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ABSTRACT

We describe a novel computational approach, CERENKOV
(Computational Elucidation of the REgulatory NonKOd-
ing Variome), for discriminating regulatory single nucleotide
polymorphisms (rSNPs) from non-regulatory SNPs within
noncoding genetic loci. CERENKOV is specifically designed
for recognizing rSNPs in the context of a post-analysis of a
genome-wide association study (GWAS); it includes a novel
accuracy scoring metric (which we call average rank, or AV-
GRANK) and a novel cross-validation strategy (locus-based
sampling) that both correctly account for the “sparse positive
bag” nature of the GWAS post-analysis rSNP recognition
problem. We trained and validated CERENKOV using a
reference set of 15,331 SNPs (the 0SU17 SNP set) whose
composition is based on selection criteria (linkage disequi-
librium and minor allele frequency) that we designed to
ensure relevance to GWAS post-analysis. CERENKOV is
based on a machine-learning algorithm (gradient boosted
decision trees) incorporating 246 SNP annotation features
that we extracted from genomic, epigenomic, phylogenetic,
and chromatin datasets. CERENKOYV includes novel features
based on replication timing and DNA shape. We found that
tuning a classifier for AUPVR performance does not guaran-
tee optimality for AVGRANK. We compared the validation
performance of CERENKOV to nine other methods for rSNP
recognition (including GWAVA, RSVP, DeltaSVM, DeepSEA,
Eigen, and DANQ), and found that CERENKOV’s validation
performance is the strongest out of all of the classifiers that
we tested, by both traditional global rank-based measures
((AUPVR) = 0.506; (AUROC) = 0.855) and AVGRANK
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((AVGRANK) = 3.877). The source code for CERENKOV
is available on GitHub and the SNP feature data files are
available for download via the CERENKOV website.
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1 INTRODUCTION
1.1 The rSNP detection problem

Human genome-wide association studies (GWAS) have led
to the discovery of 21,751 unique SNP-trait associations
in more than 2,400 studies (based on millions of individu-
als) that are linked to human traits [55]. However, GWAS
functional interpretation has been largely limited to coding
regions in which single nucleotide polymorphisms (SNPs)
can be mapped to functional consequence predictions using
well-established methods [45]. This limits the yield of knowl-
edge from GWAS because 90% of human GWAS-identified
SNPs are located in noncoding regions [33]. Within noncod-
ing regions, a key roadblock to identifying the molecular
mechanisms underlying trait variation is the difficulty of
pinpointing the probable causal noncoding SNPs [48]—the
so-called regulatory SNPs (rSNPs)—that are associated with
the trait. Various correlates of rSNPs are known [31], with ex-
pression quantitative trait locus (expression QTL, or eQTL)
associations being one validated example [36]. But in general,
how to computationally integrate various types of genomic,
phylogenetic, epigenomic, transcription factor binding site
(TFBS), and chromatin-structural rSNP correlates in order to
discriminate regulatory SNPs from non-regulatory noncoding
SNPs is a fundamental problem in computational biology.

* These authors contributed equally to this work.



Machine learning (ML) classification approaches based on
sets of experimentally verified regulatory single nucleotide
variants (rSNVs) from databases such as the Human Gene
Mutation Database (HGMD), ORegAnno [35] or ClinVar
(as well as neighboring “control SNVs” (cSNVs) that are
presumed non-functional) have shown promise for advancing
the field of computational rSNP recognition.

1.2 Previous approaches

Previous computational approaches to the problem of dis-
criminating functional noncoding SNPs (i.e., regulatory SNPs
or rSNPs) from nonfunctional SNPs can be divided into
two categories, “rSNV-supervised” approaches that in which
ground-truth sets of regulatory single nucleotide variants
(rSNVs, such as from HGMD) were used in model training,
and “rSNV-unsupervised” approaches that were not trained
using ground-truth sets of rSNVs (and were instead trained
using other sets of variants, typically much larger than the
training sets used in the rSNV-supervised methods).

1.2.1 rSNV-unsupervised approaches. Among the rSNV-
unsupervised approaches, various classification models have
been proposed including probabilistic graphical models (such
as in the fitCons variant scoring method [16]), support vec-
tor machine (SVM; such as in the CADD variant scoring
method [24] and in the DeltaSVM variant scoring method [29]),
deep neural networks (such as in the DANN variant scoring
method [41]), and spectral methods (such as in the Eigen-
PC method [21]). Somewhat counter-intuitively, some pre-
vious studies [21, 29] of rSNV-unsupervised methods have
reported greater accuracy than rSNV-supervised methods [43]
that were used for comparison, with Eigen-PC appearing to
have the strongest such comparative performance results.
These previous results suggest that state-of-the-art rSNV-
unsupervised scoring methods, such as Eigen-PC, may be
useful as features within an rSNV-supervised method.

1.2.2 rSNV-supervised approaches. A variety of classifica-
tion algorithm types and feature-set types have been used
for rSNV-supervised methods to identify regulatory vari-
ants. Montgomery et al. [34] integrated 23 variant annota-
tion features (including transcription factor binding sites,
TFBS) within a support vector machine (SVM) model, using
a small reference set (104 rSNVs). Torkamani & Schork [51]
integrated 28 TFBS, epigenomic, and chromatin features
within a naive Bayes classifier, also using a small reference
set (102 rSNVs). Zhao et al. [58] derived 158 variant anno-
tation features from population haplotype, gene annotation,
and phylogenetic datasets and employed the Random For-
est [4] algorithm, using a larger reference set (445 rSNVs).
Ritchie et al. [43] engineered 175 features from several hun-
dred epigenomic, population genetic, phylogenetic, and TFBS
datasets; they used Random Forest and a moderate-sized
reference set (1,614 rSNVs) to train their classifier, which
they called GWAVA. In a method called DeepSEA, Zhou
& Troyanskaya [59] employed deep convolutional neural net-
works (CNNs) in order to reduce the dimension of 1,000 bp of

flanking sequence for a SNV to a single allele-dependent score.
They trained 919 such CNNs using published epigenomic and
chromatin measurements and integrated the allele-dependent
scores within a gradient boosted decision tree algorithm,
using a moderate-sized reference set (2,997 rSNVs). In a
method called DANQ, Quang & Xie [42] used the same 919
chromatin measurements as Zhou & Troyanskaya used for
training DeepSEA, but they used a hybrid network archi-
tecture combining CNN and deep recurrent neural network
(RNN) components. In the RSVP method, Peterson et al. [39]
derived a set of 2,237 SNP annotation features that was sub-
stantially expanded (versus previous approaches) by including
a SNP’s nearest-gene functional annotations and its nearest-
gene multi-tissue expression profile; their feature-set also
included SNP annotations based on local genomic replica-
tion timing measurements (Repli-chip [19] and Repli-seq [17]
assay data from cell lines). Using a moderate-sized ground
truth set (1,999 rSNVs), Peterson et al. trained an ensemble
decision tree classifier. Thus, in terms of supervised methods
for rSNP classification, there has been a steady progression in
the comprehensiveness of the feature-sets and in the variety
of algorithmic approaches that have been used.

1.2.3 DNA shape as a potential feature. Previous computa-
tional and experimental studies have demonstrated that local
pentameric DNA sequence is predictive of three-dimensional
DNA shape distortions (such as roll, propeller twist, and
helical twist) [44, 60] and that specific features of the local
DNA shape can improve discrimination of regulatory from
non-regulatory DNA [57] in general and for transcription
factor-specific prediction of TFBS [32]. Montgomery et al.
have reported [34] that a specific DNA physical parame-
ter (bendability) is beneficial for discriminating regulatory
from non-regulatory variants. We have previously developed
a computational model, regshape, that incorporates four
sequence-predicted DNA shape parameters to predict tran-
scription factor binding sites [57], for which allele-dependent
scores may be useful within an rSNP detection model.

1.3 Limitations of previous approaches

An important limitation of all of the previous rSNV-supervised
approaches to the rSNP recognition problem (of which we
are aware) is that none of the models were trained and
validated (i) using locus-by-locus assignment of variants to
cross-validation (CV) folds and (ii) using a reference set of
SNPs that was selected for relevance to the application of
GWAS post-analysis and assigned to CV folds on a locus-by-
locus basis. In the GWAS post-analysis application context,
trait-linked SNPs are analyzed within linkage disequilibrium
blocks, and thus, the SNPs are partitioned into loci and the
goal is to identify the functional noncoding variant within
each locus.* Thus, it is the rank of the classifier’s rSNP pre-
diction score within a locus matters more than the global
(locus-agnostic) ranking of TSNP prediction scores. In ev-
ery previous rSNV-supervised approach to this problem (of

1Thus, the rSNP recognition problem for GWAS post-analysis could
be described as having a “sparse positive bag” structure [5].



which we are aware), SNVs are assigned to CV folds without
regard to the SNVs’ genomic positions; such “variant-level
sampling”, while standard practice, makes it impossible to
use CV to measure the accuracy of the method on a per-
locus basis and it makes the results not representative of how
the method would perform in identifying a candidate causal
rSNP within a “new” region identified by a GWAS.

A second limitation of previous approaches concerns selec-
tion of reference variants. Intrinsic to the GWAS approach is
that the local linkage disequilibrium (LD) block needs to have
a sufficiently high minor allele frequency (MAF; greater than
0.05) in order for GWAS to be sufficiently powered to detect
an association of the block with the trait at genome-wide
significance (p < 5 x 107%). In the previous rSNP recogni-
tion methods development efforts of which we are aware, a
significant fraction of the variants that were used for train-
ing are unrealistic in the context of a GWAS post-analysis
application domain, either due to the variant having a low
(i.e., less than 0.05) MAF,? or due to the variant not being
in linkage disequilibrium with any known functional non-
coding SNP. Further, no previous approach to this problem
has combined a comprehensive SNP annotation feature-set
(including replication timing data, chromatin segmentation
information, expression quantitative trait locus annotations,
and transcription factor binding site (TFBS) information
for all available TFBS models) within a high-performance
gradient boosted decision trees classification algorithm.

1.4 Our approach

We have developed a method, CERENKOV (Computational
Elucidation of the REgulatory NonKOding Variome) for
identifying rSNPs within GWAS regions. The method is in
the “rSNV-supervised” category of approaches (but we note
that it includes SNP scores from a state-of-the-art rSNV-
unsupervised method, Eigen-PC). CERENKOYV is based on
the integration of 246 SNP annotation features (including a
novel feature based on allele-dependent difference in a DNA
shape score that we have previously shown is predictive of
TFBS [57]) within a gradient boosted decision tree classi-
fication algorithm. Our approach for training and testing
CERENKOYV was focused on maximizing the relevance and
generalizability of our model and its performance assessments
for the specific application of GWAS post-analysis.

1.4.1 New performance measure: AVGRANK. In addition
to measuring the performance of our classifiers using tra-
ditional locus-independent metrics (area under the receiver
operating characteristic (AUROC) curve and area under the
precision versus recall (AUPVR) curve), we propose and
demonstrate a novel performance metric based on averaging,
over all rSNPs, the ranks of the rSNP prediction scores of
all ground-truth rSNPs within their loci (defined by LD as
described above). Specifically, we define, for the sets L C Z4
of numbered loci, S C Z4+ of numbered SNPs, and R C S of

?Databases of rSNVs such as HGMD have an ascertainment bias for
low-MAF variants [27], and this can potentially bias the classifier in a
way that does not generalize to the GWAS post-analysis application.

numbered rSNPs,
AVGRANK = (rank(y, s, ))rer sth. 1S1(my|>15 (1)

where [(r) is the locus I € L for rSNP r € R, S; C S is the set
of all SNPs in locus I, ys is the classifier prediction score for
SNP s to be in the rSNP class, 7g is the vector of prediction
scores of SNPs @ C S, rank(q,w) is the rank of the score
q € [0,1] in the (length W) vector of scores @ € [0,1]"
(with lowest score having rank 1, and with tied scores given
identical rank assignments), and () denotes arithmetic mean.
We propose that the classifier with the best performance for
GWAS post-analysis should minimize the AVGRANK.

1.4.2 The 0SU17 reference SNP set. In order to maximize
the relevance of our method to GWAS post-analysis, it is
critical to train and test using common variants, i.e., SNPs
within their local linkage disequilibrium blocks in the genome.
Thus, we trained and validated CERENKOV using only SNPs
with MAF > 0.05 (as opposed to MAF > 0.01 for the two
key previous studies [43, 59]). Further, for the set of control
SNPs (cSNPs) that we used as negative examples for training
and validation, we used only SNPs that were in strong linkage
disequilibrium (r? > 0.8) with, and located no more than
50 kbp distance from, a “positive example” rSNP.

1.4.3 Locus-based sampling. In order to maximize the rel-
evance of our method to GWAS post-analysis as well as
enable the assessment of CERENKOV’s performance using
both global rank-based measures (e.g., AUPVR and AU-
ROC) and the new AVGRANK measure, we trained and
tested CERENKOV using a novel (so far as we are aware)
method for assigning SNPs to CV folds, which we call locus-
based sampling. In brief, for each replication of a k-fold CV
assessment of CERENKOV’s performance, we assign loci
(i-e., all SNPs together within a given locus) to CV folds,
in such a manner that the SNPs overall and the rSNPs are
both equipartitioned across the folds. We used the same fold
assignments for CERENKOV that we used for the models to
which we compared CERENKOV.

2 METHODS

2.1 The 0SU17 reference SNP set

We obtained minor allele frequencies (MAFs) for all SNPs
from the dbSNP-based [46] snp146 SQL table hosted at the
UCSC Genome Browser [23] site; for SNPs not in snp146,
we obtained MAFs from the 1,000 Genomes (1KG) Project
Phase 3 [1] Variant Call Format (VCF) file. For the repre-
sentative set of rSNPs for training/evaluation, we obtained
1,659 SNPs from HGMD (Rel. 2016) that satisfied all of the
following criteria: (i) the SNP was marked as regulatory in
HGMD; (ii) the disease field did not not contain cancer;
(iiif) MAF > 0.05; (iv) the SNP was not an indel and not
contained within a CDS (based on the complete set of tran-
scripts from the Ensembl 75 gene annotation build); and (v)
the SNP was not exclusively mapped to the Y chromosome
(due to the lack of phased haplotype data available for proxy
SNP searching). For each of these rSNPs, we used the SNP



Annotation and Proxy Search (SNAP) tool [22] to identify
SNPs that are in LD (r? > 0.8 in 1KG Phase 1, with HapMap
used instead of 1KG for chromosome X), and we filtered to
include only SNPs within 1 kbp of an rSNP, that were not
contained within a CDS, that have MAF > 0.05, and that
are not themselves on the list of rSNPs. Overall, this filtering
procedure produced a list of 13,672 cSNPs. The combined
set of 15,331 SNPs (which we call the 0SU17 reference SNP
set) was thus designed as an appropriate ground-truth set
for the application of GWAS post-analysis. Overall, the class
imbalance of 0SU17 is ~8.24 (cSNP/rSNP).

2.2 Extracting the CERENKOYV features

The CERENKOV feature extraction software is based on
Python and SQL. We extracted 246 SNP features for each of
the 0SU17 SNPs, using data from SNP annotation databases,
epigenomic and chromatin datasets, phylogenetic conserva-
tion scores, and DNA shape-based scores (Table 1).

2.2.1 Features extracted from UCSC. We used the snp146
UCSC SQL table as the initial source for SNP annotations
(GRCh37 assembly coordinate system). We extracted addi-
tional SNP annotation information by (i) coordinate-based
joins to other genome annotation tracks in the UCSC data-
base; and (ii) by joining with non-UCSC data sources using
the SNP coordinate. For triallelic and quadrallelic SNPs,
we used the two most frequent alleles, for the purpose of
obtaining features that depend on allele-dependent scores.
We derived DNase I hypersensitive site (DHS) features from
data tracks from published genome-wide assays with high-
throughput sequencing-based detection (DNase-seq) from
the ENCODE project [50] (the master peaks are summary
peaks combining data from DHS experiments in 125 cell
types; the uniform DHS peaks are from DHS experiments
in individual cells, processed using the ENCODE uniform
peaks analysis pipeline [28]). The ENCODE_TFBS feature is pre-
sented in the table as a single feature for conciseness, but in
fact it is 158 separate binary features, one for each TF for
which genome-wide TF binding site data (from chromatin
immunoprecipitation with high-throughput sequencing read-
out, or ChIP-seq) peak data from the ENCODE Uniform
Peaks analysis are available [28]. For replication timing fea-
tures, we processed track-specific BigWig files from UCSC
to obtain the timing scores at individual SNP positions. For
ChromHMM, Segway and lamina-associated domains (LAD)
annotations, we used the SQL tables from UCSC.

2.2.2 Features extracted from Ensembl. We used the BioMart
tool to download (i) TFBS motif occurrences (based on the
2014 release of the Jaspar database [40]) and ChromHMM
chromatin segmentation labels from Ensembl Regulation 75
and (ii) GENCODE transcription start sites (from Ensembl
Genes 75) with which we computed signed TSS distances.

2.2.3 GTEx feature. We obtained SNP-to-gene associa-
tions for 13 tissues (adipose, artery/aorta, artery/tibial, esoph-
agus/mucosa, esophagus/muscularis, heart left ventricle, lung,

skeletal muscle, tibial nerve, sun-exposed skin, stomach, thy-
roid, and whole blood) from GTEx Analysis Version 4 from
the GTEx project data portal. For each SNP, we selected the
minimum association p-value across genes and tissues.

2.2.4 DNA shape feature. We used the regshape R pack-
age [57] and computed the difference in the regulatory poten-
tial scores for the local 11 bp sequence centered on the SNP,
for both the major and next-to-major SNP alleles.

2.3 Features for the other classifiers that
we compared to CERENKOV

2.3.1 GWAVA. For the 15,331 0SU17 SNPs, we extracted
the 175 GWAVA [43] SNP annotation features using the
GWAVA software (version 1.0). For the GWAVA features
that overlapped with CERENKOV features, we compared
feature vectors directly to verify consistency.

2.3.2 DeltaSVM. For DeltaSVM, we obtained 19 bp se-
quences centered on each of the 0SU17 SNPs, using the
GRCh37 genome assembly and inserting the two possible SNP
alleles into the central base position. We used the DeltaSVM
software (3/30/2015 version), using the 19mer sequence files
as input and using 226 pre-built 19mer-based chromatin
models from the DeltaSVM website as input, to produce a
15,331x226 feature matrix.

2.3.3 RSVP. For RSVP, we used the RSVP software [39]
version 1.0.1. We mapped the 0SU17 SNPs to their nearest
gene using Annovar [53] release 2016Feb01. In addition, the
flanking five nucleotides on either side of the SNPs were
also included in the input to the perl script, script RSVP.pl,
which output a 15,331x2,238 feature matrix for RSVP clas-
sifier. For analyzing RSVP features with Random Forest, we
imputed missing values using the column-wise mean.

2.3.4 DeepSEA. We extracted 1,000 bp haplotype sequences
flanking the 0SU17 SNPs (for the two most common alleles
for each of the SNPs) using the 1KG Phase 3 VCF data (see
Sec. 2.1). For each of the 15,331 pairs of 1 kbp sequences, we
obtained scores from the 919 DeepSEA CNN models using
the web tool. As in the original publication [59], for each
SNP and each of the 919 CNNs, we obtained two features
consisting of (i) the absolute difference of scores between
the two alleles and (ii) the absolute difference of the logit-
transformed scores for each of the two alleles. This overall
procedure produced a 15,331x 1,838 feature matrix.

2.3.5 DANQ. For DanQ [42], we extracted 919 hybrid
CNN-RNN scores for each of the two alleles for each of the
15,331 0SU17 SNPs, using the DANQ software and bundled
model files in HDF5 format (Jan. 13, 2016). For each SNP and
each of the 919 CNNs, we obtained two features consisting of
the absolute difference of scores between the two alleles and
the absolute difference of the logit-transformed scores between
the two alleles. This produced a 15,331 x1,838 feature matrix
which we cross-checked against DeepSEA for consistency.



feature(s) | feature type raw data src. | feature description
normChromCoord | continuous UCSC the SNP coordinate (normalized to chrom. length)
majorAlleleFreq | continuous UCSC/1KG | the major allele frequency (1KG)
minorAlleleFreq | continuous UCSC/1KG | the next-to-major allele frequency (1KG)
phastCons | continuous UCsC 46-way placental mammal phastCons score [47]
GERP++ | continuous UCSC bp-level GERP++ [10] score
avg GERP | continuous UCSC avg. GERP score [8] in £100 bp window
DNAShapeScore | continuous UcCsc diff. of 11 bp regshape [57] score between alleles
avg_daf | continuous 1KG average derived allele frequency in £1 kbp region
avg-het | continuous 1KG average heterozygosity rate in 1 kbp region
mafikb | continuous UCSC/1KG | average of the MAF values for all SNPs in +1 kbp window
eqtlPvalue | continuous GTEx -log1o min(p) for GTEx eQTL for the SNP, across 13 tissues [14]
GC5Content | integer (0-5) UcCsc GC content in a 5 bp window
GC7Content | integer (0-7) UCsC GC content in a 7 bp window
GCliContent | integer (0-11) UCSC GC content in a 11 bp window
local_purine | integer (0-11) UcCsc number of purine bases in local 11 bp window
local CpG | integer (0-10) UCsC number of CpG dinucleotides in 11 bp window
ss_dist | integer UCSC signed distance to nearest exon boundary
tssDistance | integer Ensembl75 signed distance to nearest Ensembl TSS
gencode_tss | integer GENCODE | signed distance to nearest GENCODE TSS
tfCount | integer UCSC sqrt(count) of ENCODE ChIP-seq TFBS overlap. SNP
uniformDhsScore | integer UCSC sum scores of ENCODE uniform DHS peaks overlap. SNP
uniformDhsCount | integer UCsC count of ENCODE uniform DHS peaks overlap. SNP
masterDhsScore | integer Uucsc sum scores of ENCODE master DHS peaks overlap. SNP
masterDhsCount | integer UCSsC count of ENCODE master DHS peaks overlap. SNP
chrom | categorical (23) | UCSC the chromosome to which the SNP maps
nestedrepeat | categorical (2) UCSsC SNP is in a RepeatMasker [6] DNA repeat
simplerepeat | categorical (2) UCsc SNP is in a Tandem Repeats Finder [2] repeat
cpg-island | categorical (2) UCsC SNP is in an epigenome-predicted CpG island [3]
geneannot | categorical (4) UCSC classifies SNP location as CDS, intergenic, UTR, or intron
majorAllele | categorical (4) UCSC/1KG | the major allele for the SNP
minorAllele | categorical (4) UCSC/1KG | the next-to-major allele for the SNP
pwm | categorical (22) | Ensembl75 ID of the Jaspar 2014 [40] motif in which SNP is a match
chromhmm | 6Xcateg. (26) UcCsc ChromHMM label in Gm12878, Hlhesc, HeLaS3, HepG2, HUVEC and K562 cells
segway | 6xcateg. (26) UCSC Segway label in Gm12878, Hlhesc, HeLaS3, HepG2, HUVEC and K562 cells
ch_comb_WEAKENH | categorical (4) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build
ch_comb_ENH | categorical (6) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build
ch_comb_REP | categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build
ch_comb_TSSFLANK | categorical (5) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build
ch_comb_TRAN | categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build
ch_comb_TSS | categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build
ch_comb_CTCFREG | categorical (7) Ensembl75 ChromHMM label in Ensembl Reg. Seg. build
ENCODE_TFBS | 158X categ. (2) UcCsc 158 features for SNP being in an ENCODE TFBS [13] peak
FsuRepliSeq | 16X continuous UCSC Replication Timing by Repli-chip [19] from ENCODE/FSU
UwRepliSeq | 16X continuous UCSC Replication Timing by Repli-seq [17] from ENCODE/UW
SangerTfbsSummary50kb | continuous Ensembl75 Summary of Ensembl TFBS peaks from 18 human cell types
Nkilad | categorical (2) UCscC SNP is in a Lamina Associated Domain (NKI study [15], Tig-3 cells)
vistaEnhancerCnt | categorical (2) UcCsc count of VISTA [52] HMR-Conserved Non-coding Human Enhancers [38] overlap. SNP
vistaEnhancerTotalScore | categorical (2) UCSC sum scores of VISTA [52] HMR-Conserved Non-coding Human Enhancers [38]
eigen | continuous Eigen Eigen-PC v1.1 raw score [21]

Table 1: The 246 SNP features that are used in CERENKOYV. Abbreviations are as follows: UCSC, UC Santa
Cruz Genome Browser portal; 1KG, 1,000 Genomes Project; Ensembl75, Ensembl Release 75 [9]; GENCODE,
the GENCODE project release 19 [18]; ENCODE, Encyclopedia of DNA Elements [49]; FSU, Florida State
University; UW, University of Washington; NKI, Netherlands Cancer Institute; GTEx, the genotype tissue-
expression project; GERP, the Genomic Evolutionary Rate Profiling score; CDS, coding DN A sequence; UTR,
untranslated region; MAF, minor allele frequency; HMR, human-mouse-rat; TSS, transcription start site.

2.3.6 Eigen, CADD, DANN, fitCons. For Eigen [21], we
downloaded genome-wide nucleotide-level scores (version 1.1)
and filtered them to obtain the raw Eigen-PC scores for
the 0SU17 SNPs. For CADD [24], we downloaded genome-
wide nucleotide-level scores (version 1.3). For DANN [41],
we downloaded genome-wide nucleotide-level scores (released
Nov. 13, 2014) and filtered them to obtain scores for the 0SU17
SNPs. For fitCons [16], we downloaded genome-wide feature
files (version 1.01) for highly significant scores (fc-hu-0.bw)
and extracted the scores at the locations of the 0SU17 SNPs.

For all four of these score types, we used the published per-
SNP scores directly to rank validation-set SNPs for computing
AVGRANK, AUROC, and AUPVR.

2.4 Machine learning

For the machine learning framework, we used the R statisti-
cal computing environment (version 3.2) [20] under Ubuntu
16.04.1 LTS running on Amazon EC2 within an m4.16xlarge
instance (or across multiple such instances in parallel).

2.4.1 Random Forest. We used the R package ranger [56]
version 0.6.0. We used ranger in decision-tree mode (i.e.,



not in probabilistic forest mode). For GWAVA [43] and
RSVP [39], we used the published hyperparameters. To vali-
date the equivalency of this classification algorithm vs. the
original GWAVA python implementation, we cross-checked
the AUROC performance of ranger (with the GWAVA fea-
tures and the published GWAVA region SNP set) against
the RandomForest implementation in scikit-learn [37] (ver-
sion 0.14.1) and found nearly identical performance between
ranger and scikit-learn, (AUROC) = 0.71.

2.4.2 Gradient Boosted Decision Trees. For the gradient
boosted decision trees (GBDT) classifier, we used the R API
for xgboost [7] version 0.6-4 (hereafter, xgboost-GBDT). We
used gradient boosted trees (booster=gbtree) and binary
“logistic” classification as the objective, with the default loss
function (objective=binary:logistic). We used ten-fold
CV [25] with locus-level sampling as described in Sec. 3, in
which we assigned rSNPs to folds (stratifying on the number
of ¢SNPs per rSNP), and then assigned ¢cSNPs to the same
fold to which it’s LD-linked TSNP was assigned. Thus, in the
case of locus-level sampling, an rSNP and its linked cSNPs are
always assigned to the same CV fold. For every prediction
performance metric we report, the fold composition was
exactly the same across all of the rSNP recognition models
studied. We used the xgboost-GBDT classification algorithm
for the studies in Fig. 1b, Fig. 1c, Fig. 2, and for the classifiers
CERENKOV, RSVP_XGB, Deepsea_XGB, DANQ_XGB, and
deltaSVM_XGB in Fig. 3. We used base_score = 0.1082121
(the rSNP/cSNP class imbalance). We obtained the feature
importance scores using the xgb.importance method.

2.4.3 Tuning CERENKOV. We tuned the xgboost-GBDT
classifier with a hyperparameter septuple grid size of 3,888,
with locus-based sampling. The tuning hyperparameter tu-
ple that maximized the validation (AUPVR) was: n = 0.1,
v = 10, nrounds = 30, max_depth = 6, subsample = 1.0,
colsample bytree = 0.85, and scale_pos_weight = 1; we
used these hyperparameter values for all subsequent analyses
using xgboost-GBDT. [In contrast, the hyperparameter tu-
ple that minimized the validation (AVGRANK) was: n = 0.1,
v = 100, nrounds = 30, max_depth = 6, subsample = 0.85,
colsample_bytree = 0.85, and scale_pos_weight = §].

2.5 t-SNE and Statistical testing

For the unsupervised analysis, we used the t-distributed sto-
chastic neighbor embedding (£~-SNE) implementation in the R
package Rtsne on the standardized, numeric-encoded feature
data; results were consistent across multiple runs of ¢t-SNE.
For averaging and statistical testing of performance data, we
used logit-transformed AUROC and AUPVR values [12]. We
compared different combinations of classifiers and feature-sets
using 95% confidence intervals (CI) on the average measures,
that we estimated using bootstrap with 1,000 iterations.

3 RESULTS

3.1 Comparing AUPVR and AVGRANK

We first analyzed the distributions of two SNP classes (rSNPs
and c¢SNPs) within an unsupervised two-dimensional embed-
ding of their 246-dimensional feature vectors, using t-SNE (see
Sec. 2.5). This analysis revealed that the majority of rSNPs
are located in dense clusters in the embedding space, suggest-
ing that effective machine learning-based discrimination of
rSNPs from ¢cSNPs would be possible using this feature-set
(Fig. 1a). Next, we used a supervised approach to investigate
the degree of concordance between the traditional AUPVR
accuracy measure and the AVGRANK accuracy measure that
we have proposed for the GWAS rSNP detection problem.
For this analysis we used the gradient boosted decision trees
classification algorithm implementation in xgboost [7] and
our 15,331x246 matrix of SNP feature data. We trained and
tested xgboost-GBDT (using 24 independent replications of
10-fold [25] CV with locus-based sampling) for each of 3,888
different tuples of xgboost hyperparameters (see Sec. 2.4.3)
and for each hyperparameter tuple, we computed (AUPVR)
and (AVGRANK) on the validation set SNPs, across the 240
independent samples. We found that while (AVGRANK) and
(AUPVR) are strongly correlated on the large scale (Fig. 1b),
the relationship between (AVGRANK) and (AUPVR) for
the stronger-performing hyperparameter tuples (for which
(AUPVR) > 0.42) deviates from a linear relationship (Fig. 1c).
Specifically, we found that the hyperparameter tuple that
maximizes the (AUPVR) has an (AUPVR) of 0.506 (95% CI,
0.500-0.512), whereas the hyperparameter tuple that mini-
mizes the (AVGRANK) has an (AUPVR) of 0.491 (95% CI,
0.485-0.496). Thus, in this example using xgboost-GBDT
and the CERENKOV features on the 0SU17 SNP set, we
found that tuning a classifier to maximize validation AUPVR
does not guarantee optimality of the classifier in terms of
AVGRANK accuracy (we argue that the latter, AVGRANK,
is more relevant to the GWAS application domain).

3.2 CERENKOYV feature importance

In order to better understand the contributions of differ-
ent categories of features to classification accuracy for rSNP
recognition, we analyzed the frequencies with which each of
the 246 features in CERENKOV was used in a tree split by
the xgboost-GBDT algorithm, using the hyperparameters
that we had selected to maximize validation-set AUPVR
(Sec. 3.1). We additively aggregated the feature scores into
14 feature categories such as “SNP-to-gene distances,” “chro-
matin segmentation,” and “TFBS annotations.” As shown in
Fig. 2, and consistent with previous SNP annotation-based
studies (all of which used different filtering criteria for cSNP
selection than we used in this study), the distance between a
SNP and the transcription start site of the nearest genes has
the strongest feature importance overall [34, 39, 43, 51], and
that SNP annotation based on the gene context (3’ UTR,
5" UTR, intron, or intergenic) also has high importance [43].
Furthermore, consistent with the Peterson et al. study [39],
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Figure 1: The AUPVR and AVGRANK performance measures are functionally distinct. (a) t-SNE embed-
ding of the 246-dimensional featureset for the 0SU17 set of SNPs; rSNPs are colored in red, showing local
concentrations of rSNPs. (b) Scatter plot of validation (AVGRANK) and (AUPVR) values for CERENKOV,
for 3,888 xgboost-GBDT hyperparameter tuples. (c) Zoom of the lower-right of (b), showing that optimizing
for average AVGRANK and optimizing for average AUPVR are not equivalent, for the 0SU17 SNPs.

Measure | Mean | 95% CI

AUPVR | 0.505 | 0.503-0.508

AUROC | 0.855 | 0.854-0.856
AVGRANK | 3.877 | 3.843-3.909

Table 2: Validation-set performance measures for
CERENKOYV on the 0SU17 reference SNP set.

we found that SNP annotations based on replication tim-
ing experimental measurements (“Replication Timing”) had
high feature importance. The feature importance analysis
also yielded a novel finding, that the Eigen-PC score [21]
strongly contributed to CERENKOV’s accuracy; ours if the
first supervised method (of which we are aware) in which
Eigen-PC scores are incorporated with SNP annotations for
rSNP recognition. Out of the 246 features, we found that the
DNA shape-based score ranked 105 in terms of its feature
importance, and nearly as highly as the uniform DNase I
hypersensitive site count (uniformDhsCount) feature.

3.3 Comparing CERENKOYV to other
methods for rSNP recognition

Having identified an xgboost-GBDT hyperparameter set that
maximizes validation-set (AUPVR) for rSNP/cSNP discrimi-
nation, we precisely measured the validation-set performance
of CERENKOV by AUPVR, AUROC, and AVGRANK, us-
ing 200 replications with 10-fold CV, and using bootstrap
resampling of the results to obtain 95% confidence inter-
vals (see Sec. 2.5). We found that on the 0SU17 set of SNPs,
CERENKOV has a validation-set (AUPVR) of 0.505, an
(AUROC) of 0.855, and an (AVGRANK) of 3.877 (Table 2).
Next, we compared CERENKOV to nine other methods
for prioritizing functional noncoding SNPs: DeltaSVM [29],

SNP-to-Gene Distances -
Gene Annotations for SNP -
SNP Eigen-PC Score -
Replication Timing -
Chromatin Segmentation -
TFBS Annotations -
Phylogenetic Scores -
Average Heterozygosity -

Allele Frequency Information -

DNase | Hypersensitive Sites -
Chromosome -
Expression QTL Annotations -

Repeat Element Annotation -

GCl/purine DNA content -

0.1 0.2 0.3
Aggregate feature importance

o
o

Figure 2: Importance scores for 14 categories of fea-
tures used in CERENKOYV. Bar length represents
the aggregate frequency with which all features in
the indicated category are used for a tree split.

RSVP [39], DANN [41], fitCons [16], CADD [24], DeepSEA [59)],
DANQ [42], Eigen [21], and GWAVA [43]. For the single-
score-per-SNP methods (CADD, Eigen, DANN, fitCons) that
were not trained using ground-truth rSNPs from HGMD in
the original reference studies in which the methods were
reported, we used the published per-SNP scores directly to
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Figure 3: Validation performance of CERENKOYV improves upon nine methods for rSNP detection to which
we compared it, by both global rank-based measures (AUPVR (a) and AUROC (b)) and our AVGRANK
method (c). Marks, average performance in 200 replications of 10-fold CV (2,000 samples); bars, bootstrap
95% confidence interval. XGB means xgboost-GBDT was used; RF means that Random Forest was used.

rank validation-set SNPs for computing AVGRANK and
AUPVR. For the multi-feature methods, where possible, we
used the classification algorithms as described in the original
reference publications for the methods (i.e., for GWAVA,
Random Forest; for DeepSEA, xgboost-GBDT) using the
hyperparameters from the original publications.®> For RSVP,
since we did not have access to the MATLAB treefit im-
plementation, we used both Random Forest (with imputed
feature values; see Sec. 2.3.3) with hyperparameters matching
those in the RSVP article, as well as xgboost-GBDT using
our optimal set of hyperparameters. For DANQ, based on
the high degree of similarity of the DANQ approach to the
DeepSEA approach (identical chromatin datasets used for
training the deep neural networks), we used the xgboost-
GBDT method and the DeepSEA hyperparameter values; we
post-processed the 919x2 DANQ scores for each SNP exactly
as for DeepSEA. On identical assignments of genomic loci to
CV folds (based on our locus-sampling approach), and with
a 200-fold outer replication loop (thus yielding 2,000 perfor-
mance samples per classifier), we compared the validation-set
performance of the ten classifiers with CERENKOV, based
on AUPVR, AUROC, and AVGRANK. We found that the av-
erage performance of CERENKOV was superior to the other
ten classifiers, by all three performance measures (Fig. 3;
bars indicate 95% confidence intervals). Consistent with the
observation (Fig. 1b,c) that AUPVR and AVGRANK are
closely related but that the relationship is not a simple mono-
tonic function, the rankings of classifiers by AUPVR and
AVGRANK in Fig. 3a and Fig. 3c are not identical; for
example, Eigen outperforms DANQ_XGB by AUPVR, but
DANQ-_XGB outperforms Eigen by AVGRANK.

3The DeepSEA method produces one probability score for each of 919
convolutional neural network (CNN) models for each of two SNP alleles.
‘We computed absolute score differences and absolute logit-transformed
score differences (for the two alleles) for each CNN model and for each
SNP, exactly as described in the DeepSEA method publication.

4 CONCLUSION AND DISCUSSION

We report a new framework and classifier, CERENKOV, for
scoring noncoding SNPs based on their regulatory poten-
tial. CERENKOV—by virtue of its training-set construction
criteria (locus-based, MAF > 0.05), its novel performance
measure (AVGRANK), and its novel CV approach (locus-
based sampling)—is specifically designed for the problem
of identifying candidate causal noncoding SNPs in GWAS
post-analysis. We have demonstrated, using side-by-side com-
parisons on identical assignments of SNPs to CV folds, that
CERENKOV’s performance exceeds that of the nine other
functional noncoding SNP prioritization methods to which
we compared it, by both classical global rank-based measures
(AUPVR and AUROC) and by the new GWAS-oriented per-
formance measure (AVGRANK) that we proposed. CEREN-
KOV’s validation-set AUROC performance, 0.855 (95% CI of
0.854-0.856), compares favorably with the AUROC* (0.84)
of the recently published PRVCS rSNP predictor [30].

The source code for CERENKOV is available on GitHub
at github.com/ramseylab/cerenkov under the Apache 2.0
open-source software license, and the feature files that were
used in the comparative analysis of CERENKOV with the
other published methods are available on the CERENKOV
website at lab.saramsey.org/cerenkov. By making the soft-
ware, the data files, and in particular the 0SU17 SNP set (with
benchmark results) available, we hope to accelerate develop-
ment of methods for noncoding SNP functional analysis.

We anticipate that CERENKOV’s performance may be
improved through several possible enhancements that we
are investigating, including new features and the use of a
custom xgboost-GBDT loss function that is specifically de-
signed to minimize AVGRANK. An appealing extension of

“The published [30] AUROC for the PRVCS classifier was based on an
HGMD-based set of ground-truth SNPs with similar class imbalance
(10.7) to that of the 0SU17 set of SNPs used here. Efforts to directly
compare these classifiers on on the 0SU17 set of SNPs are ongoing.
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CERENKOYV would be to combine deep neural network-based
approaches based on the local 1 kbp sequence haplotype
(recognizing that the local haplotype is important to contex-
tualizing functional SNP alleles [54]), with CERENKOV’s
current matrix of 246 features; such a hybrid “neural network
plus decision trees” approach has shown promise in image
classification [26]. It is presently unclear what the minimum
attainable validation AVGRANK score would be expected
to be, for the 0SU17 SNP set; undoubtedly, precision values
are dampened by “latent positives” in the training dataset,
i.e., high-scoring ¢SNPs that are simply undiscovered rSNPs.
Using machine learning techniques that are specifically de-
signed to address “positives-plus-unlabeled” problems [11]
(such as the rSNP detection problem studied here) is another
appealing avenue for future investigation.
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