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Repeat surveys of high-resolution topographic data enable analysis of geomorphic change through digital eleva-
tion model (DEM) differencing. Such analyses are becoming increasingly common. However, techniques for de-
veloping robust estimates of spatially variable uncertainty in DEM differencing estimates have been slow to
develop and are underutilized. Further, issues often arise when comparing recent to older data sets, because of
differences in data quality. Airborne lidar data were collected in 2005 and 2012 in Blue Earth County, Minnesota
(1980 km2) and the occurrence of an extremeflood in 2010 produced geomorphic change clearly observed in the
field, providing an opportunity to estimate landscape-scale geomorphic change. Initial assessments of the lidar-
derived digital elevation models (DEMs) indicated both a vertical bias attributed to different geoid models and
localized offset strips in the DEM of difference from poor coregistration of the flightlines. We applied corrections
for both issues and describe the methods we used to discern those issues and correct them. We then compare
different threshold models to quantify uncertainty. Poor quantification of uncertainty can erroneously over- or
underestimate real change.We show that application of a uniform threshold, often called aminimum level of de-
tection, overestimates change in areaswhere changewould not be expected, such as stable hillslopes, and under-
estimates change in areas where it is expected and has been observed, such as channel banks. We describe a
spatially variable DEM error model that combines the influence of slope, point density, and vegetation in a
fuzzy inference system. Vegetation is represented with a metric referred to as the cloud point density ratio
that assesses the complete point cloud to describe the density of above ground features that may hinder bare-
earth returns. We compare the significance of spatially variable versus spatially uniform DEM errors on change
detection by thresholding the DEM of Difference at a 95% confidence interval (2σ). Results indicate significant
geomorphic change in relatively predictable locations, such as erosion on the outside and deposition on the in-
side, of bends. Final totals indicated net erosion of [2,625,100] ± 2,389,000 m3 in the county between 2005
and 2012. Of this, 39%was generated frombluffs, 1% from ravines, and the remainder came frombanks andflood-
plain areas.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Quantifying spatial patterns of erosion and deposition at a landscape
scale is vitally important for improvingmodels ofwater quality and sed-
iment routing, predicting channel dynamics at the network scale, ad-
vancing landscape evolution models, and providing constraints for
watershed sediment budgets (Smith et al., 2011; Mueller and Pitlick,
2013; Passalacqua et al., 2015). The past decade haswitnessed rapid ad-
vances in our ability to collect high-resolution topographic (HRT) data
and concomitant improvements in computing power, which have in-
creased our ability to acquire, store, and analyze large data sets. As
haffrath).
such, detection of spatial and temporal patterns of landscape-scale ero-
sion and deposition is increasingly feasible (Collins andWalling, 2004).

Differencing sequential sets of HRT can be used to detect and quan-
tify geomorphic change (Brasington et al., 2003; Lane et al., 2003;
Wheaton et al., 2010b; Day et al., 2013a) in order to better understand
river form and process (Brasington et al., 2000) or to infer rates of sed-
iment transport and channel morphology (Ashmore and Church, 1998;
Wheaton et al., 2013). Previous studies involving DEMs of Difference
(DoDs) have been conducted on reach- and small catchment-scales, uti-
lizing DEMs derived from airborne lidar, total station, or real-time kine-
matic GPS (rtkGPS) surveys (Brasington et al., 2000; Bangen et al., 2014;
Goodwell et al., 2014), aerial photography and photogrammetry (Lane
et al., 1993, 2003; Rumsby et al., 2008; James et al., 2012), or terrestrial
lidar (Milan et al., 2011; Abellán et al., 2014; Leyland et al., 2015). At all
scales and for all methods, users must understand: (i) the technology
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and its limitations at the time of data collection; (ii) how post-
processing steps (point cloud classification and generation of the
gridded product) for each individual data set might affect the results;
and (iii) georeferencing information for the original data, as systematic
errors can be introduced at any one of these steps.

We present a landscape-scale analysis of repeat lidar to demonstrate
methods to identify and rectify issues that may arise with older, ‘legacy’
data and illustrate the value of spatially variable DEM error modeling.
Specifically, we present methods to address common data issues with
legacy lidar data sets, and we quantify DEM error using uniform and
spatially variable uncertainty models. We develop and test a ‘cloud
point density’ metric to accurately quantify uncertainty owing to vege-
tation density. We discuss important considerations for developing ro-
bust estimates of uncertainty in similar large data sets and illustrate
how different approaches may exclude useful information, or incorpo-
rate erroneous information, into theDoD. Finally, we investigate the sig-
nificance of the above analyses in the context of interpreting
geomorphic change in a highly dynamic landscape that has recently ex-
perienced a historically unprecedented flood bracketed by the two lidar
data sets.

2. Study area

The Minnesota River basin is located in southern Minnesota and is a
tributary to the Mississippi River (Fig. 1). The major tributaries to the
Minnesota River, especially those in Blue Earth County, are experiencing
rapid geomorphic change as a result of a 70-m drop in base level
13,400 years ago as Glacial Lake Agassiz catastrophically drained
through the proto-Minnesota River, compounded by recent agricultural
land use and climate change (Belmont et al., 2011; Gran et al., 2013;
Schottler et al., 2014). Presently, tributaries such as those in the Greater
Blue Earth River basin continue to respond to the drop in base level as a
knickzone has propagated 35–80 km upstream through the channel
network (Belmont, 2011; Gran et al., 2013). Fine-grained, semi-
consolidated glacial till behaves like weak bedrock (Jennings, 2010;
Runkel et al., 2011) and incision in the knickzone has left behind 3–
70 m tall bluffs that line about 30% of the channel. Bluffs are subjected
to multiple erosion processes including fluvial toe erosion, as well as
slumping or block failure from groundwater sapping or freeze-thaw
processes (Day et al., 2013a). Additionally, about 275 ravines have
been identified in the region that connect the uplands to the incised
mainstem tributary channels within the knickzone.

An extreme flood occurred in September 2010 in the basin. This
flood was the second largest on record (1910 to present) in the Blue
Earth River and the flood of record (1940 to present) in the Le Sueur
Fig. 1.Maps of the (A) state of Minnesota showing the Minnesota and Mississippi Rivers, (B) lo
evation model of Blue Earth County with a blue line indicating the area inside the knickzone a
River (23% larger than the next largest flood, in 1965). In the Blue
Earth River, this flood event has a return period of about 25 years
using a Log Pearson Type 3 distribution. For the Le Sueur, the event is es-
sentially undefined (≫200-year return period) if all years of record are
analyzed using a Log Pearson Type 3 distribution. Acknowledging that
the Le Sueur River exhibits highly nonstationary hydrology (Schottler
et al., 2014), we conducted a Log Pearson Type 3 analysis using only
post-1975 peak flows. That analysis indicates a return period exceeding
100 years. Field evidence indicated dramatic geomorphic change
throughout the county. Such a large flood in a geomorphically active
area provides a unique opportunity to analyze geomorphic change
over this 1980 km2 area.

3. Methods and methodological results

Airborne Light Detection and Ranging (lidar) data were collected
for Blue Earth County, MN in 2005 and 2012. The 2005 data were col-
lected April 13–15 and 24–25 using an Optech 3100 ALTM 70 kHz
laser system and Realm Terrascan and Geocue Survey processing soft-
waremounted on afixed-wing aircraft (Optimal Geomatics, 2005a). Ae-
rial orthophotography and lidar data were simultaneously collected in
2005 at 1800mabove ground level. Vertical accuracy of the datawas es-
timated by the vendor (Optimal Geomatics) by calculating the root
mean square error (RMSE) of elevations for 350 checkpoints collected
within four subareas in different land cover types (open terrain, tall
weeds and crops, brush and low trees, forested areas, and urban
areas). Checkpoint locations are shown in Fig. 2. Reported RMSE ranged
from 0.17m (brush) up to 0.25m (tall weeds) and averaged 0.24m, but
the ‘forested’ cover error was not reported (Optimal Geomatics, 2005b).
Lidar intensity data and lidar grammetry were used to generate
breaklines for hydrologic features regardless of size. Additional check-
points were collected by other entities at the time of data collection
(total 695 points). Mean point density of the 2005 bare-earth point
cloud is 0.16 pts m−2 (standard deviation 0.08 m). Data were distribut-
ed in North American Datum 1983 in Universal Transverse Mercator,
zone 15N, coordinates with orthometric heights converted using the
GEOID03 model.

In 2012, data were collected April 4–8 using a Leica ALS 70 lidar sys-
tem and processing software (TerraTecTerraPOS, TPAS TC GNSS/INS
Processor version 3.10, IPAS Pro version 2.01.02) mounted on a fixed-
wing aircraft flying at 2260 m above ground level with a swath width
of 40° and 30% sidelap (Blue Earth County, 2012).Vendors collected
145 checkpoints spatially distributed throughout the county, and re-
ported vertical accuracy (RMSE) was 0.11 m for 26 points in the ‘open’
cover category. Hydrologic breaklines were hand-digitized for rivers
cation of Blue Earth County in the Greater Blue Earth River Basin, and (C) 2012 digital el-
nd a brown line indicating the area near the channels where the analysis was completed.



Fig. 2. Systematic vertical offset shown by the error surface generated from differences in
the GEOID03 and GEOID09models; and locations of checkpoints for each year of data col-
lection and additional points collected for this study in 2014.
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wider than 30 m using the lidar intensity data and the unenforced ele-
vation model (R. Merry, Aerometric, April 26, 2013; U.S. Geological
Survey National Geospatial Program, 2010). Mean point density of the
2012 bare-earth point cloud is 1.4 pts m−2 (standard deviation
0.34 m). Data were distributed in North American Datum 1983 (Blue
Earth County High Accuracy Reference Network) in Universal Trans-
verse Mercator, zone 15N, coordinates with orthometric heights con-
verted using the GEOID09 model.

3.1. Digital elevation model offset

A raw, uncorrected DoD was generated by subtracting the two
DEMs, adjusted accordingly to ensure concurrency, orthogonality, and
dimensional divisibility. We started with the vendor-generated DEM
raster and used the geomorphic change detection (GCD) add-in for
ArcGIS (found at gcd.joewheaton.org; version 6; Wheaton et al.
2010a) to adjust the DEMs to ensure concurrency, orthogonality, and di-
mensional divisibility of the data sets. The raw, uncorrected, DoD sug-
gested pervasive deposition throughout the county, including flat
areas where no measurable change is expected to occur over the
seven years between surveys, suggesting a systematic bias. Initial at-
tempts to identify the source and spatial distribution of the bias were
to evaluate the difference between the two DEMs at the rtkGPS check-
points collected for each flight and digitized points in areas where we
did not expect change. However, metadata for the two data sets indicat-
ed that different GEOIDmodels were applied to the data for each year to
convert ellipsoid heights to orthometric heights.

Differences between lidar and rtkGPS checkpoints collected in 2012
tend to be positive relative to the 2005 data, and a systematic positive
bias pervades over all elevation differences. An independent measure
to identify a systematic vertical offset between the 2005 and 2012
DEMs was attained by comparing elevations of points where we were
confident no vertical change (erosion or deposition) had taken place.
The median difference between elevations in the 2012 and 2005
DEMs is 9.2 cm for points digitized on roads and 3.7 cm for randomly
generated points. Results were stratified by geographic area or 2012
flight date in order to determine whether geography or flight date ex-
plained spatial variability in the error, but no systematic trends were
observed.

Lidar vendor metadata indicated that GEOID03 was applied in 2005
and GEOID09 was applied in 2012. To correct for the offset between
the two models, we generated a surface of the difference in geoid
models and applied the correction to the 2005 DEM (Fig. 2). Specifically,
we generated 1700 random points and fed them into the National
Geodetic Survey's interactive calculators (see: http://www.ngs.noaa.
gov/GEOID/) for each geoid model. The two geoid models were
differenced, and the increase to ellipsoid heights associated with the
GEOID09 model is 3–7 cm higher than the GEOID03 model, though the
difference is spatially heterogeneous (Fig. 2). Adding the geoid correc-
tion surface to the original 2005 DEM provided an adjusted 2005 DEM.

Vendor-reported vertical RMSE is 0.24 m for 2005 data and 0.11 m
for 2012 data. However, generic RMSE values are not effective indicators
of uncertainty for geomorphic change detection at the landscape scale
because they fail to indicate systematic bias, dispersion above or
below zero, or the spatial patterns of uncertainty (Fisher and Tate,
2006), all of which are critical to identifying real geomorphic change.
In 2005 (695 checkpoints), mean error was 0.004mwith a standard de-
viation of 0.11 m. In 2012 (145 checkpoints), mean error was 0.08 m
and standard deviation was 0.16 m, indicating a positive bias in the
2012 data. Kessler et al. (2012) detected a bias when they compared
lidar-derived DEMs from the same 2005 data as in this study and data
collected in 2009 (not available for this study). In quantifying bank ero-
sion, they reported the bias but did not adjust their data because it was
less than the vertical accuracy guaranteed by vendors (Kessler et al.,
2012). In the case of a large study area such as ours, even small system-
atic offsets can yield large errors in estimated volumes of sediment
eroded or deposited. Moreover, despite what lidar vendors may report
for vertical accuracies, there are no guarantees that this is not exceeded
locally.

Each vendor also distributed 1-mDEMswith the lidar data. For 2005
data, bare-earth points and the hydrolines were used to create a terrain
data type fromwhich a DEMwas derived using nearest neighbors inter-
polation. With point density of 0.16 pts m−2, ‘NoData’ holes are likely
quite prevalent throughout the county, but vendor explanations of
DEM generation did not address this issue. Sparse ground returns intro-
duce uncertainty because elevations are interpolated over large areas
with no data. Metadata for 2012 indicate that the DEM was generated
using TerraModeler. The 2012 DEM was transformed from the NAD83
(HARN) datum to NAD83 to match the 2005 DEM. The UTM 15N coor-
dinate systemwas retained for all points and grid products.We adjusted
the 2005DEMusing the geoid correction surface and used that adjusted
2005 DEM for all differencing. All differencing was then completed on
DEMs adjusted by the GCD tool to ensure orthogonality and dimension-
al divisibility (extents were rounded to the nearest 10 m).

3.2. Horizontal uncertainty between digital elevation models

Horizontal offset between DEMs is difficult to quantify, and most
studies either ignore that source of error or report the manufacturer-
specified minimum error (Hodgson and Bresnahan, 2004; Kinzel et al.,
2007). In 2005, horizontal error was reported as 1/2000th of flight alti-
tude (1836 m) which was 0.91 m. In 2012, the vendor reported a hori-
zontal accuracy of 0.44 m based on manufacturer specifications. While
both of these numbers are b1 m, the cell resolution of the DEM, even
small horizontal shifts can introduce additional vertical error especially
in areas of steep slope, such as bluffs or stream banks (Hodgson and
Bresnahan, 2004; Streutker et al., 2011; James et al., 2012). To deter-
mine if there was a systematic horizontal bias, we compared x and y co-
ordinates of 63 digitized points on well-defined structures such as
buildings, berms, or dams on the two DEMs. Differences in northing
and easting were used to calculate the angle (direction) and themagni-
tude of the vector between the two points. Measured offset varied from
0.4 to 5 m. However, direction of error was randomly distributed.

While we did not detect any systematic horizontal error (Fig. 3, plot
generated using heR.Misc package developed by Klepeis, 2004), the
DoD indicated localized anomalies. Most notably, east–west strips of el-
evation differences unlikely to be real erosion or depositionwere visible
(Fig. 4A). Additionally, many ravines showed erosion on one aspect and
deposition on the other. Such spatial patterns indicative of systematic
errors have been documented in other studies (Bretar et al., 2004;
Habib et al., 2008; Akca, 2010; Streutker et al., 2011; DeLong et al.,

http://gcd.joewheaton.org
http://www.ngs.noaa.gov/GEOID/
http://www.ngs.noaa.gov/GEOID/


Fig. 3.Horizontal offset between 2005 and 2012 DEMs as a rose diagram. Direction of off-
set is shown based on the position around the compass and magnitude is shown by color.
For example, the majority (~17% of points evaluated) of error is in the easterly direction.
The plot shows about 13% of the easterly error is 1–2 m, 2% is 2–3 m, and 2% is 4–5 m in
magnitude.
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2012; Glennie et al., 2014; Goodwell et al., 2014) and attributed to poor
coregistration of flightlines.

Lidar data are collected in strips along the flightlines and, with each
strip, vendors generate areas of overlap, typically 10–30%. When cali-
bration parameters are not precisely determined, discrepancies be-
tween the flightlines can occur, known as coregistration errors, which
are common in older ‘legacy’ lidar data sets. Errors may not be detect-
able in the standalone surface. However, when differenced with recent
andmore precisely calibrated data, the offset stripsmight be obvious, as
was the case for the Blue Earth County data (Fig. 4A). Themost accurate
method of correction would be to use the original GPS/IMU and laser
measurement data to recalibrate the raw data (Glennie et al., 2014).
However, such data are rarely available for legacy data sets. Another
technique uses local slope and local elevation difference between adja-
cent points in the overlap area to realign flightlines (Streutker et al.,
2011). To apply this approach, users need overlap points (points with
the same x and y coordinate) and to be able to separate overlap points
byflightline. Separate flightlinesmight be identified using an associated
flightline number or using a time stamp associated with the timing of
collection of each point. With sufficient information to separate
flightlines, the Iterative Closest Point algorithm (Besl and McKay,
1992) would be another approach. However, 2005 data included only
x, y, and z coordinates for bare-earth and first return points, making
these techniques impossible. Goodwell et al. (2014) applied a fast Fou-
rier transform to the differential DEM in cross sections perpendicular to
the observed stripping problem. They detected two dominant wave-
lengths associated with the strips and filtered them out of the data set.
A fast Fourier transform of north to south transects of our Blue Earth
County DoD indicatedmany dominant wavelengths that would require
filtering and thefilteredprofile and power spectra still showed evidence
of the systematic stripping error (Fig. 4D–E). Thus, this approach was
not effective in our case.

To correct the DoD for the flightline stripping error, we iteratively
generated multiple correction surfaces based on random points
generated throughout the county. Points were randomly generated out-
side of a 200-m buffer of the vendor-generated hydrolines, in areas
where we were confident little to no real change had occurred. Strips
trend east–west, while channels in Blue Earth County trend south–
north so we expected interpolation error across the buffer to be mini-
mal. A total of 12 surfaces were iteratively generated using a range of
points (33,000, 150,000, 200,000, or 500,000) and different interpola-
tion methods. Differences between surfaces using 200,000 and
500,000 points were minimal, yet computational time was reasonably
short with 500,000 points, so we used that point density to generate
our correction surface. For each point, we extracted the value of the
DoD and interpolated a surface using inverse distance weighting
(IDW), universal and ordinary kriging, and regularized splining (all
tools are in the ArcGIS toolbox). In the process, artifacts were identified,
particularly associatedwith lakes and reservoirs where large changes in
water-surface elevations appear in the DoD. Those areas were eliminat-
ed from the correction surfaces. Of the 12 surfaces, three were chosen
for comparison based on the quantity of detectable artifacts present in
the surface and qualitative matching with the visible strips in the DoD.
Each of the three correction surfaces were subtracted from the DoD. El-
evation profiles (Fig. 4E)were extracted to evaluate the data retained in
each surface relative to the raw surface. Also, power spectra (Fig. 4D) of
the fast Fourier transform of the north–south transect (seen in Fig. 4A)
were compared to evaluate how much of the stripping had been re-
moved. The north–south transect was intentionally drawn perpendicu-
lar to the strips and with minimal intersections with water bodies and
therefore represents a surface where real geomorphic change is mini-
mized. The final surface (DODc, with c indicating ‘corrected’) removed
evidence of stripping, while retaining the inherent variability of the
original data (Fig. 4A), as can be seen at the scale of the entire data set
in Fig. 4C and at finer scales, according to the power spectrum
(Fig. 4D, green line) and elevation transects (Fig. 4E, green line). The
final correction surface was generated using 500,000 points interpolat-
edwith the sphericalmodel of ordinary kriging, a 5-m fixed search radi-
us, and a minimum of 12 points. This method of correcting a DoD is
effective for applying a spatially variable correction to the stripping
problem when data needed for other approaches are not available, as
might be the case for legacy data.

3.3. Digital elevation model error modeling

Sources of uncertainty in airborne lidar are spatially heterogeneous
and include positional errors realized in the original point cloud as
well as vertical errors and interpolation errors ultimately expressed in
the raster DEM. Proxies for these sources of error include survey point
quality and density, land-surface composition (vegetation type and
density and topographic complexity), sampling strategy, and decisions
in point classification and DEM interpolation (Hodgson et al., 2003,
2005; Hodgson and Bresnahan, 2004; Heritage et al., 2009; Wheaton
et al., 2010a; Milan et al., 2011; Schwendel et al., 2012). Various
methods exist for estimating DEM errors, but spatially uniform esti-
mates based on an RMSE summary with checkpoint data are by far
the most common. At the other end of the spectrum, spatially variable
error modeling (including full error budgeting and developing statisti-
cal models of error) often require data density and additional informa-
tion typically not supported nor available from legacy lidar data sets.
Wheaton et al. (2010b) developed a simpler, more pragmatic technique
for estimating spatially variable DEM errors that allows proxies for fac-
tors contributing to DEM error to be provided as spatially variable in-
puts to a fuzzy inference system (FIS). The FIS allows flexibility in the
specification of inputs that can reasonably be modeled spatially, and
their combined influence on DEM quality is described heuristically
with simple rules. The FIS differs from a rule system in that input and
output categories are represented as fuzzy numbers, allowing explicit
overlap between categories where ambiguity exists. In practice, this
translates to multiple rules often applying for a combination of inputs



Fig. 4.Maps and plots showing the initial characteristics associated with stripping and the correction applied. (A) Geoid-corrected DEM of Difference showing distinct strips in the east–
west direction. (B) Error surface generated to correct stripping. (C) DEM of Difference corrected for stripping using the surface shown in B. Note the east–west strips are no longer evident
and the surface is a mix of red (erosion) and blue (deposition). Two plots (D–E) correspond with data collected at points on a 50-meter interval on the black line shown in panel A.
(D) Power spectra plot where the black line refers to the data from the geoid-correctedDEMof Difference, the red line is the output after applying a filter based on a fast Fourier transform,
and the green line is the output after the application of the stripping correction. (E) Elevation profile shows theDEM of difference values for the geoid-corrected (black), fast Fourier trans-
form filtered (red), and final stripping correction (green).
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and giving rise tomore nuanced behavior in the output (the total conse-
quent). The outputs themselves are calibrated to an independently de-
termined range of error estimates specific to the survey methods.
Wheaton et al. (2010b) demonstrated the development and applica-
tion of an FIS for an rtkGPS survey, but suggested FIS models should be
developed for different survey techniques and applications. Here, we
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developed FIS DEM error models for the lidar surveys described above.
For eachof the twoyears of lidar data, an FISwasdevelopedusing inputs
of slope, point density, a vegetation metric, and inundation. Each FIS
output was calibrated using independent estimates of DEM error from
Fig. 5. Plots showing absolute value of elevation error (lidar elevation minus GPS elevation) re
2005 checkpoints (column on the left, data shown in gray boxes); 2012 checkpoints (column o
plots, black circles).
checkpoint data and simple univariate correlations associated with the
inputs of slope, point density, vegetation height or density, andwhether
the pixel was inundated (Fig. 5). Checkpoints were initially collected by
the lidar vendors at the timeof survey,with 695points collected in 2005
lative to values of the input parameters to the 2005 and 2012 Fuzzy Inference Systems for
n the right, data in gray diamonds); and additional points collected in 2014 (shown in all
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and 145 points in 2012. Because the 2005 checkpoints were clustered in
only a few topographically simple areas (Fig. 2), ranges of error for each
parameter are limited (Fig. 5, left column) and do not include the full
range of error associated withmore complex topography present with-
in the survey extents. Checkpoints associated with the 2012 flight were
better distributed spatially, but still did not cover the full range of con-
ditions controlling error (Fig. 5, right column).

To better constrain uncertainty inmore topographically complex en-
vironments, in June 2014we collected additional checkpoints in areas of
high slope using rtkGPS and densely vegetated areas using a total sta-
tion (Fig. 2). We targeted high-slope and high-vegetation density
areas near ravines and low-slope, high-vegetation density areas near
roads where the initial DoD showed little to no elevation change. Reoc-
cupation of some of the original 2005 and 2012 checkpoints confirmed
our 2014 data collection effort was within 11 cm, on average, of the
2012 original data collection and within 14 cm of the 2005 data collec-
tion. Elevation differences between all checkpoints and the 2005 and
2012 DEMs were related to the values of slope, point density, or either
of the two vegetation parameters (vegetation height in 2005 or vegeta-
tion density in 2012), and those relations provided initial guidelines for
calibrating the FIS rules and outputs (Table 1, Fig. 5). Data collected in
2014 greatly extended our characterization of uncertainty associated
with slope (both years) and point density and canopy height (for
2005 data, see black dots, Fig. 5).

Where possible, wewanted to represent the impact of vegetation on
DEM error in our FIS. Vegetation can be an important source of uncer-
tainty in bare-earth lidar DEMs because the probability a laser pulse
will penetrate down to the ground decreases as vegetation density in-
creases (Su andBork, 2006; Reutebuch et al., 2014). Last returns are typ-
ically classified as bare-earth points, but the likelihood that the return is
Table 1
Rules for the Fuzzy Inference Systems used to infer elevation uncertainty in 2005 and 2012
data from slope, point density, vegetation, and whether the area was inundated or dry.
Each column reads as part of an if/then statement: If slope is ___, and point density is
___, and vegetation is ___, then elevation uncertainty is ___. Units associated with the
header are the units of the inputs and outputs.

Slope,
degrees

Point density, points
per square meter

Vegetation
metrica

Inundated
or dry

Elevation
uncertainty,
meters

Low Low Low Dry Average
Low Low Medium Dry Average
Low Low High Dry Average
Low Medium Low Dry Low
Low Medium Medium Dry Low
Low Medium High Dry Low
Low High Low Dry Low
Low High Medium Dry Low
Low High High Dry Low
Medium Low Low Dry High
Medium Low Medium Dry High
Medium Low High Dry High
Medium Medium Low Dry Average
Medium Medium Medium Dry Average
Medium Medium High Dry High
Medium High Low Dry Low
Medium High Medium Dry Average
Medium High High Dry Average
High Low Low Dry High
High Low Medium Dry High
High Low High Dry High
High Medium Low Dry Average
High Medium Medium Dry High
High Medium High Dry High
High High Low Dry Average
High High Medium Dry High
High High High Dry High
– – – Inundated High
– – Extreme – Extreme

a In 2005, the vegetationmetricwas vegetation height inmeters; and in 2012, itwas the
cloud point density ratio.
actually from the bare earth decreases as vegetation density increases.
Vegetation height has typically been used as a surrogate for uncertainty
in elevation owing to vegetation (Hodgson and Bresnahan, 2004;
Hopkinson et al., 2005; Bangen et al., 2014). However, tree height and
vegetation density are not alwayswell correlated. For example, consider
a deciduous forest with a dense understory relative to a sparse, conifer-
ous forest with no understory (see Hodgson and Bresnahan, 2004). In
these two examples, vegetation height may not differ very much, but
vegetation density may differ substantially. We postulate laser penetra-
tion should bemore sensitive to vegetation density than height. Data in
2005 were limited to bare-earth and first returns, making vegetation
height the only possible surrogate for uncertainty owing to vegetation
for the 2005 DEM. However, the LAS 1.4 format used for the 2012 data
provided access to all returns and associated metadata including scan
angle, return number, total returns, and a classification based on an in-
dustry standard. To consider the influence of a model for uncertainty
owing to vegetation for the 2012 data, we created a metric called the
cloud point density ratio, which uses the majority of returns with
their classifications. Where vegetation is dense, we expect the point
cloud above the ground to also be dense.

The cloud-point density ratio is the ratio of aboveground point den-
sity to total point density. Industry standard point-cloud classifications
included bare-earth, vegetation, water, buildings, overlap, error or
noise, and unclassified. Total point cloud density is the point density
of all points except those classified by the vendor as noise or overlap.
Aboveground points are all points from the total point cloud not classi-
fied as bare-earth. This metric depends on the vendor classifications.
Vendors consider this information proprietary so reporting does not in-
clude details on the procedures used. For the purposes of this study, we
chose to compare vendor-generated products, and our metric depends
on the accuracy of those vendor classifications. In part, this was because
we did not have the full point cloud in 2005. When full point clouds are
available to users for each data set, we suggest that users reprocess
point clouds and classify points using identical procedures and parame-
ter choices.

Cloud point densities closer to 1 indicate a high density of above-
groundpoints relative to the total point cloud and therefore a higher un-
certainty owing to vegetation (Fig. 5). Checkpoint data shown in Fig. 5
have canopy height from2005 positioned next to the cloud point densi-
ty ratio of 2012. Both data sets indicate at least a slight positive trend,
though the trend in 2012 is more clearly evident, suggesting that the
cloud point density is a more accurate representation of uncertainty
owing to vegetation.

Once the inputs for our FIS error models were prepared, we needed
to build our rule tables and calibrate membership functions for the dif-
ferent FIS models (Table 1). The GCD tool is provided with built-in FIS
models for various data collection techniques including airborne lidar.
One built-in FIS for airborne lidar includes slope, point density, vegeta-
tion height, and inundation as input parameters. The rule table for the
2005 and 2012 FIS is shown in Table 1. We specified membership func-
tions for the inputs and outputs in 2012 and 2015 as shown in Fig. 6.
Three separate FISs were tested on a small area where an existing
bluff is known to have eroded during the study period (Fig. 7, panels
3A and 3B; Table 2). Each FIS varied in the range of slope or elevation
error values in each membership function. Slope and elevation error
values were modified based on checkpoint data. Net change results for
bluffs were compared to each other and also to the reported erosion
rate measured by Terrestrial Laser Scanning (TLS) for one bluff from an-
other study in the same area, 132 m3 y−1 (TrB1 in Day et al., 2013b),
which is not a perfect comparison because the time periods do not coin-
cide exactly, but is a useful comparison nevertheless. Net change on the
bluff using the chosen FIS was 223 m3 y−1 which is higher than the TLS
estimate (FIS 3 in Table 2). This discrepancy was expected because the
TLS estimates pre-date the extreme 2010 flood. The TLS estimates
were over a period from August 2007 toMay 2010 when themaximum
peak flow was only 9180 cfs in the Blue Earth River and 5610 cfs in the



Fig. 6. Ranges associated with each membership function for the parameters used to develop the final Fuzzy inference system (FIS) used in the analysis.
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Le Sueur River. From 2005–2012, peak flows exceeded or equaled these
numbers 6 of the 7 years in both rivers. We built FIS models using the
Matlab Fuzzy Logic Toolbox FIS file format (Jang and Gulley, 2009),
which is also compatible with the Geomorphic Change Detection soft-
ware (http://gcd.joewheaton.org) and posted our FIS files to the public
BitBucket FIS-DEM-Error Repository (https://bitbucket.org/pipbailey/fis-
dem-error-repository).
3.4. DoD error propagation and thresholding

Most DoD change detection analyses are based on principles of sim-
ple error propagation, and some form of thresholding to define a mini-
mum level of detection (minLoD) abovewhich calculated changes can be
assumed to be real and differentiated from noise (Passalacqua et al.,
2015). The three most common techniques are to define a spatially

http://gcd.joewheaton.org
https://bitbucket.org/pipbailey/fis-dem-error-repository
https://bitbucket.org/pipbailey/fis-dem-error-repository


Fig. 7. Final surface of spatially variable errormodel for Blue Earth County (panel 1). Eq. (1) in the text describes how this surfacewas calculated. For additional detail, two additional panels
are shown at finer scale and underlain by the 2012 hillshade model in areas also used to test the thresholding methods. Panels labeled 2 show the (A) spatially variable error model and
(B) orthophoto for the area used to test different values of minimum level of detection. Panels labeled 3 are of the area used to test different fuzzy inference systems.
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uniformminLoDas the threshold, use a propagated error value estimated
from independent estimates of DEM error as the minLoD (notionally
equivalent to 1σ), or threshold probabilistically at any chosen confi-
dence interval (Brasington et al., 2003; Lane et al., 2003; Wheaton
et al., 2010b; Bangen et al., 2014).

The process is automated within the GCD software, but from a
geoprocessing perspective; a propagated error surface is derived by
taking the sum in quadrature (square root of the sum of squares) of
an error surface for each individual DEM, where ‘surface’ refers to a ras-
ter product with a unique value for each pixel. Here, wewere interested
in comparing the impact of the spatially variable error (SVE) using an
FIS and spatially uniform error models on change detection in a consis-
tent fashion. Additionally, we chose to threshold probabilistically at a
95% confidence interval. In essence, probabilistic thresholding just



Table 2
Maximumvalues (minimum is 0 for each) and the range for eachmembership function for parameters in the three Fuzzy Inference Systems (FIS) developed; italics are used to indicate the
changes between each FIS; the commit number is listed for each of the three FIS for both years (FIS are stored in the FIS DEM Repository at: https://bitbucket.org/pipbailey/fis-dem-error-
repository).

Parameter Maximum Range of values for membership function Repository recorda

Low Medium High Extreme 2005 FIS 2012 FIS

FIS 1
2005 Point density, points per square meter 1.5 0.0–0.35 0.30–0.50 0.40–1.5 –

2047f9f 722110d

2012 Point density, points per square meter 5 0.0–1.25 1.0–2.5 2.0–5.0 –
Slope, degrees 90 0.0–15 10–25 20–90 –
Vegetation height (2005)b, meters 600 0.0–0.50 0.0–3.0 1.5–45 N40
Point cloud density ratio (2012) 1 0.0–0.15 0.10–0.45 0.40–0.85 0.75–1.0
Elevation error, meters 50 0.0–0.25 0.01–0.75 0.5–2 1.5–50

FIS 2
2005 Point density, points per square meter 1.5 0.0–0.35 0.30–0.50 0.40–1.5 –

71fb827 0379e2c

2012 Point density, points per square meter 5 0.0–1.25 1.0–2.5 2.0–5.0 –
Slope, degrees 90 0.0–12 8.0–45 30–90 –
Vegetation height (2005)b, meters 600 0.0–0.50 0.0–3.0 1.5–45 N40
Point cloud density ratio (2012) 1 0.0–0.15 0.10–0.45 0.40–0.85 0.75–1.0
Elevation error, meters 25 0.0–0.10 0.01–0.40 0.20–1.0 0.75–25

FIS 3
2005 Point density, points per square meter 1.5 0.0–0.35 0.30–0.50 0.40–1.5 –

953e684 44f4bb4

2012 Point density, points per square meter 5 0.0–1.25 1.0–2.5 2.0–5.0 –
Slope, degrees 90 0.0–12 8.0–45 30–90 –
Vegetation height (2005)b, meters 600 0.0–0.50 0.0–3.0 1.5–45 N40
Point cloud density ratio (2012) 1 0.0–0.15 0.10–0.45 0.40–0.85 0.75–1.0
Elevation error, meters 25 0.0–0.20 0.05–0.50 0.30–1.0 0.75–25

a Files are named ALS_Zerror_PD_Sldeg_VegHeight_WD.fis (2005) and ALS_Zerror_PD_Sldeg_VegDensity_WD.fis (2012).
b Vegetation heightwas the difference between thefirst return and bare-earth surface. The large range of values is a reflection of the poor classification and processing of thefirst return

surface. The data outside of the normal range of vegetation height (0–50 m) made up a small portion of the overall data set.
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defines a new minLoD by multiplying the propagated error values (on a
cell-by-cell basis) by a t-score. For example, a confidence interval of 95%
is achieved by multiplying the entire propagated error surface by a t-
value of 1.96 (roughly 2σ) to provide a threshold surface that allows
us to detect differences at a 95% confidence interval:

δDoD ¼ 1:96 � √ δzDEM12
2 þ δzDEM05

2� � ð1Þ

where δDoD can act as the minLoD threshold and is the propagated
error value, which corresponds with a ≥95% probability (i.e., 2σ, assum-
ing a two-tailed distribution) of being real change, and the δzDEM refers
to the individual DEM error estimates on a cell basis.

For the spatially variable FIS-based error estimates, the propagated
error term was calculated by taking the individual δzDEM on a cell-by-
cell basis, and δDoD was then calculated using Eq. (1). The final surface
is show in Fig. 7: panel 1 shows the entire county and panels 2A and
3A show smaller areas in more detail. For spatially uniform estimates,
we used the RMSE values from each year as the δzDEM. The sum in quad-
rature of the two RMSE values is ~20 cm (roughly 1σ), which is equiv-
alent to 39 cm when multiplied by 1.96. We also evaluated results
using spatially uniform minLoDs of 29 and 49 cm. The three values are
roughly equivalent to an 85%, 95%, and 98.5% confidence interval around
the original 20-cm estimate. We compare the results of these three
minLoDs on a smaller area within the county to show the effects of
changing the value (Fig. 7, panels A and B). We then compare results
from the 39-cm minLoD (20 cm with a 95% confidence interval, 2σ)
threshold to spatially variable error (SVE) threshold (also 2σ).

Visual inspection is a useful first step to evaluate the efficacy of the
various techniques to account for uncertainty. Deposition on the insides
ofmeander bends and erosion on the outside of every bend is consistent
with expectations, given the magnitude of the flood, and consistent
with field observations. There is also a large cutoff in the southern part
of this area, indicated by deposition in the old channel and severe ero-
sion cut across what was previously a floodplain. Fig. 8 includes six
panels showing (from top to bottom) the DoDc, SVE-DoDc (black
color used to indicate where we detected change), and a bar graph
(left column Fig. 8A–C) and results from three minLoDs (29, 39, and
49 cm) on the right column (Fig. 8D–F). Bright green colors on
Fig. 8D–F indicate areas where the minLoD threshold detected change
while the SVE threshold did not. Orange indicates areas where the SVE
threshold detected change but the minLoD threshold did not. Black
areas are where both analyses detected change. With a 29-cm thresh-
old, the minLoD approach greatly overestimates erosion on steeper, veg-
etated topography away from the channel. With a 49-cm threshold, the
minLoD approach is missing some real change that occurs near the chan-
nel, while still overestimating change away from the channel.

Generally, the bar graph (Fig. 8C) and panels on the right side
(Fig. 8D–F) indicate that as the uniform threshold value for error in-
creases, less change is mapped. The plots also show that for all three
uniform thresholds, more change is detected relative to the spatially
variable threshold. Note that the primary difference in the areas
where change was detected is within ravines in each of the minLoD
panels. Fig. 8D–F show each of the three minLoD values detected
change in the ravines not detected by the SVE model (Fig. 8B), likely
because of the high vegetation density and higher slopes in the ra-
vines. Where the SVE model detects change in ravines it is in the
channel area of those ravines, which is consistent with field observa-
tions, rather than on the slopes, as seen in the minLoD models
(Fig. 8D–F). Application of the 39- and 49-cm minLoD results in a fail-
ure to detect change along the banks (circled in Fig. 8E and clearly
visible in Fig. 8F) detected by the SVEmodel. The uniform application
of any minLoD over the entire area of analysis is likely to mask real
change (from the banks in this example) while also detecting change
that is not real (from the ravines in this example).

3.5. Final DoD processing and reporting

We created an analysis area of interest to focus on the portion of the
data set tied to potential geomorphic changes to the fluvial system. To
do this, we buffered the combined hydrolines by 200 m on either side
and thenmanually edited that file to also include all areas that appeared
in the 2009 orthophotos or in either DEM to be connected to the main

https://bitbucket.org/pipbailey/fis-dem-error-repository
https://bitbucket.org/pipbailey/fis-dem-error-repository


Fig. 8. Comparison of three error values for aminimum level of detection (minLoD) (29, 39, and 49 cm, panels D, E, and F, respectively) to the spatially variable error (SVE)model (panel B).
Bright green colors in panelsD–F show areaswhere theminLoDdetected change but the SVE did not. Orange colors show areaswhere the SVE threshold detected change but the minLoDdid
not. For the two smaller values for error (panels D and E), orange circles were drawn to more clearly show the results as the area is small. Raw, stripping-corrected DEM of Difference
results are in panel A and are provided for comparison. Panel C is a bar graph showing the results in common relative to unique results to each analysis. y-axis is on a log scale.
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channel. Inundated areas in either year were then removed. From that
area, we identified and eliminated anthropogenic features (e.g., gravel
pits, landscaping features, and road maintenance and construction)
that resulted in large amounts of change that do not contribute to the
sediment budget related to the efflux at the watershed mouth. The full
extent of the lidar coverage is 2590 km2, but all change results reported
are from within this 610 km2 final analysis area (maroon outline in
Fig. 1C).

Bluffs, ravines, and channelmigration andwidening have previously
been identified as major contributing sediment sources in the Le Sueur
River (Belmont et al., 2011). Bluffswere delineated by Day et al. (2013a)
and ravines were mapped by Gran et al. (2011). There are 275 ravines
delineated in the county, 76% ofwhich are locatedwithin the knickzone.
To quantify channel change within the limits of airborne lidar
(incapable of penetrating water), we first created a 100-m buffer on ei-
ther side of the combined hydrolines file (2005 and 2012 as one file).
From that file, areas delineated as bluffs or ravines were removed. We
refer to the remaining area as ‘banks and floodplain’.

Estimates of erosion and deposition from areas that were dry in both
years are the most accurate, and unless otherwise specified, we report
values from areas that were dry in both years. Estimates of change in
areas inundated in only one year have inherent error related to the
false-water surface elevation from the wet year, which is not real geo-
morphic change and is therefore eliminated from our sediment budget
numbers. Analysis of stream flow and stage during each flight indicates
that the water surface was ~1 m higher during the 2005 flight. Thus,
comparisons of areas that were inundated in both years are erroneous
and were eliminated from the analysis. Differences in areas that were
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inundated in one year will be biased, but still provide coarse estimates
of change. Areas that were dry in 2012 and inundated in 2005 are influ-
enced by the high flows in 2005 and therefore overestimate erosion and
underestimate deposition. Areas thatwere inundated in 2012 anddry in
2005 are almost exclusively places where channel erosion occurred be-
tween the flights. Yet, estimates in these locations slightly underesti-
mate erosion because the false-water surface in 2012 obscures the
channel bottom. The two hydroline files were combined to generate
one shapefile with areas of inundation in both years, dry in both years,
inundated in 2012 and dry in 2005, or dry in 2012 and inundated in
2005. We use this combined hydrolines shapefile to report coarse esti-
mates of change in areas that were inundated in either 2005 or 2012
and as an input parameter in the FIS. Because inundation was an input
parameter in the FIS, results from the spatially variable threshold only
include a small portion of change from inundated areas (see Fig. 8) so
erosion and deposition estimates for areas that were inundated in one
yearwere generatedusing the results from the spatially uniform thresh-
old of 39-cm (95% confidence interval on 20-cm).

4. Geomorphic results and interpretation

As we increase our capability to collect repeat HRT data on larger
spatial scales, so increases the challenge of quantifying and reporting
error in a robust and meaningful way. Our results demonstrate that ge-
neric error values reported by vendorsmay underestimate actual uncer-
tainty and do not capture the spatially variable nature of uncertainty
that is needed for meaningful geomorphic change detection. This prob-
lem can be lessened if approaches that aremore rigorous are required of
vendors, as discussed extensively by Passalacqua et al. (2015).

We first compare the results of an unthresholded DoD (essentially,
the raw, geoid-corrected data) to a thresholded DoD using a minLoD of
39-cm, which we refer to as Min-DoD.We also corrected for a stripping
problem detected in the DoD and applied the 39-cm minLoD (Min-
DoDc) and an SVE model (SVE-DoDc). All results are reported with a
95% confidence interval in Table 1. For the remainder of this document,
negative numbers, indicating erosion, are presented in brackets.

The DoD indicates over [33,164,800] m3 of erosion and
28,104,200 m3 of deposition from 2005 to 2012 (Table 1). This simple
calculation would suggest net erosion of [5,060,600 m3]. Simply apply-
ing the spatially uniform 39-cm minLoD (Min-DoD), erosion decreased
by 75% to [8,092,600] ± 3,300,000 m3 and deposition decreased by
85% to 4,459,200 ± 2,714,900 m3, indicating a net [3,633,400] ±
4,273,300 m3 of erosion (error includes zero, indicating results are not
significant). Note a direct subtraction of the two DEMs may approxi-
mate the results from a minLoD analysis, but the overall erosion and de-
position results are grossly overestimated. Also, as mentioned in
Section 3.2 (Horizontal uncertainty between DEMs), evidence of strip-
ping is clearly visible (Fig. 4). Applying the stripping correction reduced
estimates of erosion and deposition in the DoDc andMin-DoDc. Erosion
estimates from theDoDcwere reduced by about 25% to [24,281,300]m3

while deposition estimates were reduced by close to 15% to
23,535,800 m3. The slight difference in reduction brought estimates of
erosion and deposition closer together and reduced the net change esti-
mate substantially to just [745,600] m3 of erosion. Relative to the Min-
DoD, applying the spatially uniform 39-cm minLoD (Min-DoDc), esti-
mates of erosion, deposition and net change all decreased by around
10% to [7,418,300] ± 2,823,600 m3, 4,099,000 ± 2,462,400 m3, and
[3,319,300]±3,746,500m3, respectively (Table 1). The similar decrease
indicates the stripping correction more or less equally affected erosion
and deposition when we thresholded the results. However, with a spa-
tially uniform threshold, the error includes zero, and we are unable to
say there was significant change with 95% confidence.

Consideration of error is important in any study of geomorphic
change, but especially for an analysis on such a large scale. As the area
analyzed and heterogeneity of the topography increase, the potential
for incorporating erroneous estimates of erosion or deposition (or
missing real change) also increases. By spatially varying error, we ad-
dress error separately for each square meter pixel over the entire area
analyzed. The result (Table 1, Fig. 9) indicates erosion along the banks
and deposition along the insides of bends. Final estimates for the entire
area analyzed were [4,153,300] ± 2,176,200 m3 of erosion and
1,528,300 ± 985,700 m3 of deposition. Net change in the dry areas an-
alyzed was [2,625,100] ± 2,389,000 m3 of erosion for the 7-year study
period. In this case, the error on the net change does not include zero,
and we can say with 95% confidence that significant change has
occurred.

Visually, results of the SVE-DoDc indicate erosion and deposition in
areas we might expect (Fig. 9). Fig. 9A shows meander migration and
cutoffs, with erosion on the outside of bends and deposition on the in-
side bends, as expected and confirmed on air photos. Fig. 9B showsmul-
tiple examples in one area where we consistently observe erosion on
the outside of bends and deposition on the inside of bends. Fig. 9C
shows ravine erosion, where the upstream end of the ravine to the
west is eroding headward, which was confirmed in air photos and
field observation. The ravine to the north also shows headward erosion
and some deposition in the channel. The apparent, but dubious, erosion
and deposition patterns seen on the slopes of ravines in the Min-DoDs
have been eliminated in the SVE-DoDc (Figs. 8 and 9), primarily from
high uncertainty associated with high slope and dense vegetation.

Spatially varying error would have addressed the majority of the
stripping problem (data not shown), but actually applying the correc-
tion for stripping error before applying the SVE model provides even
better results that exclude the obvious overestimates of erosion and de-
position from the strips. Including erosion and deposition known to be
erroneous artificially inflates estimates of geomorphic change, which
is especially problematic over large areas. Also by spatially propagating
error, results are in line with our expectation; namely, erosion and de-
position occurred within a small buffer of the main channels and little
to no erosion occurred in the upland areas (Fig. 9). Belmont et al.
(2011) showed that only 2.9 mm of vertical erosion would occur
throughout the upland areas of the Le Sueur watershed as a result of
100,000 Mg y−1 of soil loss (well above the modern upland erosion
rate) for 150 years. So no widespread detectable change is expected in
our analysis.

4.1. Spatial patterns of change

In the previous section, we compared DoDs and provided estimates
of erosion, deposition, and net change for the analysis extent. In this sec-
tion, we provide estimates of erosion, deposition, and net change for
areas potentially targeted by land managers trying to address the
sources of eroded material. Near-channel sediment sources such as
banks and bluffs have been shown to be the main source of sediment
in the Le Sueur River basin (Belmont et al., 2011). Using the SVE-
DoDc, we calculated the amount of erosion and deposition from bluffs,
ravines, and floodplains and banks inside and outside of the knickzone
(Table 3).

We present the results of erosion in bluffs, ravines, and the bank and
floodplain area for the full county and segregated by location inside or
outside the knickzone. In areas delineated as bluffs in the entire county,
there was net erosion of [1,032,400] m3. Net erosion from ravines was
[31,900 m3]. The greatest erosion and deposition occurred in the area
delineated as banks and floodplains (net change of [2,585,100 m3]).
Kessler et al. (2012) differenced lidar from 2005 and 2009 and estimat-
ed [318,750 m3 y−1] of erosion from bluffs (referred to as ‘tall banks’ in
their analysis). Our analysis, which includes another three years and the
impacts of the major 2010 flood, indicates [147,500] m3 y−1 of erosion
from bluffs. We speculate that Kessler et al. (2012) may have
overestimated bluff erosion because they did not address systematic
biases caused by differences in geoid models or poor coregistration of
the 2005 flight lines (i.e., the stripping error). While Kessler et al.
(2012) did not report the geoid models used, they did detect a 6-cm



Fig. 9.DEMof Difference results after applying the spatially variable errormodel (SVE-DoDc) underlain by the aerial orthophoto from2013 (National Agriculture Imagery Program). Panels
are associated with the locations in the map on the top right and described further in text. (A) shows an area where meander migration and a cutoff occurred; (B) shows an example of
deep erosion on the outside of bends and shallow deposition on the inside of bends; and (C) shows an area of headcut erosion in the tops of ravines.
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bias, as observed (and rectified) in our study. The discrepancies high-
light the importance of independently assessing the errors between dif-
ferent vendors and survey techniques that may be contributing
systematic errors to a change detection analysis.

The area referred to as the actively incising knickzone is 260 km2

(see area outlined in blue in Fig. 1), which is 43% of the area analyzed,
and contributed 55% of eroded material. Net change within the
knickzone was [1,419,300] m3, including [2,171,600] m3 of erosion
and 752,300 m3 of deposition (Table 4). Net erosion was observed spe-
cifically in bluffs, banks/floodplains, and ravines. Bluffs contribute 58%
([827,200] m3) to the net eroded amount, while ravines contribute
Table 3
Erosion, deposition, and net geomorphic change results for the entire Blue Earth County
using threemethods of error analysis: none,minimum level of detection, and spatially var-
iable error; results from minimum level of detection and spatially variable error models
are probabilistic (95% confidence interval).

Erosion, in
cubic meters

Deposition, in
cubic meters

Net change, in
cubic meters

Raw (DoD) [33,164,800] 28,104,200 [5,060,600]

Minimum level of detection
(Min-DoD)

[8,092,600] ±
3,300,000

4,459,200 ±
2,714,900

[3,633,400] ±
4,273,300

Corrected for stripping
Raw (DoDc) [24,281,300] 23,535,800 [745,600]

Minimum level of detection
(Min-DoDc)

[7,418,300] ±
2,823,600

4,099,000 ±
2,462,400

[3,319,300] ±
3,746,500

Spatially variable error
(SVE-DoDc)

[4,153,300] ±
2,176,200

1,528,300 ±
985,700

[2,625,100] ±
2,389,000
only 3% ([46,100] m3). Net erosion in the bank and floodplain area in-
side the knick was [1,441,500] m3.

Outside the knickzone, our analysis indicates [1,981,700] m3 of ero-
sion and just 776,000 m3 of deposition, yielding net erosion of
[1,205,700] m3. Most of this change (81%) was in the bank and flood-
plain area ([1,511,500] m3 erosion, 367,900 m3 deposition, net erosion:
[1,143,600] m3). In comparison, bluffs only contributed [215,000 m3]
with just 9800 m3 of deposition, meaning net change of [205,200] m3.
Outside the knickzone, change in ravines was positive, 14,200 m3 of
net deposition.

Deposition might be difficult to accurately quantify for the entire
study area using any errormodel, because inmany areas, deposition oc-
curs in vertically small quantities. Inside the knickzone, the channel is
wider, bar deposits are relatively larger and actively changing, and ri-
parian vegetation tends to be farther outside of the channel area on
top of bluffs. Vegetation inside the floodplain is generally less dense.
Outside the knickzone, channels are still relatively narrow, bar deposits
are much smaller, and floodplains are also covered in dense vegetation.
Spatially uniform error models are insensitive to differences in vegeta-
tion density and are therefore more prone to miss real change in less
dense vegetation and incorporate erroneous change in dense vegeta-
tion. The SVEmodel is less likely to result in such errors because uncer-
tainty increases with vegetation density.

5. Summary

This study describes essential practices for supporting lidar-based
change detection, in which surveying and post-processing



Table 4
Erosion, deposition, and net change results segregated by area in the county; upland areas are not included in this list so the sum of bluffs, ravines, and bankswill not be equal to the totals.

Erosion area, square meters Deposition area, square meters Erosion, cubic meters Deposition, cubic meters Net change, cubic meters

Dry both years 2,570,200 1,793,200 [4,153,300] 1,528,300 [2,625,100]
Dry in 2005, inundated in 2012 734,100 11,000 [2,055,200] 7100 [2,048,200]
Inundated in 2005, dry in 2012 3,357,400 674,100 [4,105,200] 577,300 [3,527,900]
Bluffs 354,800 29,100 [1,110,500] 78,100 [1,032,400]
Ravines 70,700 43,600 [127,200] 95,300 [31,900]
Banks and floodplains 1,638,200 900,900 [3,347,900] 762,800 [2,585,100]

Inside knickzone
Bluffs 282,000 25,100 [895,500] 68,300 [827,200]
Ravines 56,400 28,900 [100,100] 54,000 [46,100]
Banks and floodplains 723,300 445,500 [1,836,400] 394,900 [1,441,500]
Total, inside knickzone 1,010,800 814,100 [2,171,600] 752,300 [1,419,300]

Outside knickzone
Bluffs 72,700 4000 [215,000] 9800 [205,200]
Ravines 14,300 14,700 [27,100] 41,300 14,200
Banks and floodplains 915,000 455,400 [1,511,500] 367,900 [1,143,600]
Total, outside knickzone 1,559,400 979,100 [1,981,700] 776,000 [1,205,700]
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discrepancies may introduce significant, systematic bias. The methods
and conceptual approach also have implications for other change detec-
tion studies using different topographic survey acquisition techniques.
Identification, quantification, isolation, and correction of systematic er-
rors is essential. We specifically addressed vertical bias by correcting
the geoidmodel. The geoidmodel is not always reported in themetada-
ta, but in our case it caused a systematic (and spatially variable) bias of
3–7 cm. We also detected erroneous east–west strips of erosion or de-
position caused by poor coregistration of 2005 flight lines. This problem
was resolved by generating an ad hoc stripping-correction surface. Our
comparisons show the consequences of ignoring potential issues that
may arise with older data collectionmethods. For the 2012 data, we de-
veloped a metric, cloud point density, to quantify uncertainty owing to
vegetation that uses the entire point cloud as it was collected and clas-
sified. As a result, this metric accounts for multiple layers of vegetation
and other potential barriers to successfully obtaining an accurate esti-
mate of the bare-earth elevation in the square meter represented by
each pixel. Where there is dense vegetation, the cloud point density
metric is close to 1 indicating that the above-ground point density is
much higher than the bare-earth point density.We suggest this is a bet-
ter metric than canopy height to characterize uncertainty associated
with vegetation because cloud point density captures various levels of
canopy and understory found in a vegetated area while canopy height
only represents the top layer of vegetation (canopy) found in an area.

Results from this analysis illustrate the value of considering the spa-
tial variability of error. We quantified uncertainty in a spatially variable
manner, accounting for heterogeneity in point density, slope, and vege-
tation height or density for each pixel analyzed. In our comparison of
spatially variable versus spatially uniform DEM error models on a sub-
section of the county, the uniformmodels produce inaccurate estimates
of erosion and deposition. Results from the spatially variable error
model indicated significant net erosion, while significant net change
(with 95% confidence) was not detected using uniform error models.
The spatial distribution of erosion and deposition patterns resulting
from the spatially variable errormodelwere consistentwithfield obser-
vations and can be physically explained.

Using the geoid- and stripping-corrected DoD, we compared three
methods of thresholding DoD results for the full 1980 km2 of the coun-
ty: no threshold, spatially uniform error (minLoD), and SVE. Estimates of
erosion and deposition from the analysis with no threshold were an
order ofmagnitude larger than estimates from the other two thresholds,
while net change was grossly underestimated. We compared three
values for a minLoD error model uniformly applied for the entire area
of analysis. We showed that smaller values for error detected erroneous
change, such as erosion on the slopes of the majority of ravines in the
study area. As the uniform error value increased, change on the slopes
of ravines was still erroneously detected; but real change along the
main channel was inappropriately eliminated. When we thresholded
the results using an SVE model, detected change agreed with field ob-
servations. Additionally, countywide estimates of net change from the
analysis with SVEwere within 10% of estimates from the statewide net-
work of stream gages, and results from bluffs and ravines closely match
estimates from a separate analysis for the Le Sueur watershed. We as-
sert that the accuracy of results of change detection increases when
data are treated rigorously in terms of correcting legacy data issues
(geoid model and stripping problem, in our example) and by applying
a probabilistic, spatially variable error model.
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