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Abstract

This paper focuses on a family of restricted latent structure models with wide
applications in psychological and educational assessment, where the model parameters
are restricted via a latent structure matrix to reflect pre-specified assumptions on the
latent attributes. Such a latent matrix is often provided by experts and assumed to
be correct upon construction, yet it may be subjective and misspecified. Recognizing
this problem, researchers have been developing methods to estimate the matrix from
data. However, the fundamental issue of the identifiability of the latent structure
matrix has not been addressed until now. The first goal of this paper is to establish
identifiability conditions that ensure the estimability of the structure matrix. With
the theoretical development, the second part of the paper proposes a likelihood-based
method to estimate the latent structure from the data. Simulation studies show that
the proposed method outperforms the existing approaches. We further illustrate the

method through a data set in educational assessment.
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1 Introduction

Restricted latent class models with diagnostic feature. Latent class models are pop-
ularly used in social sciences to model latent attributes that are not directly measurable,
which assume that observed responses can be explained by a set of discrete latent attributes
(Goodman, 1974; Agresti, 2013). This paper focuses on a family of restricted latent class
models that have diagnostic feature. This class of models have wide applications in psycho-

logical and educational measurement, where a classification-based decision is made about an
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individual’s latent attributes from his or her observed responses. In particular, a subject,
such as an examinee or a patient, provides binary responses R = (Ry,..., R;)" to J diag-
nostic items, where T denotes the transpose. These responses are assumed to be explained
by K unobserved binary latent attributes a = (av, ..., ax)". The binary value ay € {0,1}
indicates the absence or presence of the kth attribute, respectively. The vector a specifies a
latent class that is usually called an attribute profile or knowledge state. Such construction
of a, which is different from the conventional latent class model setting, is assumed for the
diagnosis purpose. For instance, teachers may want to know whether students have mastered
certain skills; and psychiatrists want to know whether patients have certain mental disorders.

For these diagnostic models, another major difference from the conventional latent class
models is that the model parameters are restricted by a binary latent structure matrix, called
the @-matrix. The @Q-matrix reflects the pre-specified diagnostic relationships between the
J items and the K latent attributes (see Section 2). The Q-restricted latent class models
have the desirable diagnostic feature of providing informative cognitive profiles for every
respondent, which allows for the design of more effective intervention strategies. These
models have recently gained great popularity in educational proficiency assessment (e.g.,
Junker and Sijtsma, 2001; Hartz and Roussos, 2008; von Davier, 2008; Henson et al., 2009;
de la Torre, 2011), psychiatric diagnosis (e.g., Templin and Henson, 2006; Chen et al., 2015),
and many other disciplines (e.g., Tatsuoka, 2009; Rupp, Templin, and Henson, 2010). The
models also provide the basis for computerized-adaptive diagnosis in online testing and
learning (e.g., Wang, Lin, Chang, and Douglas, 2016; Xu, Wang, and Shang, 2016; Zhang
and Chang, 2016).

Identifiability Issues and related literature. While the latent ()-matrix plays a key
role for diagnosis assessment, identifiability of these restricted latent structure models has
long been an issue, as noted in the literature (de la Torre and Douglas, 2004; Maris and

Bechger, 2009; Tatsuoka, 2009; DeCarlo, 2011; von Davier, 2014; Xu and Zhang, 2016).



For unrestricted latent class models with binary responses, Gyllenberg, Koski, Reilink, and
Verlaan (1994) showed that they are not identifiable in a strict sense. On the other hand,
researchers have considered the generic identifiability of such models, which is defined fol-
lowing algebraic geometry terminology and implies that the set of parameters for which
the identifiability does not hold has Lebesgue measure zero. Elmore, Hall, and Neeman
(2005) and Allman, Matias, and Rhodes (2009) established generic identifiability results for
a large set of latent structure models. Related identifiability results on finite mixture models
have also been developed in Hall and Zhou (2003), Hall et al. (2005), Allman et al. (2011),
Henry et al. (2014) and many others. However, the existing identifiability results for the
unrestricted latent class models cannot be applied to the Q)-restricted models due to the ad-
ditional constraints that reduce the parameter space to a measure zero set. To address this
issue, Xu (2017) recently proposed a marginal probability technique and established a set
of sufficient conditions for the identifiability of these restricted models under the condition
that the Q-matrix is correctly specified beforehand and known.

However, the latent (Q-matrix, which is often provided by experts upon construction, is
subjective and can be misspecified. The misspecification of the ()-matrix could lead to serious
lack of fit and consequently inaccurate inferences on the latent attribute profiles. Moreover,
in exploratory analysis of newly designed items, a large part or the whole ()-matrix may not
be available. Recognizing these issues, researchers have been developing methods to estimate
the Q-matrix from the response data (e.g., de la Torre, 2008; Barnes, 2010; DeCarlo, 2012;
Liu, Xu, and Ying, 2012, 2013; Chiu, 2013; Chen, Liu, Xu, and Ying, 2015; de la Torre
and Chiu, 2016). However, identifiability and related statistical properties of the )-matrix
have largely been an underexplored area in the literature and it is still not clear when the
(Q-matrix can be consistently estimated. Some special cases have been recently studied in
Liu et al. (2013) and Chen et al. (2015); nevertheless, their theoretical techniques depend
on some strong model assumptions and cannot be applied for the general cognitive diagnosis

models in psychometrics assessment.



Main contributions. The first aim of this paper is to address the fundamental identifi-
ability issue of the @-matrix. Compared with the problem of identifying model parameters
under a pre-specified structure matrix that was studied in Xu (2017), it is more challenging
to establish the identifiability of the latent (Q-matrix for several reasons. First, the current
work focuses on a more complicated problem than that in Xu (2017). For the Q-restricted
models, different ()-matrix corresponds to different set of model parameters and diagnos-
tic constraints. The estimation of the (Q-matrix therefore depends on the identification of
unknown model parameters under each candidate ()-matrix, where the model parameters
themselves may not always be identifiable under these candidates. Second, the )-matrix of
interest is a binary matrix; and the discreteness nature of the identifiability problem makes it
different from Xu (2017) and the existing tools may not be directly applicable. We therefore
develop new theoretical technique to establish the identifiability results. This paper focuses
on a general setting that covers most of the popularly used diagnostic models and develops
identifiability results for the @)-matrix, which provide not only theoretical justification for
many of the existing estimation methods, but also useful information for related experimen-
tal designs, whereas in current applications the designs are usually experience-based and
identifiability may not be ensured. Moreover, the proof techniques can be used to establish
large sample theory of likelihood-based estimators.

The second aim of the paper is to develop a unified approach to estimate the latent
(Q-matrix under a general model setting. In particular, we consider two important cases in
practice: when the whole ()-matrix is largely unknown and when a provisional ()-matrix
is provided. Most existing estimation methods focus on specific diagnostic models with
strong model assumptions and cannot be directly applied to the general diagnosis assessment,
especially in the first case. Due to the discreteness nature of the Q-matrix, direct search of
the maximum likelihood estimator is not practically feasible. We propose a computationally
efficient likelihood-based method to estimate the latent structure. Asymptotic properties of
the proposed estimator are established with the help of the developed identifiability theory.
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Simulation results show the proposed method outperforms the existing methods.

The remainder of this paper is organized as follows. Section 2 introduces the class of
restricted models of interest with some examples. Section 3 introduces the identifiability
result. Section 4 proposes a likelihood-based estimation method and studies its theoretical
properties. Sections 5 and 6 present simulation studies and real data analysis. A discussion
is given in Section 7. The proofs and additional numerical results are presented in the

supplementary Appendix.

2 (-restricted latent class models

In this section, we first give an introduction of the considered restricted latent class models,
followed by examples of several popularly used models. Assume that /N subjects are randomly
sampled from a target population and their attribute profiles «;,7 = 1, ..., N independently
follow a categorical distribution with probabilities p, := P(a; = a) for any a € {0, 1},
where po € (0,1) and >, po = 1. Given the ith subject’s attribute profile e;, the response
R;; to item j follows a Bernoulli distribution with positive response probability 0,4, =
P(R;; = 1| a;). In addition, the ith subject’s responses R; = {R;;,j = 1,---,.J} are
assumed conditionally independent given «;. Such conditional independence assumption
is commonly used in finite mixture literature, such as Hall and Zhou (2003) and Allman
et al. (2009). We write © = (6,,) as a J x 2 matrix containing the 6 parameters and
P = (po:a€{0,1}%)" as a 2K dimensional vector. The unknown parameters of the latent
class model include © and p.

The cognitive diagnosis models (CDMs) are a class of restricted latent class models where
the model parameters © = (6, ) are constrained by pre-assumed relationships between the
J items and the K latent attributes. Such relationships are specified through a J x K binary
matrix, which is called @-matrix in the literature. The entry ¢, € {0,1} of the @-matrix

indicates the absence or presence, respectively, of a link between the jth item and the kth

5



latent attribute. For instance, the following self-explained )-matrix corresponds to four

items, three latent attributes, and 2% = 8 latent classes.

attribute
o Qo Qs
Q- ?tem 171 0 0 (1)
item 2 | 0 1 0
item 3 | 1 0 1
item4 | 0 1 1

Denote the jth row vector of ) by @Q);«, which gives the full attribute requirements of the
jthitem. For an attribute profile o, we write ae = Q; . if ap > qi forany k € {1,..., K}, and
a 7} Qj if there exists k such that oy, < gj5. We write 05 = (0, ...,0), ., and 1 = (1,..., 1)1,
and omit the index of length when there is no ambiguity. Furthermore, let e; be a standard
basis vector, whose 7th element is one and the rest are zeros.

The constraints on ¢’s are motivated as follows. For a = @4, a subject with « has
all the attributes for item j specified by the ()-matrix and would be “most capable” to
provide a positive response; on the other hand, for & % Q;«, a subject with o’ misses some
related attribute and is expected to have a lower positive response probability than o = Q) «.
In addition, a subject without mastery of any latent traits is expected to have the lowest

positive response probability. These constraints on © are summarized as follows:

g i . o> 0. ! .
X 0; o o O > Oj.r > 050, for any o % Q;« (2)
Take item 1 in Equation (1) for an example. Under (2), subjects with «; = 1 have a

higher positive response probability than those with a; = 0; on the other hand, & =
(1,0,0)7,(1,1,0)", (1,0,1)T and (1,1,1)" all have the same correct response probabilities.

The introduced models are important statistical tools developed in cognitive diagnosis to
detect the presence or absence of multiple fine-grained skills or attributes. Many restricted

latent class models have been proposed in the past decades for various application purposes



(e.g., Junker and Sijtsma, 2001; Templin and Henson, 2006; DiBello et al., 1995; Hartz and
Roussos, 2008; de la Torre and Douglas, 2004; von Davier, 2008; Henson et al., 2009; de la

Torre, 2011). Below we introduce some of them as examples.

Example 1 (DINA model). The deterministic input noisy output “and” gate model (DINA;
Junker and Sijtsma, 2001) assumes a conjunctive relationship among attributes, i.e., it is
necessary to possess all the attributes indicated by the QQ-matriz to be capable of providing a
positive response. For an item j and a subject with o, the ideal response & o(Q) = I(a >
Q) indicates the capability of the subject answering the item positively. The uncertainty is
further incorporated using two item-level parameters: the slipping parameter s; = P{R; =
0/§a(Q) = 1} denotes the probability of making a negative response despite mastering
all needed skills, and the guessing parameter g; = P{R; = 1| «(Q) = 0} denotes the
probability of a positive response despite an incorrect ideal response. The response probability
0, then takes the form 6,4 = (1 — sj)fjva(Q)gjlféj’a(Q). For the DINA model, (2) is satisfied

if 1 —s; > g;, which is usually assumed in practice.

Example 2 (Reduced RUM). Under the reduced version of the reparameterized unified model
(DiBello et al., 1995; Henson et al., 2009), 6; 0 = m;] [ 19+ =) where 7; is the positive
response probability for subjects who possess all required attributes and v;,, 0 < 7y < 1, is the
penalty parameter for not possessing the kth attribute. For the reduced RUM, assumptions
(2) is satisfied.

Example 3 (LCDM). The Loglinear-CDM (LCDM, Henson et al., 2009) is a restricted
latent class model that models the relationships between categorical variables and attribute
profiles aslogit(0; ) = ﬂ h(e, Qj«), where the vector 3; represents a 25 -dimensional vector
of weights for the jth item and h(o, Q) represents a set of linear combinations of the a

and Qj«. In particular, the saturated model corresponds to

B he, q;) = Bjo + Z Bjrdjrou + Z Z Bjkk Qjk Qi Qe + -+ + Bjra.k H ik H Q-
k=1

k=1 k'>k
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Note that forany 1 < h< K andany 1 <k <--- <k, < K, ifH?zl Gk, =0, then B .k,
s not needed in the model and can be set as 0. The main effect model becomes the linear

logistic model (LLM, see Hagenaars, 1993; Maris, 1999; de la Torre and Douglas, 2004) that

logit (0;a) = Bjo + Y1 Birdjnue-

3 Identifiability results

We present the main identifiability results in this section, before which we first introduce
some notations and formulate the definition of the identifiability of the @Q-matrix.

The distribution of R, conditional on the latent class «, is given by a J-way 2 x - -+ x 2
table Py (Q,0) = ®;.]:1 (1 =0;4,0,0)", where the r = (ry,--- ,7;)"th entry of the table is
the probability of observing response vector r given ()-matrix, ©, and latent class «a, i.e.,
PR=r]Q,0,a) = Hj:1(9j7a)Tf(1 — 0; )" . The marginal distribution of R is then
given by P(Q,0,p) = ZQE{O,I}KPQ(Q, ©) pa, where the rth entry is PR =r | Q,0,p) =
Zae{O,l}KP(R =T | @, O, Oé) Pa-

The question of interest is when the ()-matrix is estimable from the response data R. It
is worthy to mention that the )-matrix is expected to be identifiable only up to rearranging
the orders of the columns. This is because when estimating the ()-matrix, the data do not
contain information about the specific meaning of each attribute. For this reason, if ) and

@ have an identical set of column vectors, we consider them as equivalent and write Q ~ Q;

otherwise, we write Q ~ Q. For example,

a1 Qo Qg Qg
item 1 1 0 item 1 O 1
item 2 1 1 _ item 2 1 1
Q= ~ Q=
tem 3 1 1 item3 1 1
item 4 1 1 item 4 1 1

Definition 1. For the restricted models satisfying (2), we say that the Q-matriz is identifi-
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able if for any Q ~ Q, there does not exist (0,p) such that P(Q,0,p) =P(Q,O,p).

We next illustrate which type of @-matrix structure is required for the identifiability
results. An important and basic structure that have been studied in the literature is the
completeness of the ()-matrix, where we say a ()-matrix is complete if {ejT j=1,.,K}C
{Qjx:7=1,---,J}; see, e.g., Chiu et al. (2009). In other words, a Q-matrix is complete if
there exist K rows of () that can be ordered to form the K-dimensional identity matrix Zg.
A simple example of a complete (-matrix is the K x K identity matrix Z.

We start with a simple and ideal case. We consider the model introduced in Example 1
and the ideal case where the jth response R; = ;o (Q), where & (Q) = I(a = Q;4); that
is, the capable subjects always provide positive responses and incapable subjects always give
negative responses. In this ideal case, 6,4 = £;o(Q)) and p is unspecified. The completeness
of a @-matrix is sufficient and necessary for the identifiability of p in the considered ideal
case when @ is known (Chiu et al., 2009; Xu and Zhang, 2016). Liu et al. (2013) further
showed that for this ideal case, a sufficient condition for the identifiability of the )-matrix

is that the ()-matrix is complete and each attribute is required by at least two items.

Example 4. Consider Q) in Equation (3) as an example. It is not complete and we show it
is not identifiable. In particular, for Q in (3), where all elements of Q are same as Q except

gs1 = 0, we show Q and Q are not distinguishable based on responses generated under Q.

a1 Qo ayp Qo
item 1 1 0 item 1 1 0
item 2 1 1 _ item 2 1 1
Q= ; Q= (3)
item & 1 1 item 3 0 1
item 4 1 1 item 4 1 1

Consider the ideal case with 04 = £;.4(Q) and 0;4 = &.«(Q). Let the true model parameter
associated with ) be p. We now construct a different p by setting po,1)y = 0 and Py =
P0,0) + P01y while the other elements same as p. For such p and the Q in (3), PR =
r| Q,0,a)p, = PR =1]Q,0,a)p, for Cény r and a € {(1,0)7,(1,1)"}. In addition,



P{R:r|Q7é7a:(OuO)T}'ﬁ(O,O)+P{R:r|Qvéaa:(Ovl)T}'p(O,l):P{R‘:r|
Q,0,a = (0,0)"} - pooy + PIR =1 | Q,0,a = (0,1)"} - po,1). Therefore, PR = r |
Q,0,p) = PR =r|Q,0,p) for any r. From Definition 1, Q in (3) is not identifiable.

For more general restricted latent class models satisfying constraints (2), we provide in
the following a unified sufficient condition that ensures the identifiability of the (-matrix.
Although the above ideal model is a very special case of the considered models, it shows the
necessity to require that the true ()-matrix is complete. Moreover, for application purpose,
we also need to ensure the identifiability of the model parameters under the true -matrix;
such identifiability conditions have been studied in Xu (2017). We assume the following

identifiability conditions.

C1 The true Q-matrix takes the form of Q" = {Zx; Zx; (Q')"} " after row swapping, where

Q' is a (J — 2K) x K binary matrix.

C2 Given @ arranged as in Cl1, for any attribute profiles @ # o and a = o/, (6,4;5 >

2K)T £ (B0 > 2K).

Remark 1. Condition C1 implies that ) is complete and each attribute is required by at least
two items. The completeness of the QQ-matrixz is a necessary condition for the identifiability
of the population proportion parameters po under the simple DINA model. For instance,
for the Q-matriz in Example 4, it is not complete and we can see subjects with a = (0,0)
and a = (0,1) are not distinguishable from their responses. Without completeness, we
can easily construct nonidentifiable Q-matriz as illustrated in Example 4. Condition C1
requires two complete matrices. This follows from the previous study of the DINA model in
Ezample 1 (Liu et al., 2013; Chen et al., 2015). Beyond the literature on cognitive diagnosis,
the completeness type structure has been used in confirmatory analysis of multidimensional
item response theory, where the attributes are modeled as continuous latent variables (e.g.,
Reckase, 2009). The developed theoretical results in this paper could also be extended to

other latent structure models in social science such as the mixzed membership model, where
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it has been shown that the mixed membership model can be equivalently represented as a
restricted latent class models with similar completeness requirement (e.g., Erosheva et al.,
2007). Condition C2 implies that for attribute profiles o # o' and o = o, there exists at
least one item in )' such that subjects with o have different positive response probabilities
from subjects with o'. Both C1 and C2 hold if there are three identity submatrices in the
Q-matriz. From Theorem 1 in Xu (2017), C1 and C2 ensure the identifiability of the model

parameters (©,p) under the true Q-matriz while C1 itself cannot ensure that.

Theorem 1. Consider the restricted models satisfying (2). Under conditions C1 and C2,

the Q-matrix is identifiable.

Theorem 1 specifies conditions under which the Q-matrix is identifiable from the response
data. The result is under a general setting satisfying assumption (2) and it covers many
existing models as special cases. More importantly, the result allows different items to follow
different underlying diagnostic assumptions. In addition, together with Theorem 1 in Xu

(2017), we have both @ and the model parameters (0, p) are identifiable under C1 and C2.

Corollary 1. Consider the restricted models satisfying (2). The Q-matriz and model pa-

rameters (O, p) are identifiable under conditions C1 and C2.

Remark 2. The identifiability result would provide a guideline of how to design the diagnostic
items and how to calibrate the new designed items from response data. It is recommended
to have at least two complete matrices in the test; moreover, each attribute is recommended
to be required by at least three items. The identifiability result would also help to improve
existing diagnostic tests. For instance, when researchers find that the estimation results are
problematic and the Q-matriz does not satisfy the identifiability conditions, it is recommended
to design new items such that the identifiability is ensured. Moreover, with a subset of items
carefully designed by experts to satisfy the identifiability conditions, we can use the responses
to estimate the Q-matrix of new items and to detect possible misspecifications of existing

items. We propose a likelihood-based estimation method in Section /.
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Remark 3. The identifiability results generalize the existing results in two ways. First, the
current work provides a unified identifiability result that is applicable to many diagnostic
models. For the identifiability of the QQ-matrix, there are few studies in the literature which
only focus on some special cases. For instance, Chen et al. (2015) focused on the DINA
model and showed that identifying ) under the DINA model requires two copies of Lk and
a third item measuring each attribute. The first requirement is the Condition C1 and the
second one is related to C2 of this paper. Second, the identifiability results do not require test
items to follow the same diagnostic model. For instance, some items can follow the DINA
while others can follow the Reduced-RUM or LCDM. More flexible diagnostic tests therefore

can be designed following the identifiability results.

Remark 4. The generic identifiability results in Allman et al. (2009) can not be directly
applied in the current model setting. This is because under the same QQ-matriz, there may
be several cognitive diagnosis models of interest. For instance, the DINA model can be taken
as a submodel of the LCDM under the same QQ-matriz. In this case, the parameters under
the DINA model lie in a subspace of the parameter space under the LCDM, and generic
identifiability results for the more general LCDM may not ensure the identifiability of the
DINA model. When the identifiability conditions are not satisfied, such as the Q-matriz is
not complete, then we may expect to obtain partial identification results as recently studied in
Henry et al. (2014) and identify the Q-matriz up to certain equivalent class. For instance,
the incomplete Q-matriz in Example 4 would be in the same identification class as Q in
the example. In analysis with a provisional QQ-matrix, such partial identifiability result may
lead to “locally identifiability” near the provisional QQ-matriz due to the discreteness of the
Q-matriz. On the other hand, the problem in this work takes a different setting from existing
studies such as Henry et al. (2014), which assumes the existence of an additional variable
that provides a source of variation in the mixture weights while leaves component distributions

unchanged, and their results cannot be directly applied.
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4 Estimation of the ()-matrix

4.1 Likelihood-based estimation of the ()-matrix

In Sections 4.1, we consider the estimation of the ()-matrix in a full exploratory analysis
setting, where no information on the ()-matrix is provided. In Section 4.2, we study the case
where a provisional ()-matrix is available. When there is no confusion, in the following, we
use (@, 0O, p) to denote a general candidate set of the @-matrix and model parameters, and
use (Qo, ©p, Po) to denote the true values.

We consider an information-based approach to estimate the ()-matrix. Note that under
the general CDM setting, a @)-matrix may correspond to a set of different submodels of
the @-restricted latent class model. For instance, the DINA model can be considered as
a submodel of the LCDM under the same ()-matrix. In order to account for the model
complexity, a natural choice is to use the information criterion, and we choose the ()-matrix

estimator (up to column permutation) such that it minimizes the following objective function

Q ~ argmin —Iy(Q,0,p; R) + A x #{0%}, (4)
Q,0,p

where Ix(Q, 0, p;R) is the marginal log-likelihood of (Q,0,p), R = {R;,i=1,--- N} is
the observed response data, #{O%} denotes the number of free item parameters in matrix ©
under the Q-introduced constraints, and A > 0 is a regularization parameter that indicates
the penalty level on the model complexity. For instance, when A\ = 1 this is equivalent to is
Akaike’s information criterion (AIC) and when A = log N/2, this is similar to the Bayesian
information criterion (BIC).

Due to the discreteness nature of the latent structure matrix, direct estimation of maxi-
mum likelihood estimator is computational demanding. The key idea of the proposed method
is to reformulate the problem of estimating the ()-matrix as a problem of variable selection.

For computational convenience, we consider the general LCDM framework in Example 3
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where the monotonicity assumption can be easily incorporated. The proposed approaches can
be easily applied to other link functions. For any j € {1,--- , J}, define a 2¥-dimensional pa-
rameter vector B; = (850, Bjkykp, forany 1 <h < K andany 1 < ky < -+ < k), < K)T

We reparametrize the 0; o parameters under a matrix ) by

K
logit(6;.a) = Bjo + Z Bjwou + Z Z Bjkk g + -+ + Bjro..k H Qf;, (5)
k=1

k=1 k'=k+1

where for any 1 < h < K and any 1 < ky < -~ < kp < K, Bk, = 0 if [I1y gjx, = O.
Note that when H;;l ¢k, 7# 0, Bk, may be or not be 0, which depends on the cognitive
diagnosis model assumption on the jth item. For instance, for Q;, = 1, HL Gk 7# 0
always holds, but under the DINA model, we have 8; = (8;0,0,- -+ ,0,8;1..x) " while under
the saturated LCDM, B; = (B0, Bj1, - » Bj1-x) -

From the above construction, for any item j, the item vector @), . is uniquely determined
by the sparsity structure of the vector 3;. On the other hand, the sparsity structure of 3; is
not uniquely determined by @);., as illustrated by the example in the last paragraph. As a
consequence, the estimation of the Q-matrix in equation (4) is equivalent to the estimation

of the sparsity structure of B, i.e.,

B ~ argmin —Iy(B,p; R) + )\Z Z I(Bjkyky, #0), (6)

B,p 1<h<K
1<k1< kp<K

where B = {81, -+ ,Bs} is a set of candidate model parameters, {(B,p;R) is the log-
likelihood evaluated at (B, p) under the model (5) with Q = 1. Let S be the index set
of the nonzero (’s in B. Then based on S , we can uniquely obtain an estimate Q (up to
column permutation).

Directly solving (6) is still computationally challenging due to the Ly penalty terms, i.e.,
I(Bj gk, # 0). Motivated by the work of Shen et al. (2012), which studied constrained Ly
likelihood and its computational surrogate, we replace the Ly function I(8;,..k, # 0), by

14



its surrogate Jr (B k. ky,) = min (|5 x,..k,|/7, 1) to construct an approximation. The J.(-) is
a truncated L; penalty (TLP) function and the parameter 7 decides the size of coefficients

to be shrunk toward zero. We then estimate () by

B ~ argmin —Iy(B,p;R) + Z Z (B ey, )- (7)

B.p 1<h<K
1<k1< Lkp<K

The constrained counterpart problem of (7) can be written as

B ~ argmin —Iy(B, p; R) subject to Z Z Jr(Bjyory,) < M, (8)

B,p 1<h<K
1<k1< k<K

for some positive constant M.

Let By be the J x 2% vector of true model parameters corresponding to 0, under Q.
Note that when 7 < min{|5| # 0,8 € By}, the surrogate J.(-) becomes exactly the L
penalty, and therefore via tuning 7, we expect the selection method in (7) performs similarly
to the information-based selection in (6). Theoretically, thanks to the identifiability result
in Section 3, we have the following results on its consistency and asymptotic behaviors.

We need some notations to state the theoretical properties. Let Sy be the index set of
nonzero [’s in By and By g, be the vector of these nonzero 5’s. Denote the cardinality of
So by Mj. Let By be the oracle maximum likelihood estimator provided that the true Qg
and the specific diagnostic model assumption were known a priori, i.e., the index set Sy was
known, and BO,SO be the estimated B’s indexed by Sp. Similarly, for any candidate B and
index set S, we let Bg be the vector of 8’s indexed by S. We further write n = (B, p),
10 = (Bo, Po), Mo.s = (Bos: o), 71 = (B, D), o = (Bo, p), and flo,s = (Bo,s, ). In addition,

we assume the following condition:

C3 The true parameters By g, are bounded and the Fisher information matrix evaluated

at 1o,s,, denoted by Ig,, is nonsingular.

Proposition 1. Under the conditions in Theorem 1 and condition C3, if M = M, and
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T < § for some small constant §, then for the optimization problem in (8), there exist
positive constants ¢, and ¢y such that for any N, P(B = By) < exp{—c1N 4+ ¢} and P(Q ~
Qo) < exp{—c1N + ¢y }. Furthermore, \/N(ﬁso — 1o,s,) and \/N(ﬁo,go —No,s,) have the same

limiting Gaussian distribution with mean zero and covariance Igol.

Proposition 1 shows the consistency of the estimated () matrix and the convergence rate
is of exponential order exp{—c;N 4 ¢;}. It also implies that P(S = Sy) — 0 and the
estimated model parameters 7 achieve the oracle limiting distribution. We also obtain the

consistency result for the primary optimization problem in (7).

Proposition 2. Assume the conditions in Theorem 1 and C3. Further suppose that A and
7 depend on N such that N=Y2X\ — 0, N'21 — oo, and N~'Y2 r=! — oo. Then for the
optimization problem in (7), P(S » Sy) —= 0 and P(Q = Qy) — 0. Furthermore, v/ N (ijg, —

Mo.s,) weakly converges to the Gaussian distribution with mean zero and covariance Igol.

Remark 5. Propositions 1 and 2 theoretically justify the proposed estimation procedure and
also provide the asymptotic distributions for statistical inference on the model parameters. To
compute standard errors of the estimated model parameters, we need a consistent estimator
of Is,, which can be obtained from the restricted latent class model under the estimated

Q-matriz. Thanks to Propositions 1 and 2, such igo is consistent under conditions C1-C3.

The selection of A and 7 is crucial to the successful detection of latent structure. Propo-
sition 2 gives an asymptotic guideline to choose A and 7. Note that the conditions imply
that A — 0o, 7 — 0, N~12\ = 0, N'/27 — o0, and N=2\ 7! — oco. A sufficient condition
is that A = NY27¢1 and 7 = N~ for small positive constants €5 > ¢; > 0.

For data analysis, we propose to use information criteria such as the BIC to select the
tuning parameters. In particular, for each candidate pair of tuning parameters (A, 7), we
obtain the estimated vector B(,\J), the index set of its nonzero elements S‘(/\,T), and the
implied Q)-matrix Q()\’T). Then we estimate the constrained maximum likelihood estimator

of n with the ’s indexed by S(CA y the complement set of 5”(,\77), being constrained to be 0.
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The maximum likelihood estimator depends on (A, 7) only via the estimated SY(,\J) and we
denote it by ﬁg(/\,‘r)' We further define 1C(Si -y, cn) = _2ZN<77§(,\,T)3 R) + cn X #{ﬁg(w)},
where cy is some constant depending on N. When ¢y = log N, the IC becomes the BIC.
Among a candidate set of (A, 7)’s, we choose the one that minimizes the IC value and take

the corresponding Q) to be the final estimator of the Q-matrix. The following proposition

gives conditions that ensure the selection consistency of this procedure.

Proposition 3. Assume the conditions in Theorem 1 and C3. Further assume that cy — 00,
cy = o(N), and there exists (An,Tn) in the candidate set of tuning parameters such that
the limiting conditions in Proposition 2 are satisfied. Then the probability of the above IC

procedure selecting the true QQ-matriz converges to 1 as N — oo.

Proposition 3 ensures the consistency of the BIC, which is further supported by the
simulation studies in Section 5. Alternatively we can use other information criteria satisfying
conditions in Proposition 3 to select the final ()-matrix, such as those proposed in Chen and

Chen (2008), Zhang and Shen (2010), Fan and Tang (2013) and many others.

Remark 6. Directly solving the optimization problem in (7) could be computationally ineffi-
cient due to the latent structure setting. Instead, it is solved via an EM algorithm. We also
propose a fast pre-screening method to get reasonable starting points by solving a reqularized

likelihood of the main effect LCDM model. Please refer to the Appendiz for more details.

4.2 Stepwise estimation with a provisional ()-matrix

In this section we adapt the estimation method in the previous section to the case when
there is an initial yet maybe misspecified ()-matrix given by practitioners. The provisional
QWO is often believed by practitioners to be close to the true @, with only a few possible
misspecifications. Although the method in Section 4.1 can be directly applied by using the
QW as a starting matrix of the estimation algorithm, in data analysis with limited sample

size, this method often tends to find a “global optimal” ()-matrix that has a low information
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criterion value such as BIC but may differ Q® with many items. Such an estimated Q-
matrix, though statistically fits the data better, may be difficult to interpret for the purpose
of cognitive diagnosis. To incorporate such practical need into the estimation procedure,
we adapt the method in Section 4.1 to be a stepwise estimation procedure with each step
focusing on updating one item.

The stepwise procedure starts the EM algorithm in Section 4.1 using the provisional Q)
and the estimated model parameters under Q¥ as initial values. We denote the BIC under
the Q©-restricted general CDM as BIC®). In the M-step, we estimate B§0), jg=1---,J.
Instead of update all 3’s as in the exploratory estimation in Section 4.1, for each item j,
we introduce a matrix Q7 that updates Q©) with only the jth row, denoted by Qg-?*’j ),
according to the estimated Bj(-o). Note that Q;?;j ) is uniquely determined by ,BAJ(-O) and Q(07)
may be the same as Q. Let BIC®7) be the BIC under the matrix Q7). If there is an
item j such that j) = arg M, 6(04)£Q©), BIC©4)<BICO) BIC©3)  then we update the Q-
matrix as QM) = Q(O’j(l)). Note that there may exists an item h with BICO" < BIC©3™)
but QM = QO that is, for the hth item, there is a submodel having a lower BIC than
the general CDM under the same ()-matrix. To account for such submodel effects during
estimation, for any item h such that BIC®® < BIC©3") we update the item response
model 0}, o, according to the nonzero structure of B,(LO), while for other items we still use the
general CDM. This ends the first step of the stepwise estimation method. We repeat the

preceding procedure until the BIC starts to increase. Theoretically, Proposition 3 ensures

the estimation procedure to find at least a local optimal ()-matrix.

Remark 7. When the sample size is not large enough, the stepuise detection procedure may
overestimate the number of the misspecified items. In order to control the number of false
positive detections, we propose to use a bagging method to reduce the estimation variance.
Specifically, we resample N individuals’ response with replacement from the original data set
and perform the stepwise estimation procedure. We repeat this M times with M a relatively

large number and denote the estimated Q)-matrices by QF,,m =1,--- M. Then we calculate
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the average estimator Q* = (@) gxr = = Z%zl Qr, and the final detected entries are those
with @y, > s if the initial q](.g) =0 and qj, < s if q](.g) = 1. Here s is a threshold value to

classify @, as 0 or 1, and a natural choice is 0.5.

5 Simulation Results

We illustrate the performance of the proposed estimation procedures via two simulation
studies. For the first study in Section 5.1, we assume no prior information on the )-matrix.
For the second study in Section 5.2, a ()-matrix is given yet misspecified with a few items.
We introduce the simulation setting that will be used in both studies. We consider latent
attributes with dimension K = 3,4 and 5, and the test length J = 20. The true ()-matrices,

shown as following, are chosen such that our identifiability conditions are satisfied.

Q1=

— = = = = O R RO R R OO0, OO0, OO
—_ = = O P O PR OO, OOFOORFRO
— = = = O 2 OO OO, OOFFOO
R m_) P OO P O FRF P OO, OO0 F—F,OOoO O
_ —_ OO R O, MFEF OO, FEF OO OO OO
RO rRr P R OO O, P OOFrRrROOOF, OO
O P PR FEFOFRFOKFEFFEF OO, OOOH+HEOOO
R P OO R P OO0 OO OOoO oo
—R OO R R OO0 RRrROOORrRrRrOOoOOoOO RO
OO R FHEFEFEFOORFRMFEFODODOHFEFOODOOHFEOO
O R HF P, OO P OOOFRFROODOoOOoOFOOO
== OO R P OO0 R OO R oo oo

In both studies we use simulated data from two types of latent class models: the DINA
and the saturated LCDM. Both are designed such that the correct response probabilities for
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all items are between 0.2 and 0.8. For the DINA, the slipping and guessing parameters of all
items are set to be 0.2. For the LCDM and any item j requiring K; attributes, we set the
correct response probabilities of attribute profiles with K7 out of the K required attributes
to be 0.2 + (0.8 — 0.2) x K}/K;. Note that the DINA model has 2J item parameters and
the LCDM has Z}]:l 2K item parameters under the true Q-matrix.

It is natural that one subject’s latent attributes are correlated. To consider the depen-
dence, we use the following two steps to simulate the true latent profiles (Chen et al., 2015).

) iid.
First generate @; = (%1, ..., Tix) ~

N(0,%), fori=1,..., N where ¥ = (1—p)Ix +plglk;
then the attribute profile a;y is set to be 1 if x;;, > 0 and 0 otherwise. In both studies, three
different situations of dependency is considered by choosing p = 0, 0.15 and 0.25.

After generating latent profiles and item parameters, we simulate the observed responses

for 500 independent replications. Even though the data are generated under the DINA and

LCDM, the true models are assumed to be unknown during the estimation.

5.1 Exploratory estimation of the whole ()-matrix

In this study we estimate the ()-matrix completely from the data. In the case of K = 3,
the following crossover design is applied for the considered two models, three sample sizes,
and three attribute dependent levels: {DINA,LCDM} ® {N = 500,1000,2000} ® {p =
0,0.15,0.25}.

Table 3 presents the simulation results. The column “Matrix” shows matrix-level esti-
mation results and gives the proportion of the entire ()-matrix correctly recovered by the
estimation method among 500 replications. The column “Item” is the item-level estimation
results and it shows the averaged proportion of the item )-vectors being correctly estimated.
For the entry-level results, the column “TPR” is the proportion of true connections between
attribute and item being correctly detected, i.e., the 1’s in the true )-matrix correctly esti-
mated; and “FPR” is the proportion of irrelevant item-attribute pairs specified as relevant,

i.e., the 0’s in the true @)-matrix estimated as 1’s. For comparison, we have also performed
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the estimation method using the Lasso penalty. Multiple starting values are used. Table 3
shows that the proposed truncated L; method outperforms the L, regularized estimation in
most cases. Both methods perform better when sample size increases and attributes are less
correlated. The correct recovery rate of the (Q-matrix is higher for the DINA model than
that for the LCDM. This is because in the DINA model each item has only one non-zero

and non-intercept coefficient, which is relatively large and easier to detect.

DINA LCDM
P N Matrix Item TPR FPR | Matrix Item TPR FPR
500 TLP 0.958  0.998 1.000 0.002 | 0.566  0.972 0.987 0.005
0 L1 0948  0.997 1.000 0.002 | 0.552  0.972 0.988 0.007
1000 TLP 0.980  0.999 1.000 0.001 | 0.938  0.996 1.000 0.002
L1 0980 0.999 1.000 0.001 | 0.926  0.996 0.999 0.003
9000 TLP 0.990  0.999 1.000 0.000 | 0.980  0.999 1.000 0.001
L1 0990 0.999 1.000 0.000 [ 0.978  0.999 1.000 0.001
500 TLP 0.920 0.992 0.999 0.005 | 0.562  0.970 0.990 0.010
0.15 L1 0920 0.995 1.000 0.004 | 0.532  0.966 0.988 0.011
1000 TLP 0.958  0.996 1.000 0.003 | 0.900  0.995 0.999 0.003
L1 0958 0.996 1.000 0.003 | 0.900  0.995 1.000 0.003
9000 TLP 0.972  0.997 1.000 0.002 | 0.974  0.999 1.000 0.001
L1 0970 0.997 1.000 0.003 | 0.972  0.998 1.000 0.001
500 TLP 0.910  0.990 0.998 0.006 | 0.516  0.966 0.988 0.011
0.95 L1 0.88  0.992 1.000 0.006 | 0.432  0.959 0.986 0.013
1000 TLP 0.958  0.998 1.000 0.002 | 0.866  0.993 0.999 0.005
L1 0930 0.996 1.000 0.003 | 0.826 ~ 0.990 0.999 0.006
9000 TLP 0.964  0.996 0.999 0.003 | 0.980  0.999 1.000 0.001
L1 0958 0.995 1.000 0.004 | 0.974  0.999 1.000 0.001

Table 1: Exploratory estimation results for K = 3. The column “Matrix” is the proportion of
the entire (Q-matrix correctly recovered. “Item” is the proportion of the item vectors correctly
estimated. TPR is the proportion of the 1’s in the true @-matrix correctly detected. FPR is the
proportion of the 0’s in the true Q-matrix falsely estimated as 1’s.

We also consider the cases with the number of latent attributes K = 4 and K = 5. We
use the non-correlated attributes and two sample size N = 1000 and 2000. Table 2 shows
the simulation results for 500 replications. Due to the fact that the size of parameters in

the saturated model increases with K exponentially, the estimation becomes more difficult,
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particularly for the LCDM. However, the item-level (“Item”) and entry-level (“TPR” and
“FPR”) estimation results are quite accurate with more than 98% of the item @Q-vectors
and almost all entries correctly estimated when N = 2000. Overall, the TLP outperforms
the Lasso method. As in the case of K = 3, the DINA model has better estimation results
than the LCDM due to the sparser and stronger signals. We also note that under the DINA
model, the TLP estimation results for K = 5 are slightly better than K = 4; this might be
due to the Monte Carlo error and the selection of tuning parameters during the estimation.

Estimation results of the parameters © = (6, o) jxox are presented in Table 3 with K €
{3,4,5} and p = 0. The correlated cases with p # 0 are similar and therefore not reported
here. Recall that 0, o denotes the correct response probability to the jth item for latent class
a. Two methods are compared. For the proposed method, the 0’s are calculated from the
refitted 3 values under the estimated model structure (column “TLP”). For the true model,
the 6’s are estimated under the true (-matrix and the true diagnostic model assumption
(column “True”). We report the averaged absolute values of the estimated biases of 0’s
(column “aBias”) and the averaged squared-root mean squared error (column “RMSE”).
Table 3 shows that the proposed method gives similar estimation results to those under the
true model, which is consistent with the theoretical results in Propositions 1 and 2. Please

also refer to Figure A.2 in the Appendix for the box plots of the MSEs.

DINA LCDM
K N Matrix Item TPR FPR | Matrix Item TPR FPR
1000 TLP 0.956  0.998 1.000 0.001 [ 0.600  0.973 0.997 0.010
K—4 L1 0950 0.997 1.000 0.001 | 0.566  0.969 0.998 0.012
9000 TLP 0.960  0.998 1.000 0.001 [ 0.890  0.994 1.000 0.003
L1 0956  0.998 1.000 0.001 | 0.884 0.994 1.000 0.003
1000 TLP 0.970  0.998 1.000 0.001 | 0.342  0.944 0.991 0.013
K—5 L1 0916 0995 1.000 0.002|0.136  0.905 0.998 0.029

TLP 0974 0998 1.000 0.001 [ 0.712  0.982 1.000 0.005

2000 L1 0954 0997 1.000 0.001 | 0.662  0.980 1.000 0.006

Table 2: Exploratory estimation results for K = 4 and 5.
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DINA LCDM
N TLP True TLP True
aBias RMSE aBias RMSE | aBias RMSE aBias RMSE

500 0.004 0.029 0.004 0.028 | 0.007 0.044 0.007 0.045
K =3 1000 0.003 0.020 0.003 0.020 | 0.005 0.029 0.005 0.032
2000 0.002 0.014 0.002 0.014 | 0.004 0.019 0.004 0.022

1000 0.004 0.023 0.004 0.022 | 0.008 0.039 0.007 0.039
2000 0.003 0.016 0.003 0.016 | 0.006 0.024 0.005 0.027

1000 0.004 0.026 0.004 0.026 | 0.010 0.048 0.008 0.047
2000 0.003 0.018 0.003 0.017 | 0.006 0.027 0.005 0.032

Table 3: Estimation results for ©. “aBias” is averaged absolute values of estimated biases of 0’s
and “RMSE” is averaged squared-root mean squared error. “TLP” is the re-fitted estimate under
the estimated model structure; “True” is the estimate under the true model structure.

5.2 Stepwise estimation with a provisional Q-matrix

In this simulation study, we aim to estimate the ()-matrix when a provisional (-matrix is
available. The provisional (-matrix is designed to be misspecified at two levels: 10% and
20% on the item level. The misspecified Jy items are selected randomly from the J = 20
items and the @Q-vector of a misspecified item is uniformly selected from the 2% possible
vectors expect the true one and the zero vector.

We first consider K = 3 and use a crossover design of two models, two degrees of misspec-
ification levels, three sample sizes, and three attribute dependent levels: {DINA, LCDM} ®
{Misspecification 10%,20%} ® {N = 500, 1000, 2000} ® {p = 0,0.15,0.25}. For each case,
we compare the performance of proposed method with the GMDI method (de la Torre and
Chiu, 2016). The simulation results are summarized in Table 4 for low (10%) and Table
A.1 (presented in the Appendix) for high (20%) misspecification levels. The column “To-
tal” shows the proportion of correctly estimated item vectors for each method; note that
by the design of our simulation, the baseline “Total” value of the initial Q®-matrix is 0.9
for low-misspecified case and 0.8 for high-misspecified case. The column “TPR” (true posi-
tive rate) shows the proportion of those misspecified entries/vectors in the initial Q(® that

are correctly detected, and “FPR” (false positive rate) is the proportion of those correctly-
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specified entries/vectors in the provisional Q(®) that are being falsely detected. The results
show that the proposed method outperforms the GMDI method for all simulation conditions.
The TPR of proposed method tends to 1 as sample size increases while such trend is not
significant for the GMDI. Moreover, the performance of our method declines only slightly as
the misspecification level increases from 10% to 20%, while the GMDI approach is affected
more significantly. With the same sample size, the stepwise procedure works better for the
simpler DINA model while the performance is similar for different dependence levels.

We use the proposed stopping rule based on the BIC. We also report the results using
a fixed step number Jy, which is the number of misspecified items in the initial Q) in
the brackets. It shows that the proposed sequential method performs similarly to that with
fixed Jj steps, which indicates that our method detects most of the misspecified items within
the first Jy steps. We also consider the cases with K = 4 and K = 5, and the results are

presented in the Appendix.

6 Data analysis

We consider a data set that has been used for educational assessment. This dataset contains
responses from 536 middle school students to a set of fraction subtraction items. Various
subsets of the items with different numbers of attributes have been analyzed in the literature,
such as Tatsuoka (2002), de la Torre and Douglas (2004), de la Torre (2011), Chen et al.
(2015), and de la Torre and Chiu (2016). We follow the setting in Chen et al. (2015) and
study 17 items. The item contents and the @)-matrix with 8 attributes given by de la Torre
and Douglas (2004) are presented in the left of Table 5. The attributes are defined as follows:
(A1) Convert a whole number to a fraction; (A2) Separate a whole number from a fraction;
(A3) Simplify before subtracting; (A4) Find a common denominator; (A5) Borrow from
whole number part; (A6) Column borrow to subtract the 2nd numerator from the 1st; (A7)

Subtract numerators; and (A8) Reduce answer to simplest form.
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DINA LCDM
Entry Vector Entry Vector

p N Total TPR FPR TPR FPR | Total TPR FPR TPR FPR
p q 0.998 0.986 0.000 0.980 0.001 | 0963 0.860 0.009 0.850 0.024

500 - rOPOSCY(0.996)  (0.981) (0.001) (0.975) (0.002) | (0.973) (0.884) (0.005) (0.850) (0.013)
GMDI 0.923 0.252 0.000 0.230 0.000 | 0.923 0.252 0.000 0.235 0.000

P q 0.999 0.996 0.000 0.985 0.000 | 0.993 0.950 0.000 0.935 0.001

0 1000 ~FOPOSCY (0.999) (0.996) (0.000) (0.985) (0.000) | (0.994) (0.968) (0.001) (0.950) (0.002)
GMDI 0.932 0.345 0.000 0.325 0.000 | 0.932 0.340 0.000 0.320 0.000

P od 0.999 1.000 0.000 0.995 0.001 | 0.998 0.993 0.000 0.985 0.001

2000  TOPOS€d (1.000) (1.000) (0.000) (0.995) (0.000) | (0.997) (0.986) (0.000) (0.970) (0.001)
GMDI 0.924 0.290 0.000 0.245 0.000 | 0.924 0.281 0.000 0.240 0.000

P d 0.998 0.991 0.000 0.985 0.001 | 0.961 0.877 0.009 0.840 0.026

500 - TOPOSCY0.998)  (0.991) (0.000) (0.985) (0.001) | (0.972) (0.874) (0.005) (0.835) (0.013)
GMDI 0.924 0.247 0.000 0.240 0.000 | 0.923 0.248 0.000 0.240 0.001

P q 0.999 0.991 0.000 0.985 0.000 | 0.994 0.962 0.001 0.955 0.002

0.15 1900 PO (0.998) (0.991) (0.000) (0.985) (0.001) | (0.995) (0.973) (0.001) (0.965) (0.002)
GMDI 0.932 0.345 0.000 0.325 0.000 | 0.931 0.326 0.000 0.315 0.000

P q 1.000 1.000 0.000 1.000 0.000 | 0.999 0.993 0.000 0.990 0.000

2000 ~ TOPOS€d (1.000) (1.000) (0.000) (0.995) (0.000) | (0.999) (0.991) (0.000) (0.985) (0.000)
GMDI 0.924 0.284 0.000 0.245 0.000 | 0.924 0.279 0.000 0.240 0.000

P d 0.998 0.991 0.000 0.985 0.001 | 0.967 0.902 0.008 0.875 0.023

500 - TOPOSCY0.997)  (0.986) (0.001) (0.980) (0.002) | (0.975) (0.888) (0.004) (0.855) (0.012)
GMDI 0.922 0.234 0.000 0.225 0.000 | 0.920 0.235 0.001 0.225 0.003

P q 0.999 0.995 0.000 0.990 0.000 | 0.994 0.963 0.001 0.955 0.002

025 1900 PO (0.999) (0.995) (0.000) (0.990) (0.000) | (0.994) (0.971) (0.001) (0.960) (0.003)
GMDI 0.932 0.333 0.000 0.325 0.000 | 0.931 0.326 0.000 0.315 0.000

Pronoseq 000 1000 0.000  1.000  0.000 | 1000 0.995 0.000 0.995  0.000

2000 TOPOS€d (1.000) (1.000) (0.000) (0.995) (0.000) | (0.999) (0.991) (0.000) (0.985) (0.000)
GMDI 0.924 0.272 0.000 0.245 0.000 | 0.924 0.275 0.000 0.245 0.000

Table 4: Low misspecification with K = 3. “Total” is the proportion of correctly estimated items
with the initial baseline 0.9. “TPR” is true positive rate and “FPR” is the false positive rate. For
the proposed method, results after the first 2 steps are presented in brackets.

We first apply the proposed stepwise estimation method in Section 4.2. Note that at-

tribute A7 is required by all the items and for the reason of identifiability, we focus on the

other 7 attributes. The estimation result suggests to update the highlighted entries in Table

5. In particular, it suggests that the attributes A2 and A3 should be required by item 10

and A4 required by item 11 while A2 not needed for item 11. Such changes appear difficult

to interpret under the definitions of the latent attributes. This may be due to the false

discoveries of the sequential estimation method with only 536 observations for 8 attributes

and the nonidentifiablity issue with the @)-matrix. To better control the false detection,
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Pre-specified Bootstrap Aggregation
Item Content Al A2 A3 A4 A5 A6 A7 A8 A1 A2 A3 A4 A5 A6 A8

1 g — % 0 0 O 10 1 10 0.00 0.00 0.00 1.00 0.00 1.00 0.00
2 % — % 0 0 O 10 0 1 0 000 003 000 1.00 0.00 0.00 0.00
3 % — % 0 0 O 10 0 1 0 001 000 000 1.00 0.00 0.00 0.00
4 3% - 2% 0 1 10 1 0 1 0 000 097 1.00 0.01 098 0.00 0.01
) 1% — é 0o o0 o o o0 0 1 1 000 0.03 0.00 0.00 0.02 0.00 1.00
6 3% - 3% 0 r 0 o0 o0 o0 1 0 000 1.00 0.00 0.00 0.00 0.00 0.00
7 4? - 1% 0 r 0 o0 o0 o0 1 0 000 1.00 0.00 0.00 0.01 001 0.00
8 4% — 31% 0 10 10 0 1 1 002 099 0.00 1.00 0.00 0.01 0.98
9 3— 2% 1 10 o0 o0 0 1 0 1.00 095 0.06 0.00 0.06 0.00 0.00
10 — % 1 o o o0 o0 o0 1 0 1.00 0.03 0.03 0.00 0.00 0.00 0.00
11 4% — 2% 0o 1 0 o 1 0 1 1 000 0.92 0.00 0.13 1.00 0.00 0.94
12 4% — 2% 0 $1 0 o0 1 0 1 0 000 099 0.01 0.00 1.00 0.00 0.00
13 7% — % 0 $1 0 o0 1 0 1 0 001 100 0.00 0.00 1.00 0.00 0.00
14 41—10 21% 0 1 0 0 1 1 10 0.00 1.00 0.00 0.00 1.00 1.00 0.00
15 4— 1% 1 1 10 1 0 1 0 09 1.00 089 0.00 091 0.00 0.02
16 4% — 1% 0 1 10 1 0 1 0 000 1.00 1.00 0.00 1.00 0.00 0.00
17 3% — 2% 0 1 0 1 10 1 0 000 100 0.00 1.00 1.00 0.00 0.00

Table 5: The left is the @-matrix in de la Torre and Douglas (2004). The highlighted entries are
detected from the stepwise method. The right is the bootstrap aggregating result.

we conduct the proposed bootstrap bagging method. The aggregated estimation, shown in
Table 5, suggests none of the four detected entries should be changed. The result confirms
the validity of the original @-matrix in de la Torre and Douglas (2004).

We further consider a simpler @-matrix proposed in Chen et al. (2015) with K = 3.
The @Q-matrix is demonstrated on the left of Table 6 with the three attributes interpreted
as: Attribute 1 finding common denominator; Attribute 2 writing integer as fraction; and
Attribute 3 subtraction of fraction numbers with integers involved. We perform the proposed
sequential approach and it suggests to update item 9 and 10. Both corrections are further
confirmed by the bootstrap bagging results in the middle of Table 6. If we check the item
content, solving 3—2% and 2—% does involve the process of writing integers as fractions, hence
should require Attribute 2. Therefore, our results are more consistent with the definition of
the attributes and the two detected entries are recommended to be updated.

Exploratory estimation of the latent structure is also conducted using the proposed ap-
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Pre-specified Bootstrap Aggregation FExploratory Estimate

Item Content Attrl Attr2 Attr3 Attrl Attr2 Attr3 Attrl Attr2 Attr3

1 -3 1 0 0 100 000 0.00 1 0 0
2 $-3 1 0 0 100 003 0.08 10 0
3 -5 1 0 0 100 000 0.05 10 0
4 31-22 0 1 0 003 1.00 0.00 0o 1 0
5 1i-L 0 0 1 004 005 1.00 0o 0 1
6 32-32 0 0 1 006 005 100 0o 0 1
7 42-1% 0 0 1 010 007 1.00 0o 0 1
8 43-31 1 0 1 100 005 0.99 10 1
9 3-21 1 0* 1 099 0.51*% 0.95 110
0 2-1 1 0* 1 100 0.55% 1.00 111
11 4%-22 0 1 1 018 100 097 110
12 4l-28 0 1 1 000 100 0.99 0o 1 0
13 724 0 1 1 000 100 100 0o 1 0
14 44 -25 0 1 1 003 100 1.00 0o 1 1
15 4-1% 0 1 1 036 100 1.00 111
16 41-12 0 1 1 000 100 0.99 0o 1 0
17 33-22 1 1 1 100 100 1.00 111

Table 6: Fraction subtraction data with K = 3. The left is the @-matrix from Chen et al. (2015).
Entries in blue are detections from the stepwise estimation. The middle is the bagging result.
Entries with bootstrap significance are labeled with “x”. The right is the exploratory estimation
result.

proach for K = 3. The result is shown on the right of Table 6 and it agrees with Chen
et al. (2015) on the first 8 items. Note that Chen et al. (2015) assumes the specific DINA
model when conduct the estimation but our approach does not make such model assump-
tion. Consequentially the interpretation of the three attributes should be different from
theirs. To further compare the three ()-matrices in Table 6, we calculate their BIC values:
the BIC of the @-matrix in Chen et al. (2015) is 7846, the BIC of the sequential updated
one is 7837, and the exploratory one is 7793, which shows that both proposed methods give
better goodness of fit than the initial )-matrix. We also perform the exploratory analysis
with other K values. In particular, the estimated ()-matrix with K = 5 is given in Table
7. Compared with the @)-matrix in Table 5, the estimated first attribute can be interpreted

s “(A1) Convert a whole number to a fraction”, the second as “(A4) Find common de-

nominator”, the third one as “(A5) Borrow from whole number part”, while the last two
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attributes shall be interpreted differently from theirs due to the dimension reduction. The
BIC of the estimated model is 7485, which gives a better fit than the ()-matrices in Tables 5
and 6. Nevertheless, it shall be noted that the estimation only serves as a data-driven guide
of constructing the finial ()-matrix, and researchers need to further validate the estimates

based on their understanding of the diagnostic items.

Item Content Attrl Attr2 Attr3 Atttd Attrd

1 :_3 0 1 0 0 0
2 §_g 0 1 0 0 0
3 s—3 0 1 0 0 0
4 3;-22 0 0 1 0 0
5 13 — 3 0 0 0 1 1
6 3:-32 0 0 0 1 1
7 42—-1z 0 0 0 1 1
8 42-35 0 1 0 1 1
9  3-2; 1 0 1 0 0
10 2— 1 0 1 0 1
11 445 -25 0 0 1 1 1
12 43-23 0 0 1 0 1
13 73-1 0 0 1 0 1
14 4Lt -28 0 0 1 0 1
15 4-13 1 0 1 0 1
16 4%—13 0 0 1 0 1
17 32-23 0 1 1 0 1

Table 7: Exploratory analysis results of Fraction Subtraction Data with K = 5.

7 Discussion

This paper aims to identify and estimate the ()-matrix in a family of restricted latent class
models. Based on the identifiability results, we develop a likelihood-based estimation method
that can be applied to two different cases in practice: estimation of the whole (Q-matrix in
exploratory analysis and misspecification detection for a provisional ()-matrix. The simu-
lation studies show that our method is able to recover the true latent structure with high
accuracy. The real data study demonstrates that our method can construct interpretable
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latent structure and provide reasonable updates to the existing ()-matrix.

The capability of adapting with or without the prior information of the @-matrix is
one advantage of the proposed approach. The exploratory analysis in Section 4.1 provides
researcher with useful information on the tests and helps them to explore the features of
new items. The stepwise estimation method in Section 4.2 would serve as a reliable tool to
detect the possible misspecifications of a provisional ()-matrix. It should be noted that the
(Q-matrix that statistically fit the data best may not agree with the one having best practical
interpretation. It is always recommended that researchers and test designers further validate
the estimation results.

One future research direction is to estimate the number of latent attributes in exploratory
analysis. In this study, the latent dimension K is assumed to be known. It is of interest
to select the latent dimension according to the model fit and model complexity. Another
future work is to establish the partial identification of the ()-matrix when the identifiability
conditions are not satisfied. This would be of practical importance, especially when sin-
gle attribute items are difficult to design and therefore the completeness condition may not
be satisfied. Moreover, we assume binary responses in this study while in practice there
could be various types of responses data; for instance, identifiablity of multinomial response
was recently studied in Fang et al. (2017) using the result in Kruskal (1977). Lastly, the
(Q-matrix based cognitive diagnosis models provide the basis for cognitive diagnosis comput-
erized adaptive testing (CD-CAT); the proposed method can be extended to the CD-CAT

setting to calibrate new designed items and estimate their (Q-vectors and item parameters.
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