Session 5: Tools to Analyse Games

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

Adapting Cognitive Task Analysis
to Elicit the Skill Chain of a Game

Britton Horn
Northeastern University
Boston, Massachusetts
bhorn @ccs.neu.edu

ABSTRACT

Playing a game is a complex skill comprising a set of more
basic skills. These skills commonly map onto the main me-
chanics of the game, and build and depend on each other
in a nested learning hierarchy, which game designers have
modeled as skill chains made of skill atoms. For players to
optimally learn and enjoy a game, it should introduce skill
atoms in the ideal sequence of this learning hierarchy. How-
ever, game designers typically construct and use hypothetical
skill chains based solely on design intent, theory, or personal
observation, rather than empirical observation of players. This
risks creating incomplete or suboptimal progression designs.
In response, this paper presents an adapted cognitive task anal-
ysis method for eliciting the empirical skill chain of a game. A
case study illustrates and critically reflects the method. While
effective in foregrounding overlooked low-level skills required
by a game, its efficiency and generalizability remain to be
proven.

ACM Classification Keywords
H.5.m Information interfaces and presentation: Miscellaneous;
K.8.0 Personal Computing: General: Games

Author Keywords
cognitive task analysis; game atoms; learning hierarchy; skill
atoms; skill chains

INTRODUCTION

Like cooking, driving, and many other everyday activities,
playing a video game is a complex skill [60]. Complex skills in-
tegrate a network of more basic skills: driving, for instance, re-
quires independently mastering braking, steering, and switch-
ing gears, but also integrating and fluently switching between
them [49]. These constituent basic skills hang together in a
learning hierarchy: the logical order in which they build and
depend on each other and therefore, in which they are ideally
learned. For instance, we have to learn counting before we can
learn addition and subtraction, and it is easier to learn these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CHI PLAY ’17, October 15-18, 2017, Amsterdam, Netherlands

©2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4898-0/17/10. .. $15.00

DOI: https://doi.org/10.1145/3116595.3116640

Seth Cooper
Northeastern University
Boston, Massachusetts
scooper@ccs.neu.edu

277

Sebastian Deterding
University of York
York, United Kingdom
sebastian.deterding @york.ac.uk

before multiplication [26, 4, 64]. Identifying the learning hier-
archy of a to-be-taught complex skill is therefore a key task
of instructional design, as it directly informs what learning
goals to pursue, what outcomes to assess, and what tasks and
material to present in what order to optimally support learning
[35].

We find the very same need in entertainment and serious game
design. No matter if designers want to create good tutorials and
level progressions for a game [48, 8]; balance level difficulty
or procedurally generate levels that fit player skills [45]; create
educational games whose mechanics train targeted capacities
[23]; or gamefully restructure everyday activities [21] — they
are faced with the question what component skills a given
game entails or ought to entail, and in what order the game
should introduce these to players. More colloquially, if games
are learning machines we enjoy to master [27, 42], it stands to
reason they benefit from a well-designed sequence of learning.

Unsurprisingly, game design has developed a range of formal
models that describe games as nested networks of game atoms
or loops which revolve around specific actions or skills [21].
One particularly popular model, developed by Dan Cook, de-
scribes games as skill chains, directed graphs of skill atoms
or core loops that logically build on each other — mirroring
learning hierarchies in everything but name [14]. Likewise,
there are many design methods such as Rational Level Design
for prospectively deriving optimal level progression sequences
from a given atom model [47, 48].

However, these models and methods provide little if any guid-
ance how to reliably deduce the skill chain or learning hierar-
chy of a given game. Models are either sketched as blueprints
for a new game or based on a designer’s or researcher’s individ-
ual reading of a game. Scarcely any game research methods
exist to empirically deduce the skill chain of a game from
actual player experience, or assess to what extent the skills
and ideal sequencing order predicted by a model matches the
actual skills it requires from players, or their actual learning
hierarchy. This risks overlooking essential skills, not intro-
ducing them to players or introducing them in a suboptimal
sequence.

In instructional design, cognitive task analysis (CTA) is a
well-established family of methods to identify the skills and
knowledge involved in a given task based on empirical ob-
servation and interviewing of experts [16, 13]. This includes
methods for eliciting and modeling learning hierarchies [63,

Session 5: Tools to Analyse Games

35], which makes CTA an ideal candidate for identifying the
learning hierarchies or skill chains of games. Although CTA
techniques have existed for decades, to our knowledge, they
haven’t been adopted in games research and design for this
purpose. Hence, this paper presents an adapted cognitive task
analysis method for extracting the skill chain of a game from
empirical gameplay. Akin to prior work on method develop-
ment [36], we conducted a case study in a mode of critical
reflective practice [54], continually documenting and reflect-
ing on our method design process to assess its utility, identify
future improvements, as well as surface more general issues
in eliciting the knowledge and skills involved in playing a
particular game.

The next section reviews existing work in games research
related to modeling and identifying the component skills of
games and introduces CTA. We then lay out our adapted CTA
method, including its underlying rationale and a concrete step-
by-step procedure for interested users. Our case study — using
the method to identify the skill chain of the human computa-
tion game Paradox — illustrates the method in use and provides
material for emerging observations and challenges. We dis-
cuss the contribution and limitations of the presented work
and derive ramifications for future research.

BACKGROUND

Formal Modeling of Games

Doug Church [11] initiated contemporary work on “formal
abstract design tools™: developing grammars and tools to de-
scribe, analyze, and design the structural components of a
game (for recent reviews, see [2, 22]). Following Almeida and
da Silva [2], one can roughly distinguish (a) broad models like
the MDA framework [34], (b) collections of descriptive terms
and patterns (e.g. [6]), (c) design guidelines such as playabil-
ity heuristics [41], and (d) modeling languages and tools of
the core mechanics of a game, such as Machinations [22, 1].
Game mechanics describe the “core verbs” or “methods” by
which players change the game state, such as moving, shoot-
ing, or trading [56]. They form part of game atoms [43] or
game loops [57] — feedback loops between player input (invok-
ing a particular mechanic, e.g. shooting), rules processing (e.g.
adjudicating whether the shot hit), and computer output. A
game atom is the smallest indivisible functional unit of a game.
However, games are usually composed of nested networks of
interlinked atoms: In a cover shooter, the “shooting” atom is
part of a larger “defeating enemies” atom, which also entails a
“cover” atom and may connect to an “upgrading atom,” etc.

Skill Chains

As noted, game atom modeling is highly similar to modeling
the learning hierarchies of complex skills. Both capture nested
relations of basic to complex capacities, mechanics here, skills
there — with one crucial difference: most game atom models
concern themselves with a synchronic overview of the game
and how the outputs of one atom (e.g. in-game resources like
health or experience points) feed into others [2, 22]. They do
not capture the diachronic sequence in which players (ought
to) acquire proficiency in each atom. The exception is the skill
atom model first articulated by Cook [14] and since extended

278

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

. "l can use a pre-existing skill."

Basic Skill One

. Action

% Simulation
@ Feedback

Q Challenge

. "I can use skill one."

Basic Skill Two

. Action

é:légl Simulation
@ Feedback

Q Challenge

. "I can use skill two."

Advanced Skill

. Action

%C:):%' Simulation
@ Feedback

Q Challenge

"l can use a skill that combines
skills one and two."

Figure 1. An example skill chain.

by Deterding [21]. It expressly models game mechanics and
their relation from the perspective of player learning. A skill
atom describes a game loop between player and game com-
prising five elements:

1. action: the player invoking a mechanic (e.g. shooting);
2. simulation: the game processing the action according to
rules and changing its internal game state (adjudicating
whether the shot hit, changing the location and health score
of the hit enemy);

3. feedback: the game informing the player (displaying an
animation of the hit enemy);

. challenge: the parameters that make executing this particu-
lar action differently easy or difficult; and

. synthesis: the player incorporating the feedback, adjusting
their mental model of the game state and improving the
skill(s) required to master this particular atom (e.g. fast
hand-eye coordination to aim and shoot).

Skill atoms exist in nested skill chains: directed graphs of the
order in which skills build on each other and in which players
necessarily or ideally acquire them [14]. For instance, a player
has to know how to equip a gun before learning how to aim
and shoot with it. Skill chains bottom out in pre-existing skills:
capacities game designers can assume players already bring
to the game. Most PC games assume that players know how
to move and click a mouse, for instance. Figure 1 presents a
simple skill chain of one pre-existing skill, two basic skills,
and one advanced skill that builds on them. Figure 2 shows a
skill chain for the game Tetris.

Session 5: Tools to Analyse Games

. "Watching the screen will provide
clues.”

Blocks Falling

@ osingisaur
@ covs oo or

Failing a Level Rotating

@ ' svoucnt et biooks reach the top.*

Stack Efficiently

Help

@ ' can move the biooks arouna.”

@ sicciing eficiently siows my ascent”

Faster Slot Recognition Removing a Line - Score Removing a Line - Space

. "] can place blocks quickly and with a

figes ece o @ wren i remove aine, 1 get poins.*

space so | don't reach the top.

New Level

—'&i _

. "When I remove a line, I can frée up

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

. I can click on buttons with the
mouse."

. "I should use the arrow keys."

Move Left and Right

@ 1 can move the blooks around.*

@ oiis are good

Removing Multi Lin Multi Line - Sc T-Spin Skills

. "Removing multiple lines frees up more

. "When I remove multiple lines, | get
space so | don't reach the top. more points!"

ints! . "I can place T-shapes efficiently."

. "Mastery leading to a chance to get a
better score."

High Score

@ " can camhigh scores.

Bragging Rights

. “I am so awesome compared to other
Ppeople."

Figure 2. Skill chain for Tetris, taken and simplified from Cook [14].

Cook’s model has found rich practical application, particu-
larly in applied game design. For instance, Echeverria and
colleagues [23] used it to improve an educational physics
game. They analyzed which physical concepts the game ought
to teach and which concepts it actually incorporated as skill
atoms. Redesigning the game to incorporate previously miss-
ing skill atoms led to statistically significant learning improve-
ments. Deterding’s [21] method for gameful design similarly
uses skill atoms to tease out the latent ‘mini-games’ of existing
real-life activities and then redesign these to make them more
explicitly and enjoyably game-like.

While not using Cook’s [14] explicit articulation, Rational
Level Design (RLD) [47, 48] has brought game atom analysis
to broad use in entertainment game design, chiefly for diffi-
culty balancing. Following flow theory [17], RLD assumes
that players have an optimal or “flow” experience when the
difficulty of challenges presented matches players’ skill. As
player skill grows over time, games have to increase difficulty
in lockstep to avoid frustrating or boring players. This raises
the question how to systematically design the difficulty curve
of a game — the rate at which it increases difficulty. To this
end, RLD suggests to identify (a) the atoms of a given game
and (b) the parameters which affect the challenge of each
game atom. For instance, the difficulty of “shooting” may be
affected by parameters like enemy distance and speed. De-
signers should then craft a level sequence that systematically
(a) introduces and involves new mechanics and (b) varies and
increases the difficulty of the parameters of each atom. RLD
essentially translates a synchronic map of game atoms into
a recipe for diachronic level progression. However, RLD is
chiefly interested in difficulty as an aggregate effect of the
number of atoms involved and the configuration of their pa-
rameters. Unlike skill chains, it doesn’t concern itself with

279

logical or pragmatic dependencies — how skills build on each
other.

Methods for Atom Identification

Either way, both skill chain mapping and RLD require means
to elicit the actual skill atoms a game consists of. Cook [14],
Echeverria [23] and Deterding [21] are notably silent about
how they arrived at the skill atoms and chains they discuss.
Where they mention the underlying process, it essentially bot-
toms out in “expert evaluation”. This is a common issue of
formal game analysis methods: most are some form of ex-
pert interpretation whose content and quality hinges on the
unvalidated and tacit expertise of the reviewer. Guidance only
concerns the format of the presented result, not the review pro-
cess, leading to low replicability [44]. RLD [47, 48] similarly
provides no method how to initially identify the atoms of a
game and its parameters. Only once designers prototype actual
levels based on hypothesized atoms and parameters does RLD
loop in playtesting to assess the actual difficulty of each level
as a player fail rate. From there, RLD focuses on iteratively
understanding and tweaking the impact of atom parameters
(enemy speed and distance) on difficulty. It offers no similar
process to identify the game atoms themselves.

Existing playtesting and game user research methods are like-
wise of little help. No matter if based on player self-report,
observation, psychophysiological measures, game telemetry,
or a mixture thereof, they revolve around capturing constructs
of player experience (like flow or immersion) and how game
features affect these [5, 19, 24, 10, 39]. Closest to our con-
cerns are heuristic analyses of game approachability — how
easy a game is to learn [20] — and methods to balance game
difficulty [33]. Yet again, both revolve around approachability
or difficulty as aggregate results, not the underlying required

Session 5: Tools to Analyse Games

skills. For example, Linehan and colleagues [45] charted dif-
ficulty curves for four popular puzzle games by coding Let’s
Play videos for the number of actions required to solve a given
level and when the game required a new skill. This provides
an aggregate measure of difficulty and a description of the
sequence in which skills are introduced by the game, but not
the learning sequence in which these build on each other and
should be introduced to players. The same holds for applied
game design [50, 65]. A number of recent methods support
the capture of a given game’s game and learning mechanics,
but chart them in the actual game design sequence, not the
ideal learning sequence [3, 9].

A final source of potential methods is recent work merging
intelligent tutoring systems with educational games. Butler
and colleagues [8] for instance present a system for automatic
game progression design for a game teaching fractions. The
system models the algorithm required to solve all possible ba-
sic fraction problems, generates a large number of game levels,
assesses each level’s complexity on the number and kind of
involved solution features (substrings of the total algorithm
required to solve it), and serves players levels matching their
measured mastery of solution features. While promising, this
approach by definition only works for skills that are easily for-
malized into an algorithm, and offers no means of empirically
identifying what skills a game requires and therefore needs to
formalize. Harpstead and Aleven [29] use empirical learning
curve analysis, a performance data analysis method from in-
telligent tutoring systems, to evaluate how well hypothesized
models of player skills predict player success in an educational
game. While this method does help assess whether there are
hidden, non-modeled skills, again, it provides no means to
empirically develop initial models.

In summary, skill atom chains formally model the component
mechanics and skills of a game and their logical dependencies.
Thus, they lend themselves readily to map a game’s learn-
ing hierarchy. Current game user research, applied gaming,
and intelligent tutoring research provide no reliable empiri-
cal method to identify the learning hierarchy or skill chain
of a given game — the acrual skills a player needs to acquire
to master a game, and the actual order in which they build
on each other and therefore should be introduced. Existing
methods are limited to either (a) charting what mechanics a
given game practically includes and introduces in what order
(rather than should include or sequence to match the empirical
learning hierarchy), (b) generating, testing, and optimizing
level progression in terms of difficulty given an initial model,
or (c) testing the statistical fit of a given model.

Cognitive Task Analysis

Faced with the same question — how to identify the skills
involved in a domain — instructional design has developed a
cluster of methods called Cognitive Task Analysis (CTA). CTA
involves a variety of interview, observation, and modeling
techniques to elicit and describe the knowledge and skills
experts use to solve complex tasks [15]. CTA is the currently
prevalent method for determining how people solve complex
problems and for eliciting their learning hierarchies, forming
the bedrock of any instructional design [35]. Recent systematic

280

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

reviews suggest that basing instruction on CTA has strong
positive effects on learning outcomes [62].

That said, there is no one single CTA. With over 100 CTA
techniques available [15], choosing an appropriate method is
challenging. A review by Wei and Slavendy [63] distinguishes
four families of CTA methods and derive guidelines when to
apply which: (1) more informal observations and interviews
are advisable when the domain in question is very broad, ill-
defined, or ill-understood; (2) more rigorous process tracing
captures the actual steps and involved knowledge and skills
of performing a given task through think-aloud or stimulated
recall techniques, and is advised when exemplary tasks are
easily identified; (3) conceptual techniques generate struc-
tured representations of domain concepts and their relations
and are used to either analyze and represent data collected
through other techniques, or when the domain in question
mainly involves conceptual knowledge; (4) computer simula-
tions testing formal models are used when task models already
exist and quantitative predictions or measures are required.
Combining multiple techniques is generally recommended to
reduce errors and improve validity.

No matter what technique, CTA generally involves an iterative
five-step process [13]:

1. Collect preliminary knowledge to identify learning goals,
tasks and subjects: The analyst familiarizes themselves with
the domain and desired learning outcomes to identify tasks
to analyze and experts to recruit through e.g. document
analysis, observation, or initial interviews.

. Identify knowledge types: The analyst determines what kind
of knowledge and skills the given tasks comprise and there-
fore, what specific elicitation, analysis and representation
techniques are best suited (e.g., cooking a meal is a highly
sequential task involving lots of tacit skills around prepa-
ration techniques, suggesting close observation and a flow
chart as a representation).

. Apply focused knowledge elicitation methods: The analyst
uses the chosen techniques to elicit the knowledge and skills
involved in the observed tasks. These typically involve
some form of verbal report by the expert to surface covert
cognitive processes.

. Analyze and verify data: The analyst codes the generated
data following the chosen method and produces initial rep-
resentations of the involved skills and knowledge. Data and
representations are cross-checked with the involved experts
for potential errors and unclear points, and compared and
contrasted between multiple elicitations to arrive at a final,
integrated model.

. Format results for intended application: The analyst pre-
pares a formal presentation of the resulting model depend-
ing on the intended purpose of the CTA.

ADAPTING CTA FOR SKILL CHAIN ELICITATION

Given the maturity of CTA as a means for eliciting the skills
involved in a given task, we decided to develop an adapted
CTA method to identify the skill chain of a game. We were

Session 5: Tools to Analyse Games

especially encouraged in this as the skill atom model frames
gameplay as a learning process of moving through an implicit
learning hierarchy [14], and CTA is recommended specifically
to identify learning hierarchies [35]. For each of the five steps
of CTA methods, we will first explain why we chose spe-
cific techniques and adaptations. We will then give idealized
step-by-step instructions for our final procedure to allow easy
replication.

Method Development and Rationale

1. Collect preliminary knowledge to identify learning goals,
tasks and subjects. In the case of game analysis, domain and
learning goals are determined by the game in question and
what counts as successfully completing it. The task is naturally
a stretch of gameplay, which should be long enough for play-
ers to demonstrate the skills in question without putting undue
hardship on subject or analyst. Depending on the size of the
game, analysts may therefore want to focus on a particular as-
pect or stretch of the game. For instance, to analyze end-game
raiding in an online role-playing game, which players often
only access after dozens or hundreds of hours of gameplay,
it may be advisable to focus on the first half an hour of an
exemplary raid.

In terms of subject recruitment, most CTA techniques rely on
subject matter experts. However, especially basic, low-level
gameplay (like using controls) is a highly automated skill [12]
that experts are rarely able to consciously explicate. A proven
technique for foregrounding these skills is comparing novice
and expert performance [55]. We conclude that unless the
focus is on ‘high-end’ gameplay (such as end game raiding),
recruiting a diverse set of expert and novice players of the
game in question is a preferable strategy. As regards sample
size, CTA gives no hard recommendations beyond recruiting
more than one expert [13]. Given most CTA techniques are
qualitative suggests adopting sampling criteria from qualitative
research paradigms, most notably theoretical saturation: data
collection should cease when additional data doesn’t challenge
the developed model anymore. Since a recent meta-analysis
of qualitative interview methods suggest theoretical saturation
is typically reached at around 12 or more participants [28], we
chose 12 participants as our lower bound.

2. Identify knowledge types: Playing any game is a well-
defined task that usually involves complex problem-solving
with a wide variety of required skills and knowledge types
[12], suggesting a process tracing technique [63]. Given our
particular interest in skills, we chose Seamster and colleagues’
[55] skill-based CTA (SBCTA) as a starting point. SBCTA
combines a number of specific techniques to identify five types
of cognitive skills that capture the range of skills required by
video game play well: automated (e.g. hand-eye coordina-
tion), procedural (e.g. how to open menus), representational
(mental models like predictions of enemy movement patterns),
decision-making, and strategies. Seamster and colleagues and
Wei [63] suggest to elicit automated and procedural skills
through process tracing combined with verbal reports such
as think-aloud. However, gameplay is highly cognitively in-
volving, making parallel think-aloud problematic [31]. We
therefore chose to use stimulated recall, likewise a common

281

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

process tracing technique in CTA [16]. Here, the subject is
video-recorded while performing the task in question. After-
wards, the analyst replays the video to the subject, stopping
the video at relevant moments to ask the subject to explicate
their thoughts and decision-making processes at the recorded
time. This method allows the subject to perform tasks without
interruption in a more natural setting while also cueing fresh
memories and double-checking recall against actual recorded
behavior, reducing false memories and post-rationalization
[18]. For these and other reasons, variants of stimulated recall
have been in active use in game research for some time [52,
7, 37, 38]. Following SBCTA, representational and decision-
making skills are captured through the critical decision method
[40] and error analysis, focused interview probing of moments
in task performance when subjects made decisions or errors.
Finally, strategy skills are likewise elicited with structured
interview probing on decision points and/or scenarios [55].

3. Apply focused knowledge elicitation methods: Each subject
is video-recorded playing the gameplay stretch investigated.
Since gameplay occurs both on and in front of the screen,
both should be captured and merged into a single picture-
in-picture or picture-next-to-picture video file for replay and
analysis [52, 59]. We decided to instruct players to think-aloud
while they play to the extent possible, since think-aloud data
provides additional cues and checks on the player’s memory
during stimulated recall [58, 61]. To elicit representational and
decision-making skills via critical decisions and errors, the
analyst watches the unfolding play and makes time-stamped
notes on these incidents for focused follow-up. Indicators
for relevant incidents are moments such as the player taking
additional time to figure something out; struggling, pausing,
or making errors; expressing an “aha” moment verbally or
through body language; making a decision; or deviating from
expected gameplay.

The play session is followed by a video-aided recall session
that is also recorded. These generally follow a semi-structured
interview pattern of initial scripted questions to elicit the sub-
ject’s thinking at a given point, followed up by further, more
open probing [46]. Concretely, we decided to show the player
the record of each point in gameplay marked by the inter-
viewer, and ask them (a) what elements of the game they
interacted with or paid attention to, (b) what they were think-
ing at this point, and (c) why they took the action they took.
These questions try to elicit procedural and automated knowl-
edge around low-level gameplay as well as representational
decision-making and strategy skills. Finally, subjects are asked
what aspects of the game made it more or less difficult to com-
plete the particular game goal at that point in order to identify
the “challenge” component of the skill atom.

4. Analyze and verify data: Following standard procedures
for stimulated recall analysis [52], the recall session record
is transcribed as a structured, time-coded script of (a) the
recall dialogue and (b) recorded gameplay and think-aloud
verbalizations it refers to. To conduct analysis and cross-check
transcripts against video data, we suggest using a computer-
aided qualitative data analysis (CAQDA) software that can
code and display text and video data. As skill atoms already

Session 5: Tools to Analyse Games

prescribe a clear unit of analysis, we adopted a directed qual-
itative content analysis method [32]: each unit of the first
transcript is parsed for any actions the player takes in the
game at that point. These actions are then contextualized in
the video record and transcript to assess whether it forms part
of a skill atom, meaning it involves some simulation, game
feedback, challenge, and player synthesis.

The simulation portion of a coded atom can be determined
by observing audiovisual feedback indicating a game state
change, or additional knowledge of the game itself. Feed-
back is determined by observing the audiovisual record of
gameplay and analyzing a subject’s statements directly after
an action is performed to see what feedback (if any) they no-
ticed and (rightly or wrongly) interpreted as a result of their
action. Challenge is explicitly derived from subject’s state-
ments about what makes a given moment of gameplay hard
or easy to master, and implicitly from moments of pausing or
failures at performing a given action. Synthesis can be derived
from moments where the player explicitly voices a particular
“aha” moment or demonstrates newly competent performance
of an action. Each instance showcasing all five elements is
coded as a skill atom. A second pass through the transcript
codes for further instances of the identified skill atoms or their
components, e.g. additional dimensions of challenge.

Dependencies between atoms in the skill chain are discovered
through (a) analyzing the transcript for the sequence in which
players showed or reported to learn a given atom, and (b)
subsequent logical challenging whether the observed sequence
expresses a necessary dependency or not. After analyzing the
first transcript, transcripts of additional subjects are coded for
the already-identified and additional skill atoms, also revising
or refining prior skill atoms as needed.

5. Format results for intended application: Wei and Slavendy
recommend conceptual CTA techniques such as visual dia-
gramming to articulate and present the structure of knowledge
of a domain [63]. Cook [14] already provides a visual dia-
gramming language for skill chains, which we chose to adopt.
Interestingly, skill chains parallel the graphical structure of
concepts maps, a common conceptual tool for diagramming
results of a CTA [51]: both are constructed of nodes repre-
senting a specific concept and edges connecting nodes that
represent their relationships. We took this as convergent sup-
port for our choice. We programmed a script to automatically
generate a visualization from a simple JSON file. True to the
iterative nature of CTA [13], we found it useful to already
sketch and iteratively revise and refine a draft diagram skill
chain in parallel to data analysis.

Method Procedure
The following is a streamlined set of instructions for replicat-
ing the final methodology of our adapted CTA.

1. Identify analysis goals, tasks and subjects. Determine
which game and particular aspect of its gameplay you wish
to map as a skill chain. Choose a portion of gameplay that
requires players to learn and/or demonstrate mastery of the
focused aspect and does not overburden subjects — assume that
interview sessions last at least double the time of the recorded

282

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

gameplay stretch plus 20 minutes of briefing and debriefing.
Unless you focus on a particular audience or gameplay aspect
(e.g. end-game content), recruit a diverse pool of 12+ subjects
that involves both novices and experts at the game.!

2. Elicit knowledge. Instruct subjects to play the selected
stretch of gameplay, verbalizing what is going through their
head as they do so. During gameplay, audiovisually record
both on-screen game events and off-screen player activity and
take notes including time stamps on critical moments when
players (a) seem to make a decision; (b) struggle, pause, or
make an error; (c) express an “aha” moment; or (d) deviate
from expected gameplay. After the play session, replay the
video recording to the subject. Fast forward to and play each
critical moment you noted and ask the subject to verbalize
(a) what game elements they were paying attention to or in-
teracting with, (b) what was going through their mind at that
point, (c) why they took the action they took, and (d) what
aspects of the game made it more or less difficult to complete
the particular game goal at that point.

3. Analyze data. Transcribe all stimulated recall sessions with
time codes, noting (a) the recall dialogue and (b) recorded
gameplay and think-aloud verbalizations it refers to. Upload
video data and transcript to a CAQDA software that can dis-
play and code both. For analysis, parse each unit of the first
transcript for actions the player takes. Contextualize each ac-
tion in the video recording and transcript to determine whether
it forms part of a skill atom comprising:

e an action,

e simulation or rule processing and game state change, based
on recorded game screen feedback,

e game feedback, based on recorded game feedback and sub-
ject statements directly after an action indicating whether
they (in)correctly perceived a game state change as feedback
on their action,

e dimensions of challenge, based on subject statements about
what makes a given moment of gameplay hard or easy, as
well as play pauses or failures at performing a given action,

e moments of synthesis where the player voices insight into
or demonstrates competent enactment of some required
knowledge or skill connected to the action.

Code each instance showcasing all five elements as a skill
atom and label it based on the main synthesis knowledge or
skill. Cross-validate player-derived simulation with the actual
game rules, code, and/or game designer to ensure these aren’t
player misconceptions. In a second pass, code the transcript
for further instances of the identified skill atoms or their com-
ponents. After identifying skill atoms, parse the transcript
for dependencies between atoms expressed in when and/or
what order players showed or reported to learn a given atom.
Challenge each derived dependency by questioning whether
the documented order is an incidental result of the game’s
design, or a logically necessary dependency. After analyzing
the first transcript, code transcripts of additional subjects for

Our results indicate a smaller n of 5+ may be sufficient, see below.

Session 5: Tools to Analyse Games

paradok

Variables can change states. Click and drag to paint variables.
Release the mouse to apply the state being painted.

Figure 3. A screenshot of the game Paradox analyzed in our case study.

already-identified and additional skill atoms, iteratively revis-
ing or refining prior skill atoms and re-coding prior transcripts
as needed.

4. Visualize skill chain. Already during data analysis, draft a
first skill atom list and skill chain diagram as a reference and
cross-check for coding. Once all transcripts are analyzed and
have informed the draft skill chain, draw up a final clean skill
chain diagram using the provided script®.

CASE STUDY

Game and background

We developed and tested the above CTA method by eliciting
the skill chain of the human computation game (HCG) Para-
dox (Figure 3). This was part of a larger project aimed at
developing automatic level progression algorithms for HCGs
that crowdsource scientific tasks like classifying images of
galaxies. Notably, HCGs suffer from poor player retention
at least partially due to poor progression design: instead of
sequencing tasks in an order matching the learning curve of
players, they predominantly serve tasks at random, risking
both player frustration and boredom [53]. To inform machine
learning algorithms that would automatically assess the diffi-
culty of each task in Paradox, we wanted to get a grounded
understanding of what component skills are required to play
the game and thus, how difficult each Paradox task would be,
depending on what skills it required (akin to [8]). Paradox
was designed to crowdsource software verification, checking
how many given conditions a given piece of code could satisfy.
Each level or task presents players with a visualization of an
underlying code piece as a graph of variables (displayed as
nodes that can take different states) and conditions pertain-
ing to variables (visualized as edges). Players can manually
click individual variables to change their states or use vari-
ous “brushes” to select subsets of variables to be modified.
Different brushes trigger different approaches to modifying
variables, from simple brushes that immediately set all to a
certain value, to brushes that run specific optimization algo-
rithms. The player’s goal is to configure variables so that
the highest possible number of conditions are satisfied. To

2 Available at http://github.com/crowdgames/skillchain.

283

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

complete a level, a player must reach a given target score or
percentage of satisfied conditions. In general, it is not known
in advance whether the target percentage of conditions (let
alone all conditions) of a level can be satisfied.

Procedure, Observations and Reflections

In the following, we report on how we concretely implemented
our method step by step and what generally relevant observa-
tions we made for that step.

Identify analysis goals, tasks and subjects. To make sure
subjects were exposed to the same gameplay, we used a stable
local version of Paradox® that featured seven tutorial levels in-
troducing gameplay, followed by a fixed series of 20 challenge
levels, which were generally larger, more open-ended and
more difficult than the tutorials. Levels were chosen to cover
a range of level sizes and likely solution strategies. Tutorial
levels were gated: players had to complete a level by reaching
its target score before being able to proceed to the next tutorial
level. In contrast, players were able to skip challenge levels
without completing them if they desired. We asked partici-
pants to play the game for 30 minutes, immediately followed
by a 30 minute stimulated recall session. Gameplay length was
determined by estimating how long players typically take to
get through the tutorial and five challenge levels, which we as-
sumed sufficient for novice players to acquire and demonstrate
basic gameplay skills and for expert players to be challenged
in the breadth of their expertise.

To record at least 12 subjects (ensuring theoretical saturation
[28]), we recruited 15 subjects, preparing for a number of
no-shows. We recruited 5 “expert” subjects who had played
Paradox extensively in the past and 10 “novice” players who
had never seen Paradox before, otherwise aiming for maxi-
mum diversity in gender, age, and socio-economic background.

Observations and Reflections. Novices are more valuable
than experts. Interestingly, novices proved much more valu-
able for discovering low-level interface and gameplay skills
than expert players. Indeed, analyzing expert gameplay only
added minor refinements to the emerging skill chain. This
somewhat contradicts standard CTA philosophy to rely on
experts, but may be at least partially due to the relatively sim-
ple gameplay of Paradox or the fact that expert traces were
analyzed last.

Quick saturation. We identified the vast majority of skill atoms
during analysis of the first five recall transcripts, with subse-
quent transcripts adding only about one additional skill atom
(3 percent of all codes) each. This suggests that future analy-
ses may work sufficiently with a smaller number of subjects
than we used — although this has to be tested with larger, more
complex games.

Recognize and bracket shortcuts. At the conclusion of the first
three recall sessions, we noticed that players heavily relied
on the so-called optimizer brush. This brush automatically
maximized satisfied conditions in a given graph area. While

3http://paradox.centerforgamescience.org/

Session 5: Tools to Analyse Games

. I can click and drag on things with
the mouse."

18. Paintbrush Selection 26. Change paintbrush size 25. Camera navigation (pan)

Click on paintbrush choice on right
side of screen

l§§§l Update brush choice

€@ Ciicking on the circle outines it

. Press number keys on keyboard

8 e

‘The black paintbrush outline changes
changes size

8 oo

o None o None o None
I can be more/less specific with my

S D selections by changing the brush
size."

outline changes.

20, Optimizer Brush
19. Al circles change in circle

. Mouse click on variables

change variable colors and check
conflicts

All variables inside the mouse cursor
change color

21. Puzzle Minimap

Choose optimizer brush then click
variables

Minimize conflicts over selected
variables

Selected variables may or may not
€@ change color depending on confit
minimization
@ Player doesnt understand the
& mechanics behind the brush. Behavior
changes without player feedback; When
1o use this brush? How large of an
areato paint’
"Not all the variables change when |
use this brush. Also, all the colors
may not be the same after using this
ush.”

38 o
@ rono

O cluttered variables cause clicking on

© onecircle to be impossible ® minimap (nidden)

"All the variables change inside my
@ cursorwhen ciick. f I need to
‘minimap even if I'm zoomed in.

@ 1 can press keys on the keyboard.*

Press the arrow keys or click and
drack with the the right mouse button

The camera moves around the screen
€@ (The puzzle changes location on the
reen)

"I can move around the puzzle by
@ :ring. Some contits can' be seen
unless | move the camera.”

. Locate minimap in bottom right of
screen

() contlicts do not always appear on the

"I can see the entire puzzle in the

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

%83 None
@ tone

Q None (Later, line:

. I should look at things that are

el @ ' con direrentiste red and green.”

"The color of the|
circles can be g

2. Red checkered circles (unsatisfied
constraint)

. Locate red checkered circles on
screen

mismatch between connecting lines and
variable circles

"Levels are organized in sequence.
Red checkers are visible and inside CompEty 2ievainoreon o e
next.
large red circles; Red checkers are
called conflicts’

Q None

@ reocicies seom bac

14. Next Level button

. Click 'Next Level
o

€@ New level loads and begins

24. Camera navigation (zoom)

. Press the + and - buttons
2 o

€@ The camera zooms in and out

16. Skip Level buttd

. Click 'Skip |

|§§§| None
@ Newlevel k

0 e

[- 9 e

I can zoom in to get more detail on
the level. | can zoom out to move:

. I click on the next level button to
around the puzzle faster.”

move on to a new puzzle.

Figure 4. Detail of Paradox skill chain produced by our method.

generating a good first score, the global maximum of pos-
sible satisfied conditions cannot usually achieved with the
optimizer; it requires deeper analysis and probing of the total
graph. However, since the optimizer brush was introduced
early on in the tutorial and was enough to complete early tu-
torial levels, novices tended to learn the heuristic to simply
use the brush to clear each level, rather than learning how the
constraint satisfaction mechanic worked and how to manually
analyze and manipulate the graph. Hence, they would often
become frustrated in later challenge levels when the brush
alone didn’t suffice, and were not able to switch to manual
optimization. (One participant even said that the optimizer
felt “like cheating” because it would do all the work without
players understanding how.) In terms of CTA, this highlights
that the availability of “power tools,” “exploits,” or “shortcuts”
as part of the analyzed task can prevent certain procedural
skills from being actively performed and thus made observ-
able. Observed tasks should therefore ideally be trialled in
advance of actual analysis to check for and eliminate undesired
shortcuts. In our case, we later on manipulated the game and
restricted two novices and one expert from using the optimizer
brush at all, requiring them to manipulate each variable of a
level individually. This helped discover particular skill atoms
for novices as well as challenge features of graph layouts we
hadn’t observed before.

Elicit knowledge and analyze data. We began stimulated
recall sessions with novice players as we assumed that their
play would feature many critical moments foregrounding basic
Paradox skills which expert players had already perfected and
would therefore be hard to notice. Gameplay sessions were
captured using Morae*, which allows to make categorized
notes during screen and camera recording that are logged on
the recording timeline. We used this to log critical moments
we would then replay to subjects to stimulate recall after the

“https://www.techsmith.com/morae-features.html

284

play session. Stimulated recall sessions were recorded with
Camtasia Studio’, as this program allowed to display and
screen capture play session video and audio in addition to
the camera video and audio of analyst and subject conversing.
Stimulated recall sessions were transcribed and coded using
MaxQDAS.

Observations and Reflections. Skill dependencies are un-
clear and confounded by level design. We found it hard to
identify clear dependencies between skill atoms and to disen-
tangle (a) the order in which the game’s progression design
required certain skills, (b) the order in which players devel-
oped insights, and (c) the ideal learning hierarchy in which
both should occur. Instead, the order in which the game tuto-
rial introduced skill atoms strongly shaped player perceptions
and analyst coding: both tended to state that the order in which
the game presents skill atoms is the order in which players
learned them. This indicates a strong limitation in using qual-
itative analysis of fixed games with fixed progressions for
eliciting skill chains. Ideally, players would be exposed to a
randomized multivariate ordering of skill atoms to observe
which order empirically produces the fastest learning gains.

Strategy skills are unvalidated. In alignment with Seamster
and colleagues’ [55] hierarchy of cognitive skills, we found
strategies to sit at the ‘highest’ level of our skill chain. The
distinction between procedural and strategy skills is fuzzy. We
found a good indicator for strategy skills to be that players
consciously identified different approaches or composite ap-
plications of procedural skills and chose between them based
on context. For example, players chose from what location
to begin solving Paradox levels and in which order to move
through the graph depending on level geometry. Sometimes
a player would work from the periphery to the center, other
times a player would choose to start in an area that had the

Shttps://www.techsmith.com/camtasia.html
Ohttp://www.maxqda.com/

Session 5: Tools to Analyse Games

Click a brush button Click a constraint Click a variable
. "Clicking & brush button changes the
i

. "Clicking a constraint selects
current brush. =

connected variables.

Narrow brush Selection limit Wide brush

. "The narrow brush makes variables "l can only select a certain number of
narrow." "

variables at a time.

Optimizer brush

"The optimizer brush chooses the best
size for a variable."

" can click and drag on things with

the mouse.

. "Clicking a variable selects it."

. "The wide brush makes variables wide."

Conflicts

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

"Watching the screen will provide i . .
. st P . I can press keys on the keyboard.

Pan

. "l can right click and drag or use
arrow keys to pan."

Zoom

"Confiicts are caused when no
connected variables matches a

. I can click the +/- buttons or use
constraint.

the +/- keys 10 zoom.

clearing Navigate large level

"I can clear conflicts by changing . 'Points are good.

"I need to navigate large levels to
variables. them."

solve them.

Indirect clearing Clear conflicts for points
"Some contlicts require variables that
are not nearby to be selected (o be

@ cioaring contis gives points.*
cleared.

Target score

. "If [reach the target score | fininsh
the level."

Target score below 100 percent

"Sometimes it is not possible to clear
all the conflicts."

Figure 5. Simplified Paradox skill chain hand-authored by one of the game’s designers.

most conflicts, and players would generally verbalize that
and why they chose this particular strategy. That said, it is
hard to tell from our data whether and how optimal any of
these strategies in a particular context actually are. (Notably,
the same holds for CTA, which simply assumes that expert
practice is self-validated as best practice.) It would be good
to triangulate our qualitative data with quantitative data on
the relative performance of different strategies, in the same
way players and teams in eSports analyze the performance of
different characters or items’.

Also, conceptual CTA techniques focus on mapping the cog-
nitive skills and knowledge of a task rather than individual
strategies, meta-strategies, and conditions when to employ
them [63]. To a certain extent, one could argue that the three
strategy skill atoms we mapped are really on the skill atom
“choosing optimal strategies”. Hence, CTA may be less apt at
analyzing and visualizing strategies and strategy-heavy games.

Visualize skill chain. A detail of the final skill chain we
created for Paradox can be seen in Figure 4. The full skill
chain is given as supplementary information. To assess the
produced skill chain, we asked one of the designers of Paradox
to draw a skill chain based off of their understanding of the
skills necessary for the game, which can be seen in Figure 5.

Observations and Reflections. Skill chain analysis surfaces
low-level and pre-existing skills. While both designer and
CTA-derived skill chain covered the same basic mechanics,
the CTA-generated chain is far more detailed and comprehen-
sive. First, it entails many required pre-existing skills. For
instance, we discovered that the game was not accessible for
people with blue-yellow and green-red color blindness, who
had difficulty recognizing the color-coded states of the vari-
ables. Second, comparing novice and expert gameplay brought
to light that experts used certain low-level skills that were not
explicitly conveyed to players in the tutorial and therefore
not used by novice players. One example is changing brush
sizes. Because expert players had explored Paradox and its

7See e.g. https://www.dotabuff.com/heroes/winning

285

interface more deeply, they had discovered how to change the
brush size, which allowed them more control over the vari-
ables selected. This observation arguably demonstrates the
most direct value of our method: the tutorial, based on the
designers’ hypothetical skill chain, overlooked parts of the
actual empirical skill chain of players — quite possibly since
designers are expert players who therefore have difficulty rec-
ognizing the low-level, highly automated skills they possess
but novices don’t. That said, it is an open question whether the
same insights could not be generated more efficiently through
standard usability and playability testing.

Skill chains run together in a core mechanic. Interestingly,
unlike the designer-generated skill chain, the CTA-generated
chain eventually runs together in one central node, “efficiently
reduce number of conflicts”, which then branches out into
strategies for achieving such efficient reduction. Discussions
with the game’s designers and our own gameplay experience
suggest that this central node is indeed the “core mechanic”
of Paradox [56]. We take this as further validation of our
method and find it suggestive for formal game analysis more
broadly: core mechanics or loops are the graph-theoretically
most central nodes in which all dependencies and subskills
run together.

Skill chains remain flat. Overall, the skill chain we elicited
had a flat, “pancake” quality: it consists of many fundamental
skills around using the interface without many dependencies
between or beyond them. The same flat structure can be seen
in Cook’s skill chain of Tetris [14], while the skill chain of
Pac-Man shows greater depth [25]. This may be due to many
things: the relative simplicity of Paradox and Tetris compared
to a greater gameplay depth of Pac-Man; the subjectivity of
involved analysts; or the general complexity of the underlying
genre. It is worth noting that all published uses of skill atoms
cover relatively simple puzzle and action games. Hence, it
is an open question whether (a) different game genres and
more complex games would produce different skill chains, and
whether (b) skill chain mapping is feasible or productive for

Session 5: Tools to Analyse Games

more complex games or whether graphs become too unwieldy
to be of much use.

DISCUSSION

Reflecting on our case study, we think it warrants the conclu-
sion that our method worked: we were able to elicit a skill
chain from gameplay that roughly mapped the understanding
of one of the game’s designers, identified the correct “core
loop”, and produced useful design insight. Particularly, it sur-
faced a range of overlooked prerequisite and low-level skills
that had eluded the designer’s attention and made the game
more challenging to learn and play for novices. A second main
observation vis-a-vis CTA is that observing novices learning
how to play a game proved potentially more valuable than
observing smooth expert performance.

That said, our case study also surfaced a series of major chal-
lenges and limitations. First, it is unclear whether standard
usability and playability testing methods wouldn’t be more
efficient in producing the same insights into overlooked low-
level gameplay skills. Although our case study suggests that
skill chains can be elicited with a smaller (5+) n than we used,
the method remains quite involved, using about 10 hours per
subject (1 interview, 6 transcription, 3 analysis). Likewise, it
is unclear how approachable our method is for designers and
game researchers. In future work, we would therefore like to
run method variants with other analysts to assess ease of use,
approachability, perceived efficacy, and outcomes, and to trial
the method with smaller r’s and with direct video analysis that
doesn’t rely on transcription.

Now standard playability and usability testing don’t provide
learning hierarchies to inform e.g. level design or procedural
content adaptation or generation. However, this arguable main
differentiator of our method — identifying the dependencies
between skills — also proved the most elusive. Actual ideal
dependencies were hard to ascertain, and the resultant skill
chain featured little depth. We assume this is partially due to
the simplicity of Paradox and the fact that the game’s actual
fixed progression sequence strongly biased observation. In
future work, we would therefore want to use process tracing
on experimental variations of skill sequencing, and replicate
our method with more complex games, which brings us to a
further limitation: We tested the method with a very simple
puzzle game. It is unclear whether it would work with dif-
ferent genres or more complex games. Action games rich in
automated ‘twitch’ skills may prove harder to analyze, and
‘big’ games like the MMORPG EVE Online may involve so
many skill atoms that eliciting them in short gameplay sessions
or mapping them in a single chain could prove unwieldy.

A final challenge and limitation concerns strategy skills. While
we could elicit a number of emergent strategies actively used
by players, our method cannot speak to how empirically opti-
mal these strategies actually are. Here, combinations of our
qualitative analysis and quantitative game analytics would be
useful. Indeed, we view novel mixed method combinations
of qualitative ‘thick data’ methods like CTA with ‘big data’
analytics to be a highly promising future direction, as many
data-driven methods of tutorial or progression design and anal-
ysis [60, 8, 30] in turn lack exactly the specificity and insight

286

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

into what particular skills to analyze for or generate from that
qualitative data provides.

CONCLUSION

Like designing good instruction, designing an enjoyable, easy
to learn game requires understanding what skills the game’s
mechanics require, how these build and depend on each other,
and thus, in what order to introduce them to players. Learning
hierarchies in instructional design and skill chains in game
design are common formal models to map these relations. Yet
where instructional design can rely on cognitive task analysis
to empirically identify the learning hierarchy of a task, game
design so far relied on expert interpretation to identify the skill
chains of games. Given that experts are typically blind to the
full range of tacit skills they have mastered, this risks over-
looking crucial skills that novices need to be taught. In this
paper, we therefore developed and presented an adapted cog-
nitive task analysis method to elicit a game’s skill chain from
empirical player observation and interviewing. The method
combines stimulated recall interviews on targeted stretches
of gameplay with directed qualitative content analysis of the
generated data. We demonstrated and critically reflected on
the method through a case study use on the game Paradox.
The skill chain elicited for Paradox with our method indeed
proved aligned with but more comprehensive than a designer-
crafted skill chain produced without empirical player observa-
tion. Specifically, it included critical missing pre-requisite and
low-level skills.

While principally effective in our case study, the method also
showed major limitations and open questions regarding its
efficiency, generalizability across genres and more complex
games, and ability to reliably elicit skill dependencies, and
validity of captured emergent player strategies, which we hope
to address in future applications with replications and mixed
method approaches.

ACKNOWLEDGEMENTS

This work was supported by a Northeastern University
TIER 1 grant and partly conducted in the Digital Cre-
ativity Labs (digitalcreativity.ac.uk), jointly funded by EP-
SRC/AHRC/InnovateUK under grant no. EP/M023265/1.
This material is based upon work supported by the National
Science Foundation under grant no. 1652537. We would
like to thank the University of Washington’s Center for Game
Science for initial Paradox development.

REFERENCES
1. Ernest Adams and Joris Dormans. 2012. Game
Mechanics: Advanced Game Design. New Riders,
Berkeley, CA.

. Marcos Silvano Orita Almeida and Flavio Soares Correa
da Silva. 2013. A Systematic Review of Game Design
Methods and Tools. In ICEC 2013,]J.C. Anacleto (Ed.).
Springer, 17-29.

. Sylvester Arnab, Theodore Lim, Maira B. Carvalho,
Francesco Bellotti, Sara De Freitas, Sandy Louchart, Neil
Suttie, Riccardo Berta, and Alessandro De Gloria. 2015.
Mapping learning and game mechanics for serious games

Session 5: Tools to Analyse Games

10.

11.

12.

13.

14.

15.

16.

17.

analysis. British Journal of Educational Technology 46, 2
(2015), 391-411.

. Melissa Baralt, Roger Gilabert, and Peter Robinson. 2014.

An introduction to theory and research in task sequencing
and instructed second language learning. Task sequencing
and instructed second language learning (2014), 1-50.

. Regina Bernhaupt. 2010. User Experience Evaluation in

Entertainment. In Evaluating User Experience in Games:
Concepts and Methods, Regina Bernhaupt (Ed.). Springer
London, London, 3-7.

. Staffan Bjork and Jussi Holopainen. 2005. Patterns in

Game Design. Charles River Media, Boston, MA.

. Joceran Borderie and Nicolas Michinov. 2016.

Identifying Flow in Video Games: Towards a New
Observation-Based Method. International Journal of
Gaming and Computer-Mediated Simulations (IJGCMS)
(2016).

. Eric Butler, Erik Andersen, Adam M Smith, Sumit

Gulwani, and Zoran Popovic. 2015. Automatic Game
Progression Design through Analysis of Solution
Features. Chi’15 (2015), 2407-2416.

. Maira B. Carvalho, Francesco Bellotti, Riccardo Berta,

Alessandro De Gloria, Carolina Islas Sedano,

Jannicke Baalsrud Hauge, Jun Hu, and Matthias
Rauterberg. 2015. An activity theory-based model for
serious games analysis and conceptual design. Computers
and Education 87 (2015), 166-181.

Judeth Oden Choi, Jodi Forlizzi, Michael Christel,
Rachel Moeller, MacKenzie Bates, and Jessica Hammer.
2016. Playtesting with a Purpose. Proceedings of the
2016 Annual Symposium on Computer-Human
Interaction in Play - CHI PLAY ’16 (2016), 254-265.

Dough Church. 1999. Formal Abstract Design Tools.
(1999).

D. B. Clark, E. E. Tanner-Smith, and S. S. Killingsworth.
2016. Digital Games, Design, and Learning: A
Systematic Review and Meta-Analysis. Review of
Educational Research 86, 1 (2016), 79-122.

Richard E. Clark, D. Feldon, Jeroen JG van Merriénboer,
Kenneth Yates, and Sean Early. 2008. Cognitive task
analysis. Handbook of research on educational
communications and technology 3 (2008), 577-593.

Daniel Cook. 2007. The chemistry of game design.
http://www.gamasutra.com/view/feature/1524/the_
chemistry_of_game_design.php. (2007).

Nancy J Cooke. 1994. Varieties of knowledge elicitation
techniques. International Journal of Human-Computer
Studies 41, 6 (1994), 801-849.

Beth Crandall, Gary Klein, and Robert Hoffman. 2006.
Working Minds: A Practitioner’s Guide to Cognitive Task
Analysis.

Mihaly Csikszentmihalyi. 1990. Flow: the psychology of
optimal experience. Harper and Row, New York.

287

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Nicholas P. Dempsey. 2010. Stimulated Recall Interviews
in Ethnography. Qualitative Sociology 33, 3 (2010),
349-367.

Heather Desurvire and Magy Seif El-Nasr. 2013.
Methods for Game User Research: Studying Player
Behavior to Enhance Game Design. IEEE Computer
Graphics and Applications 33, 4 (2013), 82-87.

Heather Desurvire and Charlotte Wiberg. 2015. User
Experience Design for Inexperienced Gamers: GAP —
Game Approachability Principles. In Game User
Experience Evaluation, Regina Bernhaupt (Ed.). Springer,
London, 131-147.

Sebastian Deterding. 2015. The lens of intrinsic skill
atoms: a method for gameful design. Human-Computer
Interaction 30, 3-4 (2015), 294-335.

Joris Dormans. 2012. Engineering Emergence: Applied
Theory for Game Design. PhD Thesis. Universiteit van
Amsterdam.

Alejandro Echeverria, Enrique Barrios, Miguel
Nussbaum, Matias Améstica, and Sandra Leclerc. 2012.
The Atomic Intrinsic Integration Approach: A structured
methodology for the design of games for the conceptual
understanding of physics. Computers & Education 59, 2
(2012), 806-816.

Magy Seif El-Nasr, Anders Drachen, and Alessandro
Canossa (Eds.). 2013. Game Analytics: Maximizing the
Value of Player Data. Springer, London. 815 pages.

firecorth. 2013. Game Design Alchemy the Second.
(2013).

Robert M Gagne. 1968. Presidential address of division
15 learning hierarchies. Educational psychologist 6, 1
(1968), 1-9.

James-Paul Gee. 2003. What Video Games Have to Teach
Us About Learning and Literacy. Palgrave Macmillan,
New York.

Greg Guest, Arwen Bunce, and Laura Johnson. 2006.
How Many Interviews Are Enough?: An Experiment
with Data Saturation and Variability. Field Methods 18, 1
(2006), 59-82.

Erik Harpstead and Vincent Aleven. 2015. Using
Empirical Learning Curve Analysis to Inform Design in
an Educational Game. In CHI Play 2015. 197-207.

Erik Harpstead, Thomas Zimmermann, Jose J Guajardo,
Ryan Cooper, Tyson Solberg, and Dan Greenawalt. 2015.
What Drives People : Creating Engagement Profiles of
Players from Game Log Data. (2015), 369-379.

Jettie Hoonhout. 2008. Let the Game Tester Do the
Talking: Think Aloud and Interviewing to Learn About
the Game Experience. In Game Usability: Advice from
the Experts for Advancing the Player Experience,
Katherine Isbister and Noah Schaffer (Eds.). Morgan
Kaufmann, Amsterdam et al., 65-78.

Session 5: Tools to Analyse Games

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Hsiu-Fang Hsieh and Sarah E Shannon. 2005. Three
approaches to qualitative content analysis. Qualitative
health research 15,9 (Nov 2005), 1277-88.

Robin Hunicke. 2005. The case for dynamic difficulty
adjustment in games. Proceedings of the 2005 ACM
SIGCHI International Conference on Advances in

computer entertainment technology - ACE ’05 (2005),
429-433.

Robin Hunicke, Marc LeBlanc, and Robert Zubek. 2004.

MDA: A Formal Approach to Game Design and Game
Research. In Papers from the 2004 AAAI Workshop
"Challenges in Game Artificial Intelligence", Dan Fu,
Stottler Henke, and Jeff Orkin (Eds.). AAAI Press, Menlo
Park, Ca, 1-5.

David H. Jonassen, Martin Tessmer, and Wallace H.
Hannum. 1998. Task Analysis Methods for Instructional
Design. Routledge.

Rilla Khaled and Gordon Ingram. 2012. Tales from the
front lines of a large-scale serious game project. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 69-78.

David Kirschner and J Patrick Williams. 2013. Experts
and Novices or Expertise? Positioning Players through
Gameplay Reviews. In DiGRA 2013: DeFragging Game
Studies. DIGRA, Snowbird, UT.

D. Kirschner and J. P. Williams. 2015. Measuring Video
Game Engagement Through Gameplay Reviews.
Simulation & Gaming 45, 4-5 (2015), 593-610.

J. Matias Kivikangas, Guillaume Chanel, Ben Cowley,
Inger Ekman, Mikko Salminen, Simo Jirveld, and Niklas
Ravaja. 2011. A review of the use of psychophysiological
methods in game research. Journal of Gaming & Virtual
Worlds 3,3 (2011), 181-199.

G. A. Klein, R. Calderwood, and D. MacGregor. 1989.
Critical decision method for eliciting knowledge. IEEE
Transactions on Systems, Man, and Cybernetics (1989).

Christina Koeffel, Wolfgang Hochleitner, Jakob Leitner,
Michael Haller, Arjan Geven, and Manfred Tscheligi.
2010. Using Heuristics to Evaluate the Overall User
Experience of Video Games and Advanced Interaction
Games. In Evaluating User Experience in Games, Regina
Bernhaupt (Ed.). Springer, London, 233-255.

Raph Koster. 2004. A Theory of Fun for Game Design.
Paraglyph Press, Scottsdale, AZ.

Raph Koster. 2013. Theory of fun for game design.
O’Reilly Media, Inc.

Petri Lankoski and Staffan L Bjork. 2015. Formal
analysis of gameplay. In Game Research Methods: An
Overview, Petri Lankoski and Staffan L Bjork (Eds.).
ETC Press, Pittsburgh, PA, 23-36.

Conor Linehan, George Bellord, Ben Kirman, Zachary H
Morford, and Bryan Roche. 2014. Learning Curves:
Analysing Pace and Challenge in Four Successful Puzzle
Games. In CHI Play’14. 181-190.

288

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

John Lyle. 2010. Stimulated recall: a report on its use in
naturalistic research. British Educational Research
Journal 29, 6 (2010), 861-878.

Chris McEntee. 2012. Rational Design: The Core of
Rayman Origins. http: //www.gamasutra. com/view/

feature/167214/rational_design_the_core_of_.php.
(2012).

Luke McMillan. 2013. The Rational Design Handbook:
An Intro to RLD. (2013).

Jeroen J. G. van Merriénboer, Richard E. Clark, and
Marcel B. M. de Croock. 2002. Blueprints for complex
learning: The 4C/ID-model. Educational Technology
Research and Development 50, 2 (2002), 39-61.

Lennart Nacke, Anders Drachen, and Stefan Gobel. 2010.
Methods for Evaluating Gameplay Experience in a
Serious Gaming Context. International Journal of
Computer Science in Sport 9, 2 (2010).

Joseph D Novak and Alberto J Caiias. 2008. The theory
underlying concept maps and how to construct and use
them. (2008).

Jori Pitkanen. 2015. Studying thoughts: Stimulated recall
as a game research method. In Game Research Methods,
Petri Lankoski and Staffan L Bjork (Eds.). ETC Press,
117-132.

Anurag Sarkar, Michael Williams, Sebastian Deterding,
and Seth Cooper. 2017. Engagement Effects of Player
Rating System-Based Matchmaking for Level Ordering
in Human Computation Games. In FDG’17. ACM Press,
New York.

Donald A Schon. 1984. The reflective practitioner: How
professionals think in action. Basic books.

Thomas L. Seamster, Richard E. Redding, and George L.
Kaempf. 2000. A skill-based cognitive task analysis
framework. In Cognitive task analysis, Jan Maarten
Schraagen, Susan F. Chipman, and Valerie L. Shalin
(Eds.). Lawrence Erlbaum, Mahwah, NJ, 135-146.

Miguel Sicart. 2008. Defining game mechanics. Game
Studies 8, 2 (2008), 1-14.

Miguel Sicart. 2015. Loops and Metagames:
Understanding Game Design Structures. In Foundations
of Digital Games.

M. W. Someren, Y. F. Barnard, and J. a. C. Sandberg.
1994. The think aloud method: a practical approach to
modelling cognitive processes. Academic Press.

Reed Stevens, Tom Satwicz, and Laurie McCarthy. 2008.
In-Game, In-Room, In-World: Reconnecting Video Game
Play to the Rest of Kids’ Lives. In The Ecology of Games:
Connecting Youth, Games, and Learning, Katie Salen
(Ed.). MIT Press, Cambridge, MA, 41-66.

Session 5: Tools to Analyse Games

60.

61.

62.

63.

Joseph J Thompson, Mark R Blair, Lihan Chen, and
Andrew J Henrey. 2013. Video Game Telemetry as a
Critical Tool in the Study of Complex Skill Learning.
PLoS ONE 8, 9 (2013), e75129.

Bonnie L Tjeerdsma. 1997. A comparison of teacher and
student perspectives of tasks and feedback. Journal of
teaching in physical education 16, 4 (1997), 388—400.

Colby Tofel-Grehl and David F. Feldon. 2013. Cognitive
Task Analysis—Based Training. Journal of Cognitive
Engineering and Decision Making 7, 3 (2013), 293-304.

June Wei and Gavriel Salvendy. 2004. The cognitive task
analysis methods for job and task design: review and

289

64.

65.

CHI PLAY 2017, October 15-18, 2017, Amsterdam, NL

reappraisal. Behaviour & Information Technology 23, 4
(2004), 273-299.

Richard T White and Robert M Gagné. 1974. Past and
future research on learning hierarchies 1. Educational
psychologist 11,1 (1974), 19-28.

Pieter Wouters, Erik D. van der Spek, and Herre van
Oostendorp. 2009. Current practices in serious game
research: A review from a learning outcomes perspective.
In Games-Based Learning Advancements for
Multi-Sensory Human Computer Interfaces: Techniques
and Effective Practices, Thomas Connolly, Mark
Stansfield, and Liz Boyle (Eds.). IGI Global, Hershey, PA,
232-250.

	Introduction
	Background
	Formal Modeling of Games
	Skill Chains
	Methods for Atom Identification
	Cognitive Task Analysis

	Adapting CTA for Skill Chain Elicitation
	Method Development and Rationale
	Method Procedure

	Case Study
	Game and background
	Procedure, Observations and Reflections

	Discussion
	Conclusion
	Acknowledgements
	References

