus-Molina-Learn-how-to-
control-every-room-WP.pdf, 2014.

[21] M. Rahman, B. Carbunar, and M. Banik, “Fit and vulnerable: Attacks
and defenses for a health monitoring device,” in Proceedings of the 34th

IEEE Symposium on Security and Privacy (S&P), 2013.

[22] J. Obermaier and M. Hutle, “Analyzing the security and privacy of
cloud-based video surveillance systems,” in Proceedings of the 2nd



11

ACM International Workshop on IoT Privacy, Trust, and Security

(IoTPTS), 2016.
[23] H. Li, Z. Xu, H. Zhu, D. Ma, S. Li, and K. Xing, “Demographics

inference through wi-fi network traffic analysis,” in Proceedings of

the 35th IEEE International Conference on Computer Communications

(INFOCOM), 2016.
[24] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery of cryp-

tographically consistent messages to identify security vulnerabilities in
mobile services,” in Proceedings of the Network and Distributed System

Security Symposium (NDSS), 2016.
[25] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A

fast eavesdropping attack against touchscreens,” in Proceedings of the

7th International Conference Information Assurance and Security (IAS),
2011.

[26] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao, “Blind recognition
of touched keys on mobile devices,” in Proceedings of the 21st ACM

Conference on Computer and Communications Security (CCS), 2014.
[27] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge

attacks on smartphone touch screens,” in Proceedings of Workshop on

Offensive Technology WOOT, 2010.
[28] Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu, “Fingerprint attack

against touch-enabled devices,” in Proceedings of the 2nd Workshop

on Security and Privacy in Smartphones and Mobile Devices (SPSM),
2012.

[29] R. Romana, J. Zhou, and J. Lopez, “On the features and challenges
of security and privacy in distributed internet of things,” Computer

Networks, 2013.
[30] J. S. Kumar and D. R. Patel, “A survey on internet of things: Security

and privacy issues,” International Journal of Computer Applications,
2014.

[31] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer

Networks, 2015.
[32] H. Song, G. A. Fink, and S. Jeschke, “Security and privacy in cyber-

physical systems: Foundations, principles and applications,” Chichester,
UK: Wiley-IEEE Press, 2017.

[33] J. Noorman and P. Agten and W. Daniels and R. Strackx and A.
Van Herrewege and C. Huygens and B. Preneel and I. Verbauwhede
and F. Piessens, “ancus: Low-cost trustworthy extensible networked
devices with a zero-software trusted computing base,” in Proceedings

of USENIX Conference on Security (Security), 2013.
[34] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite:

A security architecture for tiny embedded devices,” in Proceedings of

European Conference on Computer Systems (EuroSys), 2014.
[35] F. Brasser and P. Koeberl and B. E. Mahjoub and A.-R. Sadeghi and C.

Wachsmann, “Tytan: Tiny trust anchor for tiny devices,” in Proceedings
of Design Automation Conference (DAC), 2015.

[36] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: Secure
and minimal architecture for (establishing a dynamic) root of trust,” in
Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2012.
[37] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,

“Pioneer: Verifying code integrity and enforcing untampered code
execution on legacy systems,” in Proceedings of ACM Symposium on

Operating Systems Principles (SOSP), 2005.
[38] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “Cuba:

Secure code update by attestation in sensor networks,” in Proceedings

of ACM Workshop on Wireless Security (WiSec), 2006.
[39] A. Bates and R. Leonard and H. Pruse and D. Lowd and K. Butler,

“Leveraging usb to establish host identity using commodity devices,” in
Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2014.
[40] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. Beyah, “Who‘s

in control of your control system? device fingerprinting for cyber-
physical systems,” in Proceedings of the Network and Distributed

System Security Symposium (NDSS), 2016.

Zhen Ling is an assistant professor in the School of
Computer Science and Engineering at the Southeast
University, Nanjing, China. He received the B.S.
degree (2005) and Ph.D. degree (2014) in Computer
Science from Nanjing Institute of Technology, China
and Southeast University, China, respectively. He
joined Department of Computer Science at the City
University of Hong Kong from 2008 to 2009 as a
research associate, and then joined Department of
Computer Science at the University of Victoria from
2011 to 2013 as a visiting scholar. His research

interests include network security, privacy, and Internet of Things.

Junzhou Luo is a full Professor in the School of
Computer Science and Engineering, Southeast Uni-
versity, Nanjing, China. He received his B.S. degree
in applied mathematics from Southeast University in
1982, and then got his M.S. and Ph.D. degree in
computer network both from Southeast University in
1992 and in 2000 respectively. His research interests
are next generation network, protocol engineering,
network security and management, grid and cloud
computing, and wireless LAN. He is a member of the
IEEE Computer Society and co-chair of IEEE SMC

Technical Committee on Computer Supported Cooperative Work in Design.

Yiling Xu received the B.S. degree in digital media
technology from Jiangnan University, Wuxi, China,
in 2016. Currently, she is working toward the mas-
ter degree in computer science and engineering at
Southeast University, Nanjing, China. Her current
research interests include Internet of Things, privacy,
and security.

Chao Gao received the B.S. degree in electrical
engineering from Xian Jiaotong University, Xian,
China, in 2011 and the M.S. degree in electrical and
computer engineering from Northeastern University,
Boston, MA, USA in 2015, respectively. She is
currently working toward the Ph.D. degree in com-
puter science at University of Massachusetts Lowell,
Lowell, MA, USA. Her current research interests
include Internet of Things and network security and
privacy.

Kui Wu received the B.Sc. and the M.Sc. degrees in
Computer Science from Wuhan University, China in
1990 and 1993, respectively, and the Ph.D. degree in
Computing Science from the University of Alberta,
Canada, in 2002. He joined the Department of Com-
puter Science at the University of Victoria, Canada in
2002 and is currently a Professor there. His research
interests cover network performance analysis, online
social networks, Internet of Things, and parallel and
distributed algorithms. He is a senior member of
IEEE.

Xinwen Fu received the B.S. and M.S. degrees in
electrical engineering from Xian Jiaotong University,
China and University of Science and Technology of
China, in 1995 and 1998, respectively. He obtained
Ph.D. degree in computer engineering from Texas
A&M University, College Station, in 2005. He is an
associate professor in the Department of Computer
Science, University of Massachusetts Lowell. His
current research interests include network security
and privacy, digital forensics, wireless networks, and
network QoS. His research was reported by various

media such as Wired and aired on CNN and CCTV 10.


