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In this article we discuss flows in shallow, stratified horizontal layers of two immiscible

fluids. The top layer is an electrolyte which is electromagnetically driven and the bot-

tom layer is a dielectric fluid. Using a quasi-two-dimensional approximation, which

assumes a horizontal flow whose direction is independent of the vertical coordinate,

we derive a generalized two-dimensional vorticity equation describing the evolution

of the horizontal flow. Also, we derive an expression for the vertical profile of the

horizontal velocity field. Measuring the horizontal velocity fields at the electrolyte-air

and electrolyte-dielectric interfaces using particle image velocimetry, we validate the

theoretical predictions of the horizontal velocity and its vertical profile for steady

as well as for freely decaying Kolmogorov-like flows. Our analysis shows that by

increasing the viscosity of the electrolyte relative to that of the dielectric, one may

significantly improve the uniformity of the flow in the electrolyte, yielding excellent

agreement between the analytical predictions and the experimental measurements.
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I. INTRODUCTION

The study of two-dimensional (2D) flows has received significant attention in recent

decades with the aim of understanding turbulence1. Compared to their three-dimensional

(3D) counterparts, 2D flows are more amenable to analytical and numerical analysis. How-

ever, fluid flows in practice are never strictly 2D, in the sense that the velocity field describing

the flow depends on all three spatial coordinates and has non-zero components along all three

spatial directions. However, flows in which the velocity along one of the spatial directions is

greatly suppressed have been realized in a variety of systems which include flows in shallow

electrolytic layers2, superfluid helium3, liquid metals4,5, soap films6, and electron plasmas7.

The mechanism that leads this suppression is different in each of these systems, demanding

a specialized approach.

In this article, we discuss quasi-two-dimensional (Q2D) flows in shallow electrolytic layers.

By quasi-two-dimensional, we mean flows which satisfy the following two conditions: (i) the

components of velocity parallel to a plane (horizontal) are much stronger than the component

perpendicular to it (vertical)8 and (ii) the direction of the horizontal velocity does not depend

on vertical coordinate. Such flows have been studied extensively due to the simplicity of

experimental setup.

Fluid flows in shallow electrolytic layers have been realized experimentally in homogeneous2

as well as stratified layers of fluids9,10. It was first observed by Bondarenko et al. 2 , for an

experimental realization of the Kolmogorov flow (a planar unidirectional flow with a si-

nusoidal velocity profile)11 in a homogeneous electrolytic layer, that the interaction of the

flow with the solid boundary at the bottom resulted in dissipation that was not accounted

for in the 2D Navier-Stokes equation (NSE). It was suggested that the addition of a linear

term ( αu) to the 2D NSE modeled the dissipation satisfactorily2; this term is commonly

referred to as the “Rayleigh friction” term. The stability of the laminar flow predicted by

the 2D NSE with friction (NSE-WF) was in good agreement with the one experimentally

observed. A more thorough discussion of related theoretical and experimental results is

provided in the articles by Obukhov 12 and Thess 13 .

The questions of whether the experimental flows can be considered Q2D and whether

the 2D NSE-WF is accurate attracted significant attention in the mid-1990s. Measuring the

horizontal velocity field of a decaying dipolar vortex in an electrolyte layer, Paret et al. 14
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inferred that the horizontal velocity, following a brief transient, relaxed to a Poiseuille-like

profile in the vertical direction. The measured rate of decay was also in good agreement with

that of plane Poiseuille flow15. However, there was no mention of the range of Reynolds num-

bers within which the experimental results agreed with those predicted by theory. Jüttner

et al. 16 performed a direct numerical simulation (DNS) of the 2D NSE-WF, using experi-

mental data to initialize the simulation, and showed that it did capture the evolution of the

decaying flow, at least qualitatively. Later, Satijn et al. 17 analyzed the decay of a monopolar

vortex using a full 3D DNS and reported a regime diagram showing that a weakly driven

flow in shallow electrolytic layers (both homogeneous and stratified) remained Q2D during

its decay. Following this study, Akkermans et al. performed experimental measurements of

3D velocity fields using Stereo Particle Image Velocimetry in a single layer setup18,19 and

a two-layer setup20 at high Reynolds numbers (Re → 2000). Their results indicated that,

at these Reynolds numbers, the vertical velocity component was comparable to the hori-

zontal components and hence the flow could no longer be considered Q2D. To understand

the transition of a Q2D flow to a 3D one, Kelley and Ouellette 21 performed experiments

over a wide range of Reynolds numbers (30 < Re < 250) and showed that there is a critical

Reynolds number (Rec →200), both for homogeneous and stratified layers, below which the

flow can be considered Q2D. These studies, aimed at understanding the three-dimensionality

of flows in shallow electrolytic layers, suggest that there are three mechanisms that lead to

three-dimensionality. Ekman pumping19,21, which results from the variation of vorticity with

depth, and interfacial deformations which drive gravity waves20 are in play at all Reynolds

numbers. Shear instability, on the other hand, sets in above a critical Reynolds number21.

Most experiments studying flows in shallow electrolytic layers were aimed at under-

standing 2D turbulence from a statistical perspective, requiring high Reynolds numbers

to be realized9,14,22. However, in recent years, there has been moderate success, both on

theoretical23–26 and experimental fronts27,28, in understanding transitional and weak turbu-

lence (both 2D and 3D) as dynamics guided by exact but unstable solutions (often referred

to as exact coherent structures (ECS)) of the NSE. For instance, Chandler and Kerswell 29

have recently identified around 50 different ECS at low Reynolds numbers (Re →40) in a

2D DNS of turbulent Kolmogorov flow. This is a very significant result, since experimental

flows at this Reynolds number can be considered Q2D17,21. However, aside from the study

of Figueroa et al. 30 , to the best of our knowledge, there have been no attempts at making a

3



quantitative comparison between experiments and numerical simulations of forced flows in

shallow electrolytic layers. Hence, building a framework for a direct comparison between a

Q2D flow and a 2D model used to describe such a flow is imperative. In particular, such a

framework is necessary to describe how the flow is affected by the experimental parameters

such as fluid layer depths, viscosity, density, and the forcing.

To compare the theoretical estimates from a 2D model with a Q2D experimental flow,

we use an experimental realization of the Kolmogorov-like flow in a thin layer of electrolyte

driven by a linear array of magnets with alternating polarity . Q2D flows driven by linear,

as well as rectangular and triangular arrays of magnets, have been studied rigorously in

the context of 2D turbulence13,31,32. The regularity of the laminar flow profiles in these

systems allows considerable analytical and numerical progress, which makes them ideal for

comparing with experiments. As opposed to the rectangular and triangular vortex arrays,

the laminar Kolmogorov-like flow is essentially devoid of vortices and hence one can safely

ignore the effects of both Ekman pumping and interfacial deformation, yielding a truly

Q2D flow and enabling direct quantitative comparison between analytical solutions and

experimental measurements at relatively low Reynolds numbers.

This article is organized as follows. In section II, we derive a generalized 2D vorticity

equation, describing the evolution of weakly driven flows in shallow electrolytic layers. We

then present, in section III, a brief description of our experimental realization of Kolmogorov

flow in a stratified two-immiscible-layer configuration. In section IV we derive the equation

for the vertical profile of the horizontal velocity field for two special flow configurations,

the Kolmogorov-like flow and unidirectional flow. Using this profile, we evaluate analytical

expressions for the coefficients that appear in the vorticity equation. Using the Kolmogorov-

like flow, in section V, we validate the model by comparing theoretical predictions of the

horizontal velocity with those measured experimentally. We discuss the effects of viscosity,

magnetic field, and thickness of fluid layers on the coefficients that appear in the vorticity

equation. Furthermore, we define a measure of two-dimensionality in the (forced) upper

layer and show that it is possible to make the flow in that layer essentially 2D by increasing

its viscosity relative to the (lubricating) lower layer. Section VI presents our conclusions

and discusses the applications and the limitations of the 2D model.
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II. GENERALIZED 2D VORTICITY EQUATION

Consider a shallow layer of fluid, with thickness h, in a laterally extended container with

a flat bottom. By shallow, we mean that the characteristic horizontal length scale L is

substantially larger than the thickness h. We assume the xy-plane is parallel to the bottom

of the container and the z-axis is in the vertical direction, with z = 0 chosen at the bottom

of the fluid layer and z = h corresponding to the fluid-air interface (cf. Figure 1 (b)). The

velocity field in such flows is inherently three-dimensional, in the sense that it generally

depends on all three coordinates, V = V(x, y, z, t). This inherent three-dimensionality is

due to the fact that the bottom of the fluid layer (z = 0) is constrained to be at rest due to

the no-slip boundary condition. The velocity field in such a system is governed by the 3D

Navier-Stokes equation for an incompressible fluid ( ×V = 0)

ρ(∂tV +V × V) = p+ μ 2V + f + ρg, (1)

where ρ is the density of the fluid under consideration, μ is the dynamic viscosity, ρg is the

gravitational force (along the z-axis), and f is the electromagnetic force in the plane of the

fluid (the xy-plane).

Equation (1), combined with the incompressibility condition, describes the evolution of

the full 3D velocity field. However, for flows in shallow layers of fluid, driven by weak,

in-plane forcing, the vertical velocity component is much smaller compared to the horizon-

tal one17. In such flows the characteristic times describing equilibration of momentum in

the vertical direction (ρh2/μ) are much smaller than those associated with the horizontal

directions (ρL2/μ). This tends to align an unforced flow at a particular horizontal position

(x, y) and different z along the same direction. Furthermore, if the direction of the forcing

f is independent of z, this forcing will not destroy the alignment and we can assume the

direction of the velocity to be independent of the height z allowing the velocity field to be

factored as30,33

V(x, y, z, t) = P (z)U(x, y, t) ≤ P (z)[ux(x, y, t)x̂+ uy(x, y, t)ŷ], (2)

where P (z) describes the dependence of the horizontal velocity on z, and the unit vectors

x̂ and ŷ lie in the horizontal plane. A thorough discussion on the validity of this Q2D

approximation can found in Satijn et al. 17 . The presence of the solid boundary at the

5



bottom (z = 0) and of a free surface at the top (z = h) are accounted for by choosing

P (0) = 0 and P ′(h) = 0, where P ′ = dP/dz. Furthermore, we impose the normalization

condition

P (h) = 1 (3)

to make the factorization unique, so U(x, y, t) can be interpreted as the velocity of the free

surface (z = h).

Substitution of (2) into (1) gives

ρP∂tU+ ρP 2U× ‖U = ‖p+ Pμ 2
‖U+Uμ 2

⊥P + f , (4)

⊥p = ρg,

along with ‖ ×U = 0, where the subscripts ∇and 〈 represent the horizontal and vertical

components, respectively. In general, the profile P (z) depends on the exact form of forcing

f and the horizontal flow profile U. However, we further assume that the profile P (z) is

independent of U. This assumption, though not intuitive, proves to be valid at moderate

Re, as we shall show for a couple of test cases below.

Integrating the first of the two equations in (4) over the z coordinate, i.e., from the

bottom of the fluid layer (z = 0) to the free surface (z = h), and taking the curl, we obtain

an equation for the vertical (z) component of the vorticity ω = ∂xuy ∂yux:

∂tω + βU× ‖ω = ν̄ 2
‖ω αω +W. (5)

The parameters β, ν̄, and α are defined as follows

β =

∫ h

0
ρP 2dz∫ h

0
ρPdz

, ν̄ =

∫ h

0
μPdz∫ h

0
ρPdz

, α =
(μP ′)z=0∫ h

0
ρPdz

, (6)

The source term W on the right-hand side of (5) corresponds to the z-component of the curl

of the depth-averaged force density

W =

∫ h

0
(∂xfy ∂yfx)dz∫ h

0
ρPdz

. (7)

In equation (5), the prefactor β to the advection term has been assumed equal to unity

in all previous studies2,34. For a Poiseuille-like profile

P (z) = sin
(πz
2h

)
, (8)
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which has traditionally been used to describe Q2D flows17, we have computed β using

equation (6). It turns out that β = π/4 → 0.79 is significantly different from unity. The

deviation of β from unity captures the decrease in the inertia of the fluid flow, since the

velocity of the fluid closer to the solid boundary at the bottom is smaller than that near the

free surface.

The parameter ν̄ is the depth-averaged kinematic viscosity. For a shallow, homogeneous

layer of fluid, the depth-averaged kinematic viscosity (ν̄) is equal to the kinematic viscosity

(ν) of the fluid. However, for stratified layers, fluid properties (μ, ρ) depend on z. In such

a case, the integrals in equations (6) and (7) are computed taking the variation in ρ and μ

into account.

The linear friction term αω, which accounts for the presence of a solid boundary at

the bottom of the fluid layer, is a direct consequence of ansatz (2) and depth-averaging.

This is distinctly different from how previous studies have included this term in the 2D

NSE-WF2,8. Using the Poiseuille-like profile (8), we can recover the expression α = π2ν/4h2

for the Rayleigh friction coefficient without assuming a decaying flow16,17 .

Lastly, in electromagnetically driven shallow electrolytic layers, the forcing f may depend

on z, most commonly due to a decay in the magnetic field strength. The source term W

takes the effect of such decay into account.

It is important to point out that the vorticity equation (5) is a 2D equation that quan-

titatively describes 3D flows in regimes where ansatz (2) is valid. In particular, ω describes

the vorticity at the top surface of the electrolyte, facilitating direct comparison between

experiment and analytical or numerical solutions.

III. EXPERIMENT

As mentioned earlier, Q2D flows in shallow layers of electrolytes have been realized exper-

imentally in homogeneous as well as stratified electrolytic layers. The rationale behind using

stratified layers is that the top layer—which is used for all the measurements—is shielded

from the no-slip boundary condition at the bottom by a lubricating layer. Three stable con-

figurations of stratified fluid layers have been employed for experimental realization of flows

in shallow electrolyte layers. The first of these22 used two miscible layers of saltwater having

different densities, with the fluid in the bottom layer being heavier than the one in the top
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layer. In the second configuration, which is a variation of the one mentioned above, the

electrolyte in the top layer was replaced by pure water21,35. The third stable configuration,

suggested by Rivera and Ecke 10 , used a heavier, immiscible dielectric fluid as the lubricating

bottom layer and a layer of electrolyte above it. Immiscibility complements stratification in

suppressing vertical motion, thus enhancing two-dimensionality of the flow in the electrolyte.

The two-immiscible-layer configuration also allows for achieving higher Reynolds numbers10

compared with the miscible-layer setups. Numerical studies17 comparing the vertical veloc-

ity components in these configurations have suggested that stratification and immiscibility

indeed suppress 3D motion. Hence, we have chosen to use the two-immiscible-layer config-

uration to generate Q2D flows.

The setup, shown in Figure 1, consists of an array of magnets placed at the center

of an acrylic box of dimensions 25.4 cm ± 20.3 cm ± 3.8 cm. A thin sheet (thickness

→ 0.05 mm) of black contact paper is placed on top of the magnets to provide a uniform

background for imaging. The top surface of the contact paper corresponds to the plane

z = 0. The region 0 < z < hd is filled with perfluorooctane, a dielectric fluid of viscosity

μd = 1.30 mPa×s and density ρd = 1769 kg/m3. Above this is a layer of a conducting fluid

(electrolyte) of thickness hc (hd < z < hd + hc), which is completely immiscible with the

dielectric fluid. For all experimental runs, the height of the dielectric fluid is chosen to be

hd = 0.3 ≡ 0.01 cm. However, across different runs the thickness of the electrolyte layer is

varied from hc = 0.2 ≡ 0.01 cm to hc = 0.4 ≡ 0.01 cm. For the electrolyte, we use either

of the following: a “low-viscosity electrolyte” consisting of a 0.3 M solution of CuSO4 (with

viscosity μc = 1.12 mPa×s and density ρc = 1045 kg/m3) or a “high-viscosity electrolyte”

consisting of a 0.3 M solution of CuSO4 with 50% glycerol by weight (with viscosity μc = 6.06

mPa×s and density ρc = 1160 kg/m3). Immiscibility and density stratification maintain the

relative configuration of the two layers. A small amount of surfactant (dish soap) is added

to the electrolyte to decrease the surface tension, and a glass plate is placed on top of the

box to limit evaporation. Two 24.1 cm ± 0.3 cm ± 0.6 cm copper electrodes fixed along the

longitudinal boundaries on either side of the box are used to drive a steady current through

the electrolyte. The Lorentz forces acting on the electrolyte set the fluid layers in motion.

To create a spatially periodic magnetic field, we construct a magnet array with 14 NdFeB

magnets (Grade N42), each 15.2 cm long, 1.27 cm wide, and 0.32 cm thick (cf. Figure 1(a)).

The magnetization is in the vertical (z) direction, with a surface field strength close to
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FIG. 1: The (a) top view and (b) transverse cross-section view of the experimental setup

for quasi-2D Kolmogorov-like flow. The system contains two immiscible fluid layers: the

bottom one is a dielectric fluid of thickness hd and the top one is an electrolyte of thickness

hc. As a uniform, steady current with density J flows between the two electrodes through

the electrolyte layer, a shear flow, represented by arrows in (a), is induced in the fluids by

spatially alternating Lorentz forces. The arrows in (b) indicate the direction of

magnetization.

0.3 T. The magnets are positioned side-by-side along their width to form a 15.2 cm ×

(14× 1.27 cm) × 0.32 cm array such that adjacent magnets have fields pointing in opposite

directions, along the z-axis. The resulting net magnetic field B(y, z), close to the surface of

the magnets, is quite complicated. However, experimental measurements (using a F. W. Bell

Model 6010 Gaussmeter) show that the profile for the z-component of the magnetic field, Bz,

is approximately sinusoidal in y beyond a height of z = 0.25 cm (the measurements for the

center pair of magnets are shown in Figure 2(a)). The spatial period of the magnetic field sets

the horizontal length scale L = 1.27 cm equal to the width of one magnet. Furthermore,

we find Bz above the magnets to decay approximately linearly with z within the typical

position of the electrolyte layer (0.3 cm ≤ z ≤ 0.6 cm) (see Figure 2(b)). The parameters

we find for the fit Bz = B1z + B0 (at the maximum in y) are B1 = 30.6 ± 0.5 T/m and

B0 = 0.276± 0.01 T.

In the electrolyte-dielectric setup described above, using tracer particles of different den-
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FIG. 2: (a) Experimental measurements of the transverse variation of the z-component of

the magnetic field, Bz, above the middle two magnets of the magnet array, normalized by

the maximum value of Bz for fixed z, Bz,max. A sine wave with periodicity equal to the

width of one magnet pair is shown for comparison. (b) Experimental measurements of the

decay of Bz with increasing height (z) from the magnets’ surface. Error bars indicate one

standard deviation.

sities, one can visualize the flow either at the electrolyte-dielectric interface or at the free

surface14. To visualize the flow at the free surface we use Glass Bubbles (K15) manufac-

tured by 3M, sieved to obtain particles with mean radius r = 24.5≡ 2 μm and mean density

ρ → 150 kg/m3. For seeding the interface, we use Soda Lime Solid Glass Microspheres

manufactured by Cospheric with mean radius r = 38 ≡ 4 μm and mean density ρ = 2520

kg/m3. The soda lime microspheres, though denser than the dielectric fluid, stay trapped

between the dielectric and electrolyte layers due to interfacial tension. The top surface of

the electrolyte and the interface are not seeded simultaneously, but in separate experimental

realizations. We use blue light-emitting diodes to illuminate the tracer particles.

The images of the flow are recorded using a Unibrain Fire-i Board B/W digital camera

which has a CCD sensor with a resolution of 640 ± 480 pixels. The flow field captured corre-

sponds to a region at the center of the magnet array with dimensions 4.7 cm± 3.5 cm. Images

are captured at equal intervals of 0.133 seconds, which corresponds to a frame rate of 7.5 Hz.

Particle Image Velocimetry (PIV) was performed on the recorded images using Open Source
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Image Velocimetry software package (version 2.1, available at http://osiv.sourceforge.net/).

As mentioned earlier, the flow is driven by Lorenz forces resulting from the interaction

between the magnetic field and a direct current passing through the electrolyte layer. In the

experiments using the low-viscosity electrolyte, where the thickness of the electrolyte layer

is varied from 0.2 cm to 0.4 cm, a direct current of 2.1 mA is passed through the electrolyte.

Increasing the thickness of the electrolyte layer, keeping the total current constant, corre-

sponds to decreasing the current density from J = 4.26 A/m2 to J = 2.13 A/m2. Similarly,

in the experiments using the high-viscosity electrolyte, a direct current of 5.0 mA is passed

through the electrolyte. The current density, for electrolyte thickness between 0.2 cm and

0.4 cm, ranges from J = 10.16 A/m2 to J = 5.08 A/m2.

We conclude this section by defining the Reynolds number characterizing the Q2D flows

discussed in this article. SinceU(x, y, t) (cf. equation 2) is the horizontal velocity field at the

free surface (z = hd + hc), which directly corresponds to our experimentally measurements,

we define the velocity scale characterizing the flow as U =
√
〉U×U‖=

√〈
u2
x + u2

y

〉
, where

〉. . .‖ denotes the spatial average. The Reynolds number is then defined as Re = UL/ν̄.

This is similar to the definition used in the article by Kelley and Ouellette 21 discussing the

onset of three-dimensionality, thus facilitating a straightforward inference regarding when

the flow starts to deviate from being Q2D.

IV. VELOCITY PROFILE IN THE TWO-IMMISCIBLE-LAYER SETUP

In this section we solve for the vertical profile P (z) of the horizontal velocity (cf. equation

2) in two special cases, a Kolmogorov-like flow and a unidirectional flow. The case of the

Kolmogorov-like flow allows direct comparison of theoretical predictions with experimental

measurements. The unidirectional flow cannot be realized in experiment, but allows deriva-

tion of simple expressions for α, ν̄, and β in the generalized 2D vorticity equation (5), which

are helpful in understanding the parametric dependence of these coefficients.

A. Kolmogorov-like flow

To solve for the velocity profile P (z) in (2) within the two immiscible layers described in

the experiment, we assume that the magnet array is infinitely long in the x (longitudinal)
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direction and periodic in the y (transverse) direction. By symmetry, the array of magnets

produces a field that has no component along the longitudinal direction:

B = By(y, z)ŷ +Bz(y, z)ẑ. (9)

Within the electrolyte, the z-component of the magnetic field can be modeled to vary

linearly with z and sinusoidally with y (cf. Figure 2). Hence we can write

Bz = (B1z +B0) sin(κy), (10)

where κ = π/L. A uniform and constant current with density J = J ŷ passing through

the electrolyte along the transverse direction results in a Lorentz force density along the x̂

direction which is given by

f = J×B =

 J(B1z +B0) sin(κy)x̂, hd < z < hd + hc,

0, 0 < z < hd

(11)

in the electrolyte and the dielectric, respectively.

For a current density (J) smaller than some critical value, the direction of the horizontal

flow profile U(x,y, t) follows that of the forcing (11), so we can look for laminar solutions

of the form

U(x, y, t) = u0 sin(κy)x̂. (12)

Substituting this into (4) yields a hydrostatic pressure distribution and a boundary value

problem for the vertical profile P (z):

P ′′ κ2P =
J

u0µc

(B1z +B0), hd < z < hd + hc,

P ′′ κ2P = 0, 0 < z < hd

(13)

where the prime denotes differentiation with respect to z.

The boundary conditions that P (z) must satisfy are the no-slip boundary condition at

the bottom of the dielectric (z = 0), the continuity of the velocity and stress at the dielectric-

electrolyte interface (z = hd), and the stress-free boundary condition at the top (free) surface

of the electrolyte (z = hd + hc):

P (0) = 0, P (h−
d ) = P (h+

d ), µdP
′(h−

d ) = µcP
′(h+

d ), P ′(hd + hc) = 0. (14)
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The solution to the differential equations (13) is given by

Pκ =

⎧⎨
⎩

Ceκz +De−κz + JB1

u0μcκ2 z +
JB0

u0μcκ2 , hd < z < hd + hc,

Eeκz + Fe−κz, 0 < z < hd.
(15)

In equation (15), in addition to the coefficients C,D,E, and F , the amplitude u0 of the

sinusoidal velocity profile at the free surface of the electrolyte is not known a priori. To

uniquely define Pκ(z) we also require the normalization condition Pκ(hc + hd) = 1, which is

the analog of equation (3). This gives us the fifth equation, in addition to the four defined

by equation (14), necessary to solve for the five unknowns C, D, E, F , and u0.

As stated earlier, the motivation behind using stratified layers of fluids to realize Q2D

flows is that the top layer is shielded from the no-slip boundary condition at the bottom by

a lubricating layer. For a perfectly two-dimensional flow, one would expect the velocity field

in the top layer to be independent of the z coordinate. Hence, for the two-immiscible-layer

setup we can use the ratio of velocity at the free surface to that at the electrolyte-dielectric

interface as a measure that characterizes the inherent deviation from two-dimensionality:

s =
P (hd + hc)

P (hd)
. (16)

For a monotonically varying profile, the value of s describes how strongly the magnitude of

the horizontal velocity field varies with z in the electrolyte, with s = 1 corresponding to a z-

independent velocity profile. This measure of deviation from two-dimensionality is different

from the one used in previous studies17,18, where the ratio of kinetic energy contained in

the secondary flow to that in the primary (horizontal) flow was chosen as a measure of

three-dimensionality. The functional form of expression (16) for the Kolmogorov-like flow

is quite unwieldy and does not allow one to easily deduce the dependence on experimental

parameters. Furthermore, closed form expressions for the coefficients in the generalized 2D

vorticity equation (6) also turn out to be too complicated to yield much insight.

B. Unidirectional flow

We can derive a relatively simple analytical expression for the ratio of velocities in the

special case where we ignore the y-dependence of the magnetic field Bz, i.e., Bz = B1z+B0.

The laminar flow is then unidirectional, i.e., U(x, y, t) = u0x̂. This flow can be interpreted

as a limiting case of the Kolmogorov-like flow when the magnets are very wide (κ ⊥ 0), and
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FIG. 3: Analytical results for the vertical profile of the horizontal flow field in both layers,

with hd = hc = 0.3 cm, for (a) the low-viscosity electrolyte and (b) the high-viscosity

electrolyte. The ratios of the velocities, as defined by (16), are: (a) uniform flow:

slow = 1.52, Kolmogorov flow: slow = 1.54 and (b) uniform flow: shigh = 1.10, Kolmogorov

flow: shigh = 1.08.

one confines observation to a small region near the centers of the magnets (κy ⊥ nπ/2).

The solution (15) is then replaced by

P0 =

⎧⎨
⎩

JB1

6u0μc
z3 JB0

2u0μc
z2 + Cz +D, hd < z < hd + hc,

Ez + F, 0 < z < hd.
(17)

We have calculated the unknown coefficients C,D,E, F and u0 in the above equation

using the boundary conditions (14) and have included analytical expressions in appendix A.

Although the functional forms (15) and (17) of the velocity profile are quite different for the

Kolmogorov flow and the uniform flow, their shape is virtually indistinguishable, as Figure

3 illustrates. This suggests that Q2D flows with arbitrary horizontal flow profiles U(x, y, t)

and moderately high Reynolds numbers (up to Re→40) may be accurately described using

the simple velocity profile (17).

Using P0(z) we now calculate an analytical expression for the ratio (s) of the velocity at

the free surface to that at the electrolyte-dielectric interface

s = 1 +
1

2

μdhc

μchd

(
1 +

1

6

ΔB

〉B‖

)
, (18)
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where ΔB = B1hc is the change in magnetic field across the electrolyte and 〉B‖ = B0 +

B1hd +
1
2
B1hc is the mean magnetic field in the electrolyte.

The coefficients (6) that appear in the generalized 2D vorticity equation (5), in addition

to depending explicitly on the experimental parameters, depend on the profile P (z) as well.

Since the shapes of the profiles P0(z) and Pκ(z) are virtually indistinguishable, we can

evaluate analytical expressions for the coefficients (6) using P0(z). For the Rayleigh friction

coefficient, using the velocity profile P0(z) we obtain:

α =

μd

ρc
1

hdhc

1 + 1
2
hd

hc

ρd
ρc

+ 1
3
hc

hd

μd

μc

(
1 + 1

8
ΔB
〈B〉

) . (19)

For the depth-averaged kinematic viscosity, we obtain:

ν̄ = νc
1 + 1

2
hd

hc

μd

μc
+ 1

3
hc

hd

μd

μc

(
1 + 1

8
ΔB
〈B〉

)

1 + 1
2
hd

hc

ρd
ρc

+ 1
3
hc

hd

μd

μc

(
1 + 1

8
ΔB
〈B〉

) . (20)

The exact expression for β is too complicated to yield much insight, but it can be evaluated

using the profile P0(z) and the coefficients listed in appendix A for any set of experimental

parameters. It should be noted that, for the values of parameters used in the experiment,

the coefficients s, α, ν̄, and β have a very weak dependence on ε = ΔB/〉B‖: setting ε = 0

changes the values by less than 5%. In the limit where the ε = 0, we find

β =
1 + 1

3
hd

hc

ρd
ρc

+ 2
3
hc

hd

μd

μc
+ 2

15
h2
c

h2
d

μ2
d

μ2
c

1 + 1
2
hd

hc

ρd
ρc

+ 5
6
hc

hd

μd

μc
+ 1

4
ρd
ρc

μd

μc
+ 1

6
h2
c

h2
d

μ2
d

μ2
c

. (21)

Similarly, the dependence on κ is also very weak: evaluating the coefficients using Pκ(z)

instead of P0(z) changes their values by less than 6% (for the high-viscosity electrolyte).

V. RESULTS

A. Enhanced two-dimensionality in the electrolyte

Expression (18) suggests that even if the magnetic field across the electrolyte were uni-

form, i.e. ΔB = 0, the flow in the electrolyte would still deviate significantly from being

perfectly 2D. For a typical case where μc = μd and hc = hd, one obtains s = 1.5. Using in-

stead the value ε = 0.6 corresponding to the experiment gives s = 1.45. Hence, the decay in
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FIG. 4: Experimental measurements of the horizontal flow profile in the electrolyte layer,

with hd = hc = 0.3 cm, taken separately at the free surface (black circles) and at the

electrolyte-dielectric interface (gray squares). The plots correspond to (a) the low-viscosity

electrolyte and (b) the high-viscosity electrolyte. PIV measurements are plotted for the

time-independent laminar flow near the center of the magnet array; each data point is

time-averaged over 5 minutes and spatially averaged over 4.5 cm along the x-direction to

obtain an accurate estimate of the mean. A sine wave with fixed periodicity is fit to each

data set, and the velocities are normalized by the amplitude of the top layer fit, u0. Error

bars are smaller than the size of the symbols.

the magnetic field does not contribute significantly to the deviation from two-dimensionality.

Expression (18) also suggests that the shallower the electrolyte layer is (relative to the di-

electric layer), the closer one comes to a vertically uniform profile in the electrolyte (s = 1).

However, electrolyte layers with thickness less than 0.25 cm are found to be unstable in the

experiment, as they break up to form configurations that correspond to lower total surface

energy. Alternatively, one may increase the thickness hd of the dielectric layer. This has

the drawback that one moves farther from the magnets, requiring larger currents to drive

the flow. Also, the Q2D approximation, an assumption whose validity depends partially

on strong geometric confinement, is compromised. Hence, the most straightforward way to

make the flow in the electrolyte nearly two-dimensional is by increasing the ratio of viscosi-

ties. The optimal choice of the electrolyte viscosity is not obvious. For the variation in the
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velocity of the electrolyte to be at most 10%, μc should exceed the solution of (18) with

s = 1.1. Substituting the typical values of μd = 1.30 mPa×s, ε = 0.6 and hd = hc gives

μc ∼ 5.85 mPa×s. Indeed, comparison of the analytical velocity profiles presented in Figure

3 shows that the uniformity of the velocity in the conducting layer should be substantially

enhanced when a more viscous electrolyte (with μc = 6.06 mPa×s) is used. This is exper-

imentally validated by comparing the measured horizontal velocity of the laminar flow at

the top and bottom surfaces of the electrolyte layer. As Figure 4 shows, the flow in the

high-viscosity electrolyte is much closer to being vertically uniform (shigh = 1.08) than in

the low-viscosity electrolyte (slow = 1.54).

A higher viscosity means a higher current is necessary to reach a desirable Reynolds

number; a potential drawback of this is the possibility of excess Joule heating, which can

cause significant variation in the viscosity. However, 60 minute-long experiments using the

high-viscosity electrolyte, where a steady current forces a flow with Re → 40, have shown

that the fluid temperature increases only by around 1 ◦C. Hence in the regime of interest

the effects of Joule heating are rather small.

B. Comparison between theory and experiment

Figure 5 shows experimental measurements of the velocity amplitude of the laminar flow

at the free surface and the electrolyte-dielectric interface as the thickness hc of the electrolyte

layer is varied, while keeping the current I constant. For the experimental runs using the

low-viscosity electrolyte (cf. Figure 5(a)) the Reynolds number of the flow decreases from

Re = 26.6 to Re = 17.1 as the thickness of the electrolyte layer is increased from 0.2

cm to 0.4 cm. Similarly, for those using the high-viscosity electrolyte (cf. Figure 5(b))

the Reynolds number decreases from Re = 7.9 to Re = 3.1. Also plotted for comparison

are the theoretical predictions of u0Pκ(hd + hc) = u0 and u0Pκ(hd) = u0/s, which denote

the velocity amplitude at the free surface and that at the electrolyte-dielectric interface,

respectively. Most importantly, all the parameters used in the theoretical calculations have

been measured experimentally. As can be seen from the plots, the relative difference between

theory and experiment, for electrolytes of both viscosities, is less than 5%.
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FIG. 5: Comparison of experimental and theoretical results for u0Pκ(hc + hd) and

u0Pκ(hd), which correspond to the amplitude of the sinusoidal velocity profile at the free

surface and the electrolyte-dielectric interface, respectively. Here, hc is varied while

hd = 0.3 cm is held constant. Plots correspond to (a) the low-viscosity electrolyte (with

constant current I = 2.1 mA) and (b) the high-viscosity electrolyte (with constant current

I = 5.0 mA). PIV measurements of the time-independent laminar flow are time-averaged

over 5 minutes to reduce experimental noise and then fit with a sine wave with fixed

periodicity. Error bars are smaller than the size of the symbols.

C. Coefficients in the generalized 2D vorticity equation

The motivation behind estimating the shape of the profile P (z) in the two-immiscible-

layer setup was, in part, to determine the coefficients (6) that appear in the generalized 2D

vorticity equation (5). For hc = hd = 0.3 cm, using the low-viscosity electrolyte (μc = 1.12

mPa×s), we obtain β = 0.73, ν̄ = 0.94 ± 10−6 m2×s−1, and α = 0.063 s−1. This estimate of

the Rayleigh friction coefficient is a factor of two smaller than the one suggested by Rivera

and Ecke 10 . For the high-viscosity electrolyte (μc = 6.06 mPa×s), we obtain β = 0.82,

ν̄ = 3.35 ± 10−6 m2×s−1, and α = 0.068 s−1. It is important to note that the Rayleigh

friction coefficient remains fairly insensitive to the viscosity of the electrolyte. This has a

significant consequence that one can change the relative importance of the diffusion term

(ν̄ 2
‖ω) and the friction term ( αω) in the vorticity equation (5) by changing the viscosity

18



of the upper layer in the experiment. Interestingly, the Rayleigh friction coefficient for the

two-immiscible-layer system is not very different from the one computed for a homogeneous

layer of fluid. Using a Poiseuille-like vertical profile (8) and choosing h = hc + hd = 0.6 cm

and ν̄ →1± 10−6 m2×s−1 we obtain α = π2ν̄/4h2 →0.07 s−1.

D. Spin-down comparison

After the forcing is switched off, W = 0, the flow decays to rest exponentially fast, dissi-

pating energy via bottom friction ( αω) as well as horizontal diffusion of vorticity (ν̄ 2
‖ω).

The solution of (5) corresponding to the initial condition (12) describing Kolmogorov flow

and W = 0 is ω(x, y, t) = ω0 exp( t/τ) cos(κy), where the decay rate is given by

τ−1 = α + κ2ν̄. (22)

As a check of the 2D model, we compare this prediction with the temporal evolution of the

flow in experiment by letting it decay to rest from the steady laminar state by turning the

forcing off. After a brief transient, the velocity profile U(x, y, t) = u0(t) sin(κy) measured

at the free surface of the electrolyte decays exponentially, u0(t) ≈ exp( t/τ). These mea-

surements yield a decay rate of τ−1
low = 0.14 ≡ 0.01 s−1 for the low-viscosity electrolyte and

τ−1
high = 0.3≡ 0.01 s−1 for the high-viscosity one. In comparison, the analytical solution (22)

yields τ−1
low = 0.12≡0.007 s−1 for the low-viscosity electrolyte and τ−1

high = 0.29≡0.009 s−1 for

the high-viscosity one. It is important to note that equation (22) does not account for the

change in the shape of the profile Pκ(z) during the decay, which likely explains the slight

disagreement between the theory and experiment at low μc. This indicates that the effect of

relaxation of the profile, when the forcing is turned off, is more significant when using the

low-viscosity electrolyte than when using the high-viscosity one, indicating that the profile

in the higher viscosity electrolyte may be robust to time dependence. This is a non-trivial

result: although the flow in the high-viscosity electrolyte is very nearly two-dimensional, the

flow in the dielectric never is.

E. Measured normalized in-plane divergence

Experimentally realized Kolmogorov-like flow exhibits temporally complicated (aperi-

odic) dynamics above Re→30. To verify the validity of the Q2D approximation (2) in this
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regime, up to Re→50, we have computed the normalized in-plane divergence

Λ =
hc

∫∫ ∣∣ ‖ ×U
∣∣dxdy

L
∫∫ ∣∣ω∣∣dxdy , (23)

of the horizontal velocity field, experimentally measured at the free surface (z = hd + hc).

This measure, used by Akkermans et al. 20 , characterizes the ratio of the horizontal velocity

to the vertical velocity. For both the low- and high-viscosity electrolyte of typical thickness

hc = 0.3 cm, Λ varies from about 0.01 to 0.02, with no clear systematic trend. Since small

errors is PIV can contribute significantly to the value of the divergence computed, it is safe

to say that Λ = 0.02 provides an upper bound for the relative strength of the secondary

flow for Re ≥ 50. This is approximately an order of magnitude smaller than values reported

for numerical simulations in the range 1150 < Re < 2000 for the dipolar vortex studied by

Akkermans et al. 20 . This indicates that for our system, even in the regime with temporally

complicated dynamics, the deviation from a Q2D flow is small.

VI. CONCLUSION

Moderate Reynolds number flows in thin fluid layers supported by a solid surface have

long been modeled by semi-empiric generalizations of the 2D Navier-Stokes equation. In

this article, starting from the 3D Navier-Stokes equation and assuming the flow to be quasi-

two-dimensional, i.e., having only horizontal components of velocity whose direction is in-

dependent of the vertical coordinate, we derive the proper 2D evolution equation for flows

in homogeneous as well as stratified layers of fluid. The Rayleigh friction term in this gen-

eralized 2D vorticity equation, which models the presence of the no-slip boundary condition

at the bottom of the fluid layer, appears naturally as a consequence of depth-averaging the

3D Navier-Stokes equation. Furthermore, we have shown that the advection term acquires a

numerical prefactor which is different from unity. The evolution equation has been validated

by testing it for self-consistency using different analytic solutions for steady flows and also by

comparing its predictions with experiment for steady and freely-decaying Kolmogorov-like

flows.

In addition to deriving the generalized vorticity equation, we have addressed the issue of

inherent three-dimensionality of the two-layer flows, quantifying it in terms of the ratio of the

fluid velocity at the top and bottom surface of the upper (driven) layer. Using this measure,
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we have shown that increasing the viscosity of the fluid in the upper layer with respect

to the viscosity of the bottom (lubricating) layer makes the flow in the upper layer much

closer to being uniform (2D)), which is advantageous because (i) the agreement between

the predictions of the 2D model for both steady and freely decaying laminar flows improves

considerably, suggesting that the model may remain quantitatively accurate for other time-

dependent flows, and (ii) the gradient of the horizontal velocity along the vertical direction

is greatly reduced, which in turn results in a significant suppression in the Ekman pumping.

Recent studies29 aimed at understanding 2D turbulence from a dynamical systems per-

spective have found an abundance of ECS of the 2D NSE with periodic boundary conditions

at Re → 40. The 2D NSE, however, does not govern the evolution of Q2D flows. Our

experiments, as well as those of other groups21, show that at Re → 40 flows in shallow

electrolytic layers are Q2D. Hence to compute the ECS that are expected to organize the

weakly turbulent experimental flows, one has to use the 2D generalized vorticity equation

(5). Whether this 2D model derived here can indeed serve this purpose remains to be seen.

While it has been validated for some forced steady and unforced time-dependent flows, the

next logical step would be to compare its predictions with experimental observations for

forced time-dependent flows. The time-dependent flow in experiment, however, depends

rather sensitively on the lateral boundary conditions. Hence, such comparison would re-

quire a numerical implementation of the model subject to boundary conditions mimicking

those in the experiment. As an alternative, such a comparison could also be performed using

a dipolar vortex30 or a periodic lattice of vortices16, although this would require a rather

accurate model of the magnetic field.
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Appendix A: Analytical solution for the vertical profile P0(z)

Here, we present the analytical expressions for the coefficients C, D, E, F , and u0 that

appear in the equation (17) for the unidirectional profile P0(z). Using these, one can compute

the values of α, ν̄, and β in the generalized 2D vorticity equation (5). The coefficients have

been expressed in terms of quantities s, ΔB, and 〉B‖defined in section IVB. Using equation

(17) and the boundary conditions defined in equation (14), we obtain

u0 = s
hchd

μd

J〉B‖, (A1)

C =
1

s

μd

μc

(
hc + hd

hchd

)(
1

1

2

hd

hc

ΔB

〉B‖

)
, (A2)

D =
1

s

μd

μc

hd

hc

[
μc

μd

hc

hd

hc

hd

1

2
+

(
1

4
+

1

6

hd

hc

)
ΔB

〉B‖

]
, (A3)

E =
1

hds
and F = 0. (A4)

It must be noted that although the value of u0 computed from (A1) does not correspond to

the one experimentally measured for the Kolmogorov-like flow, (A1) captures the scaling of

u0 with experimental parameters.
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