
3D Vision Attack against Authentication

Zupei Li∗, Qinggang Yue∗, Chuta Sano∗, Wei Yu†, Xinwen Fu∗
∗Department of Computer Science

University of Massachusetts Lowell, MA, USA

Email: {zli1, qye, schuta, xinwenfu}@cs.uml.edu
†Department of Computer & Information Sciences

Towson University, MD, USA

Email: wyu@towson.edu

Abstract—In this paper, we introduce a computer vision-based
attack using stereo cameras against authentication approaches for
touch-enabled devices. In the attack, an attacker uses a stereo
camera (such as one on the HTC Evo 3D smartphone) and takes
a video of a victim entering passwords on the touch screen of
the victim’s mobile device. We focus on challenging scenarios
where the victim holds the device up and the attacker cannot
see the victim’s fingertip or the device screen. Since the stereo
camera provides depth and distance information of objects in
video frames, we can build a 3D scene to analyze the victim’s
hand movement and automatically recover the victim’s passcode.
The 3D vision attack is stealthy in daily settings like a classroom
or a coffee shop since the attacker does not need to take a
suspicious angle and see the touch screen of the victim. Without
loss of generality, we use graphical passwords as an example and
perform extensive experiments to demonstrate the effectiveness
of the attack. The success rate of the 3D vision attack reaches
90% when the camera is across a table from a victim in a typical
gathering scene.

I. INTRODUCTION

As hardware and software advance, stereo cameras have

been gaining more attention on smart devices. CNET claimed

“The future of smartphones is in dual cameras” in February

2016. In September 2016, Apple released iPhone 7 plus with

dual cameras, which is capable of obtaining depth of field.

Before iPhone 7 plus, HTC, LG and Sharp released their smart

phones with stereo cameras in 2011. These stereo cameras can

be leveraged to implement various 3D special effects such as

3D videos and a taste of DSLR-style photography.

However, stereo cameras may be abused. In this paper, we

introduce a novel 3D computer vision-based attack against

graphical passwords on touch-enabled devices. Our attack

takes a realistic and generic threat model: a stereo camera

is used to capture the video of the graphical password input

process, but cannot capture the device’s screen, as shown

in Figure 1. The first step of analyzing the video is to

calibrate the camera and get its intrinsic matrix and other

parameters. Therefore, we can derive the camera’s 3D world

coordinate system and build the 3D model of the target device

in the video, including the device boundary and the software

keyboard. To track the movement of the hand, we first choose

feature points on the visible part of the inputting hand. The

optical flow and feature matching algorithms are then used to

track these feature points, which are then mapped into the 3D

coordinate world. From the trajectories of the feature points,

Fig. 1. Experiment Scene

we obtain candidates of the inputting fingertip trajectory.

Finally we project the estimated inputting fingertip trajectory

in the 3D world onto the device plane and derive the graphical

password candidates by fitting the trajectory onto the reference

software keyboard.

The major contribution of this paper is summarized as

follows. To the best of our knowledge, we are the first to attack

graphical passwords in scenarios where the inputting fingertip
is occluded. We are the first to use stereo camera systems to

attack touch-enabled devices. To validate this attack, we have

performed extensive experiments with different attack devices

against different victim target devices. The attack devices

include a self-built Logitech C920 stereo camera system [4]

and an HTC EVO 3D phone [2]. The victim target devices

include a Nexus 7 tablet and a Nexus 6P smartphone. When

the distance between the stereo camera and the victim device
is 1 meter, both the Logitech stereo camera system and HTC

EVO 3D can achieve a success rate of 90% or better against

both the tablet and smartphone. The Logitech stereo camera

system can reach a success rate of 90% at 1.5 meters and 60%

at 2.0 meters. Please note: the face-to-face distance between

the attacker and victim is longer than the distance between

the attacking camera and the victim device. The distance we

consider resembles the scenarios of classrooms, conferences,

cafe shops and other gatherings where we always see people

holding up their phones. Therefore, the 3D vision attack is

realistic. It is also generic, does not need unrealistic training

and can be applied to various other scenarios.

The rest of this paper is organized as follows: We review

1



related work in Section II. In Section III, we present the stereo
camera-based attack, including the threat model, the basic idea,
and the step by step workflow of our system. In Section IV,
we provide the experiment design and results to demonstrate
the feasibility of the 3D vision attack. We conclude this paper
in Section V.

II. RELATED WORK

Because of the space limit, we only review most related
work on computer vision based attacks. We divide these
attacks into three groups based on the threat model.

In the first group of attacks, an attacker is able to capture
the inputting fingertip and the popup or magnification of keys
in the video. For example, Raguram et al. [6] track a device in
a video and align it to a reference image of the device. A key
press detector is trained to derive the touch inputs. Maggi et al.
[5] rectifies the video frames first and the rectified frames are
then differentiated with a touch screen template. The difference
is used to determine the most possible input key.

In the second group of attacks, there is no pop-up in the
video while the inputting fingertip is visible. For example,
Xu et al. [10] analyze the fingertip movement, determine the
touched location and learn the relative positions between the
keys and the fingertip. Learnt classifiers are used to recognize
the inputs. Yue et al. in [11] retrieve input keys by analyzing
a victim’s touching fingertip, find the touched points and map
the touched points to a reference keyboard to derive the input.

In the third group of attacks, the thread model assumes the
inputting fingertip may not be visible, but parts of the hand
are visible in captured videos. For example, Shukla et al. [7]
propose a scheme to decode the digital PINs by analyzing
the spatio-temporal movements of the hands. Sun et al. [8]
analyze the video of the motion of the back of the device and
decode possible touched keys.

Our attack is in the third group of attacks. Compared with
the work above, the 3D vision attack in this paper reconstructs
3D scene of the inputting process. The attack is general,
flexible and does not need often unrealistic training. We are the
first to investigate 3D vision attacks against mobile devices.

III. ATTACK PROCESS

In this section, we first introduce the threat model. We then
present the basic idea of the investigated stereo camera attack
and its workflow. At last we introduce each step in detail.

A. Threat Model

In the 3D vision attack, an attacker is able to use a stereo
camera and take videos of users inputting their graphical pass-
words. Although we use graphical passwords as an example
to demonstrate the 3D vision attack, our attack is generic and
can be applied in other scenarios, for example, while a victim
inputs mobile banking account or online shopping account
passwords. Since the body of a victim often blocks the view
of the attacker’s camera, an attacker may have to take the
video in front of the victim. Because a user often holds up
her device while inputting on the touch screen and the device

blocks the view of the fingertip, the inputting fingertip may
not be visible in the video. Our attack is designed for these
challenging scenarios. This type of attack is stealthy given
the fact that holding up a device is a common phenomenon.
The attacker can just hold up her phone with a stereo camera
and record videos. We study two cases. In the first case, we
assume the inputting fingertip is visible at the start or end or
some point of the inputting process in a recorded video. In
the second case, the inputting fingertip cannot be seen at all
in every video frame while parts of the inputting hand are
visible in the video.

B. Basic Idea

The basic idea of the 3D vision attack is to use a stereo
camera, take a 3D video and reconstruct the 3D trajectory of
the inputting hand and fingertip. We then design algorithms
fitting the trajectory onto a reference keyboard in order to
recover the inputs, considering the limited size of the software
keyboard. In this study, we use the graphical password as
an example to demonstrate the idea of the 3D vision attack
although it is very generic.

Fig. 2. Workflow of stereo camera attack

Figure 2 gives the workflow, which consists of 6 steps.
• Step 1 - Calibrating stereo camera system. We calibrate

a stereo camera system and derive several parameters of
the stereo camera system. These parameters are the key
specification of the camera and are used to build a 3D
coordinate system for the left camera. These parameters
also help compute the real-world coordinate of the points
in a video.

• Step 2 - Taking 3D videos. In this step, we take the
3D video of the victim inputting graphical passwords on
devices. The proposed attack does not need to capture the
inputting fingertip nor the screen in the video.

• Step 3 - Preprocessing. After capturing the 3D video, we
crop the video and keep the part when the user is inputting
the graphical password. This improves the processing
speed in later steps. We also rectify the frames using the
calibrated camera parameters obtained in Step 1.

• Step 4 - Modeling target device. In this step, we derive
the target device’s 3D world coordinates, including co-
ordinates of the target device’s corners and the software
keyboard layout in the 3D world coordinate system.

• Step 5 - Estimating hand movement trajectory. This step
is to estimate the movement trajectory of a victim’s
inputting hand. Since the inputting fingertip is not visible,
we track a stable feature point on the hand and calculate
its 3D trajectory.

• Step 6 - Retrieving password solutions. In this step, given
the calculated hand movement trajectory, we estimate the

2



Fig. 3. Stereo Camera System

inputting fingertip’s trajectory and derive the password
candidates through our fitting algorithms.

C. Step 1: Calibrating Stereo Camera System

To build the 3D world coordinate system and reconstruct
the 3D model of the inputting device and password inputting
process as indicated by Figure 3, we need to know the
parameters of the stereo camera system, including the camera
intrinsic matrix I, the camera distortion coefficients D, and the
geometrical relationship between two left and right cameras
[1]. Such relationship is represented by a rotation matrix
R and translation vector T̄. The intrinsic matrix I includes
camera’s focal length, the principal point offset and the axis
skew of the camera. The distortion coefficient D contains the
parameters that describe the camera’s radial distortion and
tangential distortion.

We perform stereo calibration to obtain these parameters
introduced above. We use the camera system to take several
photos of a chessboard with side length of 23.5mm from
different poses. The calibration employs the corresponding
points of the chessboard corners in all the photos for the
calculation. The accuracy of the the calibration is affected by
the quantity and quality of the chessboard photos. In general,
more than 10 photos are needed at different poses. In order to
obtain accurate and stable results, we disable the camera auto-
focus function and set the focus range of the two cameras to
infinity.

Figure 3 shows the image formation process of the stereo
camera system. OL and OR are the projection centers of two
cameras. T̄ is the translation relationship between the two
cameras. CL and CR are the principal points of two cameras.
DeviceL and DeviceR are the object’s (in this case, Device)
in the left and right images ImageL and ImageR taken by the
two cameras. After the calibration of the stereo camera system,
we can build the 3D coordinate system, with the origin at the
left camera’s lens center. As shown in Figure 3, the origin is
at OL.

D. Step 2: Taking Stereo Videos

In this step, the attacker uses the stereo camera and takes
videos of a victim performing inputs. There are various factors
affecting the quality of the video thus the success of the attack,

including the distance between the attacking camera and the
target device, the environment lighting and the attacking angle.
The distance between the attacking camera and the victim
device is a key factor that affects the accuracy, because most
of the stereo camera systems equipped on smart devices are
built with two wide angle cameras with very short camera
focal length. These cameras generally do not have the optical
zooming function. Therefore when the adversary is far away
from the victim, the victim’s hand and device in the image will
be very small. This affects the 3D reconstruction accuracy and
thus the attack performance.

The frame rate (frames per second, denoted as FPS) affects
the result of the attack too. For a graphical password, users
can usually finish the input process in one or two seconds.
According to the Nyquist sampling theory, the sampling rate
(frame rate) of the attack must be high enough to capture
the movement of the victim’s finger/forearm [3]. Particularly,
for stereo camera systems, there are actually two cameras
working simultaneously. If the recording resolution of the two
cameras keeps the original resolution of each camera, the load
on the data bus and the need of storage will increase. For the
devices we have, it is not likely that both the original frame
rate as well as the image resolution can be kept in the stereo
camera mode. The resolution is often compromised to make
the frame rate high enough to get a decent sampling rate for
capturing the movement details. As hardware and software
advance, we expect improving FPS and resolution of future
stereo cameras on smart devices and the 3D vision attack will
be more powerful in the near future.

The attacker also needs to adjust the shooting angle and
make the device’s back and the inputting hand (or part of the
hand) in the Field of View (FOV) of both cameras. Therefore,
we can perform the 3D reconstruction of touch-inputting on a
device.

E. Step 3: Preprocessing

First, a raw video from Step 2 is often a long video clip
with unnecessary content. We crop the video and keep only
the part when the victim is inputting passwords. Cropping the
video will reduce the workload of later steps.

Second, we apply rectification to align the videos. Stereo
rectification mathematically eliminates the rotation between
two cameras and aligns two cameras to one view plane. Axises
of left and right cameras will be aligned. We use Bouguet’s
algorithm [1] with the calibration results obtained in Step 1 to
rectify video frames. The rectification produces a reprojection
matrix Q [1],

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 1/Tx 0

 , (1)

where cx and cy are the coordinate of the principal point, f is
the focal length of the left camera, and Tx is the translation
parameter of the x axis.

3



F. Step 4: Modeling Target Device

To reconstruct the 3D scene of the password inputting
process on the device, the 3D model of the target device should
be built first. In this step, we first calculate the 3D coordinates
of the target device and then derive its keyboard layout in the
3D world.

1) Computing the 3D Coordinates of Device Corners:
Since computing the 3D coordinate of every pixel is time
consuming and infeasible sometimes, we only compute the 3D
coordinates of the four corners of the device and will derive
the keyboard layout using the physical location relationship
between the keys and the device corners. To calculate the
3D coordinate of a specific point, the reconstruction algorithm
needs the 2D coordinates of the corresponding points in the left
and right images and their disparity d, which is the horizontal
x coordinate difference.

We detect the device’s corner points in the left image
and then find their matching points in the right image by
template matching algorithms. To find the corner in the left
image, we first detect the four edge lines of the device and
compute the intersection of those lines. The corners are the
intersection of the four edges. We then apply the template
matching algorithm to find the corresponding points in the
right image. Our algorithm achieves the sub-pixel accuracy,
which is necessary for deriving accurate 3D coordinates. It
works as follows. Since we know the geometrical relationship
of the two cameras, we can estimate the position of the
corresponding points in the right image and obtain a searching
window. Given the point in the left image and the searching
window, we first enlarge the two areas by the bi-cubic 2-D
interpolation algorithm. Then we compute the normalized 2D
cross-correlation in the searching window of the right image.
The position where the maximum correlation is achieved is
the location of interest.

After getting the corresponding pair of points, we can derive
the disparity (d) of a point pair and calculate the 3D coordinate
of the point through the following equation:

Q


x
y
d
1

 =


X
Y
Z
W

 , (2)

where (x, y) is the point’s 2D coordinate in ImageL, and
d = x−xR is the disparity of this point and its corresponding
point (xR, yR) in ImageR. (X/W,Y/W,Z/W ) is the point’s
3D coordinate. With Equation (2), we can derive the 3D
coordinates of the four device corners, denoted as a set Crori.

2) Deriving the 3D Keyboard Layout: To accurately model
the target device’s geometric characteristics, we measure the
physical device and build a reference 3D model of the target
device and its keyboard layout. The model contains 4 corner
points of the device, denoted as a set Crref , and the keyboard
layout. The surface of the device (and keyboard) aligns with
the XOY plane. Figure 4 shows the reference keyboard model
for Nexus 7.

Fig. 4. Reference Keyboard for Nexus 7.

The reference keyboard model will be used to correct
the derived coordinates of the four corners of the device
from a video because of various errors such as those from
computer vision algorithms. We first fit the four corners onto
the same plane, which has the minimum average distance
to the four corner points. We then perform the 3D point
warping between Crori and Crref . Therefore, we calculate
the keyboard position Pkey in the 3D coordinate system.

G. Step 5: Estimating Hand Movement Trajectory

Under our threat model, the victim’s inputting fingertip
is not visible in the captured video, as shown in Figure 1.
However, we can study the geometric relationship between
the inputting fingertip movement and the movement of other
parts of the hand, and infer the possible inputting fingertip
moving trajectory.

To estimate the hand movement, we first track the movement
of feature points on the hand by the optical flow [9] in
the 2D video frames. The optical flow tracks the points by
estimating the similarity of a small area around points of
interest. However, due to the camera angle and the movement
of the hand, feature points may be lost in a video since lighting
changes and visible parts of the hand may become invisible
in the video because of the movement. We pick up feature
points that are persistent through the video, The points marked
by green crosses in Figure 5 are the feature point we use
to track the victim’s hand during the inputting process. We
choose the most stable one of these feature points based on
the accumulative optical flow scores.

After getting the 2D motion trajectory, we would derive
their 3D coordinates by Equation (2) from Step 4. This 3D
trajectory is called the preliminary trajectory Jpre. Figure 5
shows the hand movement in the 3D world from one example
in our experiments.

H. Step 6: Retrieving Password Candidates

In this step we analyze the movement of different parts of
the hand. We design algorithms to estimate the inputting fin-
gertip movement trajectory from the hand movement trajectory
Jpre, even though the inputting fingertip may not appear in the
video. Then we derive the graphical password candidates.

4



Fig. 5. Tracking Feature Point on Hand and it’s 3D Trajectory

Fig. 6. Workflow of Retrieving Password Solutions

1) Projecting the 3D trajectory to the Touch Screen Plane:
To reduce the complexity, we project the trajectory of the

chosen feature point onto the device plane. Since the shape

of the hand is relatively fixed during the touching process,

we may estimate the trajectory of the touching fingertip from

the projected trajectory of the feature point of the hand. We

consider two cases.

Fig. 7. Spacial Relation Between Inputting Fingertip and Hand

Case 1: The inputting fingertip is visible at some points of

the video (e.g. at the start or end of the inputting process) as

shown in the left figure of Fig. 7. It can be observed that during

the inputting process, the user’s hand almost keeps the same

gesture. Therefore, we can derive the geometric relationship

between the inputting fingertip and the feature point of the

hand, as shown in Fig. 7. If we assume that a user’s hand keeps

the same gesture during the inputting process, this translation

relationship keeps the same during the inputting process. The

motion trajectory of the inputting fingertip can be inferred by

the following equation:

Jfinger = Jpre + T̄, (3)

where T̄ = Tpfinger − Tporign is the translation vector,

calculated from a frame where the fingertip is visible as shown

in Fig. 7. Jpre is the feature point of the inputting hand. The

right figure of Fig. 7 also shows we use T̄ to estimate the

first touched point. We project Jfinger on device screen plane,

defined the trajectory as Jproj .

Case 2: The fingertip is not visible during the inputting

process. In this case, we directly project the 3D trajectory onto

the device screen plane. After the projection, the trajectory on

the device screen plane is defined as Jproj , as shown in Figure

9.

2) Deriving the Candidate Shapes of the Fingertip Trajec-
tory: In this step, we analyze the motion relationship between

the inputting fingertip and feature point of the hand, and derive

the possible password candidates from Jproj derived above.

Fig. 8. Bending effect in
inputting process

Fig. 9. Trajectory of a fea-
ture point in hand after pro-
jection

We find that humans tend to bend their fingertip as they

input, as shown in Figure 8. Bending makes the trajectory

of the feature point different from the actual trajectory of

the inputting fingertip. After a careful study of the inputting

process on the touch screen and the hand movement, we have

the following observations:

• Due to the physical human characteristics, the inputting

fingertip creates a larger trajectory than other parts of the

hand. Apparently, the wrist creates the smallest trajectory.

Therefore, the trajectory of the feature point is different

from the trajectory of the fingertip.

• When people touch and input on the touch screen, their

palm is roughly in parallel with the touch screen surface.

The inputting fingertip may bend vertically toward the

touch screen, but would not swipe horizontally when the

wrist does not rest on the touch screen. Therefore, we

assume that the fingertip’s trajectory is vertically enlarged

compared with the feature point’s trajectory. Since we

cannot see the fingertip during the inputting process, the

change of the fingertip gesture introduces extra errors.

We design a compensation algorithm to correct errors

caused by the difference between the trajectory of the feature

point and the trajectory of the fingertip in Algorithm 1. In

Algorithm 1, we enumerate all the possible trajectory heights

(JHeight), in term of number of rows of keys on the

keyboard. Recall that vertically the fingertip’s trajectory is en-

larged compared with the feature point’s trajectory. We enlarge

different parts of the trajectory based on an empirical formula

GenDev(.) of enlarging coefficients. The input of GenDev(.)
are inputting hand position Phand, keyboard center Ckey and

the enumerated trajectory height JHeight. After we got the

Deviations, we use the amplifier function to enlarge Jproj

5



to get our possible trajectory shape set Jcan. Jcan is the output
of the Algorithm 1.

Algorithm 1: Compensation Algorithm
Input : Jproj , PHand, Ckey

Output: Jcan
1 Jcan = [];
2 for i = 0 : 2 do
3 JHeight = KeyInterval ∗ i;
4 Deviations = GenDev(PHand, Ckey, JHeight);
5 Result = Amplifier(Deviations, Jproj);
6 Jcan = Jcan + Result;
7 end

3) Deriving Password Candidate: Jcan from last step is
the set of possible fingertip trajectory shapes. We now derive
the positions of the fingertip trajectory. The smallest password
trajectory is a straight horizontal or vertical line from one key
to its nearest key. In such a case, there are 6 possible trajectory
position candidates. This means in the worst case we need to
try 6 times for one trajectory. If the trajectory occupies almost
the whole keyboard, there is only one possible position for the
trajectory. The trajectory span limits the number of possible
candidates.

Figure 10 is one example of enumerating the possible
trajectory positions. In this example, there are two possible
trajectory shapes in Jcan, marked as JcanI and JcanII . For
JcanI , we move the trajectory vertically and see if it fits
within the keyboard. As a result, we have 2 possible estimated
positions, marked as A and B. For JcanII , there is only one
possible estimated position C due to the size of the trajectory.

Fig. 10. Possible Trajectories and Solutions

Now we have derived all the graphical password candidates,
we need to rank them. For Case 1 of Section III-H1, since
the inputting fingertip is partially visible in the video, the
estimated location of the fingertip can help rank the password
candidates since the trajectory is most likely around the
fingertip position. For case 2 of Section III-H1, we rank the
possible password candidates randomly.

IV. EVALUATION

This section introduces the experiment setup and results.

A. Evaluation Setup

We use two stereo camera systems and two target devices
in our experiments. The two different camera systems are a
stereo camera system built by 2 Logitech C920 webcams and

a HTC EVO 3D smart phone equipped with a stereo camera.
Our target devices are a large Asus Nexus 7 tablet and a small
Huawei Nexus 6P smartphone. The graphical passwords were
randomly generated.

The Logitech webcam is supported by openCV. We use a
laptop to drive two cameras and take videos simultaneously.
We disable the auto focus function to make sure that the
camera parameters do not change while a video is taken. For
the HTC EVO 3D, we use the stock camera app recording 3D
videos. The phone stores the videos in the mp4 format, where
both left and right cameras images are saved side-by-side. An
entire image has 1280 × 720 pixels. This means the size of
the image taken by one camera is 640 × 720.

In addition to different cameras and different target devices,
we also consider other factors in our experiment design such as
users, distance between the camera and target and availability
of initial reference.

• Users: Since different people have different hand size,
finger shapes and inputting gesture habits, it is necessary
to study the robustness of the 3D vision attack. We
recruited three male and two female participants in our
experiments. The average age of the participants is 27.
For each data point, each person performs three graphical
password inputs so that we have 15 video clips. In the
experiments, users were told to use the phone in their
own manner in order for us to observe different natural
hand gestures from different users.

• Distance: To test how the distance affects the attack
accuracy, we position the stereo camera system in front
of the victim from different distances.

• Initial Reference: As discussed in Section III-H3, our
threat model considers two cases, inputting when the
fingertip is visible at some points of a video (Case 1,
with initial reference) and inputting when the finger is
not visible in the video at all (Case 2, without initial
reference). Known fingertip and palm relationship in Case
1 helps us rank the password candidates.

B. Results

We define a successful successful attack as follows: Recall
the attacker derives the password candidates from a video
using our 3D vision attack. If any of the top 3 password
candidates match the real password, it is a success. The success
rate is the number of successful attacks over the number of
tested passwords.

Figure 11 shows the effectiveness of the 3D vision attack.
An obvious observation is that the success rate of Case 1 with
initial reference is always better than success rate of Case 2
without initial reference. Seeing the fingertip in a video helps
the attack as analyzed.

To set our base line, we use the webcam stereo camera
system and HTC EVO 3D phone to record videos of 5 different
users from 1 meter away. It can be observed from Figure
11 that the video quality difference and the interpupillary
difference between these 2 camera systems affect the success
rate. For both stereo camera systems, we can get a success

6



Fig. 11. Success Rate Comparison

rate of more than 90% with the initial reference and a success
rate of more than 80% without the initial reference.

To validate the attack against different target devices, we use
the HTC EVO 3D phone to attack the tablet and smartphone.
We find that the success rates are approximately the same for
these 2 different target devices. This is because although the
device size is different, the actual keyboard size on these 2
devices is similar.

We use both Logitech webcam and HTC EVO 3D to
perform the attack upon ASUS Nexus 7 tablet from different
distances. For both camera systems, the success rate reduces
as the distance increases. For the HTC EVO 3D, it can be
observed that when the distance increases, the success rate
decreases very much. At the distance of 1.5m the success rate
is lower than 50%. This is because at such a distance the target
in a video is small and blurry and it is hard to match feature
points in left and right camera images.

Figure 12 shows the success rate in terms of the allowed
password input attempts. It can be observed that as the number
of attempts increases, the success rate increases. However,
after 5-6 attempts, the success rate in both Case 1 and
Case 2 reach the maximum. This is because for most of the
password patterns, 5-6 attempts cover all of them in this set
of experiments.

Fig. 12. Attempts Vs Success Rate

V. CONCLUSION

In this paper, we present a side channel attack using stereo-
scopic cameras against authentication strategies on mobile
devices. By taking a 3D video of a victim inputting passwords
on a device, we can build a 3D model of the inputting hand
and the target device. We analyze the geometrical relationship
between the inputting fingertip and the visible parts of the hand
in the video, and estimate the inputting fingertip movement
from the movement of visible parts of the hand. We design
algorithms fitting the fingertip trajectory to a reference key-
board and derive the password candidates. We use graphical
passwords as an example to demonstrate the effectiveness of
the 3D vision attack. Our experiments show that if a fingertip
is visible at some points of the video, the success rate can
reach 90% or better in all investigated cases of attacking stereo
cameras including against target devices when the attacking
camera is 1 meter from the target device. At 1.5 meters, the
Logitech stereo camera system can reach a success rate of
90%. Even with the fingertip invisible in videos, our Logitech
stereo camera system can reach a success rate of 80% or better
at 1 meter and 1.5 meters.

REFERENCES

[1] G. R. Bradski and A. Kaehler. Learning opencv, 1st edition. O’Reilly
Media, Inc., first edition, 2008.

[2] GSMArena. Htc evo 3d. http://www.gsmarena.com/htc\ evo\ 3d-3901.
php, 2011.

[3] Z. Ling. Secure fingertip mouse for mobile devices. In IEEE: Infocom
2016, 2016.

[4] Logitech. Logitech c920 hd pro webcam. http://www.logitech.com/
en-us/product/hd-pro-webcam-c920.

[5] F. Maggi, S. Gasparini, and G. Boracchi. A fast eavesdropping attack
against touchscreens. In Information Assurance and Security (IAS), 2011
7th International Conference on, pages 320–325, Dec 2011.

[6] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm.
ispy: Automatic reconstruction of typed input from compromising re-
flections. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 527–536, 2011.

[7] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha. Beware, your
hands reveal your secrets! In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages
904–917, 2014.

[8] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Z. Yanchao. Visible:
Video-assisted keystroke inference from tablet backside motion. In
Proceedings of the 23rd ISOC Network and Distributed System Security
Symposium (NDSS’16), 2016.

[9] R. Szeliski. Computer Vision: Algorithms and Applications. Springer-
Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[10] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm. Seeing dou-
ble: Reconstructing obscured typed input from repeated compromising
reflections. In Proceedings of the 20th ACM Conference on Computer
and Communications Security (CCS), 2013.

[11] Q. Yue, Z. Ling, X. Fu, B. Liu, W. Yu, and W. Zhao. My google glass
sees your passwords! In Black Hat USA, 2014.

7


