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Abstract—An efficient adaptive turbo equalization (ATEQ)
scheme is proposed for multiple-input–multiple-output underwa-
ter acoustic (UWA) communications. The proposed ATEQ scheme
utilizes two layers of iterative processing: The inner-layer iter-
ation is the soft-decision-based equalizer parameters adaptation
and filtering of received signals in the equalizer, and the outer-
layer iteration is the Turbo exchange of extrinsic log-likelihood
ratio between the equalizer and decoder. In contrast, the existing
ATEQ schemes use hard-decision symbols for filter adaptation but
soft symbols for filtering and Turbo iteration. When the adaptive
filters are designed and updated via the normalized least mean
squares (NLMS) or the improved proportionate NLMS algorithms
for low computational complexity and good channel tracking, the
soft symbols utilized in both the pilot-assisted and the decision-
directed modes of the proposed ATEQ scheme achieve fast conver-
gence with short training sequences, thus achieving high spectrum
efficiency. The proposed scheme is evaluated by the field trail data
collected in the 2008 Surface Processes and Acoustic Communi-
cations Experiment. The results demonstrate that the proposed
ATEQ scheme is robust against the severe triply-selective UWA
channels and mitigate slow-convergence problem commonly suf-
fered by direct-adaptation equalizers.

Index Terms—Adaptive equalization, a posteriori soft decision
(SD), data reuse, improved proportionate normalized least mean
squares (IPNLMS), multiple-input–multiple-output (MIMO),
normalized least mean squares (NLMS), turbo equalization,
underwater acoustic (UWA) communication.
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I. INTRODUCTION

MULTIPLE-INPUT–MULTIPLE-OUTPUT (MIMO) un-
derwater acoustic (UWA) communication exhibits

unique technical challenges due to the triply selective property
of the underlying MIMO UWA channel, for which the transmit
signal simultaneously experiences the frequency selectivity, the
time selectivity, and the spatial selectivity [1]. The frequency
selectivity and the time selectivity are generally very severe, for
the extremely long delay spread and the rapid dynamics of the
UWA channel. For example, a medium-range horizontal UWA
channel can have a delay spread of several tens of millisec-
onds spanning several tens or even hundreds of symbol periods,
and the channel coherence time is typically several tens of mil-
liseconds. Further, the spatial selectivity leads to different gains
among different transmit and receive elements [2], adding to the
difficulty of signal detection.
The harshMIMOUWA channel demands for powerful signal

detection techniques, and turbo equalization has long been
recognized as one such promising detection scheme. Turbo
equalization typically consists of two components: a soft-input
soft-output equalizer and a soft-input soft-output decoder,
which iteratively exchange extrinsic information to improve
the detection performance. The turbo equalization applied to
the UWA communications falls into two classes: The channel-
estimation-based turbo equalization (CE-TEQ) [3]–[7] and the
adaptive turbo equalization (ATEQ) with no need of explicit
channel knowledge [8]–[13]. The equalizer for a CE-TEQ can
be a minimum mean square error (MMSE) linear equalizer [3],
[4] or a MMSE decision-feedback equalizer [5]–[7], where the
calculation of the MMSE equalizer coefficients requires the
knowledge of the UWA channel. Since the length of the UWA
channel is usually long, the computation of the equalizer coef-
ficients involves a large-dimension matrix inversion, leading to
high complexity. The complexity can be further amplified when
a MIMO system with multiple transducers and hydrophones
is deployed, due to the increased size of the covariance matrix
to be inverted. The high complexity means a long signal
processing delay, making the CE-TEQ impractical for real-time
applications. On the other hand, an ATEQ takes the advantage
of low complexity achieved by directly adjusting the equalizer
coefficients without any matrix inversion operation. An ATEQ
generally achieves suboptimal performance by approaching
that of the Wiener filtering and demands for fine parameter
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tuning (which is nontrivial for MIMO UWA communication
due to the abundant equalizer taps to be adapted) so as to make
the adaptive equalizer converge.
A soft-input–soft-output equalizer adopted in the ATEQ typ-

ically consists of two filters: A feedforward filter with the re-
ceived samples as its input, and a soft interference cancelation
(SIC) filter whose input is the estimation of transmit symbols
[11]–[13]. The adaption of the feedforward filter and the SIC
filter, as well as the quality of the SIC filter input are the keys
for the success of the ATEQ. In training mode, the filter adap-
tation and the SIC formulation are routine procedures since the
reference symbols are a priori perfectly known. It is during the
decision directed (DD) phase, diverse filter adaptation and SIC
formulation methods are proposed, leading to different ATEQ
schemes of different performance [11]–[15]. In [12]–[14], the
hard decision on the equalizer output is used to drive the filter
adaptation, and the SIC input is the a priori soft symbol esti-
mation from the channel decoder. In [11], a similar filter adap-
tation and SIC formulation scheme as in [12]–[14] is adopted.
The difference is that it also takes advantage of the data reuse
technique originated in [16]. By data reuse, the filter adapta-
tion and symbol detection are repeated several times over the
same set of data, and this helps to improve the detection perfor-
mance as well as to speed up the filter convergence. Therefore,
it shortens the training sequence and improves the transmission
efficiency. In [15], hard decisions of the a priori soft symbol es-
timations from the decoder are delivered as the SIC filter input.
Different from [11]–[14], the decoder a priori soft decisions
(SDs) are also incorporated into the filter adaptation, aiming
to mitigate the error propagation (EP) effect of hard decisions.
However, the scheme still requires a very long training sequence
for the initialization of the equalizer. Finally, it is noted most
existing works on ATEQ for UWA communication deal with
single-input–multiple-output transmissions [12]–[15], and the
only MIMO result reported is for the two-transducer scenario
with a low-order QPSK modulation [11].
In this paper, an efficient ATEQ is proposed for MIMOUWA

communication, with multiple transmit elements and multilevel
modulations such as 8PSK and 16QAM. The proposed scheme
adopting the low-complexity normalized least mean squares
(NLMS) algorithm as well as the improved proportionate nor-
malized least mean squares (IPNLMS) algorithm, still benefits
from the data reuse technique [11]. Compared with existing
ATEQ schemes, the proposed scheme is improved in both filter
adaptation and SIC formulation, achieved bymaking use of the a
posterioriSD (at the equalizer output), available in the data reuse
iteration. The a posteriori SDs have better fidelity than the a pri-
ori SDs, due to the extra information gleaned in the equalization
process. Moreover, the a posteriori SDs are utilized in a block-
wise way, leading to low complexity and high performance [17].
The proposed ATEQ scheme is tested by extensive experimen-
tal data collected in the 2008 Surface Processes and Acoustic
Communications Experiment (SPACE08). The low-complexity
NLMS algorithm and the sparsity enhanced IPNLMS algorithm
are adopted in the data processing. Attributed to the improve-
ment made, the proposed scheme not only achieves error-free
detection for most QPSK packets in the MIMO transmission

Fig. 1. Block diagram of a MIMO UWA communication system (Π denotes
an interleaver).

with up to three transmit elements, but also works decently in
the MIMO transmission with multilevel modulations such as
8PSK and 16QAM, as shown by the experimental results. Fur-
thermore, relatively short training sequences were found to be
sufficient, thereby improvements in the transmission efficiency
are realized.
Notation: The superscripts (·)∗, (·)T , and (·)H represent, re-

spectively, the conjugate, the matrix transpose, and the matrix
Hermitian, and E {·} denotes the statistical expectation. The
function tanh(x) denotes the hyperbolic tangent, and the matrix
diag{d1 , d2 , · · · , dj} is a j × j diagonal matrix with diagonal
elements d1 , d2 , . . . , dj .

II. SYSTEM DESCRIPTION AND ATEQ PRELIMINARY

A. System Description

An N × M single-carrier MIMO UWA communication sys-
tem with spatial multiplexing is considered, where N and M
are the number of transducers and the number of hydrophones,
respectively. The system diagram is depicted in Fig. 1 where on
the transmitter side, the incoming information bits are serial-
to-parallel converted into N parallel streams {bn}N

n=1 , trans-
mitted by the N transducers. On the nth transmit branch, the
information bits are encoded and interleaved. Every q inter-
leaved bits, cn,k � [c1

n,k c2
n,k . . . cq

n,k ], are mapped to one
modulation symbol xn,k taken from a 2q -ary constellation
set S = {α1 , α2 , . . . , α2q }. A given constellation point αi is
mapped to a predetermined bit pattern si = [si,1 si,2 · · · si,q ]
with si,j ∈ {0, 1}.
The received baseband signal on themth hydrophone element

at the time k is given by

y
(m )
k =

N∑

n=1

L−1∑

l=0

h
(m,n)
l,k xn,k−l + η

(m )
k (1)

where h
(m,n)
l,k denotes the lth tap of the length-L equivalent

channel between the nth transducer element and the mth hy-
drophone element at time instant k, and η

(m )
k is the additive

noise. Stacking up the receive samples of the M hydrophone as
yk = [y(1)

k , y
(2)
k , . . . , y

(M )
k ]T , one has the space-time represen-

tation as

yk =
L−1∑

l=0

hl,kxk−l + ηk (2)
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Fig. 2. Structure of the ATEQ for MIMO systems.

where

xk = [x1,k , x2,k , . . . , xN,k ]T (3)

ηk = [η(1)
k , η

(2)
k , . . . , η

(M )
k ]T (4)

hl,k =

⎡

⎢⎢⎢⎢⎣

h
(1,1)
l,k h

(1,2)
l,k · · · h

(1,N )
l,k

h
(2,1)
l,k h

(2,2)
l,k · · · h

(2,N )
l,k

...
...

. . .
...

h
(M,1)
l,k h

(M,2)
l,k · · · h

(M,N )
l,k

⎤

⎥⎥⎥⎥⎦
. (5)

B. ATEQ for MIMO systems

The structure of the ATEQ for MIMO systems is depicted
in Fig. 2, where the adaptive equalizer consists of two units:
The feedforward filtering unit and the SIC unit. In most existing
adaptive equalizers, the SIC is performed with the a priori SD
x̄n,k , calculated with the bit a priori log likelihood ratio (LLR)
La(cj

n,k ) from the decoder as

x̄n,k = E

[
xn,k |

{
La

(
cj
n,k

)}q

j=1

]
=

∑

αi ∈S

αiP, xn,k = αi

(6)
where

P (xn,k = αi) =
q∏

j=1

1
2

(
1 + s̃i,j tanh

(
La

(
cj
n,k

)
/2

))
(7)

with

s̃i,j =
{

+1, if si,j = 0
−1, if si,j = 1.

The equalizer output is given as

x̂n,k = fH
n,krk + gH

n,k x̃n,k (8)

where rk = [yT
k+K 1

, . . . ,yT
k−K 2

]T , and x̃n,k = [(x̄n,k−K 3 )
T ,

. . . , (x̄n,k )T . . . , (x̄n,k+K 4 )
T ]T with x̄n,k ′ = [x̄1,k ′ , x̄2,k ′ , . . . ,

x̄N ,k ′ ]T when k
′ �= k, and x̄n,k ′ = [x̄1,k ′ , . . . , x̄n−1,k ′ , 0,

x̄n+1,k ′ , . . . , x̄N ,k ′ ]T when k
′
= k. The parametersK1 ,K2 ,K3 ,

K4 are nonnegative integers. Obviously, the length of the feed-
forward filter and the length of the SICfilter areM(K1 +K2 +1)
and N(K3 + K4), respectively, leading to a combined filter
length ofKeq = M(K1 + K2 + 1) + N(K3 + K4). It is noted
Keq is the number of taps for a particular transmit stream, and
the total number of taps for the adaptive equalizer shall be scaled
by a factor of N . For notation convenience, one expresses (8) as

x̂n,k = wH
n,kuk (9)

where

wn,k = [fT
n,k gT

n,k ]T (10)

uk = [rT
k x̃T

n,k ]T (11)

The ATEQ usually works in both training mode and DD
mode, and the NLMS algorithm is used as an example without
loss of generality. In the training mode, the adaptation of the
equalizer vector is as follows:

wn,k+1 = wn,k +
μ(xn,k − x̂n,k )∗uk

δNLMS + uH
k uk

, 1 ≤ k ≤ Kp

(12)
where μ is the step size, δNLMS is a small number for regulariz-
ing the adaptation at the initial stage, xn,k is the training symbol
known a priori, and Kp is the length of the training sequence.

In the DD mode, the updating of the equalizer vector is as
follows:

wn,k+1 = wn,k +
μ(Q(x̂n,k ) − x̂n,k )∗uk

δNLMS + uH
k uk

, Kp < k ≤ Kb

(13)
where Q(x̂n,k ) denotes the tentative hard decision on the equal-
izer output, and Kb is the length of each processed block.

As mentioned earlier, the length of the concatenated feed-
forward filter and the SIC filter is Keq = M(K1 + K2 + 1) +
N(K3 + K4). Due to the long delay spread of the underwater
channel as well as the multiple transmit and receive elements,
the number of equalizer taps to be adapted is large. To make
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Fig. 3. Block diagram of the hard-decision adaptive equalizer with data reuse.

the adaptive equalizer converge, a long training sequence is re-
quired, which sacrifices the transmission efficiency. To avoid
long training sequence, the data reuse technique has been ap-
plied in the hard-decision directed adaptive turbo equalization
(HD-ATEQ) [11] and the iterative CE-TEQ [4]. The hard-DD
equalizer adaptation with data reuse is demonstrated in Fig. 3,
where the tap updating is repeated over the same block of re-
ceived signals for a couple of times as follows:

wt+1
n,k+1 = wt+1

n,k +
μ(Q(x̂t+1

n,k ) − x̂t+1
n,k )∗uk

δNLMS + uH
k uk

,

Kp < k ≤ Kb, t ≥ 0 (14)

where the superscript t + 1 denotes the (t + 1)th round of data

reuse, and x̂t+1
n,k = wt+1

n,k

H
uk . The purpose of using t + 1 as

the index of the data reuse round is for the convenience of
comparison with the proposed equalizer adaptation, as shown
shortly. The adaptation of the equalizer vector w0

n,k+1 at the
zeroth round of data reuse is actually the same as that of (14). It is
noted thatwt+1

n,1 = wt
n,Kb +1 . TheHD-ATEQ [11]may suffer the

EP, which is highly possible in practical UWA communication
[4]. When the EP happens, its effect can be catastrophic for
turbo equalization. Moreover, the input of the SIC filter remains
unchanged over the multiple rounds of data reuse [11].
As demonstrated in Fig. 2, the equalized symbol x̂n,k is trans-

lated into the extrinsic bit LLRs Le(c
j
n,k ), which are deinter-

leaved and input as the a prioriLLRsLd
a(cj

′

n,k ′ ) of the maximum
a posteriori probability decoder. After decoding, the decoder

outputs its extrinsic LLRs Ld
e (c

j
′

n,k ′ ), which (after interleaving)

are fed back to the equalizer as its a priori LLR input La(cj
n,k ).

The extrinsic information are exchanged between the equalizer
and the decoder iteratively, with its reliability increasing with
the number of iterations. Once the iterative procedure is finished,
the hard decisions on the information bits b̂n are made.

III. PROPOSED ATEQ

In this work, an efficient ATEQ scheme is proposed, by per-
forming the equalizer adaptation and the SIC with the a pos-
teriori SDs available due to the data reuse, as demonstrated
in Fig. 4. For notation convenience, the proposed soft-decision-
driven adaptive turbo equalization is called the SD-ATEQ. There

are two layers of iterative processing in the proposedATEQ: The
outer-layer iteration between the equalizer and decoder, and the
inner-layer iteration (data reuse) inside the adaptive equalizer
itself. For convenience, the outer-layer iteration is called “turbo
iteration,” and the inner-layer iteration is named as “equalizer
iteration.” It is pointed out that the a posteriori SDs are fed back
in a block-wise way inside the adaptive equalizer, which im-
proves the robustness and performance of the ATEQ as well as
reduces the complexity [17]. In the following, the computation
of the a posteriori SD is first presented, then the a posteriori
SD-based equalizer adaptation and SIC are detailed.

A. A Posteriori SD Computation in the Equalizer Iterations

At the tth (t ≥ 0) round of equalizer iteration, the a posteriori
SD x̌t

n,k of the equalized symbol x̂t
n,k is calculated as

x̌t
n,k =

∑

αi ∈S

αiP
(
xn,k = αi |x̂t

n,k

)
(15)

where the a posteriori probability P (xn,k = αi |x̂t
n,k ) is

given as

P
(
xn,k = αi |x̂t

n,k

)
=

p
(
x̂t

n,k |xn,k = αi

)
P (xn,k = αi)

p
(
x̂t

n,k

) .

(16)
The a priori probability P (xn,k = αi) is computed with the
a priori LLRs as in (7), and p(x̂t

n,k ) is obtained via the nor-

malization
∑2q

i=1 P (xn,k = αi |x̂t
n,k ) = 1. The equalizer output

x̂t
n,k conditioned on xn,k = αi is assumed to follow a Gaussian

distribution [18]–[20], as

p
(
x̂t

n,k |xn,k = αi

)
=

1
πδt

n

exp

{
−|x̂t

n,k − μt
nαi |2

δt
n

}
(17)

where

μt
n =

1
Kd

Kb∑

k=Kp +1

x̂t
n,k

Q(x̂t
n,k )

(18)

δt
n =

1
Kd

Kb∑

k=Kp +1

|x̂t
n,k − μt

nQ(x̂t
n,k )|2 (19)

with Kd = Kb − Kp being the length of information block.
Obviously, the evaluation of μt

n and δt
n relies on the entire block

of estimated symbols. As a result, the a posteriori SDs are
unavailable until all symbols in the block are equalized. This
fact naturally leads to the block-wise SD feedback operation,
where the a posteriori SD x̌t

n,k of the tth equalizer iteration
is used in the (t + 1)th equalizer iteration, as shown in Fig. 4.
Over equalizer iterations, the reliability of the a posteriori SD
x̌t

n,k keeps increasing thus speeds up the convergence of the
equalizer. The block-wise SD feedback mechanism has shown
the advantage of low complexity and high performance [17].

B. A Posteriori SD-Based Equalizer Adaptation and SIC

1) A Posteriori SD-Based Equalizer Adaptation: At the
(t + 1)th equalizer iteration, the block of a posteriori SDs from
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Fig. 4. Block diagram of the proposed adaptive equalizer with data reuse.

the tth equalizer iteration {x̌t
n,k}Kb

k=Kp +1 are fed into the filter
adaptation unit, and the equalizer vector is updated as

wt+1
n,k+1 = wt+1

n,k +
μ(x̌t

n,k − x̂t+1
n,k )∗uk

δNLMS + uH
k uk

, t ≥ 0. (20)

The equalizer adaption at the zeroth equalizer iteration is dif-
ferent from (20), since there are no a posteriori SDs available.
When the number of turbo iteration Niter > 0, the a priori SDs
{x̄n,k}Kb

k=Kp +1 are instead used for the equalizer adaptation.
When Niter = 0, even the a priori SD x̄n,k is unavailable, so
the hard-DD equalizer adaptation as (14) is adopted. In sum-
mary, one has the following equalizer adaptation at the zeroth
equalizer iteration:

w0
n,k+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0
n,k +

μ(x̄n,k − x̂0
n,k )∗uk

δNLMS + uH
k uk

, Niter > 0

w0
n,k +

μ(Q(x̂0
n,k ) − x̂0

n,k )∗uk

δNLMS + uH
k uk

, Niter = 0.

(21)
Finally, the training-mode equalizer adaptation as given by (12)
is performed at each equalizer iteration of the data reuse proce-
dure.
The sparsity enhanced IPNLMS algorithm has also been

adopted to process the experimental data. The IPNLMS pro-
portionately adapts the equalizer vector as

wt+1
n,k+1 = wt+1

n,k +
μ(x̌t

n,k − x̂t+1
n,k )∗Gn,kuk

uH
k Gn,kuk + δIPNLMS

, t ≥ 0 (22)

and

w0
n,k+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0
n,k +

μ(x̄n,k − x̂0
n,k )∗Gn,kuk

uH
k Gn,kuk + δIPNLMS

, Niter > 0

w0
n,k +

μ(Q(x̂0
n,k ) − x̂0

n,k )∗Gn,kuk

uH
k Gn,kuk + δIPNLMS

, Niter =0

(23)
where δIPNLMS is a small positive number for regularization,
and Gn,k = diag {gn,k (0), gn,k (1), . . . , gn,k (Keq − 1)} is a
diagonal proportionate matrix with the l

′
th diagonal element

given by

gn,k (l
′
) =

1 − α

2Keq
+ (1 + α)

|wt+1
n,k (l

′
)|

2‖wt+1
n,k ‖1 + ε

,

0 ≤ l
′ ≤ Keq − 1 (24)

where ε is also a regularization parameter introduced to avoid
numerical instability, wt+1

n,k (l
′
) is the l′th element of wt+1

n,k ,
and | · | and ‖ · ‖1 are the absolute operator and the l1-norm
operator, respectively. The selection of α depends on the
sparsity of the equalizer. When α = −1, the IPNLMS reduces
to the NLMS [21] and the equalizer sparsity is not exploited.
When α = 1, the IPNLMS behaves such as the proportionate
normalized least mean squares (PNLMS) [22]. It is noted that
the IPNLMS is still of linear complexity without involving any
matrix inversion operation.
2) A Posteriori SD-Based SIC Scheme: The performance

of the SIC depends heavily on the quality of the SD. Most
ATEQ schemes employ the a priori SDs for SIC [11]–[14].
By utilizing the a posteriori SDs, which possess higher fidelity
than the a priori SDs due to the extra information gleaned
in the equalization process, one is able to improve the SIC.
Specifically, with the improved SIC, the equalizer output x̂t+1

n,k

is given by

x̂t+1
n,k = f t+1

n,k

H
rk + gt+1

n,k

H
x̆t

n,k . (25)

Obviously, the a priori SDs x̃n,k in (8) have been replaced
with the a posteriori SDs x̆t

n,k = [(x̌t
n,k−K 3

)T , . . . ,

(x̌t
n,k )T , . . . , (x̌t

n,k+K 4
)T ]T , where x̌t

n,k ′ = [x̌t
1,k ′ , x̌t

2,k ′ , . . . ,

x̌t
N ,k ′ ]T when k

′ �= k, and x̌t
n,k ′ = [x̌t

1,k ′ , . . . , x̌t
n−1,k ′ , 0,

x̌t
n+1,k ′ , . . . , x̌t

N ,k ′ ]T when k
′
= k.

IV. UNDERSEA EXPERIMENTAL RESULTS

The proposed adaptive turbo detection scheme has been tested
by field trial data collected in the SPACE08 undersea experi-
ment, conducted off the coast of Martha’s Vineyard, Edgartown,
MA, USA, in October 2008. The water depth of this sea trial was
about 15 m. On the transmitter side, four transducers numbered
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Fig. 5. Format of the transmit signal on the nth transducer in the SPACE08 experiment.

TABLE I
DESCRIPTION OF THE HYDROPHONE ARRAYS

Rx Array Range Orientation Number of Hydrophone
name/type (m) hydrophones spacing (cm)

S1/Cross 60 Southeast 16 3.75
S2/Cross 60 Southwest 16 3.75
S3/Vertical 200 Southeast 24 5
S4/Vertical 200 Southwest 24 5
S5/Vertical 1000 Southeast 12 12
S6/Vertical 1000 Southwest 12 12

0 to 3 were deployed. Transducer 0 was fixed on a stationary
tripod about 4 m above the ocean bottom. Transducers 1–3 were
evenly mounted on a vertical array with 50-cm spacing, and the
top transducer in the array was about 3 m above the ocean bot-
tom. Six hydrophone arrays placed at different locations were
deployed for signal reception, with detailed information given
in Table I. The communication distances were 60, 200, and
1000 m. The top hydrophone of each array was approximately
3.3 m above the sea bottom.
ForMIMO transmission, the horizontal encoding scheme [23]

with bit-interleaved coded modulation (BCIM) in time domain
was adopted at the transmitter, as shown in Fig. 1. The channel
coding was a rate Rc = 1/2 convolutional code with generator
polynomial [17, 13] in octal notation. The modulations include
QPSK, 8PSK, and 16QAM. The transmission power for all
modulation schemes were the same, so detection becomes more
difficult when the modulation level increases. The carrier fre-
quency was fc = 13 kHz and the symbol rate was 9.77 ks/s. A
square-root raised cosine filter with a roll-off factor of 0.2 was
used for pulse shaping, leading to the occupied channel band-
width of about 11.72 kHz. At the receiver side, the passband
sampling rate was 39.0625 kHz.
The signal format at the nth transducer is illustrated in Fig. 5,

where the transmit burst starts with a header linear frequency
modulation (LFM) signal named LFMB and ends with a trailing
LFM signal named LFME. The LFM signals are used for coarse

synchronization and channel structure measurement. With the
signaling structure in Fig. 5, the LFM signals for different trans-
ducers avoid interfering each other by nonoverlapping in time.
Following the header LFM signal are three data packets with
QPSK, 8PSK, and 16QAM modulations, each starts with a
BPSK-modulated m-sequence of length 511 for doppler shift
estimation, followed by a data payload consisting of 30 000
symbols. The use of long data payload improves the transmis-
sion efficiency. Gaps are inserted in the transmission burst, and
they can be used for estimating the noise power. With the es-
timated noise power, the signal-to-noise ratio (SNR) can also
be evaluated. For the SPACE08 experiment, the typical SNR
estimation is in the range of 20 to 32 dB.
The received bursts of the 200-m channel and the 1000-m

channel are shown in Fig. 6. Obviously, the strength of the 200-
m signal (peak-to-peak amplitude of 0.38) is much stronger than
the 1000-m signal (peak-to-peak amplitude of 0.038), which is
reasonable since the acoustic signal attenuateswith distance. Be-
sides, impulsive interference is observed in the 1000-m signal.
In Fig. 7, the channel impulse response (CIR) measured in the

experiment is shown for both the 200-m transmission and the
1000-m transmission, where “T#” and “H#” denote the indices
of the transducer and the hydrophone, respectively. The follow-
ing observations are made: First, the multipath energy spread
over a time window of 10 ms, corresponding to a channel length
of 100 taps in terms of the symbol period Ts = 0.1024 ms;
second, the channels are nonminimum phase as the strongest
multipath component is not at the very beginning of the CIR,
which add to the difficulty for equalization; third, the channel is
fast time varying, especially for the 200-m channel, making the
adaptive symbol detection quite challenging.

A. Parameters Setup

Due to the fast time variations of the UWA channels, the
adaptive turbo detector partitions each long data payload into
multiple blocks of sizeKb for processing, as shown in Fig. 5. For
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Fig. 6. Example of the received signals in 200 and 1000-m transmissions.

Fig. 7. Example of the CIRs over a period of time.

TABLE II
TRAINING OVERHEADS AND THE CORRESPONDING INFORMATION RATES FOR

DIFFERENT COMBINATIONS OF MODULATION AND MIMO SIZE

Modulation MIMO size Block size (Kb ) Training overhead (ξ ) Information rate (kb/s)

QPSK 2× 6 3600 13.89% 16.82
3× 12 2200 22.73% 22.64
4× 12 1800 27.78% 28.22

8PSK 2× 6 2200 22.73% 22.64
3× 12 1800 27.78% 31.74
4× 12 1200 41.76% 34.18

16QAM 2× 6 1800 27.78% 28.22
3× 12 1500 33.33% 39.06
4× 12 1050 47.62% 40.92

each partition block, the first Kp symbols are used as the train-
ing symbols to initialize the adaptive receiver, and the remain-
ing Kd symbols carries information bits. The resulting training
overhead is ξ = Kp/(Kp + Kd) and the corresponding infor-
mation rate is 9.77 × ξqNRc kb/s. In the data processing, Kp

is fixed as 500 and the choice of Kd is flexible depending on the
modulation and the MIMO size. In Table II, the choice of the

TABLE III
TOTAL NUMBER OF PACKETS ACHIEVING THE SPECIFIED BER LEVEL

(2 × 6 MIMO)

Range # of turbo
iter.

QPSK (BER = 0) 8PSK (BER
< 10−4 )

16QAM (BER
< 10−3 )

NLMS IPNLMS NLMS IPNLMS NLMS IPNLMS

200 m 0 0 0 0 0 0 0
(45 packets 1 14 26 7 8 3 12
in total) 2 34 40 16 24 8 25

3 42 43 20 26 14 32
4 42 43 24 31 19 35
5 43 44 26 31 20 35

1000 m 0 0 3 0 0 0 0
(19 packets 1 10 16 7 7 4 7
in total) 2 15 16 8 8 8 13

3 16 16 8 8 10 13
4 16 17 8 8 11 13
5 16 17 8 8 11 13

training overheads (equivalent to the choice of Kb since Kp is
fixed) and the corresponding information rates are summarized,
for different combinations of modulation and MIMO size.
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Fig. 8. Detection results of the two-transducer MIMO transmission after 5 turbo iterations. (a) Results of the 200-m channels. (b) Results of the 1000-m channels.

The step size μ of the adaptive algorithms was set to be
exponentially decaying with each data reuse iteration as in [4],
[11], and the decaying factor was set as β = 0.9. The initial
step size was chosen as μ = 1 during the training period, and
decreased toμ = 0.1 at theDDmode. The choices ofK1 = 100,
K2 = 50, andK3 = K4 = 50 are used for the feedforward filter
and the SIC filter, respectively, in this particular experiment.
The maximum number of equalizer iteration (or data reuse)

was set as 4. Other relevant parameters in the adaptive algorithm
were set as δNLMS = 0.01, δIPNLMS = 5 × 10−5 , ε = 0.01, and
α = 0.

B. Experimental Results

The results for the 200-m and 1000-m transmissions are pre-
sented. For the 200-m transmission, 30 S3 files and 15 S4 files
described in Table I were recorded in two days during the ex-
periment. Each file contains one burst as shown above, and all
45 files were processed. For the 1000-m transmission, 34 data
files were recorded during the trial but only 19 of them are valid.
The 19 valid files including eight S5 files and eleven S6 files,
were all processed.
1) Results on the Two-Transducer MIMO Transmission: In

this section, the processing of the two-transducer MIMO data is
discussed. Table III provides a summary of the results, and the
figure of merit is the number of packets achieving a specific bit
error rate (BER) level. From the table, the following observa-
tions are made: First, the effectiveness of the turbo equalization
is clearly shown, as the detection performance increases with
the number of turbo iterations; second, the proposed SD-ATEQ
with eitherNLMSor IPNLMSmanifests fast convergence, since
most packets achieve the specified BER performance within
3 ∼ 4 turbo iterations; third, the IPNLMS-based SD-ATEQ
exhibits better performance than the NLMS-based SD-ATEQ,
and the performance gain tends to increase with the modulation
level. With QPSK or 8PSK modulations, the NLMS achieves
comparable performance to the IPNLMS while at lower com-
plexity, thus is a desired choice for practical use. However with
16QAM modulation, the IPNLMS achieves considerable per-
formance gain over the NLMS so is more preferred.
Fig. 8 provides a graphical presentation of the final detection

results (after five turbo iterations) in Table III, where different

color bars correspond to the different BER ranges. It is easy to
see that for the QPSK modulation, the NLMS and the IPNLMS
achieve similar performance for both the 200-m and the
1000-m transmissions. For the 8PSK modulation, the IPNLMS
is slightly better than the NLMS. However with the 16QAM
modulation, the performance gap between the NLMS and
IPNLMS is substantial. For example, the 200-m result shows
the percentage of the packets with BER < 10−4 increases from
11.1% for the NLMS to 60% for the IPNLMS after five turbo
iterations.
Finally, performance analysis is provided for the proposed

adaptive equalization via the mean square error (MSE) curve.
For a given turbo iteration, the MSE of the nth transmit stream
at the (t + 1)th equalization iteration is estimated via a leaky
integrator as [12], [13]

MSEt+1
n,k+1 = λMSEt+1

n,k + (1 − λ)|et+1
n,k |2 (26)

where k = 1, . . . , Kb , et+1
n,k = x̌t

n,k−x̂t+1
n,k and λ is set as 0.99.

It is noted that MSEt+1
n,1 = MSEt

n,Kb +1 , e0
n,k =Q(x̂0

n,k )−x̂0
n,k

whenNiter = 0, and e0
n,k=x̄n,k−x̂0

n,k whenNiter > 0. In Fig. 9,
theMSE curves obtained in the detection of 200-m 2 × 6MIMO
packet with 8PSK and 16QAM modulations are presented, for
the first and the third turbo iteration. Obviously, the MSE gaps
between the NLMS and the IPNLMS tend to decrease with the
number of equalization iterations. Even though, for the 16QAM
modulation, there is still nonnegligible 2-dB difference between
the IPNLMS and the NLMS, after multiple equalizer iterations.
This observation matches the BER results in Table III.
2) Results on the MIMO Transmission with More Than Two

Transducers: This section presents the processing results for
3 × 12 and 4 × 12 MIMO transmission. Compared with the
two-transducer transmission, the detection gets more difficult
with more concurrent transmission streams, due to the increased
cochannel interference. In Fig. 10, the 3 × 12 results of the
1000-m transmission are presented. With a 22.73% training
overhead, both the NLMS and the IPNLMS-based SD-ATEQs
detected successfully most QPSK packets with BER < 10−4 .
Specifically, with the IPNLMS algorithm, 84.2% of the pack-
ets achieve BER < 10−4 and the remaining packets have the
BER < 10−3 . As to the 8PSK packets, 89.5% of them achieve
satisfactory performance with BER < 10−2 with the IPNLMS



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF OCEANIC ENGINEERING 9

Fig. 9. MSE curves of the 2 × 6 MIMO detection with 8PSK and 16QAM modulations (200-m channel).

Fig. 10. Detection results of the 3 × 12 MIMO transmission after five turbo
iterations (1000-m channel).

algorithm, at a 27.78% training overhead. The training overhead
for the 16QAM modulation was increased to 33.3%. With the
IPNLMS-based SD-ATEQ, 52.6% 16QAM packets achieve the
BER < 10−2 , and 31.6% packets reach the BER level of 10−2 .

The results of the 4 × 12 MIMO transmission are next pre-
sented in Fig. 11, where the training overheads have been in-
creased to 27.78%, 41.76%, and 47.6% for QPSK, 8PSK, and
16QAM, respectively. For QPSK modulation, the IPNLMS al-
gorithm still works decently. Specifically, 57.9% QPSK packets
achieve satisfactory performance with BER < 10−3 , and only
one packet fails with BER > 10−1 . The detection results for
8PSK and 16QAM modulations are not as satisfactory as those
for the QPSK modulation, even when a higher training over-
head was used. A closer look at the detection results reveals the

Fig. 11. Detection results of the 4 × 12 MIMO transmission after five turbo
iterations (1000-m channel).

performance bottleneck lies in the third transmit stream, whose
signal strength is pretty weak on the receive side.
3) Comparison Between the Proposed SD-ATEQ and the

HD-ATEQ: It is found that the HD-ATEQ experienced conver-
gence issues in the processing of 8PSK and 16QAM packets,
due to the catastrophic effect of the EP. Even with QPSK modu-
lation, the NLMS-based HD-ATEQ did not converge as also ob-
served in [4]. Therefore, the comparison between the proposed
SD-ATEQ and the HD-ATEQ is limited to the two-transducer
MIMO transmission with QPSK modulation and the IPNLMS
algorithm. The comparison is shown in Fig. 12 for the 200-m
transmission. Note that we plotted the packets without error on
the line of BER = 10−5 in Fig. 12(b) for better observation.
Obviously, the SD-ATEQ outperforms the HD-ATEQ.
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Fig. 12. BER comparison between the SD-ATEQ and the HD-ATEQ for 2 × 6 MIMO transmission (200-m channels). (a) Comparison after one turbo iteration.
(b) Comparison after three turbo iterations.

Fig. 13. BER range comparison between the SD-ATEQ and the HD-ATEQ after one and three turbo iterations for 2 × 6 MIMO transmission. (a) Comparison
in the 200-m channels. (b) Comparison in the 1000-m channels.

Fig. 14. MSE comparison between the SD-ATEQ and the HD-ATEQ for
2 × 6 MIMO transmission (200-m channels).

Fig. 15. Estimated power delay profile from experimental channels used for
simulations.
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Fig. 16. Simulation results of the proposed SD-ATEQ and the HD-ATEQ in 2 × 4 MIMO channels with QPKS modulation. (a) BER curves (b) EXIT chart
(SNR = 8 dB).

Fig. 17. Evolution of SDs.

dramatically. After three turbo iterations, 43 packets achieve
zero BER by using the SD-ATEQ. On the contrary, the detection
still fails for 15 packets with BER larger than 10−1 when the
HD-ATEQ is adopted.
In Fig. 13, the detection results of the 200 and 1000-m trans-

missions are compared in terms of the percentages of different
BER ranges. After one turbo iteration, 71.1% and 73.3% of
packets achieve BER < 10−4 for the 200-m channel and the
1000-m channel, respectively, with the proposed SD-ATEQ.

With three turbo iterations, the SD-ATEQ successfully detected
97.8% 200-m packets and 94.8% 1000-m packets with BER
< 10−4 (most of these packets achieved zero BER). However
with the HD-ATEQ, there are still 31.1% 200-m packets and
84.2% 1000-m packets failed with BER > 10−1 . This compar-
ison again demonstrates the superiority of the proposed SD-
ATEQ over the HD-ATEQ.
Finally, the comparison in terms of MSE is presented in

Fig. 14.
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Fig. 18. MSE evolution of the IPNLMS-based SD-ATEQ.

From the figure, the difference in MSE between the proposed
SD-ATEQ and the HD-ATEQ can be more than 5 dB. Further,
the SD-ATEQ converges faster than the HD-ATEQ, as shown
by the gap between the first and the third turbo iteration.
We also compare the performance of the proposed SD-ATEQ

with the existing HD-ATEQ based on simulations. In the simu-
lation, we consider a 2 × 4 MIMO systems with QPSK modu-
lation, where each subchannel is a frequency selective Raleigh
fading channel. The fading channels are generated with the
power delay profile described in Fig. 15, which is estimated
from the experimental channels. The rate 1/2 convolutional
code with generator polynomial [17, 13] in octal notation is
used in the simulation. The data payload partition scheme is
the same as one in the experiment and the training overhead
is set as 20%. The normalized Doppler frequency is chosen as
1.28 × 10−4 , which corresponds to the maximum doppler shift
(5 Hz) estimated from the experimental data.
The BER and extrinsic information transfer chart (EXIT)

[24] simulation results are demonstrated in Fig. 16(a) and (b).
Obviously, the SD-ATEQ outperforms the HD-ATEQ, which
is consistent with the results in the experiment. From both the
BER and EXIT curves, we can also find the early convergence
of the HD-ATEQ in the tough time varying MIMO channels,
which is also observed in the experimental data processing.
4) Evolutional Behavior of the Proposed SD-ATEQ: The

performance gain brought by the turbo iteration of the SD-
ATEQ, has been demonstrated in Table III. In this section, the
evolutional behavior of the SD-ATEQ is elaborated in more
details.
In Fig. 17, the quality evolution of the SDs is presented by

using 8PSK packet as an example. Each row shows the qual-
ity evolution at different equalizer iterations for a given turbo
iteration, and each column demonstrates the quality evolution
at different turbo iterations for a given equalizer iteration. Ob-
viously, the quality of the SDs increases with the number of
equalizer iterations and the number of turbo iterations, as ex-
pected. It is also clearly shown that the a posteriori SDs provide
better fidelity than the a priori SDs due to the extra information
gleaned over the equalization iterations.
In Fig. 18, the evolutional behavior of the IPNLMS-based

SD-ATEQ is demonstrated by using MSE as the figure of merit.
For each subfigure, the number of turbo iterations is fixed as
3, and the number of equalization iterations varies from 0 to 4.

Fig. 19. Performance evolution of theNLMS-based SD-ATEQ (2 × 6MIMO,
8PSK, 22.73% training overhead).

Obviously, the MSE decreases consistently with the increase in
the equalization iterations, regardless of the modulation. With
four equalization iterations, the performance gain achieved can
be up to 14 and 6 dB during the training phase and the DD phase,
respectively. The results with the NLMS-based SD-ATEQ are
very similar thus omitted for brevity.
In Fig. 19, the performance evolution of the NLMS-based

SD-ATEQ with different numbers of equalization iterations is
shown for the 8PSKpackets, where the number of turbo iteration
has been fixed as three. Obviously, the detection fails (the BERs
of all the packets are above 10−1) without using any equalizer
iteration. The performance keeps increasing with the increase
in the number of equalizer iterations.

V. CONCLUSION

An SD-ATEQ scheme was proposed for MIMO UWA com-
munications. The data reuse technique was adopted such that
the adaptive equalizer itself performs iterative symbol detec-
tion, enabling the usage of a posteriori SDs for the equalizer
adaptation and the SIC. Attributed to the better fidelity of the
a posteriori SDs as compared with the a priori SDs employed
in the existing ATEQ, the proposed scheme not only provided
robust detection performance but was very efficient in terms of
spectral utilization and processing delay. Therefore, it is a good
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candidate for practical use. The proposed scheme was tested by
the experimental data collected in the SPACE08 undersea ex-
periment and showed powerful detection capability. It worked
successfully in MIMO transmission with multilevel modula-
tions and more than two concurrent transmit streams, which is
not found in the existing literature.
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