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Abstract

We propose the use of a light-weight setup consisting of
a collocated camera and light source — commonly found
on mobile devices — to reconstruct surface normals and
spatially-varying BRDF's of near-planar material samples.
A collocated setup provides only a 1-D “univariate” sam-
pling of a 3-D isotropic BRDF. We show that a univari-
ate sampling is sufficient to estimate parameters of com-
monly used analytical BRDF models. Subsequently, we
use a dictionary-based reflectance prior to derive a robust
technique for per-pixel normal and BRDF estimation. We
demonstrate real-world shape and capture, and its applica-
tion to material editing and classification, using real data
acquired using a mobile phone.

1. Introduction

Reflectance properties play an important role in the ap-
pearance of objects in a scene. For an opaque object,
these properties are represented by the 4-D bidirectional re-
flectance distribution function (BRDF), which completely
characterizes how a material interacts with incident light.
Measuring the BRDF of a material often requires dense
sampling of the 4-D space using precisely calibrated, and
often prohibitively expensive, acquisition setups [9, 15—17].

More recently, researchers have looked at the problem
of reflectance capture “in the wild”, under relatively uncon-
strained conditions, and using commodity hardware. Be-
cause of the ill-posed nature of this problem, these methods
rely on extra information like the presence of reference ma-
terials in the scene [23] or restrict themselves to BRDFs
with stochastic, texture-like spatial variations [3].

The goal of our work is to enable the acquisition of the
shape and spatially-varying BRDF (SV-BRDFs) of a wide
range of real-world materials with using a practical, easy-
to-deploy setup. To this end, we would like to use a mo-
bile device — with a camera and a controllable flash — to
take reflectance measurements. However, the position of
the flash on these devices is fixed relative to the camera,
and they are often nearly collocated. As a result, capturing
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images using this setup gives us only a sparse sampling of
the BRDF. Even for the restricted set of isotropic materials
(which are described by a 3-D BRDF), these measurements
constitute only the 1-D slice of the 3-D BRDF that contains
the specular lobe. We refer to this as a univariate sampling
of the BRDF. The main contribution of our work is to show
that such a univariate sampling of a material’s appearance
is, in fact, sufficient to recover per-pixel surface normals
and BRDF estimates.

Real-world BRDFs can be well approximated as a linear
combination of a small set of basis BRDFs [11, 17]. Based
on this property, we show that while the sparse univariate
samples are not sufficient by themselves, combining them
with a dictionary-based prior [13] can lead to high-quality
reflectance estimates. Further, we show that the parame-
ters of many classical analytical BRDF models can be es-
timated purely from univariate sampling. This is because a
collocated setup samples the specular lobe of the BRDF,
which plays a major role in material appearance. Thus,
when constrained to take a few sparse samples of the BRDF,
instead of spreading these samples across the 4-D (or a 3-D
isotropic or a 2-D bivariate) space, concentrating these sam-
ples in this 1-D slice is a better way to identify the BRDF.

We use the camera and flash unit on an iPhone 6S device
to scan numerous near-planar (wrt depth) targets and subse-
quently estimate their shape and reflectance. For each tar-
get, we capture multiple images by moving the phone. For
ease of calibration of the camera/light-source orientation,
we place small checkerboard patterns on the near-vicinity
of the target; the acquired images are aligned via a homog-
raphy estimated using these checkerboard patterns. Using
the aligned images, we estimate per-pixel surface normals
and SV-BRDFs using a novel, robust method based on our
univariate sampling strategy. We demonstrate this robust-
ness on a wide range of scenes with complex SV-BRDFs
and further, showcase the use of the proposed BRDF acqui-
sition technique for reflectance rendering as well as material
clustering. Figure 1 showcases our SV-BRDF and normal
estimates for a real-world sample.

Contributions. Our specific contributions are as follows:
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Figure 1. We acquire multiple images of a near-planar object using the camera and the flash unit on a mobile phone and subsequently,
estimate the surface normals as well as the spatially-varying BRDF at each pixel.

BRDF identifiability analysis. We provide a comprehensive
theoretical and empirical analysis of the identifiability of
BRDFs given sparse samples from a collocated setup.

Practical shape and SV-BRDF estimation. We propose a
robust optimization scheme to recover per-pixel normals
and BRDFs of near-planar real-world materials from im-
ages captured with a collocated setup.

Limitations. Our method is limited to near-planar sam-
ples with little depth variation. This is because we rely on
a planar geometric proxy to align the multiple captured im-
ages. We assume that the images are radiometrically cali-
brated. The light intensity across the material sample should
be uniform and significantly greater than the ambient light
levels. Our method requires alignment for the input se-
quence. Imprecise alignment may lead to the blurry of the
results. Finally, our analysis will fail for complex BRDFs
like anisotropic materials and in the modeling of the Fresnel
effect at grazing incidence angles.

2. Prior work

Direct BRDF measurement. The BRDF is a function of
four angles, two each for incident and outgoing directions,
and classical BRDF measurement approaches [10, 16, 17]
sample this 4D space by capturing images under varying
lighting and viewing directions. Densely sampled measured
BRDFs can provide faithful renditions of material appear-
ance, but require specialized acquisition setups to capture
large numbers of images.

Photometric stereo methods. Photometric stereo methods
aim to recover shape from images captured with a fixed
camera and varying lighting. While originally proposed
for materials with known reflectance [30, 31], they have
been extended to jointly infer shape and reflectance proper-
ties. This is done by using low-dimensional parametric re-
flectance models such as the isotropic Ward model [1 1], or
directional statistics BRDF model [20-22]. Alternatively,
the form of the reflectance function is constrained, typically

by assuming that the BRDF is isotropic. Romeiro et al. [25]
show that isotropic BRDFs are well-approximated by a 2-D
bivariate representation and use this to recover BRDF from
a single image of a known shape under known illumina-
tion. The bivariate representation has been used for shape
and SVBRDF estimation from multiple images [4,29], and
blind reflectance recovery from a single image of a known
shape [26]. Chandraker et al. [5—7] leverage motion cues to
recover shape and reflectance for objects with dichromatic
BRDFs. While more general than direct BRDF capture,
these methods rely on restricted setups (calibrated, distant
lighting and cameras) and/or extra information (known ge-
ometry, homogenous BRDFs). Our goal is to capture gen-
eral SV-BRDFs using a light-weight capture setup.

Optimal BRDF sampling. Nielsen et al. [19] address the
problem of identifying the optimal set of reflectance mea-
surements required to recover a BRDF. This idea is fur-
ther extended by Xu et al. [32] to consider near-field mea-
surements. These papers show that a small set of images
— in some cases, even two — are sufficient to estimate a
BRDF. However, they are restricted to homogeneous ma-
terials and the nature of these measurements requires two
pre-calibrated cameras and light sources. In contrast, we
seek to recover SV-BRDFs using commodity hardware, and
we demonstrate that this is possible using a collocated setup
by enforcing a dictionary-based prior on the reconstruction.

BRDF acquisition using commodity devices. Higo et
al. [12] capture images with a hand-held camera with an
attached point light source and use a combination of near-
light Photometric Stereo and multi-view stereo to recon-
struct roughly Lambertian objects. Ren et al. [23] show
that SV-BRDFs can be acquired using a fixed camera and
a moving hand-held source by placing reference material
tiles in the scene. While their results are impressive, the
use of reference materials makes this setup less practical
in real-world situations. Aittala et al. [3] propose to esti-
mate SVBRDFs and normal maps from flash/no-flash im-
age pairs captured using mobile devices. They extend this
work to a single image using neural network-based texture



features [2]. However, these methods are restricted to sta-
tionary texture-like SVBRDFs and are aimed at reproducing
plausible texture variations rather than accurate measured
BRDF reconstruction. Riviere et al. [24] propose two pro-
totypes using a mobile camera-flash or an LCD panel for
reflectance capture. Their mobile camera solution can only
handle rough specular surfaces and their shape and BRDF
estimates are largely based on heuristics. In contrast, we
can handle a wider range of materials because of our robust
dictionary-based shape and reflectance estimation.

3. Univariate sampling of BRDFs

While arbitrary BRDFs are 4D functions of reflectance,
many real-world materials are isotropic, in that, their BRDF
is invariant to joint rotations of the incident and outgoing
directions about the surface normal. The BRDF of such
isotropic materials can be represented with a three-angle
coordinates system, often using the half-angle parameter-
ization [27] that is defined as follows. Given the surface
normal n, the incident direction w; and the outgoing direc-
tion w, — all unit-norm vectors — we first compute the
half-angle h = (w; +w,)/2. Next we define (6}, ¢5,) as the
elevation and azimuth, respectively, of the half-angle with
respect to the surface normal, and (64, ¢4) as the elevation
and azimuth, respectively, of the outgoing direction with re-
spect to the half-angle (see Figure 2). An isotropic BRDF,
represented as p(0, 04, @q), is represented as a function
over 0y, 04, and ¢4 with 0y,,04 € [0,7/2) and ¢4 € [0, 7).
A subsequent reduction in dimensionality is provided by bi-
variate models [25] that further assume that the BRDF is in-
variant to changes in ¢4, and hence, the resulting reflectance
is simply a function of 6}, and 6.

Collocated systems and univariate sampling. When the
light source and the camera are collocated, then the incident
and outgoing directions are the same, i.e., w; = w, = h.
Hence, 0; = ¢4 = 0°. Hence, any sampling of the BRDF
is purely a function of 6;,. We refer to this paradigm as uni-
variate sampling. Further, when there is a small, but fixed,
offset between the light source and camera, then 6, and ¢4
are no longer zero, but are known constants independent of
0y, and ¢y, and hence can be pre-calibrated.

An important question to resolve upfront is whether uni-
variate sampling can provide sufficiently rich measurements
to be able to capture salient features of the measured BRDF,
as well as enable stable reconstructions of the BRDF. We
address this in two different ways. First, in Section 3.1, we
show that the parameters of many analytical BRDF models
are identifiable from noiseless univariate samples. Second,
in Section 3.2, we provide empirical results characterizing
accuracy of BRDFs, estimated from univariate samples.

Half-angle representation
Figure 2. Schematic of half-angle BRDF representation with re-
spect to (0, 04, ¢a) and univariate sampling on 6.

Collocated setup

3.1. Identifiability under univariate sampling

We now address the question of identifiability of BRDFs
from univariate samples, i.e., in the absence of noise, can
there exist two distinct BRDFs that produce the same set
of univariate samples? The answer is a resounding yes,
if we do not further constrain the BRDF in some mean-
ingful way. We do so by restricting ourselves to popu-
lar parametric BRDF models, and show that the parame-
ters of the models are identifiable from noiseless univari-
ate samples. Given the space constraints, we show this
for the Cook-Torrance model [8] and provide justifications
for other models including the Blinn-Phong, isotropic Ward
and the Ashikhmin-Shirley model in the supplemental ma-
terial.

Proposition. The parameters of the Cook-Torrance model
are identifiable from noiseless univariate measurements.

Proof. BRDF measurements under the Cook-Torrance
model are dependent on two parameters: m and Fp. Un-
der univariate sampling, the BRDF can be written as:

(1 — pa) DGF (1 — pa) DGEy
0;) = -_ = A g |
p(bn) = pat— m) ) P reosen (1)
where
e~ tan? Oh/nzz
D=—7—— (G= min(l,Zcos2 0r).

m?2cost @y, ’

The term G is purely a function of ¢}, and does not depend
on any parameters, i.e. Fj and m. Note that the Fresnel
term, F, reduces to a constant F{ for a collocated setup.

First, we observe that p; = p(7/2).! Second, we can
now rearrange (1) to the following expression:

7(p(0n) — pa) cos® O, 1 o\ tan? 6y,
(1= pa)G =8 m2 m2

log (2)

n practice, due to fore-shortening, we cannot make an observation at
05, = 7/2; however, this can easily be handled by sampling the BRDF at
values close to /2 and predicting the limiting value.
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Figure 3. We demonstrate the performance of univariate sampling against a number of other sampling strategies. Shown are the relative
BRDF errors of the reconstructed BRDF on MERL database for our technique, the data-driven method of Hui et al. [13], the bivariate
model [25], the parametric model of Cook-Torrance, and optimal sampling model of Xu et al. [32]. We also compare against a 2D
sampling strategy that we refer to as “bivariate sampling” that provides samples in a bivariate BRDF space (0}, 64). We observe that the
method of Hui et al. [13] returns the best performance on an average. However, the univariate sampling with the proposed prior is able to
compete against most of the state-of-the-art methods, both quantitatively as well as qualitatively.

Note that we have complete knowledge of the LHS term
in (2). Further, if we plot the LHS as a function of tan? 6y,
then the resulting plot is expected to be a straight line whose
slope is —1/m? and whose intercept is log(Fy/m?). Hence,
we can identify all parameters of the model from the uni-
variate measurements. O

3.2. Empirical validation

Next, we show that BRDFs can be estimated reliably
from univariate measurements. Univariate samples provide
a highly under-determined set of measurements and hence,
recovering BRDFs from them requires the use of strong
reflectance priors. We use a dictionary-based model for
this purpose, borrowing an idea proposed recently in Hui
etal. [13,14].

Dictionary-based BRDF models. There have been many
approaches [4, 1 1, 32] that model the BRDF at each pixel
to lie in the non-negative span of a set of exemplar BRDFs,
that we refer to as a dictionary. A dictionary D is simply
a collection of exemplar BRDFs, often grouped together as
a matrix D = [p1, p2,. .., par), where each column is the
BRDF of a measured material. Given D, we represent a
BRDF p as:

p=Dc, c¢>0.

Instead of estimating the high-dimensional vector p, we
only need to estimate the abundances ¢, whose dimension
is proportional to the number of materials in the dictionary.
Following Hui et al. [ 13], we further assume that c is sparse,
suggesting that BRDF is the linear combination of a few
dictionary atoms.

BRDF recovery. Univariate sampling measurements can
be written as follows:

y(0n) = S(On)p+mn
= S(0r)Dc +n,

where S(0},) is the linear sampling operator that extracts the
value at the input BRDF at (6},,0,0) and 7 is the measure-
ment noise. Given M samples, corresponding to half-angle
elevations in the set {6} ,...,02}, we can compute the co-
efficients c by solving for the problem as

M
¢=argmin}_[y(6;) - S(6)Dell3 + Mleli. (3
ez i=1

We can now obtain the BRDF estimate p = D¢c. The pro-
cedure illustrated above is from the dictionary-based mod-
eling of BRDFs in Hui et al. [13], adapted to the univariate
sampling scenario.

Evaluation. We evaluate the performance of the recon-
struction technique with the state-of-the-art methods on the
entire MERL database using a leave-one-out scheme. In
particular, we compare against the parametric model of
Cook-Torrance, the optimal sampling method in Xu et al.
[32], and the isotropic sampling in Hui et al. [13]. For
the Cook-Torrance model, we used the parameters reported
in [18] — these parameters were optimized over the entire
BRDF. For Hui et al. [13], we fix the surface normal at the
north pole [0, 0, 1] and randomly sample the isotropic
BRDF space for 20 combinations of lighting/view direc-
tions and reconstruct using a dictionary-based prior. For Xu
et al. [32], we used the 20 optimal BRDF entries indicated



in their work. For the univariate sampling, we randomly
sample the 6}, axis of the BRDFs and collect 20 samples
with collocated lighting and view direction. Similarly, we
also sample the bivariate BRDF space spanned by 6, and
6, with the 20 lighting/view combinations; we refer to this
as bivariate sampling and use the same recovery algorithm
as with univariate samples. For the results of Hui et al [13],
univariate, and bivariate sampling, we perform 5 different
random trials and report the average errors in Figure 3. The
relative BRDF errors for these methods are shown in Fig-
ure 3, where we observe that univariate sampling is quite
competitive to state-of-the-art models.

Remark. For many materials, the univariate sampling out-
performs competing methods that sample in the bivariate
space (0, and 6,) or the isotropic space ( 0,60, and ¢4).
Given that we enforced a measurement budget for all meth-
ods, univariate sampling enjoys a denser sampling of the
specular lobe. However, as we increase the number of mea-
surements, univariate sampling has diminishing returns in
reconstruction performance while competing methods that
perform full sampling as well as bivariate sampling con-
tinue to observe significant gains. Our empirical evaluation
also indicates that BRDFs of real-world materials are highly
redundant and that the univariate sampling of an isotropic
BRDF for 6; = 0 is often sufficient for high-quality re-
constructions. This hypothesis is similar in spirit to bi-
polynomial BRDF model introduced by Shi et al. [28], pro-
viding the BRDF as the product of two univariate function
over 0, and 0}, respectively.

4. Shape and reflectance estimation under uni-
variate sampling

Acquisition setup and calibration. Our imaging setup
consists of a nearly-collocated camera and light source, we
assume the intrinsic matrix of the camera is known via a
one-time pre-calibration. We acquire () (typically, about
100) images at different viewpoints of a target. We assume
the target is nearly planar, mainly for ease of registering
the images across different viewpoints using homography-
based methods. For each view, we use the four checker
board patterns attached to the corners of the target to com-
pute the homography. The checker board patterns also allow
us to compensate the lighting variations within each cap-
tured image. Using the homography, we align pixels across
different images and find world coordinates of all pixels.
We now have a stack of intensity observations under known
lighting and viewing directions for each pixel.

Problem statement. Given the aligned images, we can for-
mulate the objective function that incorporates both surface

normal and BRDF at pixel p as

{Bip, €} = argmin||I, — B(n,lp, vp)e[3 + Allefr )

c>0,n

where I, € R? denotes the image intensities observed at
pixel p after alignment, 1, and v, are the lighting and
viewing directions for @) collected images, i.e. 1, =
(1502, 19], vp = [vp,v3,...v9]. Note that 1 and vy,
are known via the calibration. The term B(n,1,, vp), an
@ x M matrix, is given as

B(n,l,,vp) = S(n,lp,vp)D,

where S has () rows and a number of columns equal to the
dimensionality of the BRDFs; here, S encodes the shading
term as well as sampling of the BRDF. The estimates of the
surface normal ny, and the abundance ¢, amount to solving
a quadratic cost function with ¢;-norm constraint.

Identifying BRDF exemplars. For computational effi-
ciency, we enforce the sparsity prior on the abundances by
first identifying a compact set of BRDF exemplars for a ma-
terial sample. Specifically, we solve for the abundances at
each pixel via (4) with initialized flat surface and sum the
abundances across all pixels. Now, we obtain the summed
result C € RM where M is the number of atoms in the dic-
tionary. We empirically observe that only few atoms in C
have large values while the remaining entries are close to
zero, which is consistent with the observation in [4, 13].

We retain only the K (in our case K = 10) BRDFs with
the highest values of C as our compact set of BRDF exem-
plars. This obviates the need for the sparsity constraint in
subsequent iterations, thus speeding up computation. We
denote B as the dictionary with columns that corresponds
to the exemplar set of atoms. We now solve for the normals
and the coefficients:

{fp,¢p} = argmin|I, — B(n, 1y, vp)c|2.  (5)

c>0,n

Surface normal and SV-BRDF estimatioAn. Given the ini-
tial estimate of ¢(©) from flat surface and B, we use an iter-
ative local search to solve for the surface normals. Specif-
ically, we build a 2D grid with respect to the elevation and
azimuth angles, and search in the grid for the normals which
can best describe the intensity profile. In the first iteration,
we initialize all the surface normals pointing toward the
north pole, i.e., a flat surface, and solve for the abundances
¢? via (4). Now, at the j-th iteration, we have normal esti-

(=1
p

mate n with elevation angle Gl()j ~Y and azimuth angle

¢§£’ Y The 2D grid for the (j)-th iteration is constructed as

NG = {6,018 - 0571 < To,16 - 0§ V| < To},



where 7y and 7, are the thresholds to determine the car-
dinality of the candidate set. We can incorporate a coarse-
to-fine search by specifying different values for 7y and 7,
where 7Ty is varying from 5 to 0.1 degree while 50 to 1 de-
gree for 7. For each element in N the candidate surface
normal is computed as

i = [sin(0) cos(), sin(f) sin(¢), cos(f)]
The estimate of the surface normal at a pixel p is given as

~() . 5 i—1))12
ng) = argnprgjl\rflm I — B(np,lp,vp)cg )||2. (6)

This is solved by scanning over all the elements in A//. Note
that ¢, has kept fixed with the values from the (j — 1)-th
iteration. Once we obtain ﬁﬁf ), we update the coefficients
cp by solving

Eg) = arg rrgin I, — E(ﬁg), 1, vp)epls st.cp > 0.
P
(N
The algorithm typically converges within 10 iterations. The

ultimate estimate of BRDF at each pixel is pp = ﬁé\;;]),

where D corresponds to the selected columns for Band J
denotes for the number of iterations.

5. Results and Applications

In this section, we characterize the performance of our
technique on a wide range of real-world scenes captured
with iPhone 6s for a variety of tasks. We fix the target sam-
ple and move the phone while capturing images under the
phone’s flash illumination (see Figure 1). The images were
captured with 2016 x 1512 pixels and we crop the regions
with the target object for shape and BRDF estimation. We
recover the per-pixel BRDFs with 1 degree for each angle in
BRDF space, which leads to a 90 x 90 x 180 = 1,458, 000
dimensional vector. We direct the reader to the accompany-
ing supplementary material for more results, comparisons,
and analysis.

5.1. Shape and Reflectance Estimation

We process the captured images using the technique de-
tailed in Section 4 to recover per-pixel surface normals and
SV-BRDFs. We integrate the estimated normals using Pois-
son reconstruction [ 1] to obtain the 3D surface.

Shape estimation. To evaluate the performance of our
shape estimation, we compare against the work of Riviere
et al. [24], who use a similar mobile camera-based setup.
While we model near-field camera and lighting, they as-
sume that the camera and light are distant. In addition, their
reflectance estimation is based on image heuristics, unlike
our optimization-based framework with a BRDF prior. As
demonstrated in Figure 4, our technique recovers more fine

scale structures than [24]. In addition, our technique suc-
cessfully separates reflectance effects from geometry, and
as aresult our reconstructions are largely planar. In contrast,
their BRDF errors leak into the shape estimates leading to
deviations from the planar structure of the samples. More
comparisons with [24] on both real and synthetic scenes can
be found in supplementary material.

Reflectance capture. Figures 1, 5 illustrate the perfor-
mance of our method on datasets captured using an iPhone
6s. These four datasets — leaf, leather, fur and
characters — have 123, 126, 70, and 138 input im-
ages, respectively. For each dataset, we show the estimated
surface normals and recovered 3D shape under different
viewpoints. The surface reconstructions show that we can
recover fine-scale geometric details like yarn threads and
leather patterns, even for samples with complex BRDFs.
While we use a large number of input images to produce
the results, our experience is that the performance degrades
gracefully with a smaller number of images. We direct the
reader to the supplementary materials where we include the
BRDF/normal estimation error as a function of number of
images on the synthetic dataset.

In addition to the images captured for shape and
SVBRDF estimation, we capture additional images using a
fixed camera and moving light source, i.e, a non-collocated
setup. These “novel lighting” images are not part of the
training dataset, and are used to visualize how accurately
our shape and reflectance estimates generalize to directions
that were not sampled. As shown in Figure 5, images
rendered using our estimated normals and BRDFs under
these novel lights closely resemble the actual captured pho-
tographs, indicating the robustness of our method.

5.2. Applications

Material editing. Once we reconstruct surface normals
and SVBRDFs we can edit the material properties of the
captured samples. This is demonstrated in Figure 6, where
we a) swap specular and diffuse materials between two re-
gions of the same sample, and b) transfer the specular mate-
rial from one sample to a completely different sample. We
re-render these edited BRDFs using the original estimated
normals and view/lights. As can be seen here, our method
is able to produce visually plausible results.

Material trait analysis.  Previous work on recognizing
material types uses specific optical setups [33] or projects
raw BRDF measurements to a low-dimensional space [17].
However, these approaches are designed for objects with
uniform reflectance or homogeneous BRDFs. In contrast,
our technique estimates per-pixel BRDF abundances, and
we can leverage this to estimate material traits at each pixel.

In order to do this, we first annotate all the materials in



Sample image Riviere et al. [24] Our results
Figure 4. We compare our performance on surface normal estimation with Riviere et al. [24] on two datasets. Shown are (left-right) one
sample image, estimated normals and recovered 3D shape via Poisson reconstruction. Please note that our reconstructions, like the actual
samples, are close to planar and contain more fine-scale detail.

(a) Input sample  (b) Estimated normals (c) Recovered surface (d) Rendering (e) Photograph
Figure 5. We demonstrate shape and reflectance estimation on images captured using an iPhone 6S (a). We show the estimated normal map
in false color (b) and recovered surface (c). We also compare rendered (d) results against actual captured photographs under novel lighting
(e) that is not collocated with the camera.
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Figure 6. Material editing on two real samples. For the examples at the top, we compute the mean BRDF in the specular and diffuse regions
of the samples (shown on the left), swap them and re-render them with the estimated normals, lights and cameras. For the examples at
the bottom, we replace their SVBRDFs with the specular BRDFs from the top samples. These results are visually plausible, especially
considering the fact that specular materials are likely to expose errors in geometry and material more clearly.
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Figure 7. Material trait analysis on real captured data. (top) For two regions indicated by p; and p2, we plot the associated material trait
values (computed as described in Section 5.2). Pixels (p1) with metallic properties have large values in metallic paint and metal while
pixels (p2) with diffuse Lambertian-like materials show large values in diffuse paint and fabric. (bottom) We visualize per-pixel material
trait values for three material groups — metallic paint+metal, diffuse paint+fabric, and plastic+acrylic. This leads to clean, consistent

material segmentations.

the MERL database with one of three unique material traits
— metal + metallic paint, fabric + diffuse paint and acrylic
+ plastic. These three categories were chosen manually by
visual inspection. We denote the i-th trait as M,;. Given
our abundance estimates Cp,, we compute the per-pixel trait
values by summing the abundances corresponding to mate-
rials with the same trait. Finally, we normalize these value
so that they sum to 1:

P 2ee(k)

Figure 7 illustrates our proposed material trait analysis
scheme for two datasets. Our predictions are consistent with
the material properties of these samples — e.g., regions with
metallic materials return high probabilities for the traits un-
der metal + metallic paint — and accurately segment the
samples into different materials.

6. Conclusion

This paper demonstrates the feasibility of reflectance
capture using a collocated light source and camera, a hard-
ware setup that is commonly found in mobile devices. We
show that univariate sampling, commonly believed to be un-
desirable for reflectance estimation, can offer high-quality
estimates of SV-BRDFs. While our results are applicable
only to planar scenes, we believe that the ideas espoused in
this paper are an important step towards reflectance capture
in the wild.
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