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We present a combined experimental and theoretical study of the primary and secondary
instabilities in a Kolmogorov-like flow. The experiment uses electromagnetic forcing with
an approximately sinusoidal spatial profile to drive a quasi-two-dimensional (Q2D) shear
flow in a thin layer of electrolyte suspended on a thin lubricating layer of a dielectric fluid.
Theoretical analysis is based on a 2D model (Suri et al. 2014), derived from first principles
by depth-averaging the full three-dimensional Navier-Stokes equations. As the strength of
the forcing is increased, the Q2D flow in the experiment undergoes a series of bifurcations,
which is compared with results from direct numerical simulations of the 2D model. The
effects of confinement and the forcing profile are studied by performing simulations that
assume spatial periodicity and strictly sinusoidal forcing, as well as simulations with
realistic no-slip boundary conditions and an experimentally validated forcing profile.
We find that only the simulation subject to physical no-slip boundary conditions and a
realistic forcing profile provides close, quantitative agreement with the experiment. Our
analysis offers additional validation of the 2D model as well as a demonstration of the
importance of properly modelling the forcing and boundary conditions.

1. Introduction

Fluid flows in two spatial dimensions have been the subject of substantial research
efforts in recent decades. For the greater part of the twentieth century, it was generally
considered that two-dimensional (2D) flows were merely a theoretical idealization with
limited practical relevance. This conception has changed drastically since the 1980s, when
experiments in thin electrolyte layers (Bondarenko et al. 1979), soap films (Couder 1984),
and liquid metals (Sommeria & Moreau 1982) demonstrated that nearly 2D flows can
indeed be realized in the laboratory. Today, experimental approximations of 2D flows are
widely employed as models of atmospheric and oceanic flows (Dolzhansky 2013; Boffetta
& Ecke 2012). Being theoretically and experimentally more amenable than their three-
dimensional (3D) counterparts, 2D flows have also served as platforms for studying new
phenomena such as turbulent cascades (Sommeria 1986; Tabeling et al. 1991), coherent
structures (Sommeria et al. 1988), and mixing (Haller & Yuan 2000).

Perhaps one of the best known examples of 2D flows is the one introduced by Andrey
Kolmogorov in 1959 as a mathematical problem for studying hydrodynamic stability
(Arnold & Meshalkin 1960). The Kolmogorov flow represents the motion of a viscous
fluid in two dimensions (we will refer to these as = and y) driven by a forcing that
points along the z-direction and varies sinusoidally in the y-direction. The fluid flow is
considered incompressible, V - u = 0, and is governed by the 2D Navier-Stokes equation,

du+u-Vu= —%Vp—l—vvzu—l—f. (1.1)
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Here, u = (ug,uy) is the velocity field, p is the 2D pressure field, and f = Asin(ky)%
represents the driving force with amplitude A and wavenumber . The parameters p
and v are the density and the kinematic viscosity of the fluid, respectively. Kolmogorov
flow has served as a convenient model for understanding a wide variety of hydrodynamic
phenomena in 2D, such as fluid instabilities (Meshalkin & Sinai 1961; Iudovich 1965; Kli-
atskin 1972; Nepomniashchii 1976), 2D turbulence (Green 1974), and coherent structures
(Armbruster et al. 1992; Smaoui 2001; Chandler & Kerswell 2013).

Practically realizable flows, however, are never strictly 2D. Experimental approxima-
tions of Kolmogorov flow have often been carried out in either shallow layers of elec-
trolytes (Bondarenko et al. 1979) or in soap films (Burgess et al. 1999), wherein geometric
confinement suppresses the component of velocity along one of the spatial directions (z).
The remaining two velocity components, however, generally depend on both extended
and confined coordinates, making the flow “quasi-two-dimensional” (Q2D). To account
for the dependence on the confined coordinate, Q2D flows in shallow layers have often
been modelled by adding a linear friction term to the 2D Navier-Stokes equation (1.1):

du+u-Vu= —EVp—HJVZu—au—i—f, (1.2)
p

where « is a constant. Here, u corresponds to the velocity field at the electrolyte-air
interface. The addition of this term was first suggested by Bondarenko et al. (1979) to
model a Q2D flow generated in a homogeneous shallow electrolyte layer. In such a flow,
the bottom of the fluid layer is constrained to be at rest because it is in contact with the
solid surface of the container holding the fluid. This no-slip constraint at the bottom of the
fluid layer causes a gradient in the magnitude of the horizontal velocity along the confined
direction z. Bondarenko et al. (1979) rationalized that the dissipation due to this shear,
for sufficiently shallow fluid layers, is captured by the linear friction term. In the context
of Q2D flows in electrolyte layers, this term has come to be known as “Rayleigh friction.”
Experimental flows in thin layers, and their 2D approximations employing equation (1.2),
are now commonly referred to as “Kolmogorov-like” when the forcing profile is nearly
sinusoidal. Note that linear friction models, similar to that in equation (1.2), have also
been employed to describe Q2D flows in liquid metals (Sommeria 1986) and soap films
(Couder et al. 1989; Burgess et al. 1999). The motivation behind the addition of the
friction term in these models is different from that in equation (1.2). In this article we
are only concerned with flows in shallow electrolyte layers.

Experimental realizations of Q2D flows in recent years have employed two-fluid-layer
setups: either a setup with miscible layers comprised of a heavy electrolyte fluid (salt
water) beneath a lighter nonconducting fluid (pure water) (Marteau et al. 1995; Paret
& Tabeling 1997; Kelley & Ouellette 2011), or a setup with immiscible layers comprised
of a heavy dielectric fluid beneath a lighter electrolyte (Rivera & Ecke 2005; Akkermans
et al. 2008, 2010). The rationale behind these modifications was that in addition to
confinement, density stratification and immiscibility should enhance two-dimensionality
in the top layer. Theoretical models of Q2D experimental flows realized in stratified
layers of fluids, however, have not accurately modelled the effect of inhomogeneity in fluid
properties as well as the gradient in the magnitude of horizontal velocity u(z,y) along
the confined direction z. Consequently, experiments were compared with simulations
based on the 2D model (1.2) with empirically estimated parameters (Jittner et al. 1997;
Boffetta & Ecke 2012).

To address this deficiency, Suri et al. (2014) have investigated the variation in the hor-
izontal velocity v(z,y, z,t) along the confined direction z for a stratified two-immiscible-
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layer setup. Following Dovzhenko et al. (1981), the Q2D velocity was approximated as
v(z,y,2,t) = P(z)u(z,y,t) = P(2) [uz(z,y, )X + uy(z, 9, £)§] , (1.3)

where u(z,y,t) corresponds to the 2D velocity field at the electrolyte-air interface and
P(z) models the variation of the horizontal velocity along z. By substituting the form of
velocity in equation (1.3) into the 3D Navier-Stokes equation and integrating along the
z-direction, the following modified version of equation (1.2) was derived:

du+ pu-Vu= —in—I— vV — au +f. (1.4)
p

In the above equation f is the depth-averaged force density and the parameters 3, p, v,
and « are given by:

B fuh pP%dz
foh pPdz

. fuh pPdz _ foh pPdz _H (%)z=0
B , P= L V= Tk , a=— SR (1.5)
Jo pPdz Jo pPdz
where h is the total thickness of the two fluid layers. The vertical profile P(z) is very
weakly dependent on the horizontal flow profile u(z,y,t). The profile P(z) that corre-
sponds to a sinusoidal horizontal flow (described as the straight flow below) was computed
and validated against experimental measurements in Suri et al. (2014).

The prefactor 8 reflects the change in the mean inertia of the fluid layer due to the
variation P(z) of the horizontal velocity in the vertical direction. Since P(z) # 1 in
experiments, [ # 1, which distinguishes equation (1.4) from all previous 2D models of
flows in shallow electrolyte layers. For multi-layer setups, the coefficients 3, p, v, and
account for both the inhomogeneity in fluid properties as well the vertical profile P(z),
as suggested by equation (1.5). Equations (1.1) and (1.2) can be treated as special cases
of equation (1.4) with suitable choices of the parameters a and 5. Furthermore, equation
(1.2) can also be obtained from equation (1.4) by rescaling the variables (cf. Appendix
A).

In this article we study instabilities of a Q2D Kolmogorov-like flow realized in a setup
with two immiscible fluid layers and compare experimental results with direct numerical
simulations (DNS) of equation (1.4). Most previous studies of Kolmogorov-like flow that
compared experiments with theoretical predictions assumed a perfectly sinusoidal shear
flow on an unbounded or periodic domain (Bondarenko et al. 1979; Dovzhenko et al. 1984;
Batchaev & Ponomarev 1989; Krymov 1989; Thess 1992; Dolzhanskii et al. 1992). While
some of these studies reported quantitative agreement between theory and experiment
in regards to the primary instability, none were able to match simultaneously both the
critical Reynolds number and the critical wavenumber. Even matching one of these re-
quired treating the Rayleigh friction coefficient « as an adjustable parameter. To address
these shortcomings, we have performed a systematic investigation of the effects of lateral
confinement using numerical simulations with three different sets of boundary conditions.
Furthermore, we investigate how the observed flow patterns and their stability are af-
fected by the deviations in the forcing profile from perfect periodicity in the extended
directions and by the variation of the forcing profile in the confined direction. Finally,
we compare the results of numerical simulations with the experimental observations for
the secondary instability, which introduces time-dependence into the flow.

Given that none of the previous models of Q2D flows were quantitatively accurate, the
availability of an experimental setup and a matching 2D model that are in quantitative
agreement is quite important for a number of reasons. In particular, this allows us to make
substantial progress (Suri et al. 2017) in understanding the role of coherent structures in
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turbulent flows (Hussain 1986; Kawahara et al. 2012; Gallet & Young 2013; Chandler &
Kerswell 2013; Haller 2015). Recent advances in transitional flows and weak turbulence
rely on a deterministic, geometrical description where the evolution of the flow is guided
by nonchaotic, unstable solutions of the Navier-Stokes equation, often referred to as exact
coherent structures (ECS) (Nagata 1997; Waleffe 1998; Kerswell 2005; Eckhardt et al.
2007; Gibson et al. 2009). The bulk of numerical studies have explored the role of ECS in
3D flows simulated on periodic domains with simple geometries, such as pipe flow, plane
Couette flow, and plane Poiseuille flow.

However, experimental evidence for the role of ECS in 3D flows has been scarce (Hof
et al. 2004; de Lozar et al. 2012; Dennis & Sogaro 2014), in part due to technical limita-
tions in obtaining spatially and temporally resolved 3D velocity fields. Q2D flows, on the
other hand, can be quantified using 2D planar velocity fields which are relatively easy to
measure. Recently, Chandler & Kerswell (2013) and Lucas & Kerswell (2014, 2015) have
identified dozens of ECS in numerical simulations of a weakly turbulent 2D Kolmogorov
flow, governed by equation (1.1) with periodic boundary conditions which, however, do
not describe flows that can be realized in experiments (Bondarenko et al. 1979; Dolzhan-
skii et al. 1992; Suri et al. 2014). Hence, the analysis presented herein should provide the
much needed foundation for further studies of 2D turbulence which focus on experimental
validation of theoretical predictions, building on the results of Suri et al. (2017).

This article is organized as follows. In §2, we describe the experimental setup employed
to generate a Q2D Kolmogorov-like flow. In §3, we introduce a realistic model of the
forcing in the experiment and discuss different types of lateral boundary conditions which
are used to study the effects of confinement theoretically. In §4, we compare the flow fields
obtained from experimental measurements with those from the numerical simulations for
different flow regimes and characterize the bifurcations associated with increasing the
forcing strength. In §5, we discuss how the nature of the primary instability depends on
the lateral boundary conditions. Conclusions are presented in §6.

2. Experimental Setup

We generate a Q2D Kolmogorov-like flow in the experiment using a stratified setup
with two immiscible fluid layers, first introduced by Rivera & Ecke (2005). In this con-
figuration, a lighter electrolyte is suspended on top of a denser dielectric, which serves
as a lubricant between the electrolyte layer and the solid surface at the bottom of the
container which holds the fluids. The fluid layers are set in motion using Lorentz forces
resulting from the interaction of a direct current passing through the electrolyte and a
spatially varying magnetic field.

We use a magnet array consisting of 14 NdFeB magnets (Grade N42) to generate a
magnetic field that varies roughly sinusoidally along one direction, approximating the
forcing in the Kolmogorov flow. Each magnet in the array is 15.24 cm long and 1.27 cm
wide, with a thickness of 0.32 4= 0.01 cm. The magnetization is parallel to the thickness
dimension, with a surface field strength of about 0.2 T. The magnets are positioned side-
by-side along their width to form a 15.24 cm x (14 x 1.27 cm) x 0.32 cm array such that
the adjacent magnets have fields pointing in opposite directions, normal to the plane of
the array. This magnet array is placed on a flat aluminum plate of dimensions 30.5 cm
x 30.5 cm x 1.0 cm, and rectangular pieces of aluminum with the same thickness as the
magnets (0.32 £ 0.02 cm) are placed beside the magnet array to create a level surface.
Manufacturing imperfections in the individual magnets and the aluminum siding result
in a surface which is not adequately smooth. Hence, a thin glass plate measuring 25.4
cm X 25.4 cm in area with a thickness of 0.079 4- 0.005 cm is placed atop the magnets
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Figure 1: A schematic diagram of the two-immiscible-layer experimental setup for gen-
erating Kolmogorov-like flow viewed (a) from above and (b) from the side. The vectors
J, B, and F denote, respectively, the directions of the electric current, magnetic field,
and the resulting Lorentz force. The flow is bounded by two end walls, two side walls
(electrodes), and a no-slip bottom surface, while the top surface is a free electrolyte-air in-
terface. This container is mounted on an aluminum plate which is levelled and submerged
in a water bath that is temperature-regulated such that the electrolyte is maintained at
23.0 £ 0.2°C.

and siding to provide a uniform surface. A thin layer of black, adhesive contact paper
(with approximate thickness 0.005 cm) is placed on top of the glass plate to serve as
a dark background for imaging. The surface of the contact paper serves as the bottom
boundary for the fluids. We place the origin of our coordinate system at this height and
the lateral centre of the magnet array, with the z-coordinate aligned with the magnets’
longest side, the y-coordinate pointing in the direction of the magnet array periodicity,
and the z-coordinate in the vertical direction. A schematic diagram is shown in figure 1.

Rectangular bars of acrylic are affixed directly onto the contact paper to create the
lateral boundaries of the container that will hold the fluids. Parallel to the y-direction,
two bars are placed at a distance of 17.8 cm apart, centred about the origin. These solid
boundaries for the fluid are henceforth referred to as the “end walls.” Similarly, running
parallel to the z-direction, two electrodes mounted on rectangular bars of acrylic are
placed at a distance of 22.9 cm, symmetrically relative to the origin. These boundaries
are henceforth referred to as the “side walls” and are used to drive the current through
the electrolyte. The placement of the end walls and side walls leaves a buffer region of
dy = 1.3 cm and dy = 2.5 cm, respectively, between the edge of the magnet array and
these solid boundaries.

The aluminum plate upon which the magnets are mounted is supported by three
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screws, which are adjusted to level the system. The interior of the container is filled with
122 4+ 4 mL of a dielectric fluid and 122 4 2 mL of an electrolyte to form two immiscible
layers that are 0.30 &= 0.01 cm and 0.30 4= 0.005 cm thick, respectively. The dielectric
fluid used is perfluorooctane, which has a viscosity of pg = 1.30 mPa-s and a density of
pa = 1769 kg/m? at 23.0°C. The electrolyte fluid is a solution consisting of 60% 1 M
copper sulfate solution and 40% glycerol by weight. The electrolyte’s viscosity is p, = 5.85
mPa-s and the density is p, = 1192 kg/m? at 23.0°C. Note that a large viscosity ratio
te/tta = 4.5 has been chosen to enhance the two-dimensionality of the electrolyte, as
described by Suri et al. (2014). A small amount of viscosity-matched surfactant is added
to the electrolyte to lower the surface tension, and a glass lid is placed on top of the
container to limit evaporation.

A direct current, which serves as the control parameter, is then passed through the
electrolyte; the resulting current density J ranges from about 10 to 40 A/m? across the
different runs. The interaction of this current with the spatially alternating magnetic
field B results in a spatially alternating Lorentz force F which drives the electrolyte
(cf. figure 1 (a)). The viscous coupling between the electrolyte and the dielectric fluids
sets the dielectric fluid in motion as well. Since passing a current through a resistive
conductor (the electrolyte) results in Joule heating, a calibrated thermistor is placed in
the corner of the fluid domain to monitor the fluid temperature, and the aluminum plate
is immersed in a temperature-controlled water bath. The water bath is regulated such
that the temperature of the electrolyte is maintained to 23.0 4= 0.2°C. By limiting the
temperature fluctuations, the associated change in viscosity of the fluids is kept to a
minimum.

For flow visualization, we add hollow glass microspheres (Glass Bubbles K15) man-
ufactured by 3M, sieved to obtain particles with mean radius 24.5 + 2 pym and mean
density 150 kg/m3. Being lighter than the electrolyte, the microspheres stay afloat at the
electrolyte-air interface for the duration of the experiment. The microspheres are illumi-
nated with white light emitting diodes placed near the end walls, outside the container
holding the fluids. The flow is imaged at 15 Hz with a DMK 31BU03 camera manufac-
tured by The Imaging Source, placed directly above the setup. This camera has a CCD
sensor with a resolution of 1024 x 768 pixels, which results in an adequate resolution of
about 53 pixels per magnet width. The flow velocities are calculated using the PRANA
particle image velocimetry (PIV) package (Eckstein & Vlachos 2009; Drew et al. 2013).
This software employs a multigrid PIV algorithm that deforms images to better resolve
flows with high shear. The velocity field is resolved on a 169 x 126 grid, with about 9
points per magnet width.

For the experimental measurements listed above, we obtain the following depth-averaged
values for the parameters in equation (1.4): a = 0.064 s™!, B = 0.83, v = 3.26 x 107
m?/s, and p = 976 kg/m>. These parameters were computed using the vertical profile
P(z) that corresponds to the strictly sinusoidal flow (Suri et al. 2014). The complexity of
the flow in both the experiment and simulation is characterized by the Reynolds number,

which we define as:

Uw
Re = » (2.1)
where w = 1.27 c¢m is the width of one magnet and U = /(u - u) is the measured root-
mean-square (rms) velocity, where (-) denotes spatial averaging over a sub-region with
dimensions 10.16 cm x 10.16 cm at the centre of the magnet array. Note that from this
point on, unless noted otherwise, the characteristic length scale w, velocity scale U, and
time scale w/U will be used for nondimensionalization.
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3. Numerical Modelling

In this section we present a model of the magnetic field generated by the finite array
of permanent magnets in the experiment. We then introduce three types of boundary
conditions used in our numerical simulations of the flow.

3.1. Modelling the Magnetic Field

In the discussion so far, we have not addressed an important question of how the 2D forc-
ing function f in equation (1.4) relates to the 3D forcing F in the experiment. For a 2D
Kolmogorov flow, the forcing f is sinusoidal, by definition. However, for Kolmogorov-like
flows realized in electromagnetically driven shallow layers of electrolyte, f needs to be
computed from the 3D Lorentz force F arising from the interaction of the magnetic field
B produced by a finite magnet array with a current density J (Suri et al. 2014). The
current density is easily calculated from geometrical considerations, but the magnetic
field generated by the array of permanent magnets is quite complicated. For J = J¥,
the Lorentz force density at any location (z,y, z) within the electrolyte layer is given by
F=JxB=JB,x— JB,7. Here, B; and B, are the - and z-components of the mag-
netic field, respectively, which vary along all three coordinates x, y, and z. Experimental
measurements show that the typical value of B, is less than 3% of the value of B, at any
given location within the electrolyte. Furthermore, the vertical component of the Lorentz
force along with the gravitational force will be balanced by the vertical gradient of the
pressure. Hence, the Lorenz force density for all practical purposes can be approximated
as F = JB,X. One can then compute f using the expression:

"B d
f — i / Z(I) y'.l .Z) zﬁ, (3‘1)
P ha + he
ha

where h, and hy are the thicknesses of the electrolyte and dielectric layers, respectively.

The black symbols in figure 2 (a) show the experimental measurements of B, along the
line z = 0, passing above the centre of the magnet array at two different heights. Clearly,
the magnetic field profile deviates significantly from that of a pure sinusoid. Furthermore,
one cannot ignore the fringe fields near the edges of the array. To obtain a magnetic
field profile that closely resembles the one in the experiment, one could measure the
z-component of the magnetic field (B;) across the entire flow domain at various heights
above the magnet array. Using the measured field, one could then compute the depth-
averaged forcing profile using equation (3.1) (Suri et al. 2014). However, since measuring
B, on a 3D grid is an extremely tedious process, we circumvent the labour by numerically
modelling the magnet array as described below.

The magnets in the array are arranged such that adjacent ones have magnetization
pointing in opposite directions, along +Z. To obtain a magnetic field that closely resem-
bles the one due to this array, we model each magnet as a uniformly magnetized medium,
i.e., as a 3D cubic lattice of identical dipoles, each with a moment mZ. Changing the sign
of m across adjacent magnets accounts for the alternating direction of magnetization.
The magnetic field at any location (z,y, z) above the array is then approximated using
the linear superposition of the field contribution from all of the dipoles modelling the
array. Hence, we refer to this model as the “dipole summation.” Since the strength of
the dipole m cannot be measured experimentally, a single scaling parameter is calculated
from a least-squares fit with the experimental measurements, taken at two heights. The
rescaled dipole summation magnetic field is shown in figure 2 (a) (red lines), along with
the experimental measurements of B, (black symbols), corresponding to the line = =0
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(b)

Figure 2: The z-component of the magnetic field, B,, (a) at the longitudinal
centre of the domain (r = 0) and (b) along the magnet centrelines at y =
+{0.5,1.5,2.5,3.5,4.5,5.5,6.5}. In (a), the experimental measurements at a height z =
0.265 (just above the dielectric-electrolyte interface) and at z = 0.438 (just below the
electrolyte free surface) are shown, respectively, as open squares and filled circles. In (b),
the black symbols indicate the experimental measurements at a height z = 0.438 along
the magnet centrelines. A least-squares fit has been performed using the data in (a)
to determine the scaling factor for the dipole summation; the scaled dipole summation
magnetic field is shown as the red lines. The experimental uncertainties are the size of
the symbols or smaller.

at heights z = 0.265 and z = 0.438. Figure 2 (b) shows the magnetic field comparison at
z = 0.438 along the magnet centrelines. Note that the electrolyte layer in the experiment
is bounded by the planes z = 0.236 and z = 0.472. Hence, we compute the magnetic
field B, (z,y, z) using the dipole summation at various heights, in steps of 0.0197, in the



Bifurcations in a Q2D Kolmogorov-Like Flow 9

region 0.236 < z < 0.472 and depth-average it using a discrete version of the expression
(3.1).

3.2. Boundary Conditions for Direct Numerical Simulations

In the experimental Kolmogorov-like flow, vertical solid walls serve as the lateral bound-
aries, resulting in a no-slip boundary condition for the velocity. However, for reasons
of analytical and computational feasibility, Kolmogorov flow has been studied almost
exclusively using unbounded or periodic domains. Neither an infinite lateral extent nor
periodicity offer a realistic representation of the effect of boundary conditions in the ex-
periment, as far as the flow’s structure and its stability are concerned. To explore the
role of boundaries, we compare the experiment to numerical simulations using computa-
tional domains with increasing degrees of confinement. The three different computational
domains we study are described below.

eDoubly-Periodic Domain: This computational domain is chosen to coincide with the
central 8w x 8w region of the experimental domain (|z| < 4 and |y| < 4 in nondimensional
units). The simulated flow is constrained to be periodic in both the longitudinal and
transverse directions, i.e., u(z = —4,y) = u(zr = 4,y) and u(z,y = —4) = u(z,y = 4).
Along the transverse direction it spans a width equaling that of 8 magnets. The 2D
forcing profile f = f;(y)X over this doubly-periodic domain is constructed from the
depth-averaged magnetic field presented in §3.1 by retaining only the two dominant
Fourier modes, sin(ky) and sin(3ky), along the y-direction, where £ = 7 in dimensionless
units. Along the z-direction the profile is uniform: f.(y) = 1.05sin(xy) + 0.05sin(3xy).

oSingly-Periodic Domain: This computational domain coincides with the region |z| <7
and |y| < 4. The longitudinal dimension is the same as that of the experiment, while
the transverse one spans a width equaling that of 8 magnets, like in the doubly-periodic
domain. No-slip boundary conditions are imposed at the end walls, i.e., u(z = +7,y) =
0, while periodic boundary conditions are imposed along the transverse direction, i.e.,
u(z,y =4) = u(z,y = —4). The 2D forcing profile f = f;(z, y)X over this singly-periodic
domain is constructed as a product of two one-dimensional profiles f.(z,y) = x(z)¥(y).
Along the y-direction the profile is once again constructed by retaining only two dominant
Fourier modes of the depth-averaged magnetic field, 1(y) = 1.05sin(ky) + 0.05 sin(3xy).
Along the z-direction the profile x(z) is chosen to be the depth-averaged magnetic field
profile from the dipole summation along the magnet centreline ¥ = 0.5. We note that the
effect of transverse confinement has been studied by Thess (1992), and therefore is not
investigated here separately.

eNon-Periodic Domain: This computational domain is identical to the experimental one
in both lateral dimensions, i.e., |z| < 7 and |y| < 9, with no-slip boundary conditions
imposed at both the end walls and side walls, i.e., u(z = +7,y) = 0 and u(z,y = £9) = 0.
As mentioned in §3.1, the forcing over this domain is computed by depth-averaging the
dipole summation.

To compare the experimental observations with those predicted by equation (1.4) with
the three types of boundary conditions described above, we have performed direct numer-
ical simulations. The flow over the doubly-periodic domain is simulated using a pseudo-
spectral method in the vorticity-stream function formulation, as described in Mitchell
(2013). This simulation is henceforth referred to as the “doubly-periodic simulation,”
abbreviated DPS. For the singly-periodic and the non-periodic domains, numerical sim-
ulations have been performed using a finite-difference scheme, described in Armfield &
Street (1999). These simulations are hereafter referred to as the “singly-periodic sim-
ulation” (SPS) and the “non-periodic simulation” (NPS), respectively. Details of the
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spatiotemporal discretization and the integration schemes employed in all the numerical
simulations can be found in Appendix B.

4. Comparison of Experiment and Simulations

In this section we present the results of our comparison between the experiment and
the numerical simulations on the three domains described above. First, we discuss the
straight uniform flow found at lower Reynolds numbers, with a special emphasis on
the effect of boundaries. We then perform linear stability analysis to demonstrate that
equation (1.4) describes the primary instability more accurately than equation (1.2) on
an unbounded domain, but still substantially underpredicts the experimentally observed
critical Reynolds number. Next, we describe and compare the steady flow states found
in the experiments and simulations above the primary instability. Finally, we discuss the
secondary instability which gives rise to a time-periodic flow.

4.1. Straight Flow

For weak driving, the flow mimics the forcing closely, with spatially alternating bands
of fluid flow along the Z+x-directions, as can be seen in figure 3 for Re = 8.1. In this
figure, black vectors represent the velocity field u and the colour indicates the vorticity
w = (V x u) - 2. For the experiment (figure 3 (d)), the y-component of the velocity
measured in the central region of the domain is close to zero. However, there are regions
of strong recirculation near the end walls, characterized by a nonzero y-component of
velocity. A closer inspection of the flow shows a slight tilt in the alignment of the flow
bands. This tilt is due to the global circulation, resulting from confinement and the fluid
flowing in opposite directions over the end magnets at y = +6.5. Figures 3 (a) and (b)
show the straight flows found in the DPS and SPS. It can be seen that flow fields in the
DPS and SPS reproduce the experimental flow qualitatively away from the lateral walls.
Futhermore, the SPS captures the turnaround flow near the end walls. However, neither
the SPS nor the DPS displays the tilt of the flow bands observed in the experiment since
the periodic flows are devoid of global circulation. In contrast, the NPS generates a flow
field that looks indistinguishable from the experimental one (cf. figure 3 (c)).

For a quantitative description of the straight flow profile, we have plotted in figure 4 (a)
the longitudinal component uS*F of the velocity along the line z = 0 in the experiment.
The location of this cross section is indicated by the vertical dashed line in figure 3
(d). The difference in u; between the experiment and the numerical simulations along
this line is shown in figure 4 (b). As can be seen, the DPS and SPS, which are only
defined for |y| < 4, show systematic deviation from the experiment as high as 18% since
they do not capture global circulation. In comparison, the NPS agrees to within about
5% over the same region, with no clear systematic deviation. The disagreement between
the experiment and NPS in this region, we believe, is a result of the dipole summation
not accounting for the variation in the strength of each individual magnet. Closer to
the boundaries, at y =~ 7 and y = —6, the largest difference between the NPS and the
experiment is around 12%. The origin for this error is quite subtle and we shall defer its
analysis to Appendix C.

The experimental longitudinal velocity component uS*P at y = —0.5 (along a central
magnet centreline) is shown in figure 4 (c). The very slight asymmetry in the longitudinal
velocity is a result of the global circulation. In contrast, the flow in the DPS is perfectly
uniform and thus does not capture this asymmetry, as can be seen from the plot of its
difference with the experimental profile in figure 4 (d). The SPS, which is defined all the
way to the end walls, also does not capture this asymmetry due to the lack of global
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Figure 3: Straight flow fields at Re = 8.1 with a = 0.064 s~!, 3 = 0.83, and v =
3.26 x 107% m? /s for the (a) DPS, (b) SPS, (c) NPS, and (d) experiment. The dashed
lines in (d) indicate the locations of velocity profiles in the experiment that are compared
to the simulations. The vorticity colour scale plotted for (a) also applies to (b-d). The
velocity vectors are downsampled in each direction by a factor of 8 for the simulations
and 4 for the experiment.

circulation. The NPS produces the closest agreement: the corresponding flow displays
the asymmetry observed in the experiment, with no significant systematic deviation. In
summary, the NPS succeeds in capturing the effects of confinement in the experiment
with good accuracy, while the DPS and SPS show significant systematic deviations.

4.2. Linear Stability Analysis of the Straight Flow
As the strength of the forcing increases, the flow in the experiment undergoes a qualitative
change at Re, = 11.07 £ 0.05, with uniform flow bands (cf. figure 4 (c)) developing
modulation that eventually gives rise to distinct stationary vortices. Hence, we shall
refer to this flow as the “modulated flow.” Several previous experimental studies have
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Figure 4: Profiles of the longitudinal velocity and longitudinal velocity differences at
Re = 8.1 with a = 0.064 s71, 8 =0.83, and v = 3.26 x 1075 m?/s. (a) u®P as a function
of y at the longitudinal centre (z = 0), (b) the difference between the longitudinal
velocity in the simulations and the experiment, u$™ — uf®P, as a function of y at the
longitudinal centre (z = 0); note that the curves corresponding to the DPS and SPS
are virtually indistinguishable, (c) u%*P as a function of x at the centreline of a middle
magnet (y = —0.5), and (d) the difference between the longitudinal velocity of the
simulations and the experiment, u$"™ — uS*P, as a function of = at the centreline of a
middle magnet (y = —0.5); note that the curves corresponding to the DPS and SPS
are virtually indistinguishable in the region —4 < z < 4, where the DPS is defined.

Experimental uncertainties are the size of the symbols or smaller.

reported this transition and have characterized it using the critical Reynolds number
(Ret®) and wavenumber (kE*P) of the modulation (Bondarenko et al. 1979; Obukhov
1983; Batchaev & Dowzhenko 1983). In our experiments, the wavenumber just above
this transition was measured to be ki*F = 0.50k, where £ is the wavenumber associated
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with the forcing. In virtually all previous studies, theoretical estimates for these critical
parameters have been obtained by using equation (1.2) and modelling the straight flow
in experiment as a strict sinusoid u, o sin(ky); the flow stability is then analyzed with
respect to perturbations du(y)e’*® in the transverse component of the velocity. In this
section, we revisit this analytical approach for equation (1.4) to provide estimates for
the critical parameters. Many previous studies used a different nondimensionalization,
which corresponds to setting the nondimensional forcing wavenumber & to unity. To make
comparison easier, we will introduce a scaled wavenumber ¢ = k/x which corresponds to
the convention used in those studies.

The strictly sinusoidal straight flow governed by equation (1.4) on an unbounded do-
main becomes unstable with respect to perturbations with wavenumber g above the
Reynolds number Re = Re,(g), which to a very good accuracy is given by:

Ren(q) = %%\/8%32 (@+-5) 1+ +-5) (4.1)

This expression was computed by linearizing equation (1.4) around u, and calculating
its stability with respect to perturbations including three dominant modes,

Ju(y)eikz — Z Ene“(“y"'q:). (4.2)
n=—1,0,1

A detailed discussion of the stability analysis and the analytical expression for the neu-
tral stability curve, similar in form to that in equation (4.1), can be found in Appendix
B of Dolzhansky (2013). The critical Reynolds number Re, = min, Re,(q) and the cor-
responding critical wavenumber k. = kg, computed using the expression (4.1) can be
compared with experimental observations. It is worth noting that this linear stability
analysis is based on a purely sinusoidal forcing profile which does not contain any har-
monics. Hence, this is one source of discrepancy between these analytical results and the
experiment /simulations discussed below, whose forcing profiles are more complicated.

The neutral stability curve (blue dashed line) which corresponds to the experimental
values of parameters «, 3, and v is shown in figure 5. The minimum of this neutral
stability curve yields a critical Reynolds number Re. = 9.16 and an associated critical
wavenumber g, = 0.465. The black dot on the plot indicates the critical values Ref*™P =
11.07 and ¢2*P = 0.50, corresponding to the instability we observe in the experiment.
The relative difference (Ret™ — Re,)/ReS™ between the theoretical estimate for the
critical Reynolds number and that measured in experiment is about 17%. The critical
wavenumber, however, is in better agreement with the experimentally measured one,
with a 7% relative error.

While the critical Reynolds number obtained from the linear stability analysis clearly
disagrees with the experimentally observed one, it is still a significant improvement over
analytical estimates for a flow modelled using equation (1.2), which corresponds to setting
B =1 in equation (1.4). The corresponding neutral stability curve is indicated by the
green dot-dashed line in figure 5. From equation (4.1) it can be seen that the entire neutral
stability curve scales as 1/3. This implies that the critical wavenumber (g, = 0.465) is
independent of 3, while the predicted critical Reynolds number for 8 =1 is Re, = 7.60.
This is a 31% discrepancy with the experimental value, which is comparable to the 30%
discrepancy reported by Bondarenko et al. (1979) in a study based on equation (1.2).

As we discussed previously, the parameter 8 describes the effect of the vertical variation
in the magnitude of the horizontal velocity on the effective inertia and nonlinearity of the
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Figure 5: Neutral stability curves (4.1) describing the primary instability. The blue
dashed line corresponds to a = 0.064 s~! and 8 = 0.83, while the green dot-dashed line
corresponds to a = 0.064 s~! and § = 1.0. The measurement from the experiment (NPS)
is plotted as a black dot (red square); note that the uncertainties in Re, are smaller than
the size of the symbols. In all the cases, v = 3.26 x 10~% m?/s is held constant.

flow. Equation (1.2) does not account for this effect, so it is natural that its predictions
are substantially less accurate.

4.3. Modulated Flow

Figure 6 (a-d) shows the modulated flow fields corresponding to the DPS, SPS, NPS, and
experiment, respectively, at Re = 14. At this Reynolds number, the modulated flow is
well developed and is visually quite distinct from the straight flow. The counterclockwise
global circulation in the experiment strongly affects the alignment of the vortices (see
figure 6 (d)) as can be seen by comparing the modulated flows in the DPS and SPS with
the relevant regions of the experimental flow. Unlike the DPS and SPS, the flow field in
the NPS captures the features observed in the experiment remarkably well. This unam-
biguously demonstrates the importance of properly modelling the confinement effects in
both the longitudinal and the transverse direction to reproduce the features of the flow
in the experiment.

The onset of the modulated flow is characterized by the appearance of the transverse
component u, of the velocity throughout the flow domain. As the driving is increased,
the magnitude of u, also increases. A bifurcation diagram characterizing the transition
from the straight to the modulated flow is shown in figure 7 (a). We use the spatial
mean square transverse velocity, (ug), as the order parameter and plot it as a function
of Re. The spatial average is computed over the central region |z| <4 and |y| < 4 for all
simulations and experiment. In comparison to the experimental value of Ref™ = 11.07,
the primary instability in the DPS and SPS occurs at much lower Reynolds numbers
Re, = 9.39 and Re, = 9.53, respectively. In contrast, by imposing the correct (no-
slip) boundary conditions in both the longitudinal and transverse directions, in addition
to using a realistic model of the magnetic field, the transition can be predicted quite
accurately. The straight to modulated transition in the NPS occurs at Re, = 10.49 (red
square in figure 5.), which is within 5.2% of Ref*P. Finally, we note that setting 8 = 1
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Figure 6: Modulated flow fields at Re = 14 with @ = 0.064 s~!, 8 = 0.83, and v =
3.26 x 1078 m?/s for the (a) DPS, (b) SPS, (c) NPS, and (d) experiment. The vorticity
colour scale plotted for (a) also applies to (b-d). The velocity vectors are downsampled
in each direction by a factor of 8 for the simulations and a factor of 4 for the experiment.

results in a poor prediction Re, = 8.71 even in the NPS, which corresponds to a 21%
erTor.

Given that the pattern of vortices observed in the experiment lacks perfect periodicity,
we compute the average longitudinal wavelength ), using the spatial average of the
separation between adjacent vortex centres in the central region |y| < 4; the vortex
centres are identified by locating local minima in the velocity magnitude. Just above
onset, the vortices in the experiment form a lattice with a fairly uniform separation,
AP = 4.0 (¢5*P = 0.50). As the forcing is increased, the mean separation between
the vortices increases, as can be seen from the plot of A, versus Re — Re. shown in
figure 7 (b). Additionally, the vortex lattice becomes spatially irregular, as can be seen
in figure 6 (d). This spatial variation is quantified in the plot in figure 7 (b) wherein the
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Figure 7: Primary instability for « = 0.064 s7!, 3 = 0.83, and v = 3.26 x 10~% m?/s. (a)
A bifurcation diagram and (b) the average wavelength of the pattern, A;, as a function
of Re for the modulated flow regime. At each Re, wavelength measurements are made
in the central region |y| < 4 then averaged; the uncertainty bars indicate one standard
deviation in the spatial measurements.

uncertainty bars indicate one standard deviation in the spatial variation of the separation
between adjacent vortices. Note that immediately above onset, accurate identification of
the vortex centres in the experiment is not possible because of the very weak modulation;
hence, experimental measurements are only plotted for Re — Re, > 1.

For comparison, figure 7 (b) also shows the average wavelength of the flow pattern
in the DPS, SPS, and NPS. Finer spatial resolution in the simulation, compared to
that in experiment, facilitates measuring A, closer to onset with greater accuracy. In
the DPS, the size of the domain along = was chosen a posteriori to be commensurate
with the critical wavelength at onset in the experiment. Despite this, neither the spatial
variation of the wavelength nor its variation with Re — Re, observed in the experiment
are captured. The SPS, however, shows a qualitatively similar trend for the dependence
of Ay on Re — Re,. The periodicity in the transverse direction results in a uniform vortex
pattern with smaller spatial variation in the separation between vortices compared to the
experiment. In contrast, the NPS captures both the spatial variation of the wavelength
and the distortion of the lattice with increasing forcing quite satisfactorily.

At Re — Re, = 1, the discrepancy is much smaller than the uncertainty bars, but for
Re — Re. 2 1.5, the NPS overestimates the wavelength compared to what is observed
in the experiment. The largest discrepancy, which is 0.46 (a 10% relative error), occurs
around Re— Re, = 3.7. The difference in the flow patterns in the NPS and the experiment
is due to the deviation of the latter from being perfectly Q2D. The analysis in Appendix C
shows that the wavelength of the pattern sensitively depends on relatively minor changes
in the forcing profile, which is responsible for the observed discrepancy between the
numerics and experiment.

While the NPS provides a reasonably accurate description of the transition from the
straight to the modulated flow in the experiment, as we mentioned previously, it some-
what underestimates the critical Reynolds number. To resolve this discrepancy, we tested
the sensitivity of the transition in the NPS to changes in the forcing profile as well as
variations in parameters 3, v, and «. In particular, we found that Re, is fairly insensitive
to spatial variation in the strength of the magnets in the array. Consequently, we turned
our attention to studying the sensitivity of Re. to the values of the parameters 3, v,
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Figure 8: The effect of the variation in model parameters. (a) A bifurcation diagram and
(b) the average wavelength of the pattern in the modulated flow regime. The numerical
results correspond to either a 7% increase in v, a 22% increase in a, or a 6% decrease in 8
compared with the depth-averaged values for the straight flow (o = 0.064 s™!, 3 = 0.83,
and v = 3.26 x 1075 m?/s). The uncertainty bars in (b) are only shown for every other
data point for clarity. In all cases, Re is defined using v = 3.26 x 10~% m?/s.

and a. In order to match Re, in the NPS and experiment, we had to either decrease
B by 6%, increase v by 7%, or increase a by 22%. Figures 8 (a) and (b) show that the
variation of parameters has a fairly weak effect on both the amplitude of the modulation
and the wavelength of the pattern, which suggests that the disagreement between the
simulation and experiment is primarily due to the deviation of the flow and/or forcing
from quasi-two-dimensionality, which is discussed in Appendix C.

Note that the Reynolds number Re = Uw /v is defined using the measured rms velocity
U and parameter v which cannot be measured, but has to be computed. While in the
simulation the value of v is well-defined (it is one of the parameters of the model), in
the experiment it is not, so the corresponding Re depends on the choice of v. Hence, to
enable a proper comparison of experiment with numerics, we defined Re in both cases
using the analytically computed depth-averaged value v = 3.26 x 106 m? /s (Suri et al.
2014), regardless of the actual value of v used in the simulation. Matching Re using this
convention is effectively equivalent to matching the rms velocity U.

4.4. Secondary Instability

As we increase the forcing further, the modulated flow in the experiment becomes un-
stable giving way to a time-periodic flow with a period T, = 428 £04 (120£1s in
dimensional units) at onset, which corresponds to Re, = 17.640.1. The modulated state
in the NPS, with the depth-averaged (o = 0.064 s~!, 8 = 0.83, and v = 3.26 x 10~
m?/s) as well as the adjusted parameters, undergoes a Hopf bifurcation as the forcing
is increased. Table 1 compares Rep and T} in the experiment with those from the NPS
for the different parameter sets. A video comparing the time-periodic flow in the NPS
(with depth-averaged parameters) and experiment is included as online supplementary
material.

Re,, and T}, in the simulation are within 15% of the experimental measurements for
the depth-averaged values of parameters computed using the vertical profile P(z) that
corresponds to the straight flow. However, the values of v, a, and 8 should vary slowly
with Re, since P(z) is weakly dependent on the horizontal flow profile. Hence, a different
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Rep Ty
Experiment 176 +0.1 42.8 (120 + 1 8)
NPS (Depth-Averaged) 15.6 43.2 (137 s)
NPS (v: +7%) 16.4 43.2 (130 s)
NPS (o: +22%) 17.1 48.1 (139 s)
NPS (8: —6%) 16.5 45.8 (137 s)

Table 1: Critical transition parameters characterizing the stable periodic regime for the
experiment and the NPS with different sets of parameters.

set of parameters is required to describe the two instabilities and, more generally, there
is no universal set of parameters 8, v, and « that correctly describes the experimental
flow at all Re. From table 1 we see that Re, and T}, show very different sensitivity to
changes in each of the parameters. Hence, while separately modifying v, o, and 8 shows
some improvement in matching either Re, or T}, it should be possible to obtain even
better agreement by modifying all the model parameters simultaneously, each by only a
few percent.

The necessity for modifying parameters across different dynamical regimes also raises
the question of how robust a, 3, and v are to changes in the (local) wavenumber of the
flow. To test this, we have recomputed the parameters using the wavenumber k = /5/4x
associated with the modulated flow. We found that 8 and v change by less than 1%, and
a by about 3.5%, compared to those computed using k = k. This robustness suggests
that, once adjusted to match the experiment, the 2D model should provide a reasonably
accurate description of the dynamics even in the weakly turbulent regime where the
wavenumber may vary in space and time (Suri et al. 2017).

5. Nature of the Primary Instability

An important consequence of confining the flow in the longitudinal or transverse direc-
tions is that we restrict the set of coordinate transformations (symmetries) that leave the
governing equation (1.4) equivariant. The symmetries of the governing equation, in turn,
determine the number of, and the relation between, distinct modulated flow solutions
created as a result of the primary bifurcation. Below we discuss each of the different flow
domains, in the order of decreasing symmetry.

5.1. DPS

On an unbounded or a doubly-periodic domain, equation (1.4) is equivariant under the
following symmetry operations (Chandler & Kerswell 2013):

(a) Continuous shift by éz in z: T2%(z,y) — (z + 6z, ).

(b) Reflection in x combined with a discrete shift of half a period in y: R;7,"(z,y) —

(—z,y +w).

(¢) Reflections in both = and y: ReRy(z,y) = (—z, —y).
Note that the double reflection R,;R, is equivalent to a rotation by angle m about the
z-axis, while the square of the symmetry operation R, 7;‘” corresponds to a discrete shift
Tg‘” in the y-direction, i.e., (R:,?;w)z = Tg‘”. For the DPS, the corresponding symmetry
group is the semidirect product D, x SO(2) (Armbruster et al. 1996), where n is the
number of magnets (here, n = 8).

The above transformations that leave the governing equation equivariant, however,
need not leave the flow fields invariant. When a flow field does not share a certain



Bifurcations in a Q2D Kolmogorov-Like Flow 19

A A 1 A 1
u . u u
m . f‘ m m
. “ 4
Pt u,
u : : u —_— u! u
I - = : - - : — s -
D ' > — >
‘Re : 3 Re ‘ Re
E . \ pJ
O 3
OO u Swou
. » ~~ m
.t u2 -
m
(a) (b) (c)

Figure 9: A schematic showing the bifurcations corresponding to the primary instability:
(a) circle pitchfork in the DPS, (b) sequence of pitchfork bifurcations in the SPS, (c)
imperfect pitchfork bifurcation in the NPS. Solid (dashed) lines indicate stable (unstable)
solution branches. The vertical and out-of-plane axes correspond to deviations of the flow
from straight that are invariant under R;Ry and R;7,", respectively.

symmetry of the governing equation, one can generate — by applying the corresponding
coordinate transformation — a dynamically equivalent symmetry-related copy of the flow.
The straight flow in figure 3 (a) remains unchanged when an arbitrary translation dz €
[0, L] is applied along the z-direction, so there is a unique solution u,. However, since the
primary instability breaks the translational symmetry, there is a continuum of distinct
modulated flow solutions u,, related by translations in the = direction. This instability
therefore corresponds to a circle pitchfork bifurcation (cf. figure 9 (a)).

The equivariance of the governing equation under 7;‘5": with arbitrary dz makes the
choice of the coordinate origin £ = 0 for a modulated flow arbitrary. We fix it by requiring
that ul, =R, R, ul, for a particular modulated flow solution ul . Since both the discrete
symmetries R; Ry and R;7," include reflection of the flow about the line z = 0, the choice
of the origin determines whether a particular solution remains invariant under either of
these discrete symmetries. Figure 10 shows the four distinct solutions related by discrete
translations 7.2* with dz = L, /8:

3 _ bz 1 2 _ 7dz..3 4 _ gdbx .2 1 _ gér,,4
um_?:: um: um_?:: um: um_‘?; um: um_’TI- u'm.' (51)

Each of these four solutions is invariant under 7;2‘” and either R, R, or Rx'}';w. In par-
ticular, ul, and u2, are invariant under R;R,, while u, and u?, are invariant under
R, T,*. Furthermore, the states uy,, and u2, are related to each other via R; 7", i.e., uy,
= R, T,;"u2,. Similarly, u, and uy, are related via Rz Ry, i.e., uj, = RzRyuy,. Note that
the operator R;7," contains a single reflection which causes the sign of the vorticity to
change. In summary, by virtue of the continuous translational symmetry of the govern-
ing equation, the laminar flow in the DPS undergoes a circle pitchfork bifurcation with
an infinite number of translation-related copies of a modulated flow. Only four of these
copies, however, remain invariant under the discrete symmetries involving the reflection

Rz.

5.2. SPS

The no-slip boundary condition at £ = £L;/2 in the SPS destroys the equivariance
under translation T;M, reducing the symmetry group to D,. The governing equation,
however, still remains equivariant under each of the discrete transformations RI'}';*” and
RzRy. The loss of equivariance under 7%, which connected the states ul,, uZ, with
u3,, u? in the DPS, implies either of RyR, or R;T," is broken in the straight to
modulated transition in the SPS. Breaking either of the discrete symmetries, R, 7," or
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Figure 10: Modulated flow fields (a) ul,, (b) u3,, (c) u2,, and (d) u?, at Re = 14 in the
DPS. The vorticity colour scale is the same as that in figure 6.

RzRy should generate (only) two branches, i.e, should result in a pitchfork bifurcation,
since the modulated flow states in the SPS should remain symmetric with respect to
Ts?w, which is not affected by confinement in x. Consequently, of the infinite number of
modulated states in DPS only four, the counterparts of those shown in figure 10, will
survive in the SPS, and should be formed via two distinct pitchforks.

This is indeed what we observe in the simulations, wherein two pairs of distinct so-
lutions, shown in figure 11, are formed via two distinct pitchfork bifurcations of the
straight flow. Just as in the DPS, u}, and u?, are invariant under R,R,, while u3, and
u? are invariant under R:T,". In figure 9 (b) the ul and u?, branches are plotted to
lie in a plane perpendicular to that containing ul, and u2,. Since the bifurcations break
either R;Ry or R;7,", each pair of branches is related via the broken symmetry, i.e.,
uy, = R, T;*uf, and uj, = R,Ryuj,.

Unlike the DPS where 'fo relates all the distinct solutions corresponding to the mod-
ulated flow (cf. equation (5.1)), there is no coordinate transformation that maps ul,
and u2, to u3, and u?,. On an infinite domain, all four branches of the modulated flow
are created at exactly the same Re (as in the DPS), however, on a finite domain, the
pitchfork bifurcations that produce the two pairs of solutions would generally happen at
different Re (cf. figure 9 (b)) that depend on the confinement in the z-direction, i.e., on
L.. For L, = 14, chosen from experimental considerations, the bifurcation which gives
rise to ud, and u?, occurs at a higher Re than the bifurcation which gives rise to ul, and
uZ,. For other choices of L,, the sequence may reverse. Note that the two modulated flow
branches (u3, and u?,) that are formed from the second pitchfork are initially unstable,
because they bifurcate off of the unstable straight flow solution.
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Figure 11: Modulated flow fields (a) ul,, (b) ud,, (c) u2,, and (d) u?, at Re = 14 in the
SPS. Vertical black lines indicate the central region which is analogous to the flow fields
shown in figure 10. The vorticity colour scale is the same as that of figure 6.

5.3. NPS

In the NPS, the additional no-slip boundary condition at y = £L, /2 breaks the equivari-
ance of the problem under R;7,’, leaving the governing equation equivariant only under
Rz Ry. The pitchfork bifurcation that gives rise to the rotationally invariant solutions u},
and u2, in the SPS is associated with breaking of the R;T,’ symmetry. This symmetry
is only approximate in the NPS for all Re, so one finds an imperfect pitchfork bifurcation
instead, as shown in figure 9 (c). The straight flow ul at lower Re smoothly transitions
to the modulated flow ul, at higher Re without an instability taking place, i.e., the real
part of the leading eigenvalue of the straight flow does not change sign as we increase Re
in the NPS. The shapes of the bifurcation curves close to Re. (figure 7 (a)) showcase the
difference in the nature of the primary instability between the NPS and the two periodic
simulations.

In the NPS, the u2, branch and the higher-Re branch of the straight flow u? are
created in a saddle-node bifurcation at Re = 10.72. The states ul, and u2,, both of
which are symmetric with respect to RyRy, are shown in figure 12. While R,T}’ is
not an exact symmetry in the NPS, given the large transverse extent of the domain
compared with the period of the forcing (L, /2w = 9), near the center of the domain this
approximate symmetry holds and consequently u2, ~ 'RI'}';“’U}R. However, unlike ul ,
which remains stable up to Re = 15.4 in the NPS, u2, is unstable over the entire range
of Re where it exists (Re > 10.72). This explains why our numerical simulations starting
from randomized initial conditions have always converged to the modulated flow ul, and
why uZ, was never found in the numerical simulations or observed in the experiment.
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Figure 12: Modulated flow fields at Re = 11.6 in the NPS beyond the imperfect pitchfork
bifurcation shown in figure 9 (c). The flow fields shown here are (a) u), which emerges
smoothly from the straight flow and (b) uZ, which is formed through a saddle-node
bifurcation.

The pitchfork bifurcation which gave rise to the branches u3, and u?, in the SPS also
does not carry over into the NPS. Instead u? undergoes a Hopf bifurcation at Re = 12.6.
This change in the nature of the bifurcation is likely caused by transverse confinement,
which has a more prominent effect on u3, and u?,: these states are invariant under the
R:,,'}';w symmetry in the SPS, but this symmetry is broken in the NPS. While we fail to
observe u3, and u?, in the NPS, the analogues of these solutions may appear for a different
set of model parameters, forcing profile, and/or degree of confinement. Details regarding
the computation of the unstable branches associated with the various bifurcations are
included in Appendix B.3.

6. Conclusions

In this article, we have presented a combined experimental and numerical study of
bifurcations in a Q2D Kolmogorov-like flow. This flow is realized in the laboratory by
electromagnetically driving a stratified layer of electrolyte above an immiscible layer of
dielectric. This Q2D flow is described using a 2D model (1.4) derived from first principles
by depth-averaging the 3D Navier-Stokes equation. In contrast, virtually all previous
studies have modelled Q2D flows using equation (1.2), a semi-empirical variation of the
2D Navier-Stokes equation with the addition of a linear friction. Also unlike previous
studies of Kolmogorov-like flows which have assumed a perfectly sinusoidal forcing profile,
we have introduced a realistic model of the forcing which has been validated against 3D
experimental measurements.

To test the importance of lateral confinement, we have compared experimental mea-
surements with numerical simulations using different boundary conditions. We have found
that by incorporating realistic, no-slip boundary conditions at all lateral boundaries and
a realistic forcing profile, quantitative agreement between the experiment and simulation
can be achieved with no adjustable parameters. In particular, the Reynolds number Re.



Bifurcations in a Q2D Kolmogorov-Like Flow 23

for the primary instability can be predicted to within about 5% and the critical wavenum-
ber k. can be predicted to an accuracy higher than the measurement accuracy. These
are significant improvements compared with previous studies, none of which were able to
predict both Re, and k. with this level of accuracy, despite using adjustable parameters.

We have also performed a systematic study of how lateral confinement affects the
nature of the bifurcation describing the transition from the straight flow to the modulated
flow. Previous studies have characterized this transition in the experiment as a pitchfork
bifurcation, using analytical computations on a periodic domain. We have shown that
because of confinement an imperfect pitchfork bifurcation is found instead. We have also
numerically computed the two unstable branches of the imperfect pitchfork bifurcation
describing flows that are not observed in either experiment or simulations under normal
conditions.

Furthermore, we have demonstrated that the model reasonably accurately predicts the
modulated flow pattern (both the wavenumber and the amplitude) beyond the onset of
the primary instability. Moreover, this is the first study, experimental or theoretical, to
provide a quantitative analysis of the secondary instability of a Kolmogorov-like flow
which generates a time-dependent pattern of vortices. Even for the secondary instability
the numerical predictions of the critical Reynolds number Re, and the critical period T},
are in general agreement with the experiment, although the accuracy of the numerical
predictions decreases with increasing Re.

The discrepancy between the numerical predictions and experiments has been traced
back to the variation of the forcing profile with height. This points to the limitations of
a 2D model of what in reality is a 3D flow, albeit with a strongly suppressed vertical
component of the velocity. Nonetheless, for a select range of Re the experimental flow can
be reproduced with extremely good quantitative accuracy by making fairly small adjust-
ments to the model parameters, compared with their depth-averaged values computed
for the simple straight flow. The ability of the model to closely reproduce the experi-
mental flow is crucial for the utility of Q2D flows for testing the geometrical description
of weakly turbulent flows and studying the dynamical role of exact coherent structures
(Suri et al. 2017). Such tests will be the main focus of follow up studies.
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Appendix A. Scaling and Nondimensionalization

The governing equation (1.4) was presented in dimensional form to highlight the de-
pendence of parameters «, 3, and v on the properties of the fluid layers. The dimensional
form also makes it easier to explore the sensitivity of the dynamics to changes in these
parameters. To simplify comparison of our results with other studies it is helpful to
nondimensionalize this equation. Choosing the width of a magnet w as the length scale,
the rms velocity computed over the central region |z| < 4w, |y| < 4w as the velocity
scale U, and the ratio of these two scales as the time scale, one obtains the following
nondimensional equation:

du

-7 +Bu-Vu=—Vpg +

50 (V?u —yu) +fo, (A1)

Re
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where v = aw?/v describes the relative strength of the Rayleigh friction and viscous
terms in (1.4). Finally, py = wp/(U?p) is the nondimensional pressure and f, = wf/U?
is the nondimensional forcing profile.

It is possible to eliminate the parameter 8 from equation (A 1) by making the length,
time, and velocity scales independent. If we again choose the width of a magnet w as the
length scale, the rms velocity as the velocity scale U, and w/(8U) as the time scale, we
instead obtain the following nondimensional equation:

%—ku.Vu:—Vp1+%(vzu—’yu)+f1, (A2)
where Re’ = Re/B, p1 = wBp/(U?p) is the nondimensional pressure, and f; = wpf/U? is
the nondimensional forcing profile. Although equation (A 2) does not contain /3 explicitly,
the Reynolds number is rescaled by 3. Hence, the nondimensional equations (A1) and
(A 2) as well as the dimensional equations (1.2) and (1.4) predict an identical sequence of
bifurcations. However, the critical values of Re scale as 1/f3, as we have found explicitly
in equation (4.1).

Appendix B. Numerical Methods

In this Appendix, we present the details of discretization methods and numerical in-
tegration schemes employed in the NPS, SPS, and DPS. Additionally, we also detail
the computation of the unstable branches associated with the pitchfork bifurcation that
cannot be obtained from simple numerical integration.

B.1. Non-Periodic Simulation (NPS) and Singly-Periodic Simulation (SPS)

Since the NPS, as well as the SPS, require prescribing no-slip (e.g., Dirichlet) boundary
conditions on the velocity field u, numerical simulations are performed using the prim-
itive variable (u,, u,, and p) formulation by employing a semi-implicit fractional-step
method detailed in Armfield & Street (1999). Temporal discretization of equation (1.4)
is performed using the following difference scheme:

u — 1 3 1 1 1
# + ENU-D - §Nlln—1 = ——ﬁvpnﬂ + 5£(“n+1 +u,) +f. (B1)

In the above equation u, and p,; are the velocity and pressure fields, with the subscript
n indicating a discrete time instant £, = nAt, where At is the time step for the update. For
purposes of brevity we have used the notation Nu, = Bu, -Vu, and Lu, = V2u, —ou,
to represent the nonlinear and linear terms, respectively. The above discretization is a
semi-implicit approximation of equation (1.4), where the linear terms in the update are
treated implicitly using the Crank-Nicolson scheme, while the nonlinear term is handled
explicitly using the Adams-Bashforth scheme. The velocity field u,41 at every instant
satisfies the incompressibility condition:

V-un+1 :0, (BQ)

which is enforced on each update through the three-fractional-step P2 (pressure correc-
tion) projection method discussed in Armfield & Street (1999).

Spatial discretization of the velocity and pressure fields is carried out using the standard
marker and cell (MAC) staggered grid (Harlow & Welch 1965). The spatial derivatives
in equation (B1) are approximated using finite central differences; the 2D Laplacian
operator (V?2) uses a five-point stencil formula and the nonlinear term uses the three-
point central difference formula.
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For both the NPS and the SPS, we have chosen 20 cells per magnet width w to
discretize the velocity and pressure fields. Since the dimensions of the NPS are identical
to the lateral dimensions of the experiment, i.e., 14w x 18w, a total of 280 x 360 cells
were used to sample the flow domain. The SPS, however, corresponds to a domain of
dimensions 14w x 8w, which maps to a region including the central eight magnets in the
experiment. Hence, a total of 280 x 160 cells were used to discretize the SPS domain.
For both the SPS and NPS, a time step of At = 1/40 s was used for all the numerical
simulations.

To test the adequacy of the spatial resolution, the velocity field corresponding to the
modulated flow at Re =~ 15.5 was recomputed by doubling the resolution, i.e., using 40
cells per magnet width. To compare this velocity field (uy4p) with the the one computed
on the 20-cell grid (ugo), we interpolated uyo onto the 20-cell grid to obtain Uinterp (in-
terpolation was required due to the staggered nature of the grid). The difference between
Uinterp and Ugg, computed as ||(Winterp — U20)||/||120]|, was 1.2%. Since the interpolation
introduces error, it can be concluded that the actual error should be less than 1.2%.
We find that global measures, such as Re or (ug) (used to characterize the primary in-
stability), computed directly using uyp and ugg differed by less than 0.2%. These tests
confirm that a resolution of 20 cells per magnet width is sufficient to simulate the flow
and characterize the bifurcations accurately.

B.2. Doubly-Periodic Simulation (DPS)

Simulations on the doubly-periodic domain can be sped up significantly using a spectral
method (Canuto et al. 1988). Since solving linear equations involving the Laplacian is
very cheap in the spectral method, it is convenient to use the vorticity-stream function
formulation instead of the velocity-pressure formulation. Taking the curl of equation
(1.4), we obtain the following equation for the z-component of vorticity w = (V x u) - Z:

Ow + pu-Vw =vV3w — aw + W, (B3)

where W = (V x f) - Z. The horizontal components of the velocity field u, = 9¢/8y and
uy = —01/0z can be computed using the stream function 1, which satisfies the Poisson
equation V29 = —w.

The vorticity field w is discretized in the Fourier space using 128 modes along each of
the x- and y-directions. Since the lateral dimensions of the periodic domain are 8w x 8w
units, the spatial resolution associated with the Fourier grid corresponds to 16 grid points
per magnet width w. Taking the Fourier transform of equation (B 3), we obtain:

8,0 = —BF[u - Vw] + vV2Q — o) + F[W], (B4)

where F[-] represents the Fourier transform and 2 = F[w].

Equation (B4) is stepped forward in time (¢ — ¢+ At) using a 3-substep semi-implicit
Strang-Marchuk splitting algorithm (Ascher et al. 1995; Mitchell 2013) where the first and
last substeps advance the vorticity field using the nonlinear term by means of a second-
order explicit Runge-Kutta scheme (using a time step At/2), while the intermediate
substep advances the vorticity field using the Crank-Nicolson scheme (using a time step
At). We have used the time step At =1/32 s.

B.3. Computing unstable branches in the pitchfork bifurcation

The schematic depicting the pitchfork bifurcation in figure 9 was constructed following
the computation of all the stable and unstable states using the matrix-free Newton-
Krylov solver (Kelley 2003). Guesses for the stable states, to initialize the Newton solver,
can be easily obtained using numerical integration. However, those for the unstable states
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should be constructed using continuation or using the eigenmode that goes unstable at
the bifurcation.

To begin with, initial guesses for the unstable straight flow branches in the SPS
and NPS simulations were constructed by extrapolating the stable straight solutions
in Reynolds number Re, i.e.,

W2 (Reo+€) ~ ul(Reg) + ¢ [ 20 (B5)
s\ft€e T €) = U (li€p € 9Re e 1

where the derivative (3u§ /3Re) was approximated using finite differences,

oul\ _ ul(Re) —ul(Re— ARe)
ORe ) p, ARe '

(B6)

This method proved particularly useful in obtaining a good initial guess for the unstable
straight flow u? in the NPS, since it is disconnected from ul, as shown in figure 9 (c).
In the NPS, Re. = 10.5 is not estimated by identifying the instability of ul, since there
exists none. Instead, it is computed using the intercept of a linear fit of the amplitude
(ug) versus Re, shown in figure 7, close to the onset of modulation. The initial guess at
Re ~ 10.75 was constructed by extrapolating ul from Re = 10.25 by choosing ¢ = 0.5 in
equation (B5).

For the unstable modulated branches emerging from the second pitchfork in the SPS, a
good initial guess for u2, (u,) is constructed using u3, ~ uZ+pé,. Here &; is the second
unstable eigenvector of the straight flow which has the symmetry R;7,". Since amplitude
p is not known a priori, convergence to u3, is tested by incrementing p. In the NPS, the
initial guess for the unstable branch uZ, was similarly constructed, u2, ~ u? — pé,,
using the eigenvector €; with the R, R, symmetry. However, p in the NPS case can be
estimated using p = (&;|ul, — u2), since the stable modulated flow ul, is known from
numerical integration and u? is computed from extrapolation.

Appendix C. Inherent Three-Dimensionality of the Forcing in the
Experiment

In §4.3 we compared measurements of the average longitudinal wavelength A; of the
modulated flow in the experiment and numerical simulations. The comparison between
the experiment and the NPS (cf. figures 7 and 8) showed systematic differences in A, for
both the depth-averaged and modified parameters, with the maximum difference being
about 10% at Re — Re. = 3.7 (cf. figures 7). Here we show that this deviation is likely
due to the inherent three-dimensionality of the experiment, not captured by a strictly
2D model, rather than the choice of the model parameters.

As we discussed in §3.1, the Lorentz force density due to the specific arrangement
of magnets employed in the experiment is to a very good approximation given by F =
JB.X, where J is the magnitude of current density and B.(z,y, z) is the z-component
of the magnetic field at any given location within the electrolyte. In deriving equation
(1.4) it was assumed (Suri et al. 2014) that B, can be decomposed as the product of a
2D horizontal profile Byp(x,y), which depends exclusively on the extended coordinates
(z,y), and a 1D vertical profile D(z), which captures the variation of the magnetic
field above the magnet array, i.e., B;(z,y,z) = D(z)Bap(z,y). This implies that, when
normalized, the planar magnetic field profiles at various heights z within the electrolyte
are identical. Such a magnetic field, which we call “Q2D,” facilitates the decomposition
of the plane-parallel Q2D velocity field (1.3) which underpins the strictly 2D model (1.4).
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A magnetic field that is truly Q2D, however, cannot be created using a magnet array
with finite dimensions, i.e., the shape of the magnetic field profile generated by permanent
magnets in the laboratory always changes with the vertical height z to some extent.
Experimental measurements of the magnetic field from previous studies have shown such
changes in the shape of the field profile as a function of z (Dovzhenko et al. 1984; Suri
et al. 2014). This is very much the case in our experiment as well, as can be seen from the
magnetic field profiles shown in figure 2 (a). For instance, if one rescales the transverse
magnetic field profiles at heights = = 0.438 and z = 0.265 such that they match near the
centre of the array, we see that these profiles would not match near the end magnets.
This is most apparent by comparing the relative heights of the peaks at y = —6.5 and
y = —4.5 for the two profiles in figure 2 (a). A quantitative estimate of the deviation
from quasi-two-dimensionality can be obtained by comparing the magnetic field profiles
computed using the dipole summation at the bottom B, = B,(z,y,z = 0.236) and the
top of the electrolyte layer B; = B (z,y,z = 0.472). Normalizing B;, and B; separately,
using their respective spatial rms values computed over the entire lateral extent of the
domain, we estimate the largest difference between the profiles to be approximately 12%.
This difference is fairly localised towards the ends of the magnet array and is likely the
reason behind the larger discrepancy in longitundinal velocity measurements over the
end magnets (cf. figure 4 (b)).

To demonstrate the impact of the z-dependence of the forcing profile on the flow, we
have recomputed the straight and modulated flow fields in the NPS using Bop = By
and Byp = B, in addition to the depth-averaged magnetic field By,. The value of «
was increased by 22% relative to the depth-averaged value to reduce the influence of
the uncertainty in the model parameters on the flow pattern. This choice also yields the
best agreement between the average wavelengths of the flow pattern in the simulation
and experiment for Re. < Re < Rep (see figure 8 (b)). As figure 13 (a) shows, the
forcing profile strongly affects both Re. and the amplitude of the modulation of the
flow for Re > Re,. It also shows that By, produces substantially better agreement with
experiment that either By or B;. Similarly, we find that the forcing profile strongly
influences the modulation wavelength. As figure 13 (b) shows, for both By or By, the
average wavelength agrees reasonable well with experiment, while B; produces a very
poor agreement. Similar results (not shown) are obtained if, instead of «, either 8 or v
is modified to match Re,.

The above analysis shows that, although the NPS with the depth-averaged magnetic
field profile captures the salient features of the dynamics fairly well, the flow pattern
depends fairly sensitively on the details of the forcing. Hence, one should expect sys-
tematic deviations between the 2D model derived for a Q2D flow and the experiment
where quasi-two-dimensionality is broken by the forcing. It should be mentioned that the
wavelength of the modulated flow measured by either seeding the dielectric-electrolyte
interface or the top surface of the electrolyte are virtually identical. This implies that
viscous coupling across the fluid layers produces a Q2D flow despite the fact that the
forcing profile driving the flow is not perfectly Q2D.
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