Using Change Entries to Collect

Software Project Information

Hazeline U. Asuncion', Macneil Shonle', Robert Porter?, Karen Potts', Nathan Duncan', William J oseph Matthies i

' Computing and Software Systems
University of Washington, Bothell
Bothell, WA 98011 USA
{hazeline, mshonle, pottsk2, njd91, wjoem}
@ u.washington.edu

Abstract—Confronted with tight project deadlines, a development
team is often under pressure to make decisions regarding the
project (e.g., Which features can be included in the next release?
Is the software product ready for release?). In order to make
these decisions, it is necessary to obtain information from
multiple sources, including source code in different languages
and documentation in different formats. In this paper, we
present a technique that uses change entries to obtain relevant
project information. Our technique, FACTS PT, automatically
extracts, traces, aggregates, and visualizes change entries along
with other software metrics to provide project information.
Results from our case study at the ABC Organization* suggest
that the information provided by the FACTS PT is useful to
project managers and developers. We also offer lessons learned
regarding collecting and presenting information to a team in a
proprietary and regulated software development context.

Keywords-Software
information management

traceability; Software analytics;

L INTRODUCTION

Connecting related information during the course of
software development, referred as software traceability, is
necessary for various software lifecycle tasks such as
determining conformance to requirements or assessing the
quality of design [7, 14]. However, connecting related
information found in different artifacts to answer project
management questions has received little attention [9]. (We
define an artifact as any human-produced file during the
software lifecycle.) Ideally, a team should be able to answer
questions related to project status, quality of software artifacts,
and compliance to requirements. To answer these types of
questions and to make informed decisions, information from
various sources must be collected.

Collecting project information has been referred to as
software metrics [16], or software telemetry [18]. Techniques
have been developed to support the automated collection of
both process and product metrics [13, 18, 22, 26]. These
techniques, however, are generally focused on collecting
process information to aid developers assess their own skills
and productivity. Project managers, meanwhile, require
process and product information that provide them an
understanding of the overall state of the code, the progress

? Department of Computer Science
The University of Texas at San Antonio
San Antonio, TX 78249 USA
robertportercs@gmail.com

toward a milestone, and the skills and productivity of each
member of the team. Buse and Zimmerman recently used the
term software analytics to refer to the type of data and data
analysis necessary to support managers in their decision-
making tasks [9]. This paper provides a technique to support
software analytics for project managers and developers.

Agile software development methods also have techniques
for collecting project information. Burn down charts are used
to track the velocity of a team over several iterations [11].
These techniques are built-in to the agile process and are
difficult to adapt to teams which use other lifecycle models,
such as the waterfall or spiral models. Incidentally, the concept
of software analytics is also being used in agile projects [25].

We present a technique for tracing related information from
various sources. Our technique, Flexible Artifact Change and
Traceability Support for Project Team (FACTS PT), uses
change entries as a level of abstraction by which changes
across various artifacts can be uniformly represented and
monitored. Previous approaches to collecting project
information include tracking number of errors detected or
number of lines of code added [16]. We posit that change
entries do not only serve as a useful metric for project progress,
but they also provide more meaningful information regarding
the reason behind specific changes. Our contributions are: 1)
change entries as a means of gathering scattered project
information, 2) a set of tools for extracting, tracing,
aggregating, and visualizing change entries and other metrics,
3) evaluation in a real-world setting which suggests the utility
of our approach, and 4) lessons learned from the study.

This paper is organized as follows. The next section
provides a motivation behind our technique. Section 3 presents
our FACTS PT technique, followed by tool support in Section
4. Section 5 covers evaluation of our technique with lessons
learned. Section 6 discusses related work. We close the paper
with avenues of future work.

II. MOTIVATION

We now provide an overview of the challenges faced by a
development team working in a proprietary and regulated
software development context, such as the ABC Organization*
where we conducted a case study of our technique.

This work is supported by the US National Science Foundation under
Grant No. 1218266.

* Kept anonymous here due to a non-disclosure agreement.

184

The ABC Organization is a research institute which
engages in scientific research and develops software for various
applied science domains. The organization has several
thousand employees with branches in the United States and
around the world. Because the organization works on software
projects that must adhere to government standards and
regulations, and because these software products may be
deployed on critical systems, the software must pass a rigorous
quality assurance standard. The organization also uses the
Capability Maturity Model Integration (CMMI) level as a
means of demonstrating its maturity level [2].

The software development team which we studied uses a
hybrid waterfall and iterative software development lifecycle.
The team comprises of a project manager, a lead software
engineer, 3-4 developers, 1-2 test engineers, and a
documentation engineer. The team releases software in
roughly 10-month cycles. Not only must the organization be
able to assess the quality of their code, they must also
demonstrate process maturity to reach the next CMMI level.

Since the group uses an iterative development, it is
important for the development group to continually monitor
changes performed on the code and accompanying artifacts for
each release cycle. In addition, the team must be able to
quickly obtain information from various artifacts, which are
often scattered among the various tools used by the team.
Finally, the team must be able to answer questions such as
“What is the status of the project?” and “Are the source code
and documentation meeting quality standards?”

III. FACTS PT TECHNIQUE

To address the challenges faced by a development team in
tracing relevant information from heterogeneous sources, we
used the FACTS PT technique. This technique consists of the
following steps: select a tracing unit to connect heterogeneous
sources of information, embed concepts within change entries,
extract change entries and other project metrics, aggregate and
visualize extracted data. We now discuss each step in detail.

A. Select a Tracing Unit to Connect Heterogeneous Sources
of Information: Change Entry

Since a software team is confronted with large amounts of
information from multiple sources, it is necessary to only trace
One of the challenges with many

the relevant information.

traceability recovery techniques is the generation of potentially
large number of false positive links along with accurate links
[19]. This can be addressed by identifying a tracing unit that
can connect heterogeneous information across the project
lifecycle. The tracing unit serves as a means of “marking”
artifacts, or parts of the artifacts, to trace.

Previous techniques use requirements [7], architecture
concepts [5], or events as tracing units [24]. We connect
information via change entries, which are descriptions of
changes made in the artifacts (e.g., source code,
documentation) (see Figure 1). A change entry can be mapped
to specific deletions or additions in a file. Since change entries
can be uniformly represented across heterogeneous artifacts,
we use change entries as our tracing unit.

B. When Possible, Embed Project Concepts within Change
Entries

Once the tracing unit is selected, the next step is to embed it
with concepts understandable by a team. In our context, an
important higher level concept is a task. A task is a software
update to be performed by a software engineer. A task may
entail implementing a new feature, performing a bug fix, or
carrying out a code maintenance activity.

Since artifacts are at different levels of abstractions (e.g.,
requirements document contain abstract concepts while source
code contain concrete concepts), project concepts may only be
embedded in some change entries. For example, the concept of
task is a higher level concept by which source code changes
can be aggregated. @ Meanwhile, requirements document
changes may not be related to tasks since concepts at the
requirements document are at a higher level of abstraction than
tasks. It is certainly possible to embed requirement change
entries with another set of concepts, such as requirement IDs,
and then develop a mapping between requirements and tasks.

C. Extract Change Entries and other Project Metrics

The next step is to extract change entries and other relevant
project metrics to gather project information. To address the
challenge of extracting change entries from heterogeneous
artifacts, we use artifact-specific extractors, such as an
extractor for each source code language, an extractor for
specification documents in PDF, an extractor for test
documents in PDF, etc.

Requirements rev_modfied.doc [Compatibiley Mede] - Microsolt Woed

Dewsiper Asddn Amaba

Revision History

[Dare By | Description_
L6310 Harzel Asuncion Created document
161510 Macneil Shonle Added Man functional requirements 4 345 I

110 Hazel Asuncien | Added Future requirements based on 62510 meeting

with customer

vision History
Changes
Added results of formal test 1D 3.1

_Added resuls of foomal tacr
Added resnlts of formal rest

Figure 1. Examples of change entries on various software artifacts in different formats (source code, requirements documentation, and test report).

185

The extracted change entries are then represented as a
uniform change model. We use XML to represent our change
model, which contains the following information: a unique
identifier, author, date of the change, task ID (optional),
description, and path. All of these attributes, except the path,
are obtained from change entries. The description is a free-form
text that describes the change. To support access to the artifacts
that were changed, it is also necessary to determine the location
of the artifact-whether on the local machine, on the local
network, or on the Internet. The path may also point to a
specific location within the artifact to support accessibility at
different levels of granularity [6]. The path is automatically
determined relative to the project root folder. An XML file
contains multiple change entries and multiple XML files may
be used to encapsulate groups of change entries.

We also collect pertinent project metrics associated with
managing the project. These include length of time spent by a
developer on a task and number of lines changed for source
code files. To minimize the overhead in collecting metrics,
each developer simply reports the total number of hours spent
on each task. The project manager compiles these self-reported
hours into a Software Tasks spreadsheet, which includes
additional task information. Once the information is in a
spreadsheet, we can automatically extract the self-reported
hours. Metrics regarding number of lines changed for source
code files are obtained using a diff tool (e.g., SVN diff [12]).

1

B GANTT BUILDER VER R

: [. M
= {defauli] Mor-28] _Febr 11 saa][]
0 [uriTests| e8] ety 10]

[T cow mcrmvrre | (N imcs iy

8 Al MeplS T8 LS Ag e O Hoe® |
(LR IR TTTTTTETTITEam EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHHIIH |

D. Aggregate and Visualize the Extracted Data

Once the change entries, which contain task IDs, and other
project metrics have been obtained, the data can then be
aggregated and visualized at different levels of granularity. At
a high level, an overview of project progress and potential
problem areas in the code can be provided. At a detailed level,
one can view how the aggregated information was derived,
which parts of the documentation or source code has been
changed, which parts of the code are non-compliant to coding
standards, and which tests have passed or failed.

We generated the following types of visualizations: Change
Lookup by Developer, Release Comparison Report, Change
Distribution Chart, Timeline of Change Entries, Gantt Chart
Actuals, and Task-Author-Artifact Report. =~ The Change
Lookup by Developer allows developers to search for their
tasks and all the changes they performed for the current
iteration. The Release Comparison Report shows a listing of
all the source code files that have been changed between two
specified releases. Within this report, additional information
such as detailed diff and coding standard reports are provided
for each file and are accessible via hyperlinks. The Change
Distribution Report, meanwhile, visualizes changes along
various dimensions, by software engineer, by file type, by
subsystem, by hours spent, or a combination of these
dimensions. The Timeline of Change Entries provides a
chronological ordering of change entries. The change entries

O feAD Ferdd Mrd Aprid Maydd keld i A
TN GENCE CHTRCRRRRRRRE EEERE - AN AR RRRRRRA TR
II

M| kil
1
7 |Ceperdencies| Dec 0¥ Decim) i 2|
¥ [Erashfis] Decds| Dee-m) P | | -2
3 Dbyl Dec 09| Decm i o
1 New] Oec08) Decidl 1l 0 2|
11 [SString o) Dec-HE| 1] 4 1]
17 [Deprnration] Doc08) DeciH| E El
15 [MINOR] Doci| Do) i 3
b4 [HugFie] Doc-08| Dec-{d) Bl 1 &
15 Jhgpstorn| Boc8) DecH| 1 4 [
tii | phagen] [1] 1 E
17 [Minor Doc-09| Fab.10| | 1 15 Il
15 o T YA e B T I [i
12 INbwa] wectd| vt a4 OGO AR VLR AL RORR
20 [Docs] Jan-10[Jan-10 1 1 2) Il
21 [Deps] Jan-10] Jan-10 1 1 4
2) lont0] Febuil sl s a5 [l LR CREREREARNAARRNY
23 [Nib] Feb-10| Apr-10 3 2 12|
24 [TTwitter) Febd0| Decto w2 m R CRRRRERARNRARRRY
25 [Ulimage(TTCategory) | Mar-10| Mar-10 1 1] 4l
26 [TTNavigator topView(Mar-10| Mar-10 1] 1] 1]
27 [TCoreDemol Mar-10] May-10 i1 6 [T
28 [Three20Core] Apr-10] Apr-10 1] 1 2 [
29 [TTNetwork] Apr-10| Apr-10| 1] 1 1
30 [Three20style] Apr-10| Apr-10| 1] 1 3|
31 [core|Network] Apr-10| Apr-10| 1] 1 1
32 [Three20Network] Apr-10| Apr-10| 1] 1 2|
33 [Three20u1] Apr-10| May-10| 2| 2 4
34 ‘[TVN etworkDemo] Apr-10| May-10| 2| 1] 3
35 [Broken] Apr-10{ May-10| 2| 1] 9
36 [NibDemo] Apr-10{ Jun-10| 3 1] 8
37 [TTFacebook] Apr-10|_Nov-10 PR 10 T
38 [extxiL] Apr-10]_Nov-10 B 6 e
17 [[Minor] Dec-09| Feb-10] 3] 1 15|
18 |[Dox] Dec0s| Apr-10 s| 1 17 [T
19 [[Network] Dec-09| Mov-10) 12 3 13 T
20 |[Docs] Jan-10| Jan-10 il il pd
21 |[Deps] Jan-10| Jan-10 4 4 4 TS
22 |[un] Jan-10| Feb-11 14/ 5 95| Stephan Diederich (stephan.diederich@gmai.com)[2] Dmmmm
23 |[Nib] Feb-10| Apr-10 2 2 12| Jeff Verkoeyen (jverkoey@gmail.com)[1]
24 |[TTTwitter] Feb-10| Dec-10| 11| 2 3 R EEEEE L] ooy
25 |[Ullmage(TTCategory)| Mar-10[Mar-10 il il 1

Figure 2. Gantt Chart Actuals using data from the jEdit open source project. Top figure shows zoomed out view of the chart. Bottom figure is a zoomed-in
view of the UI Task with a comment indicating the authors who performed changes for the selected date along with the number of change entries.

186

are color-coded according to various dimensions (e.g., author,
file type, subsystem). We discuss in detail the rest of the
visualizations.

Gantt Charts are generally used for project planning to
determine when a software product can be released [27]. We
have adapted the Gantt Chart to show actual project
information based on change entries (see Figure 2, top
screenshot). Similar to a Gantt Chart, the Gantt Chart Actuals
lists tasks (or task IDs) on the left side of the chart. Each Gantt
row spans a period of n months and is color-coded based on the
number of change entries. Upon hovering over a colored heat
map cell, additional metadata such as list of authors that
performed changes for that date and number of change entries
in brackets, are shown (see Figure 2, bottom screenshot).

Change entries, along with its mapping to a more abstract
concept (e.g., task) and more concrete concepts (e.g., lines
added or deleted, time spent), are shown in the Task-Author-
Artifact Report. In this report, a user can select a task ID. A
list of software engineers who are working on the specified task
is shown, along with summary data for the number of change
entries and hours spent for the selected task. Within each
developer, detailed information is shown, such as files that
were changed, the percentage of the total lines that are
comments, number of lines added and deleted. This report also
allows a user to assess the complexity of a task by combining
self-reported information (number of hours) along with
automatically generated metrics, such as the number of files
modified and number of lines added or deleted.

IV. ToOL SUPPORT

We built artifact-specific change extractors using Perl and
Python scripts to extract change entries from requirements and
design specifications (in PDF and Word) and from source code
written in Java and JSP. Since each artifact type follows
company standard formatting, it is straightforward to locate the
section of the file that contains the change entries. Task IDs
are included with each source code change entry (see Figure 1),
and are included in the extraction process. Once the change
entries are found, the change extractors write each change entry
to an XML file with the appropriate XML tags. All generated
XML files are then combined into one file.

The change entries and the project metrics, both in XML
formats, are then fed into the visualizations. The Timeline of
Change Entries was built using Piccolo 2D. The spreadsheet
visualizations were built on top of Microsoft Excel 2010
spreadsheet in the NET 4.0 Windows environment using C#
and the Excel API. Spreadsheet visualizations were used since
the team was comfortable with analyzing project data in the
spreadsheet environment. The Gantt Chart Actuals and
timeline visualizations have been fully implemented, while the
other spreadsheet visualizations are partially implemented.
For the Release Comparison Report, we used an SVN diff [12]
to identify the differences between two releases. We also built
a script that analyzes high priority coding standard violations
and outputs a report for each source code file. Alternatively, an
oftf-the-shelf coding standard checker could also be used.

V. EVALUATION

The FACTS PT technique and tool support was evaluated
in the context of an ongoing software project that has over
200K total lines of code and implemented in five different
languages and scripts. We analyzed the change entries from
the Java and JSP codebase which covers about half of the total
codebase. The project also has numerous artifacts including
requirements specifications, design documents, test plans, test
documents, checklists, tasks, and change requests. These
artifacts are in different file formats (e.g., spreadsheets,
documents, PDF files, diagrams). FACTS PT was used to
extract change entries from a subset of these artifacts, to relate
tasks and change entries to developers, and to support tracking
project progress. The artifacts from three major releases were
studied, with thousands of change entries. The change entries
spanned the period of January 2009 to May 2011.

We were primarily focused on determining the utility of
change entries and their visualizations to developers or project
managers for their respective tasks. Thus, we sought answers
to the following research questions:

Q1: Does the FACTS PT technique assist you in
development or management tasks? If so, in what way?

Q2: How useful are the FACTS PT visualizations?

We solicited information from various members of the
team: a project manager who has 15 years of experience as a
software project manager and three programmers who have
about 10-15 years of experience. The subjects were presented
with the visualizations after the releases and were asked to
provide feedback via questionnaires and semi-structured
interviews. We conducted four iterations of the study (and
improved the FACTS PT tool support after each iteration).

A. Results

Q1: In the early iterations of the study, both the project
manager and developers concurred that the FACTS PT
technique did not assist them in their tasks.

In later iterations, both project manager and developers
stated that FACTS PT can assist them in their tasks. The
developers stated that the FACTS PT technique allowed them
to quickly identify which files have changed and to understand
the source code changes. The project manager stated that in its
current state, the FACTS PT technique can assist him with
project management tasks by identifying areas of improvement
from the generated visualizations and reports after a major
release. These areas of improvement can then be addressed in
the next software development iteration.

Q2: In early iterations of the study, the development team
stated that the FACTS PT visualizations were not useful.

In later iterations, the visualizations were useful to the
development team. The programmers were able to quickly
locate the changes they made with the Change Lookup by
Developer and were able to reflect upon their own productivity.
According to the project manager, the Gantt Chart Actuals
(Figure 2) and the Task-Author-Artifact Report were rated as
providing highly useful information because they provide

187

summary information. The other visualizations require further
changes to be rated as highly useful.

B. Discussion

Q1: Throughout the four iterations, we followed the same
general steps of extracting, aggregating, and visualizing change
entries, except for the additional steps of selecting and
embedding project concepts within change entries and
including project metrics in later iterations. It turned out that
these additional steps were keys in transforming the FACTS PT
into a technique that can assist project managers and
developers with their tasks. Viewing changes at the granularity
of change entries was acceptable to all the subjects.

Q2: Throughout the study, we visualized change entries. It
was interesting to learn that the type of visualization can
largely affect the perceived usefulness of the change entries.
Although the Timeline of Change Entries we initially used
provided some insight into the project, all subjects had
difficulties navigating it and was unable to quickly obtain
aggregate information across different dimensions (e.g., by
developer). Meanwhile, all subjects found the tabular
visualization format as most useful, especially when it
contained information extracted from various sources, as in the
Task-Author-Artifact Report or the Change Lookup by
Developer. The project manager added that when the FACTS
PT tool support becomes more mature, it can also be used
during a project iteration, as opposed to simply being used at
the end of an iteration as part of a post-release analysis. The
developers also expressed interest in visualizing their changes
from other projects. Doing so would allow them to cross-
reference the changes they make across different projects.

C. Limitations
Our approach makes the following assumptions:

Change entries are present in the files to trace.
Development teams which produce formal specifications often
have a history log as part of the document template (see IEEE
Std 830-1998 [1]). In addition, many development teams also
use a configuration management (CM) system which contains
commit records. These commit records can be used as a source
of change entries if history logs are not used. Open source
projects also maintain a change log [10]. Time spent on tasks
may be estimated from CM check-out/check-in timestamps.

It is possible that the developer-entered information, such
as hours spent on tasks and change entries may contain
incorrect information, or even missing information [10]. This
inaccuracy would be fairly straightforward to detect since the
developer-entered information is presented with the
automatically generated metrics. In addition, if developers are
incentivized for demonstrating a higher level of activity, via the
change entries, it is less likely they will neglect providing
change entries each time they make a change to a file.

With regards to limitations with our evaluation, we focused
on whether tracing, aggregating, and visualizing change entries
with other project metrics is useful to project managers and
developers. We did not examine the overhead involved with
processing the artifacts. This is a subject of future work.

D. Lessons Learned

1. A software development team is not keen on using new
tools or technology unless they have a direct benefit. This
finding is consistent with the adoption of software traceability
techniques in industry [7]. Thus, even though we also
presented change entries in the earlier iterations, the team was
not willing to use the tool because the information was not
accessible to them. Later on, when we presented the change
entries in both the aggregated and detailed level, along with
other project metrics, the team was more willing to use our tool
and technique.

2. Aesthetically pleasing visualizations do not necessarily
provide usable information. Since a development team is
constantly under time pressure, a visualization must enable
them to obtain information quickly. Thus, support for easy
navigation, filtering, searching, and data manipulation are key
requirements for a usable visualization. This is one of the
reasons why tabular formatted data is preferred by the subjects.
The information can easily be aggregated (by invoking the sum
function), filtered by an attribute, or searched by a keyword.
Our timeline visualization, while aesthetically pleasing and
classifies changes according to author or file type, does not
provide capabilities for fast data manipulation, and thus, was
not useful to them.

3. Using a combination of self-reported and automated
metrics can lower the overhead for collecting metrics, while
minimizing privacy issues that may be associated with fully
automated data collection techniques. By leveraging existing
company practices in extracting metrics, more applicable
metrics can be obtained. Moreover, some of the fully
automated techniques in metric collection may under-report the
actual time spent on an activity. Since the automated
techniques are based on engineer interaction with tools [18,
26], these techniques do not measure the time away from the
computer (e.g., face-to-face meetings with teammates).

On the other hand, manually tracking time can be a time
consuming process [16] and may potentially distract engineers
from their task since they are required to context switch
between tracking their time and performing development tasks
[17]. In a company setting, a balance can be achieved by
tracking course-grained activities and tracking time at 10 or 15
minute increments. Recording time spent on activities can be
performed at the same time as engineers report their timesheets
(e.g., once a day), to avoid the context switching problem. In
our context, the engineers track their time at the task level and
the reported times were generally accurate.

VI. RELATED WORK

We now compare our work to related research areas.

Software Traceability: Software traceability research is
concerned with identifying relationships between various
software artifacts [5]. Traceability techniques and approaches
have generally been developed to support an analyst or a
requirements engineer [15], an architect [5], or a developer [4],
but not project managers. One case study describes the use of
bug tracking as a tracing unit to support developers [21]. If a
tracing unit is not embedded into the artifacts to trace, then

188

other techniques like link recovery techniques [4, 15] can be
used to identify possible connections between artifacts.
Limited traceability support for project management tasks was
described in another study [7]. Jazz is a tool that supports
mapping of information across various artifacts that reside
within the Jazz platform [3]. Our work, however, uses change
entries as a tracing unit, and aggregates and visualizes them
with other project metrics to support developers and managers.
Our work is also not constrained to a specific tool or platform.

Process metrics: Several process metrics have been
previously proposed to support project management, including
time spent on activities and number of defects discovered
during code inspection [16]. Goal-Question-Metric paradigm
provides guidance on which metrics to collect [8], while
CQMM is a technique that collects metrics from different static
analyses tools to monitor and assess code quality [23]. In agile
development contexts, story points are used to track the amount
of work performed in each iteration [11]. Using change entries
as a metric is complementary to these techniques.

Metric Collection: There are tools that collect process and
product metrics. One particular category of tools, Software
Project Control Centers (SPCCs) are used to collect, interpret,
and visualize project metrics to provide context-, purpose-, and
role-oriented information for various members of the
development team [20]. Other tools use different techniques to
collect metrics, such as using sensors attached to various tools
(e.g., development editors, build tools) [18], tracking evolution
of classes, methods, invocations [22], or tracking personal
software process (PSP) data [26]. Another tool allows users to
plug-in their custom metrics into a provided infrastructure [13].
Our technique, meanwhile, combines self-reported metrics
from developers (i.e., time spent on tasks) with extracted
change entries and product metrics.

VIL

In this paper, we presented FACTS PT, a technique that
traces change entries across heterogeneous artifacts to collect
project information. We developed a set of tools that
automatically extracts, traces, aggregates, and visualizes
change entries along with other project metrics. Our case study
at a proprietary and regulated software development context
indicates that our approach is useful to project managers and
developers. We also offered lessons learned regarding
collecting and presenting accessible information to a software
development team.

CONCLUSION

We plan to continue improving the FACTS PT tool support.
We will also solicit feedback of other members of the
development team, including QA engineers and documentation
engineers, to determine how our technique can also assist them
in their tasks. Finally, we plan to analyze the description of
change entries to automatically group together related changes.

VIIL

We thank the project manager and developers at the ABC
Organization for valuable insights and feedback. Dang Nguyen
at UTSA developed the initial timeline visualization.

ACKNOWLEDGEMENTS

(1]

[2]
[3]
[4]

[3]

(6]

[7]

[8]

[91

[10]

[11]
[12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

189

REFERENCES

IEEE Recommended practice for software requirements specifications.
IEEE Std 830-1998, 1998.

CMMI Institute. http://cmmiinstitute.com/, Jan 2013.
The Jazz Project. http://jazz.net, Jan 2013.

G. Antoniol, G. Canfora, G. Casazza, A.De Lucia, and E. Merlo.
Recovering traceability links between code and documentation. /EEE
Transactions on Software Engineering (TSE), 28(10):970-983, 2002.

H. U. Asuncion, A. U. Asuncion, and R. N. Taylor. Software traceability
with topic modeling. In Proc of 32nd Int’l Conference on Software
Engineering (ICSE), 2010.

H. U. Asuncion and R. N. Taylor. Software and Systems Traceability,
chapter Automated Techniques for Capturing Custom Traceability Links
across Heterogeneous Artifacts, pages 129-146. Springer London, 2012.

H.U. Asuncion, F. Frangois, and R. N. Taylor. An end-to-end industrial
software traceability tool. In Proc of the 6th Joint Meeting of the
European Software Eng Conf and the ACM SIGSOFT Int’l Symp on the
Foundations of Software Engineering (ESEC/FSE), 2007.

V. Basili and S. Green. Software process evolution at the SEL. /IEEE
Software, 11(4):58 —66, 1994.

R.P.L. Buse and T.Zimmermann. Information needs for software
development analytics. In Proc of ICSE, 2012.

K. Chen, S.R. Schach, L. Yu, J. Offutt, and G. Z. Heller. Open-source
change logs. Empirical Software Engineering, 9(3):197-210, 2004.

M. Cohn. Agile Estimating and Planning. Prentice Hall, 2006.
CollabNet. TortoiseSVN. http://tortoisesvn.tigris.org/, Jan 2013.

G. Gousios and D. Spinellis. A platform for software engineering
research. In Proc of Int’'l Working Conf on Mining Software
Repositories, 2009.

V. L. Hamilton and M. L. Beeby. Issues of traceability in integrating
tools. In [EE Colloquium on Tools and Techniques for Maintaining
Traceability During Design, 1991.

J.H. Hayes, A. Dekhtyar, and S.K. Sundaram. Advancing candidate link
generation for requirements tracing: The study of methods. 7SE,
32(1):4-19, 2006.

W. Humphrey. 4 Discipline for Softiware Engineering. Addison-Wesley,
199s.

P. M. Johnson and A. M. Disney. A critical analysis of PSP data quality:
Results from a case study. Emp Software Engr, 4(4):317-349, 1999.

P.M. Johnson, H.Kou, M. Paulding, Q.Zhang, A.Kagawa, and
T. Yamashita. Improving software development management through
software project telemetry. IEEE Software, 22(4):76 — 85, 2005.

J. Leuser. Challenges for semi-automatic trace recovery in the
automotive domain. In Proc of the 5th Int’l Workshop on Traceability in
Emerging Forms of Software Engineering, 2009.

J. Miinch and J. Heidrich. Software project control centers: concepts and
approaches. Journal of Systems and Software, 70(1-2):3 — 19, 2004.

C. Neumiiller and P. Griinbacher. Automating software traceability in
very small companies - a case study and lessons learned. In Proc of the
21st Int’l Conference on Automated Sofiware Engineering, 2006.

J. Oosterman, W. Irwin, and N. Churcher. EvoJava: A tool for
measuring evolving software. In Proc of the Australasian Computer
Science Conference, 2011.

R. Plosch, H. Gruber, C. Kérner, and M. Saft. A method for continuous
code quality management using static analysis. In Proc of the Int’l Conf
on Quality of Information and Communications Technology, 2010.

W. Poncin, A. Serebrenik, and M. vanden Brand. Process mining
software repositories. In Proc of the European Conference on Software
Maintenance and Reengineering, 2011.

Rally Software. Advanced analytics. http://www.rallydev.com/platform-
products/advanced-analytics, Jan 2013.

A. Sillitti, A.Janes, G. Succi, and T. Vernazza. Collecting, integrating
and analyzing software metrics and personal software process data. In
Proc of the Euromicro Conference, 2003.

D. White and J. Fortune. Current practice in project management — an
empirical study. Int’l Journal of Project Mgmt, 20(1):1 — 11, 2002.

