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Abstract: This paper investigates the task assignment and path planning problem for multiple
AUVs in three dimensional (3D) underwater wireless sensor networks where nonholonomic motion
constraints of underwater AUVs in 3D space are considered. The multi-target task assignment and
path planning problem is modeled by the Multiple Traveling Sales Person (MTSP) problem and
the Genetic Algorithm (GA) is used to solve the MTSP problem with Euclidean distance as the cost
function and the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints as the stop
criterion. The resulting tour sequences are mapped to 2D Dubins curves in the X−Y plane, and then
interpolated linearly to obtain the Z coordinates. We demonstrate that the linear interpolation fails
to achieve G1 continuity in the 3D Dubins path for multiple targets. Therefore, the interpolated
3D Dubins curves are checked against the AUV dynamics constraint and the ones satisfying the
constraint are accepted to finalize the 3D Dubins curve selection. Simulation results demonstrate that
the integration of the 3D Dubins curve with the MTSP model is successful and effective for solving
the 3D target assignment and path planning problem.

Keywords: target tracking; task assignment; multiple AUVs; energy balance; genetic algorithm

1. Introduction

Autonomous Underwater Vehicles (AUVs) and underwater gliders have found important
applications in ocean exploration, oil and gas production, environmental monitoring, underwater
infrastructure monitoring, weather services, and coastal surveillance [1–3]. Typically, these vehicles are
programmed to visit a number of predetermined targets, perform some tasks at the target locations,
and then return home. With the increased demand and commercial success of the AUVs and gliders, it
is of increasing interests to employ a fleet of vehicles simultaneously and cooperatively to perform a
mission. Therefore, multi-vehicle task assignment and path planning become an important research
topic in recent years.

Due to the size, weight, and fuel constraints, these vehicles have strong limitations in underwater
missions, such as limited mission length, stringent nonholonomic motion constraints, and limited
communication with each other or with the home base. A nonholonomic motion constraint requires
that the vehicle motion is along a smooth curvature without reversing direction. This often
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requires that the vehicle paths satisfy geometric continuity to support their kinematic constraints [4,5].
For point-to-point path planning, Dubins curves have been widely utilized to achieve G1 continuity and
shortest path length [6,7]. Recent literatures on Dubins vehicles also consider environmental conditions
such as ocean currents [8,9], obstacle avoidance [10,11], and vehicle/glider characteristics [12,13].
However, most of the works only consider 2-dimensional (2D) Dubins curve, and the extension to 3D
Dubins curve is recently proposed in [14] for unmanned aerial vehicles by using linear interpolation.
This method is also adopted in [12,13] for path planning of gliders and AUVs.

The multi-target multi-AUV task assignment and path planning problem is commonly modeled
by the multiple traveling salesperson (MTSP) problem. In the review paper [10], Zhu et al. provided a
detailed report on the recent progress in this area. The MTSP problems are often solved by the K-means
clustering method [8], the genetic algorithm (GA) [15,16], or the heuristic search algorithms [17,18].
Due to the high computational complexity, the MTSP problem is often solved by using the Euclidean
distances between targets as the cost function. The resulting task assignments and tour sequences
are then post-processed to account for vehicle dynamics, environmental constraints, and possible
environmental changes. Ocean environmental conditions, such as the effect of strong ocean current, are
considered in many recent works [8,9,17,19,20]. In addition, several approaches have been developed
to adapt to changing environment, including the fast marching-based approach in [20], the Self
Organizing Map (SOM) neural network approach in [21], and the dynamic task assignment approach
in [22].

To account for the nonholonomic motion constraint, the tour sequence is mapped to point-to-point
Dubins curves with a constraint that the incoming and outgoing headings at the joints are the
same. In a large tour sequence where the number of targets to be visited is large, the search for
shortest Dubins path is also computationally intensive. Several approaches have been proposed in
the literature. An Alternating Algorithm is proposed in [23], which only maps half of the tour points
to Dubins curves, thus reducing the search size for the shortest Dubins path. Two beading methods
have also been presented in [23] to map the point-to-point paths with shortest bead-shaped paths.
Other path-smoothing methods are presented in [24], which use continuous-curvature paths such as
Clothoids, Bezier curves, and B-splines.

Most of the Dubins TSP solutions also have the limitation of using the 2D Dubins curves without
considering the 3D underwater space. A few recent works extend the 2D Dubins curves to 3D [12–14]
without considering multiple targets. Some works in 3D multi-target task assignment [11] consider
targets in the 3D space without path smoothing. In this paper, we integrate the 3D Dubins curve
with the MTSP model for 3D multi-target task assignment and path planning. We impose the energy
consumption constraint of each AUV with the Tour Hop Balance (THB) and Tour Length Balance
(TLB) criteria in the GA algorithm when solving for the tour sequences of multiple AUVs. We call
these algorithms the THB-3Dubins-MTSP algorithm and TLB-3Dubins-MTSP algorithm, respectively.
We investigate the simple linear interpolation method of 3D Dubins curve in the multi-target path
planning scenario and demonstrate that the simple 3D Dubins curves fail to meet with G1 continuity
at multiple targets, because although the 3D Dubins path may be G1 continuous in the X−Y plane,
they are discontinuous in the Z-domain.

Based on this finding, we propose a simple solution for accommodating the vehicle dynamics.
The interpolated 3D Dubins curves are checked against the AUV dynamics constraint in the Z-domain
and the ones satisfying the constraint are accepted to finalize the 3D Dubins curve selection. We call
this rejection-acceptance method. Simulation results demonstrate that the integration of the 3D Dubins
curve with the MTSP model is successful and effective for solving the 3D target assignment and path
planning problem.

2. Problem Statement

Consider multiple AUVs constituting a collaborative team and performing the mission of
tracking multiple underwater targets in a 3D underwater environment, as shown in Figure 1.
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Assume a set of static targets T = {T1, T2, ..., TN} and a set of homogeneous mobile AUVs
A = {A1, A2, ..., AK} that are randomly deployed in the X × Y × Z three dimensional underwater
space, with N and K denoting the total numbers of static targets and mobile AUVs, respectively.
Also assume K < N, as this is commonly encountered in many practical applications. Each AUV has
the same initial energy Einit and the same energy consumption model which is a linear function of its
tour length. In order to illustrate design detailed methodology of proposed algorithm, we summarize
the simplified notation in Table 1 for the reader’s convenience.

Figure 1. Targets tracking with multiple AUVs.

Table 1. List of Notations.

Notation Definition

T the set of static targets
A the set of mobile AUVs
Tn the n-th static target
Ak the k-th mobile AUV
N total number of static targets
K total number of mobile AUVs
Dk tour sequence for the kth AUV, k = 1, 2, ..., K
Sk tour trajectory for the kth AUV, k = 1, 2, ..., K
Nk the number of targets in sequence Dk
µ(Nk) intra-AUV mean of the number of assigned targets
Lk tour length of sequence Dk
µ(Lk) intra-AUV mean of the assigned tour lengths
x = (x, y) point coordinates in 2D plane
φ heading in 2D Dubins curve
L2D length of 2D Dubins curve
L([x0, φ0]; [x1, φ1]) length of 2D Dubins curve from point x0 to point x1
X = (x, y, z) point coordinates in 3D space
Φ = (φ, θ) azimuth and elevation headings of 3D Dubins curve
L3D length of 3D Dubins curve
L([X0, Φ0]; [X1, Φ1]) length of 3D Dubins curve from point X0 to point X1
Λ the set of possible headings in 2D plane
< set of Dubins curves
t, p, q lengths of three segments of a Dubins curve
Iu
n,k binary indicator

The objective of task assignment and path planning is to assign a tour sequence of targets
Dk, k = 1, 2, ..., K from the target set T to each AUV such that each target is visited by an AUV once
and only once, and the total cost of visiting all targets is minimized.
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Let Nk and Lk denote the number of targets and tour length of sequenceDk, respectively. The tour
cost of tour sequence Dk is denoted as C(Dk), and the task assignment and path planning problem is
to minimize

CTotal =
K

∑
k=1

C(Dk) (1)

subject to

T =
K⋃

k=1

Dk (2)

Dk
⋂
Dl = ∅, ∀k, l and k 6= l (3)

Var(Nk)→ 0 (4)

Var(Lk)→ 0 (5)

where Equations (4) and (5) are the Tour Hop Balance (THB) constraint and the Tour Length Balance
(TLB) constraint, respectively, and Var(·) denotes the intra-AUV variance which is calculated in the
following section,→means as small as possible. For example, Nk =

N
K , ∀k if N is divisible by K.

2.1. Vehicle Kinematic Constraints

An AUV belongs to a body-fixed coordinate system with six degrees of freedom, and so its motion
can be described relative to an inertial-fixed reference frame. However, we only consider the position
value and motion heading of an AUV in this paper since it is enough for path planning with Z-axis
linear interpolation method. The location and motion of an AUV in three-dimensional Cartesian
space are shown in Figure 2, where the position of the AUV is denoted as X = {x, y, z}, and its
motion heading is denoted as Φ = {φ, θ}, where θ and φ are the X-Y plane angle and Z-axis angle
projected from the AUV’s motion heading, respectively. The velocity scalar of the AUV is denoted as
F, and the projected X-Y plane angle and Z-axis angle are bounded, making its motion nonholonomic
constraints [8] such that 

ẋ = F cos θ cos φ

ẏ = F cos θ sin φ

ż = F sin θ

(6)

where the dot operator is the derivative, and

φ̇ = ξ, ξ ∈ [−ω1, ω1] (7)

θ̇ = Θ, Θ ∈ [−ω2, ω2] (8)

where ω1 and ω2 represent the curvature bounds. The nonholonomic constraints requires that the
AUV paths satisfy the G0 and G1 continuities [24,25] which are defined as follows:

G0 continuity: P(u) = [x(u), y(u), z(u)] and Q(w) = [x(w), y(w), z(w)] be two regular parametric
3D curves in the X × Y × Z space, where u ∈ [0, 1] and w ∈ [0, 1] are the parameters with 0 and 1
denoting the starting and ending points, respectively. If P(1) = Q(0) = J, then the two parametric
curves meet at joint J with G0 continuity.

G1 continuity: If Ṗ(u)|u=1 = Q̇(w)|w=0, then the two parametric curves meet at joint J with
G1 continuity.
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Figure 2. AUV and its motion heading in 3D Cartesian space.

2.2. The 2D Dubins Curve

For 2D path planning kinematic constraints, a classical path model is to use the 2D Dubins
curve [6,7] to satisfy the G1 continuity. Given any two points in the X × Y plane, starting at
x0 = (x0, y0) and ending at x1 = (x1, y1), the Dubins curves satisfy the dynamic constraints expressed
in Equations (6) and (7) by a combination of maximum curvature arcs (C) and/or a straight line
segment (S) to form two families of curves: family CCC and family CSC. Note that all arcs are with
radius ρ. The family CCC contains curves with types RLR and LRL, where R and L denote a right
turn arc (or clockwise) and a left turn arc (counter clock), respectively; The family CSC includes
four types: RSR, LSL, RSL, and LSR, where S is a straight line segment. Therefore, the shortest
Dubins path between two points are selected from the six types < = {LSL, RSR, RSL, LSR, RLR, LRL}.
For example, Figure 3 shows the four CSC types of Dubins curves with φ0 = −π/4 and φ1 = −3π/4
and two points (0, 0) and (0,−d). Note that φ0 and φ1 are measured counter-clockwise with respect to
the positive x-axis. It is obvious that the Type 1 Dubins curve has the shortest length.

Figure 3. Four CSC types of 2D Dubins curves with φ0 = −π/4 and φ1 = −3π/4.

The 2D Dubins curves have been well investigated in the literature. It has been shown [7] that
for the long path case where the distance between the starting point and ending point, denoted as d
and normalized by the turning radius ρ, satisfies d >

√
4− (| cos φ0|+ | cos φ1|)2 + | sin φ0|+ | sin φ1|,

the shortest path cannot be in the CCC family. The shortest paths with given φ0 and φ1 can be easily
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determined by the quadrants that the two angles fall in Ref. [7]. The elements of the 4× 4 matrix, ai,j,
represents the quadrant number i of the starting angle and the quadrant number j of the ending angle.
The shortest 2D Dubins curves starting from (0, 0) and ending at (d, 0) are then determined by Table 2,
where the different types in Table 2 are determined by certain switching functions defined in [7].

Table 2. Decision table for shortest 2D Dubins curves based on the quadrant numbers of the starting
and ending angles.

aij j = 1 j = 2 j = 3 j = 4

i = 1 RSL RSR/RSL RSR/LSR LSR/RSL/RSR
i = 2 LSL/RSL LSL/RSL/RSR RSR RSR/RSL
i = 3 LSL/LSR LSL RSR/LSR/LSL RSR/LSR
i = 4 RSL/LSR/LSL LSL/RSL LSL/LSR LSR

The exact path and its length can be calculated by the three operators, Lγ for left turn, Rγ for right
turn, and Sγ for straight, which transform an arbitrary point [x, φ] into its corresponding image point

Lγ(x, φ) = [(x + sin (φ + γ)− sin φ, y− cos(φ + γ) + cos φ), φ + γ]

Rγ(x, φ) = [(x− sin (φ− γ) + sin φ, y + cos(φ− γ)− cos φ), φ− γ]

Sγ = [(x + γ cos φ, y + γ sin φ), φ]

(9)

where x = (x, y), and the index γ means that the path segment is of length γ. For example, the LSR
path with respective lengths of t, p, q between point [(0, 0), φ0] and [(d, 0), φ1] is solved by

Rq(Sp(Lt([(0, 0), φ0]))) = [(d, 0), φ1] (10)

or 
p cos(φ0 + t) + 2 sin(φ0 + t)− sin φ0 − sin φ1 = d,

p sin(φ0 + t)− 2 cos(φ0 + t)− cos φ0 − cos φ1 = 0,

φ0 + t− q = φ1{mod2π}
(11)

The solution is denoted tLSR, pLSR, and qLSR, respectively. The total path length is then
LLSR = tLSR + pLSR + qLSR = φ1 − φ2 + 2tLSR + pLSR. Details of other types of paths can be
found in [7].

2.3. The Multiple Traveling Salesmen Problem for Dubins Vehicle

Multi-vehicle path planning is often casted as a Multiple Traveling Salesmen Problem (MTSP) [15]
which is to find a set of closed paths for multiple traveling salesmen to visit a set of cities such that each
and every city is visited exactly once and the total cost of visiting all cities are minimized. In the AUV
path planning problem, the cost is the sum of Euclidean distances along the paths. It is difficult to find
the optimal solution to the MTSP and heuristic iterative algorithms, such as the Genetic Algorithm
(GA), Reactive Tabu Search, and Clustering and Actioning [8] are often used. In this work, we use the
GA algorithm [15].

The MTSP is first converted into an equivalent mixed integer programming (MIP) problem [15]
by introducing a binary selection variable Ik

i,j ∈ {0, 1} defined as the indicator for the kth iteration

of GA algorithm. If Ik
i,j = 1, then the AUV Ak is assigned to travel from target Ti to target Tj.

Otherwise, if Ik
i,j = 0, then AUV Ak is assigned not to visit targets Ti and Tj. Given an undirected graph

G = (T , E), where T is the set of static targets (nodes), E = {(i, j), i, j ∈ T } is the set of edges,
and i, j = 0, 1, · · · , N with i = 0 and j = 0 denoting the home node or the starting/returning location
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of the AUVs. A cost matrix C = {ci,j} is defined on edges (i, j) associated with E . The MIP optimization
is to

minimize
N

∑
i=0

N

∑
j=0

K

∑
k=1

ci,j Ik
i,j (12)

subject to

N

∑
j=1

K

∑
k=1

Ik
1,j = K, (13)

N

∑
i=1

K

∑
k=1

Ik
i,1 = K, (14)

N

∑
j=0

K

∑
k=1

Ik
i,j = 1, i = 2, 3, · · · , N. (15)

N

∑
i=0

K

∑
k=1

Ik
i,j = 1, j = 2, 3, · · · , N. (16)

∑
i

∑
j

ci,j Ik
i,j ≤ S, k = 1, 2, · · · , K. (17)

The constraints (13) and (14) ensure that the K salesmen start from the home node and return to
the home node. Constraints (15) and (16) ensure that each node is visited (entered and left) only once.
The constraint (17) is to ensure that the cost of each AUV is capped at S. Note that the constraints in (4)
and (5) are used as the stop criterion.

The GA algorithm solves the MTSP by treating all possible tour sequences as the population,
a specific tour sequence as an individual, the nodes in a tour sequence as a chromosome, and the travel
length of a tour sequence as the fitness function. The GA algorithm starts with a random population
with M individuals, and calculates the fitness function for each of the M individuals; then it creates new
population by parent selection, parent crossover, chromosome mutation, and descendant acceptance;
A new population results from replacing individuals by descendants with better fitness. Next the
generated new population is used in the next iteration that iterates through the new population
generation process, until the stop condition is satisfied. The solution to the MTSP is the set of selection
variables Ik

i,j. The tour sequence for the kth AUV is the set of edges selected by the GA algorithm with

Ik
i,j = 1. That is

Dk = {(i, j)
∣∣Ik

i,j = 1} 7→ {Tn}, k = 1, · · · , K. (18)

Note that the AUV dynamics and G1 continuity constraints have to be considered when applying
the MTSP model to AUVs target assignment and path planning. Using Dubins curves, the MTSP
model can be applied to solve the Dubins target assignment and path planning problem in three steps:

• Step 1 uses the Euclidean distances between the nodes as the cost ci,j and assigns the N targets to
the K AUVs through the GA algorithm.

• Step 2 converts the tour sequence of each AUV into the Dubins paths by selecting a set of headings
at each node and computing the lengths of Dubins curves;

• Step 3 chooses the Dubins path and its associated headings with the shortest total distance.

The headings of the AUVs are discretized to 2B angles such that φ0, φ1, θ0 and θ1 take values at
πb/2B with b = 1, · · · , 2B+1 − 1 and excluding multiples of π/2. The discretization can greatly reduce
the computational complexity in searching for the shortest Dubins path. The total length of a tour
sequence is then calculated as

C(Dk) = L([XNk , ΦNk ]; [X0, Φ0]) +
Nk−1

∑
m=0
L([Xm, Φm]; [Xm+1, Φm+1]) (19)
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for k = 1, · · · , K, and the total cost of all AUVs is computed as in (1).
In comparison, an existing method called the Alternating Algorithm [23] also uses the first

approach that solves the Euclidean MTSP then maps the tour sequences to Dubins path. However,
to reduce the computational complexity of the Dubins search, only odd-indexed edges in the tour
sequence are replaced by minimum length Dubins paths, the even-indexed edges keep the straight
Euclidean path.

3. Target Assignment and Path Planning in 3D Space

This section extends the target assignment and path planning algorithms from 2D to 3D by
incorporating the 3D Dubins curves. We use the first approach in which the GA algorithm solves
the Euclidean MTSP for the multiple targets and multiple AUVs, then maps the Dubins curves in
3D. We follow the simple linear interpolation method in [13,14] and analyze the G1 continuity of the
resulting 3D Dubins paths.

3.1. The 3D Dubins Curves and Their Path Lengths

To extend the 2D Dubins curves to 3D space using the linear interpolation method, the 3D tour
sequences are first projected on to the 2D X×Y plane in a global coordinate system. Taking a starting
point [X0, Φ0] and an ending point [X1, Φ1] in the 3D space and project them on to the 2D plane,
as shown in Figure 4. Then the starting and ending points become 2D parameters [(x0, y0), φ0] and
[(x1, y1), φ1]. The 2D Dubins curve is designed as described in Section 2.2, and the lengths of the arcs
and line segment are calculated by (10). Let L0,x and L0,1 denote the lengths along the 2D Dubins
curve from (x0, y0) to (x, y) and from (x, y) to (x1, y1), respectively.

The linear interpolation adds the z coordinate by

z = z0 +
L0,x

L0,1
(z1 − z0) (20)

where z0 and z1 are the Z coordinates of the starting and ending points. The resulting 3D Dubins curve
is illustrated in Figure 4a.

The length of the interpolated 3D Dubins curve is calculated as

L3D =
√

t2 + (z0 − zm)2 +
√

p2 + (zm − zn)2 +
√

q2 + (zn − z1)2 (21)

where t, p, and q are the CSC segment lengths of the 2D Dubins curve, and zm and zn are the Z
coordinates of the segment joints which are linearly interpolated as

zm = z0 +
t

t + p + q
(z1 − z0), (22)

zn = z0 +
t + p

t + p + q
(z1 − z0) = z1 −

q
t + p + q

(z1 − z0). (23)
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(a)

(b)

Figure 4. The RSL example of 2D and 3D Dubins curves. (a) 3D coordinates and its interpolated 3D
Dubins curve; (b) 2D Dubins curve.

Equation (21) is easily derived from Figure 5, since for the straight segment, the sides with
length p, p∗, and zm − zn form a right triangle. Thus, p∗ =

√
p2 + (zm − zn)2. For the left turn

segment (the ending segment in this example), q∗ =
√

q2 + (z1 − zn)2 if the cylinder containing the
arc segments q∗ and q is opened and laid flat, thus the segments q, q∗ and zm − z1 form a right triangle.
Similar to the left turn segment, the right turn segment satisfies t∗ =

√
t2 + (zm − z0)2. As a result,

the total length of the 3D Dubins curve is L3D = t∗ + p∗ + q∗.
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Figure 5. 3D cylindrical spiral model.

Next, we show that the shortest 2D Dubins curve results in the shortest 3D Dubins curve and
present the proof in Theorem 1. We also analyze the G1 continuity of the interpolated 3D Dubins
curves and present the results in Theorem 2.

Theorem 1. The shortest 2D Dubins curve corresponds to the shortest 3D Dubins curve if linear interpolation
is used to generate the Z coordinates.

Proof. Let L2D = t + p + q be the length of the 2D Dubins curve. Substituting (22) into (21) yields

L3D = t

√
1 +

(z1 − z0)2

L2
2D

+ p

√
1 +

(z1 − z0)2

L2
2D

+ q

√
1 +

(z1 − z0)2

L2
2D

= (t + p + q)×
√

1 +
(z1 − z0)2

L2
2D

=
√
L2

2D + (z1 − z0)2

≤ L2D + |z1 − z0|

(24)

Therefore, the shortest length L2D of 2D Dubins curve leads to the shortest 3D Dubins curve.

Theorem 2. The 3D Dubins curves generated by linear interpolation of Z coordinates from the 2D Dubins
curve can preserve G1 continuity in the X−Y plane but would lose the G1 continuity in Z.

Proof. As shown in Figure 4, the 2D Dubins curve between a starting and an ending target is composed
of three segments: arc, line, and arc, which joint at two joints. These three segments meet at the joints
with G1 continuity because the line segment designed by (10) ensures the G1 continuity of each Dubins
curve on the X−Y plane. When the tour sequence contains multiple targets, the two Dubins curves
meet at one target location, and the G1 continuity can be preserved by forcing the end heading φ1 of
the first Dubins curve equal to the start heading φ0 of the second Durbins curve.

However, in the Z domain, the linear interpolation among three or more targets cannot guarantee
the G1 continuity at the joints. For example, let targets 1, 2, and 3 be linked by two line segments.
The end of the first line segment joins the start of the second line segment. when the two line segments
are not aligned, the start heading θ0 of the second line segment (in Z domain) is not equal to the end
heading θ1 of the first line segment. Therefore, the two line segments meet at the joint without G1

continuity. For a particular example: zi−1 = 10, zi = 15, zi+1 = 10, so the AUV will have to increase its
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height from X(i− 1) to X(i), and it must decrease its height from X(i) to X(i + 1) . If the AUV has an
initial upward heading angle φi−1 because zi − zi−1 = 5, then it might turn to a downward heading φi
at X(i) because zi+1 − zi = −5. Therefore, the AUV will have to change its heading angle Φ = (φ, θ)

suddenly before traveling down to zi+1 = 10.

3.2. Path Planning for Multiple AUVs in 3D Space

This section describes the detailed solution to the multiple targets tracking task assignment
problem in three dimensional underwater workspace with constraints of Tour Hop Balance (THB) or
Tour Length Balance (TLB). The three step approach in Section 2.3 is used, where step 1 applies the
multiple traveling salesman problem (MTSP) algorithm with Euclidean distances as the fitness function.

fitness =
1

∑k Le(XDk )
(25)

To incorporate the Tour Hop Balance (THB) or Tour Length Balance (TLB) constraints into the
Genetic Algorithm, the variances of Nk and Lk are estimated as

σ̂Nk = 1
K−1 ∑K

k=1(Nk − µ̂(Nk))
2 (26)

σ̂Lk = 1
K−1 ∑K

k=1(Lk − µ̂(Lk))
2 (27)

where µ̂(Nk) and µ̂(Lk) are the estimated expectations of Nk and Lk, respectively. These variances are
used by the GA as the termination rule. The resulting algorithms are called the THB-3Dubins-MTSP
algorithm and TLB-3Dubins-MTSP algorithm, respectively. The outputs of the GA algorithms are a set
of tour sequences for all AUVs.

Then step 2 maps the direct paths in a tour sequence into 2D Dubins curves, which is accomplished
by projecting the 3D target locations onto the X−Y plane and design 2D Dubins curves. Since different
headings on the 2D plane can result in different solutions, the curves include all possible starting φ0

and ending φ1 for all target pairs. The shortest 2D path is selected by computing the total distances
and selecting the smallest one.

The last step converts the 2D Dubins path into 3D curves by linear interpolation of the Z
coordinates at each target pair. Then the headings θ0 and θ1 are calculated. Since linear interpolation
loses the G1 continuity, the difference between θ0 and θ1 at each joint J of the 3D Dubins path is
computed as Θ(J) = θ1(J)− θ0(J). The results Θ(J) for all J are compared against the bound ω2. If any
joint of the Dubins path has a Θ(J) > ω2, then the 3D Dubins path is rejected, and another 2D Dubins
path, computed in Step 2, has to be used to be interpolated to the 3D Dubins curve. The process is
repeated until the 3D Dubins path satisfies the vehicle dynamics constraint. This method is called
rejection-acceptance method.

In summary, the pseudo-code of the proposed algorithms is described in Algorithm 1. For all we
know, there are a small collision probabilities when multiple robots cruising in the same 3D underwater
space. Two and more than two AUVs will be collided when multiple AUVs are arriving at the same
coordinates at the same time. However, we run simulations of MTSP for collision check and find
the collision between AUVs is negligible since the quantity of AUVs is small because of its high cost.
Moreover, another sub-optimal paths can be generated with GA if there is a collision.
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Algorithm 1 The pseudo-code of the proposed algorithms

Input:
Set of static targets T ;
Set of mobile AUVs A;
Total number of static targets N;
Total number of mobile AUVs K;

Output:
Tour sequence for the kth AUV: Dk, k = 1, 2, ..., K;
Tour trajectory for the kth AUV: Sk, k = 1, 2, ..., K;

1: Initialization: n = 1;
2: while (n ≤ N) do
3: if(THB-3Dubins-MTSP)
4: # GA based MTSP calculation
5: # Break when reaching THB constraint;
6: else if (TLB-3Dubins-MTSP)
7: #GA based MTSP calculation
8: Break when reaching TLB constraint;
9: end if

10: n := n + 1;
11: end while
12: Initialization: k = 1, Sk := ∅;
13: while (k ≤ K) do
14: Initialization: v = 0;
15: while (v < Nk) do
16: # 3D Dubins curve plotting
17: Sk := [Sk, 3D_Dubins(Tv, Tv+1)];
18: v := v + 1;
19: end while
20: Sk := [Sk, 3D_Dubins(TNk , T0)];
21: k := k + 1;
22: end while
23: return Sk, for k = 1, 2, ..., K

4. Simulation Results

Simulations were set up with multiple underwater targets deployed randomly in a cube of
20× 20× 10 units, where 1 unit is the minimum turning radius ρ of each AUV. For example, the turning
radius of Iver2 AUV used in [8] is set to 5 m, so the proposed unit equals to 5 m. The number of targets
varied from 10 to 50 in increments of 5, and the number of AUVs varied between 2 and 5. For the
sake of simplicity, we choose the typical azimuth headings set for AUV movement as φij ∈ { bπ

4 } with
b = 1, 3, 5, 7. The proposed algorithm was implemented in Matlab and was developed on an Intel
2.5GHz i5-3210M CPU with 4GB RAM and running Windows 7. The computing time of the proposed
algorithm with different targets number and AUV number are compared in Figure 6. The parameters
for the GA is listed in Table 3.
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Figure 6. Computing time comparison.

Table 3. The GA Parameters for the MTSP.

Parameters Values

Population Size 80
Maximal Iterations 5000

Mutation Ratio 5%
Group Size 5

Figure 7 illustrates 3D Dubins based MTSP trajectories of 2 or 4 AUVs generated by 3Dubins-MTSP
algorithm. The x-axis and y-axis coordinates with their differential values are compared in Figure 8.
In comparison, the 3D Alternating Algorithm (AA-3DTSP) extended the 2D Alternating Algorithm [23]
by assigning Z-coordinates with linear interpolation and the resulting path is shown in Figure 9.
A DTSP tour in (AA-3DTSP) can be constructed by retaining all odd-numbered edges (except the n-th),
and replacing all even-numbered edges with minimum-length Dubins’ paths preserving the point
ordering. In Figure 9, the Green curves denote odd-numbered edges, and the Blue curves denote
even-numbered edges. It is clear non-smooth trajectories fail to G1 continuity in either the X–Y plane
nor the z-axis, as shown in Figure 10. Comparing Figure 10 to Figure 8, it is evident that cruise
trajectories derived from our algorithm are G1 continuous, however, cruise trajectories derived from
Alternating Algorithm are only G0 continuous because the tangent angle of each point on the path is
not continuous. Therefore, 3D Alternating Algorithm (AA-3DTSP) is not appropriate for nonholonomic
AUV and so it is excluded in the following simulations.

Next, we demonstrate the effectiveness of the THB-3Dubins-MTSP algorithm and
TLB-3Dubins-MTSP constraints in comparison with the TSP without constraints and the Random
Tour (RT) Algorithm. The Random Tour (RT) algorithm uses a set of random headings to achieve
cruise paths without any constraints. The 3D Dubins based TSP (3Dubins-TSP) algorithm use only one
AUV to trace all targets while cruising along 3D Dubins curves. Performance metrics include energy
consumption, energy balance rate, cruise speed, and task life cycle. Energy consumption denotes
the total energy consumption of all AUVs in the mission of tracking all targets, which is measured
by the total tour length with assumption that each AUV consumes one unit energy at each unit tour
length. Energy balance rate denotes with RMS (root mean square) value of energy consumption of
each AUV, which is defined as Equation (28). Cruise speed is defined the maximal tour length of the
AUV team in one cruise process, which denotes that the maximal time needed to finish one cruise for
all targets. Task life cycle denotes the repeated number of each cruise mission, and it equals to the
round number when one of AUV exhausts its energy. In this paper, it is assumed that the mobile AUV
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will carry out targets detection mission iteratively, and cruise lifetime is measured as the number of
targets detection mission.

RMS =

√
∑K

k=1 (C(Dk)−C(Dk))2

K
(28)

For a given number of targets, we simulated 100 Monte Carlo trails and computed the average
length of 3D tours generated by different algorithms. The standard deviation value is relatively small
since the proposed algorithms can achieve progressive optimization using a large number of iterations
of GA. The comparison results of energy consumption, energy balance, cruise speed and task life cycle
are shown in Figures 11–14, respectively.
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Figure 7. 3D Dubins curves based targets tracking task assignment with 20 targets. Color online. (a) 3D
Dubins curves with two AUVs; (b) 3D Dubins curve with four AUVs; (c) 3D Dubins curces projected
2D plane with two AUVs; (d) 3D Dubins curves projected 2D plane with four AUVs.
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Figure 8. G1 continuity of the 3D Dubins paths generated by the proposed algorithm. (a) in the X−Y
plane; (b) in the Z axis.
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Figure 9. The 3D Alternating Algorithm (AA-3DTSP) with one AUV. (a) with 10 targets;
(b) with 20 targets.
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Figure 10. G0 continuity in the X−Y coordinates for the AA-3DTSP algorithm. The Z-axis continuity
is similar to that in Figure 8b.

Figure 11 shows that our proposed algorithms consume almost the same energy comparing to
Random Tour algorithm, but they are much lower than 3Dubins-TSP algorithm. Figure 12 shows the
improvements of energy balance ratio, there is at most 50% improvement with Random Tour algorithm
on the RMS metric. Figure 13 shows the cruise speed comparisons of different mechanism, we find the
cruise distance (e.g., the maximal cruise time) will decrease with the proposed algorithms clearly, and
it is even obvious with more AUVs. Figure 14 shows the task life cycle comparisons, it is obvious the
lifetime can be extended with our proposed algorithms, especially with more targets in the underwater
region. In summary, the proposed THB-3Dubins-MTSP and TLB-3Dubins-MTSP algorithms will
improve performances such as energy balance ratio, cruise speed and task life cycle comparing to
Random Tour (RT) algorithm greatly, thus verify that the proposed algorithms can achieve better
performance with G1 continuous constraints. Moreover, the proposed THB-3Dubins-MTSP and
TLB-3Dubins-MTSP algorithms have similar performances.
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Figure 11. Energy consumption comparisons. (a) 2 AUVs; (b) 4 AUVs.
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Figure 12. Energy balance comparisons. (a) 2 AUVs; (b) 4 AUVs.
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Figure 13. Cruise speed comparisons. (a) 2 AUVs; (b) 4 AUVs.
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Figure 14. Task life cycle comparisons. (a) 2 AUVs; (b) 4 AUVs.

5. Conclusions and Future Work

This paper has studied the 3D Dubins curves for target assignment and path planning for multiple
underwater targets visited by multiple AUVs. The MTSP for 3D path planning is solved by using the
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inverse of the Euclidean distances as the fitness function and the Tour Hop Balance (THB) and Tour
Length Balance (TLB) constraints as the stop criterion. The resulting target assignment (tour sequence)
is then projected onto the 2D X− Y planes and 2D Dubins curves are designed with a set of possible
headings and with nonholonomic motion constraints. The resulting 2D Dubins curves are interpolated
linearly to obtain the Z-coordinates of each 2D curve. We derived the path length calculation for 3D
Dubins curves and analyzed the G1 continuity of the 3D Dubins curve. It is demonstrated that the
linear interpolation fails to achieve G1 continuity in the Z coordinate, and other smooth interpolation
may have to be used when the continuity is required. Moreover, we find there are small collision
probabilities between AUVs from above analysis. Therefore, in our future work, we will study how to
avoid multiple underwater obstacles and inter-AUV collision for path planning of multi-AUV team.
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