

1 **Recovery of Carbon Pools a Decade Following Wildfire in Black Spruce Forests of Interior**
2 **Alaska: Effects of Soil Texture and Landscape Position**

3
4 *Canadian Journal of Forest Research*; submitted June 16, 2017. Revised Sept. 18; Oct. 7, 2017.
5

6 Gregory P. Houle^{1,2}
7 Evan S. Kane^{1,2*}
8 Eric S. Kasischke³
9 Carolyn M. Gibson⁴
10 Merritt R. Turetsky⁴

11
12 ¹ School of Forest Resources and Environmental Science, Michigan Technological University,
13 Houghton, MI USA.

14 ² Northern Research Station, USDA Forest Service, Houghton, MI USA.

15 ³ Department of Geography, University of Maryland, College Park, MD USA.

16 ⁴ Department of Integrative Biology, University of Guelph, Guelph, ON CAN.

17 * Corresponding author

19 **Abstract**

20 We measured organic layer (OL) recovery and carbon stocks in dead woody debris a
21 decade following wildfire in black spruce forests of interior Alaska. Previous study at these
22 research plots has shown the strong role landscape position plays in governing the proportion of
23 OL consumed during fire, and post-fire revegetation. Here, we show that landscape position
24 likely influences fire dynamics in these stands through changes in mineral soil texture. The
25 content of fine textured materials in underlying mineral soils was positively related to OL depths
26 measured one and ten years post-fire, and there was an interaction between soil texture and
27 elevation in governing OL consumption, and OL recovery a decade following fire. OL depths a
28 decade post-fire were 2 cm greater than one year post-fire, with a range of 19 cm of
29 accumulation to 9 cm of subsidence. Subsidence was inversely related to the percentage of fine
30 textures within the parent material. The most influential factor determining the accumulation of
31 organic layer carbon stocks a decade following wildfire was the interaction between landscape
32 position and the presence of fine textured soil. As such, parent material texture interacted with
33 biological processes to govern the recovery of soil organic layers.

34 **Keywords:** *Picea mariana*, parent material, clay, loess, wild fire

35 **Introduction**

36 Boreal forests currently harbor about a third of the Earth's rapidly cycling soil organic
37 carbon (C) (McGuire et al. 1995; Pan et al. 2013), which is a pool size similar in magnitude to
38 that of all the C in the atmosphere (~800 Pg). Carbon has accumulated in boreal forest soils as
39 the result of C inputs from net primary production slightly exceeding C losses from
40 decomposition and disturbances (erosion, combustion during fire). This imbalance has been
41 maintained through millennia owing to cold and wet conditions which slow decomposition
42 processes and also contribute to these stores being relatively resilient to disturbances such as
43 wildfire. In the North American boreal forest, black spruce (*Picea mariana* Mill. B.S.P.) cover
44 types are associated with the largest soil organic carbon (SOC) stocks, and are also prone to fire
45 (Johnson and Kern 2003). As part of the historic fire regime in this cover type, C losses through
46 combustion recover with succession and regeneration; this pattern of disturbance and
47 regeneration is assumed to follow a sawtooth pattern wherein rapid C losses in wildfire are
48 followed by gradual accrual of SOC with stand replacement (Harden et al. 2000). However, this
49 paradigm may be affected by a changing climate and fire regime in the North American boreal
50 forest.

51 In recent decades, greater burned area and increasing fire sizes have occurred--
52 particularly in continental regions of Alaska and western Canada (Kasischke and Turetsky 2006).
53 The increased extent and severity of wildfire has implications for C storage in these ecosystems,
54 with many black spruce forests losing more SOC in these large fire events than they have
55 historically been able to accumulate between fire events (Turetsky et al. 2011). As such, it is
56 important to investigate the controls on SOC accumulation following severe wildfires in boreal

57 black spruce forests to understand how wildfire may affect C storage capabilities of these
58 ecosystems.

59 There is an emerging understanding of controls on organic matter consumption in
60 wildfires in boreal black spruce forests (Johnstone et al. 2010; Kasischke et al. 2010; Kasischke
61 and Hoy 2012), but few studies have directly investigated the variable controls on organic layer
62 (OL) recovery and soil development over time following boreal wildfires (cf. Viereck and
63 Dyrness 1979; Seedre et al. 2014; Kishchuk et al. 2015). Conceptually our understanding of the
64 development of soils following disturbance, including SOC dynamics, comes from the ‘State
65 Factor concept’ proposed by Dokuchaev (1879; Hambidge 1938) and Jenny (Amundson and
66 Jenny 1997). State factors include the interacting effects of physiography, climate, time,
67 biology, and parent material that influence soil development. In boreal forests, relief and aspect
68 strongly control microclimate (Slaughter and Viereck 1986), with north-facing and toe slope
69 forests generally being cooler, wetter, and more likely to be dominated by black spruce and
70 contain permafrost than south facing or flat upland stands on hill crests. In turn, north-facing and
71 flat lowland forests generally have less OL consumption in any fire event (Turetsky et al. 2011),
72 as well as slower productivity and slower rates of decomposition during fire-free periods. As a
73 result of all of these processes, OL depths and SOC stocks tend to be larger in cooler north-
74 facing and toe slope forests on time scales appropriate for factoring disturbance effects on the C
75 cycle (Van Cleve and Yarie 1986; Kane and Vogel 2009). Fires generally occur on 100 year
76 intervals in interior Alaska (Yarie 1981), but when the fire return interval is shortened the “time”
77 component of the state factor concept gets reset- potentially decreasing OL depth recovery and
78 SOC accumulation since fire (Bond-Lamberty et al. 2007; Johnstone and Brown 2011; Harden et
79 al. 2012; Hoy et al. 2016). It can therefore be seen how time interacts with other state factors

80 mainly related to site drainage in controlling the recovery of OL and SOC following wildfire.
81 While there is general consensus of state factor control on soil development in the broad sense, a
82 key state factor control on post-fire OL characteristics in boreal forests-- parent material texture--
83 has received far less consideration (Van Cleve et al. 1991; Johnson et al. 2011).

84 Loess deposits (clay and silt sized particles) are widespread parent materials throughout
85 Alaska's interior region which develop syngenetically from wind derived inputs from the major
86 glacial river valleys, namely the Tanana, Yukon and Koyukuk (Pewé 1955; Begét et al. 2006).
87 As such, the thickness and development of loess deposits generally decrease gradually with
88 distance from alluvial sources (White et al. 2002; Mulligan 2005) and are thinner at higher
89 elevations, particularly near treeline where there is less tall-statured vegetation to trap eolian
90 deposits (Pewé and Reger 1983; Muhs et al. 2003; Begét et al. 2006). This discontinuous mantle
91 of loess overlies residual, colluvial and glacially transported materials, which generally have
92 lower water holding capacities due to being coarser textured and containing rock fragments (Ping
93 et al. 2006, and references therein). Changes in loess depth and parent material characteristics
94 also influence soil ice content and permafrost maintenance, which also greatly affect drainage
95 (Swanson 1996; Brown et al. 2015). As such, much of the soil water holding capacity in interior
96 Alaska is derived from variation in the thickness of the loess cap and what it is underlain with,
97 both of which vary with physiography and origin (see for example, O'Donnell et al. 2013).

98 While it is well established that soil texture exerts strong control over soil moisture, stand
99 production, and organic matter accumulation in boreal forest (e.g., Bhatti and Apps 2000), its
100 interactions with landscape position in governing the severity of burning and the recovery of
101 SOC stocks following fires have not been directly examined. Here, we investigate changes in
102 OL consumption and recovery on different landscape positions in the additional context of the

103 underlying parent material. First, we examined the interaction between soil texture and
104 landscape position in determining the depth of burn (one year post fire). Second, we looked at
105 the role of soil texture in influencing recovery of the SOC pool during a ten year window of post-
106 fire succession. We measured OL depths, bulk densities (BD), SOC stocks, and standing and
107 down woody debris C pools prior to burning (live trees and undisturbed SOC stocks), one year
108 after wildfires occurred in 2004, and ten years following wildfires in interior Alaska. We
109 hypothesized there would be OL recovery over the 10 year window since fire, with new
110 materials accumulated since fire having a higher C concentration and lower BD than the
111 underlying OL remaining after a fire. On the other hand, there may be changes in the residual
112 OL layer remaining after fire due to increased decomposition, site drainage and physical
113 compaction, which in turn contribute to increases in BD, perhaps lower C concentration, and
114 subsidence of the OL. Our objective was to determine the extent to which parent material
115 texture, as a state factor control over site drainage, could explain variance additional to
116 physiographic variables in OL consumption in wildfire as well as OL recovery, SOC
117 accumulation and the relative distributions of post-fire C pools associated with woody debris.

118 **Methods**

119 ***Site Selection and Sampling***

120 During the summer of 2004, interior Alaska experienced the hottest and driest weather
121 since 1940 (Alaska Climate Research Centre 2009). These conditions resulted in widespread
122 fires consuming 2.7×10^6 ha of forests, representing the largest annual burned area in Alaska's
123 58-year fire record (Todd and Jewkes 2006). Most study sites were established the following
124 spring (June to August, 2005), with some sites established in the summer of 2006, as described
125 in detail by Turetsky et al. (2011). While the sites selected for this study burned during early

126 summer (June and early July) fires, they encompassed a range of fire severities (defined by
127 consumption of aboveground biomass and organic layer) that were controlled by site moisture
128 levels, topographic positions, parent material texture, and geographic dispersion across the
129 landscape (Kasischke et al. 2008). Briefly, site establishment included placing a center wooden
130 post monument (where GPS location was determined), in the middle of a 50 m baseline transect
131 which bisected one 30 m transect at the center and two additional 30 m transects at random
132 distances from center. Soil organic layer (OL) depths, soil bulk densities (BD), and samples for
133 elemental analysis were taken as previously described in detail (Kane et al. 2007; Turetsky et al.
134 2011). Depth of burn was quantified by measuring the distance from the upper most
135 adventitious root down to the top of the organic soil layer as previously described (Kasischke et
136 al. 2008; Boby et al. 2010).

137 In this study 38 study sites encompassing four different landscape positions (flat (< 5%
138 slope) lowland (n=8), flat upland (n=10), north aspect (n=12) and south aspect (n=8)) were
139 revisited for sampling ten years post fire (Figure 1). The original wooden monument was located
140 and transects were run as previously described. Organic layer depths were measured every five
141 meters along the 50 m baseline and three 30 m transects. Organic layer soil cores were sampled
142 from each site at 0 m, 15 m, and 30 m along the three 30 m transects (n=9). Core sampling
143 occurred after biomass collection using a 5 cm diameter sharpened stainless steel soil corer
144 attached to a power drill (cf. Nalder and Wein 1998). Cores were sampled in 20 cm increments,
145 with the surface char layer parsed from the remaining core samples in the field. Incremental
146 depths were noted and samples were refrigerated until lab analysis. In this study only organic
147 layers were re-measured for changes in physical and chemical properties. We dug an additional

148 soil pit to a depth of 0.5 m into the underlying mineral soil for texture analysis of site parent
149 material at each site.

150 ***Dead Woody Debris***

151 Down dead woody debris (DDWD) was sampled using the Brown (1974) transect
152 intercept method. Diameters of down dead black spruce were recorded at the intersection of the
153 three 30 m transects and were measured using a hand caliper and classified by 5 different size
154 classes; class I 0-0.5 cm, class II 0.5-1 cm, class III 1-3 cm, Class IV 3-5 cm, and Class V 5+ cm
155 (Nalder et al. 1997). Five decay classes were also assigned with diameter measurements
156 following Manies et al. (2005). Down dead black spruce biomass was quantified using the fuel
157 load estimate equation by sample size classes, 1-5 (Nalder et al. 1997). Each designated decay
158 class 1-5 was used in determining the biomass of woody tissues (Manies et al. 2005), which was
159 assumed to be 50% carbon (Bond-Lamberty et al. 2004; Thomas and Martin 2012).

160 All standing dead black spruce within one meter of either side of the 30 m transects (180
161 sq. m) were tallied and their basal diameters were measured. Standing dead black spruce tree
162 biomass was determined using allometric equations for bole, bark and coarse branches based on
163 basal diameters (Yarie et al. 2007). All standing dead woody debris (SDWD) was assigned a
164 decay class of one, and biomass was assumed to be 50% carbon (Thomas and Martin 2012).

165 ***Soil Core Processing***

166 Field moist organic layer soil cores were weighed and cut in half vertically by 20 cm
167 sections. One half was designated for soil bulk density (BD). BD was determined as the dry
168 core mass (dried to constant mass at 65°C) divided by the incremental core volume. Dry BD
169 core samples were ground in a Wiley mill for elemental analysis.

170 Mineral soil samples were prepared by drying in an oven at 65 °C, pulverized with a
171 hammer, and sieved through a #10 (2 mm) mesh sieve to determine rock content. Particle size
172 analysis for percentages of sand, silt and clay on the rock-free fraction followed the standard
173 hydrometer method (Gee and Bauder 1985). Briefly, 100 g of mineral soil sample was dispersed
174 with 50 ml of sodium hexametaphosphate. Hydrometer and solution temperature were recorded
175 at 40 seconds and 8 hours after the initial mixing of the solution. A blank solution was made and
176 hydrometer and temperature measurements were recorded during the same measurement
177 intervals as the parent material solutions.

178 All soil samples from 16 sites (four from each landscape classification unit) were
179 analyzed for elemental C and N content (Costech Elemental Combustion System 4010; Costech
180 Analytical Technologies Inc., Valencia, CA, USA). Organic matter content based on loss on
181 ignition (LOI) at 500° C for 12 hours in a muffle furnace was determined on soil samples from
182 all 38 sites, and carbon content was determined from the empirical relationship between LOI and
183 elemental analysis ($R^2 = 0.77$, $p < 0.001$, $F = 33.54$; $\beta_0 = 0.33 \pm 5.07$; $\beta_1 = 0.49 \pm 0.08$). A
184 separate empirical relationship between LOI and elemental analysis was used to determine the C
185 content of char layer soil samples ($R^2 = 0.73$, $p = 0.002$, $F = 21.14$; $\beta_0 = 2.60 \pm 8.25$; $\beta_1 = 0.48 \pm$
186 0.11).

187 ***Statistical Analyses***

188 Effects of landscape position measurements (slope, aspect and elevation), soil texture,
189 and their interactions on the percent change in OL depth, absolute change in OL depth, change in
190 BD, and change in SOC stocks ten year after wildfires were investigated. We used a general
191 linear mixed model approach which enables statistical models to be fit to data where the

192 response is not necessarily normally distributed (PROC GLIMMIX; SAS version 9.4, SAS
193 institute, Cary, North Carolina USA). The distributions of the response variables were evaluated
194 in Kolmogorov-Smirnov tests using the UNIVARIATE procedure. The appropriate data
195 distributions satisfying assumptions of normality were assigned in the mixed effects models
196 (with distribution (dist) assigned as normal, lognormal, exponential, or gamma as appropriate;
197 link=log function). Type-3 tests of fixed effects and post-hoc comparisons of least-squared
198 means tests across landscape positions were considered significant at alpha = 0.05. Least-
199 squared mean value comparisons employed the Tukey–Kramer adjustment. SAS code and all
200 organic layer LOI, carbon and BD data are available in the public domain
201 (doi.pangaea.de/10.1594/PANGAEA.880718).

202 **Results**

203 ***Controls on Depth of Burn***

204 Pre fire organic layer depths ranged from 16.6 to 43.8 cm and averaged (\pm standard error)
205 28.7 ± 0.2 cm. One year post fire organic layer depths ranged from 1.7 to 30.6 cm and averaged
206 12.0 ± 0.2 cm. For one year post-fire measurements, lowland OL depths were thicker than
207 uplands by a factor of 2.1 and north facing slopes were thicker than south facing slopes by a
208 factor of 1.7. Factors contributing to the relative change in OL depth (percent change in OL
209 depth after burning) in the years following wildfire included mineral soil texture and its
210 interaction with elevation (Table 1). While one year post-fire measurements of OL depths did
211 vary significantly with landscape position (Figure 2), model results suggest that the change in
212 OL depths is driven mainly by the presence of fine textured materials within the parent material
213 (Table 1a).

214 ***Controls on Residual OL Depths***

215 Organic layer depths varied with landscape position after both one year and ten years
216 following wildfires (Figure 2). Across all plots, mean organic layer depths did not recover to
217 pre-fire depths in ten years. Ten year OL depth measurements ranged from 5.2 to 41.0 cm and
218 averaged 13.6 ± 0.2 cm. Ten year post-fire OL depths differed by a factor of 1.6 between
219 lowlands and uplands and by a factor of 1.5 between north and south facing slopes, though
220 variability on north facing slopes was high and differences were not significant between these
221 two landscape positions (Figure 2). While the majority of the sites re-sampled ten years
222 following wildfire exhibited thicker OL depths than those measured one year post-fire, 16 of 38
223 sites actually had shallower mean OL depths (Figure 3a). These declines in OL thickness are
224 likely attributed to subsidence, which coincided with an increase in total OL BD across almost
225 every site (Figure 3b). Across all sites, south facing and upland sites generally had greater
226 increases in OL depths (0.30 ± 0.13 cm yr^{-1}) than did north facing and lowland sites (0.10 ± 0.11
227 cm yr^{-1}) over the last ten years. Relationships between ten year post-fire OL depths and
228 elevation indicated that as site elevation increased, OL thickness following fire decreased
229 ($R^2 = .31$, $P < .001$; Table 2).

230 Factors contributing to the measured change in OL depth over ten years included slope,
231 mineral soil texture, and their interactions with elevation (Table 2a). There was increased
232 accumulation of OL depth over the last ten years as the clay content of underlying mineral soils
233 increased, and there was an interaction between slope and clay content in explaining variation in
234 OL depths (Table 1b).

235 ***Controls on Post-Fire SOC Stocks***

236 Factors contributing to changes in OL depth and soil C stocks were related to changes in
237 physiographic variables and parent material texture, with slope and elevation playing a
238 significant role in OL depths and aspect and texture playing a larger role with changes in C
239 stocks (Table 2). In particular, the clay content of underlying mineral soil significantly affected
240 the amount of change in OL depth between measurements taken one and ten years post fire, with
241 an increase in finer textured parent material resulting in a greater accumulation of organic
242 material in the first decade following fire (Figure 4). In fact, OL subsidence (negative change in
243 OL depth over the last 10 years) occurred when the percentage of clay in the parent material was
244 < 20% (Figure 4c). On average BD measurements were higher in year 10 than in year 1 across
245 all plots by $0.04 \pm 0.01 \text{ g cm}^{-3}$, which is consistent with increasing subsidence in the organic
246 layers (Figure 3). BD measured ten years after fire and the change in BD measurements between
247 one and ten years after fire were both lower in sites with a higher percentage of clay in the
248 mineral soil (Figure 4a, b). However, BD values varied widely across all plots (mean coefficient
249 of variation = 1.1), and there were no significant changes in BD with landscape position (Table
250 2b).

251 Because SOC stocks are the product of C concentration, BD, and depth considered,
252 interpretation of changes in SOC stocks is best done in the context of changes in BD and OL
253 depth. Most sites in this study accumulated OL SOC stocks in the first decade following fire,
254 suggesting that either C concentration or change in BD were more significant than any effects of
255 OL subsidence (decreasing thickness or depth) in determining changes in SOC stocks (Figure 3).
256 In considering all physiographic variables together, only aspect had a significant main effect on
257 changes in OL SOC stocks (Table 2c). However, since changes in OL depths occurred with
258 texture and elevation, we examined these effects on changes in SOC stocks. Percent clay within

259 the parent material was not considered a significant main effect explaining changes in carbon
260 stocks between 1 and 10 years post-fire, but there was a significant interaction between aspect
261 and the clay percentage in explaining changes in SOC stocks (Table 2c). While the north-facing
262 and lowland sites generally coincided with having higher mineral soil clay content, these sites
263 accrued SOC more slowly ($0.07 \pm 0.05 \text{ kg C m}^{-2} \text{ yr}^{-1}$) than did flat upland and south-facing sites
264 ($0.12 \pm 0.06 \text{ kg C m}^{-2} \text{ yr}^{-1}$) over the first ten years since fire.

265 ***Woody Debris and Char Layer Carbon Following Fire***

266 OL consumption following fire (1 year post fire measurement) was the most significant
267 predictor of the distribution of fire killed black spruce in either standing or downed woody debris
268 pools. As the amount of OL consumed in fire increased, the relative amount of DDWD carbon
269 measured a decade following fire increased (Figure 5). DDWD C pools were also affected by
270 parent material clay content (Table 3), with there being generally less DDWD in sites with
271 higher mineral soil clay content. There was also a weak interaction between clay content and
272 aspect (Table 3), owing to the co-occurrence of higher clay but also lower DDWD in flat
273 lowlands. Total DDWD C stocks increased marginally with increased elevation (Table 3). For
274 the four categorical landscape positions the DDWD pool was larger in flat uplands (0.38 ± 0.08
275 kg C m^{-2}) than in flat lowlands ($0.11 \pm 0.09 \text{ kg C m}^{-2}$), but there were no other significant
276 differences by aspect (Figure 6). Compared with pre-fire stand conditions, $39 \pm 2 \%$ of black
277 spruce carbon was still in standing aboveground pools (SDWD) 10 years after fire, with a range
278 of 0-49%. While there were no statistical differences in SDWD C pools across landscape
279 positions ($p = 0.47$), flat lowlands generally had more SDWD C ($0.60 \pm 0.12 \text{ kg C m}^{-2}$) than flat
280 uplands ($0.55 \pm 0.11 \text{ kg C m}^{-2}$) and there was a marginal effect of elevation on these pools across
281 all sites ($F = 3.55$, $p = 0.07$).

282 In the wildfires included in this study, the amount of char produced per unit carbon
283 consumed (char conversion rate) declined as the depth of the OL increased ($R^2 = 0.72$, $p <$
284 0.002), as indicated by year 1 post-fire measurements. One year after burning, north aspects had
285 accumulated fewer products from burning in the presence of a char layer ($0.20 \pm 0.03 \text{ kg C m}^{-2}$)
286 than had south facing aspects ($0.30 \pm 0.04 \text{ kg C m}^{-2}$), which is consistent with char conversion
287 rates being higher on south facing slopes with shallower pre-fire OL depths. Ten years after
288 wildfire, there were no significant differences in the pool sizes of the char-layer C across all
289 aspects ($p = 0.29$), and what was operationally defined as the char layer in field sampling was
290 larger than that measured in year one across all sites ($0.45 \pm 0.04 \text{ kg C m}^{-2}$). The C pool size of
291 this surface char layer was approximately double that of the DDWD C pool, and comprised 5-30
292 % of the mean OL SOC stock remaining across all landscape positions (Figure 6).

293 **Discussion**

294 ***Decadal change in SOC, BD, and OL***

295 In this study, the largest factors influencing the accumulation of OL carbon stocks a
296 decade following wildfire were landscape position and presence of fine textured materials in the
297 parent material. As hypothesized, sites lacking fine textured soils (mainly underlain with
298 colluvium) accumulated organic material more slowly in the decade following fire. While there
299 is a developed literature describing changes in OL thickness and SOC stocks on different
300 landscape positions in black spruce forests of interior Alaska (cf. Viereck et al. 1983; Van Cleve
301 et al. 1983; Van Cleve and Yarie 1986; Kane and Vogel 2009; Ping et al. 2010), regional
302 variation is large (Johnson et al. 2011; Turetsky et al. 2011). Prior research has illustrated the
303 strong control of parent material texture on organic soil development along a catena from an
304 alluvial floodplain in interior Alaska (Viereck et al. 1993), and this work suggests that

305 underlying changes in parent material texture can explain additional variation in the recovery of
306 SOC stocks following disturbances in uplands as well as lowlands. Previous work along the
307 Boreal Forest Transect Case Study has clearly demonstrated the strong control of parent material
308 clay content and its interaction with landscape position on aboveground biomass production and
309 SOC within the forest floor (Bhatti and Apps, 2000), but to our knowledge this is the first direct
310 assessment of how OL recovery following wildfire is influenced by parent material texture and
311 its interaction with physiography.

312 While landscape position played a strong role in governing the depth of burn across the
313 sites in this study (Figure 2; Kane et al. 2007; Turetsky et al. 2011), mineral soil texture and its
314 interactions with landscape position did a better job in explaining variation in the percent change
315 in OL in the year following wildfire and in the decade following wildfire (Table 1). The
316 influence of mineral soil texture was likely present at the time of burning in controlling depth of
317 burn as well as in the years following fire. An increase in mineral soil clay content increases site
318 water holding capacity, which has been shown to decrease fire severity (Bergeron et al. 2007; see
319 also Peng et al. 1998) while also increasing aboveground biomass in upland boreal forests
320 (Bhatti and Apps 2000; Banfield et al. 2002). These findings suggest that accurate appraisals of
321 fire severity effects on organic layer consumption and recovery in the years following wildfire
322 need to consider parent material texture in addition to landscape position.

323 Combined, aspect and parent material texture were the strongest predictors of OL carbon
324 recovery in the decade following wildfire (Table 2c). While this is due to increased OL recovery
325 with increased fineness of parent material texture as well as increases in BD, we highlight here
326 that changes in OL BD over the last decade were highly variable across sites and likely represent
327 the largest source of error in our SOC recovery estimates (Table 2b). Sources contributing to

328 variability in BD measurements likely change with landscape position and antecedent OL
329 characteristics. For example, the colonization and growth of surface moss over the last decade
330 following wildfire would likely result in decreasing BD whereas the subsidence of OL layers
331 would increase BD measurements in year ten compared to those measured one year post fire.
332 Shallow soils following wildfire are not as susceptible to subsidence as are deeper organic soils,
333 especially when underlain with fine-textured mineral soil. South facing slopes had the greatest
334 amount of OL consumption during fires, and therefore exhibited little subsidence or change in
335 BD over 10 years (increased by $0.02 \pm 0.02 \text{ g cm}^{-3}$) while flat uplands had much greater OL
336 depths following wildfire, had greater change in BD over 10 years (increased by $0.07 \pm 0.02 \text{ g}$
337 cm^{-3}), and had the highest BD on average a decade following wildfire ($0.16 \pm 0.03 \text{ g cm}^{-3}$). The
338 countervailing effects of increased relative OL recovery and low BD change on sites which did
339 not have much organic matter remaining following fire vs. sites with deep OL remaining
340 following fires, which are susceptible to subsidence in the post burn environment when underlain
341 with relatively coarse-textured soils, highlight the importance of texture, aspect, and their
342 interaction in determining SOC accumulation following fire (Table 2c).

343 The fact that some upland sites did not demonstrate statistical increases in SOC a decade
344 after year 1 measurements suggests that inputs from primary production have been less than or
345 equal to C outputs from decomposition. Prior work at these sites has shown that severe burning
346 (defined by OL consumption) is likely to alter the successional trajectory of regenerating
347 vegetation communities (Gibson et al. 2016). As depth of burn increased, the regeneration of
348 *Sphagnum* mosses and *Picea mariana* declined, with no *Sphagnum* regeneration occurring at
349 sites with $> 65\%$ OL consumption (Gibson et al. 2016). Sites with a greater percentage of fine
350 textured mineral soil exhibited the lowest reduction in OL and are therefore most likely to self-

351 replace with a *Picea mariana* over story and associated vegetation/moss communities. This is an
352 important consideration with respect to the C balance of early successional forests because not
353 only do mosses often dominate C inputs to soil pools but they also produce biomass that
354 decomposes more slowly than most woody tissues (Turetsky et al. 2010; Bona et al. 2013). The
355 effects of these early successional changes on SOC may not be evident in ten years, but certainly
356 have implications for long term ecosystem C accumulation.

357 Lower moss inputs in the decade following fire could have lessened SOC accumulation at
358 more severely burned sites underlain with coarser textured mineral soil, but mean rates of SOC
359 accrual across all sites in this study were at the high end of published values (Manies et al. 2016).
360 Rates of soil C accumulation following disturbance are not linear, with rapid accumulation
361 occurring in early succession, and attenuation occurring with stand maturation (Harden et al.
362 2000). Studies investigating SOC accumulation rates which focus on short temporal dynamics
363 often over-estimate rates, which likely explain our relatively high estimates of SOC
364 accumulation (Manies et al. 2016). We suggest that interpreting changes in the rates of SOC
365 accumulation in this study are most appropriate in the relative sense, owing to the short time
366 since stand replacing fire. As such, landscape positions which promote higher net primary
367 production (south facing and upland sites) accumulated SOC more rapidly in the first decade
368 following fire, particularly when underlain with finer textured parent material (aspect x clay
369 interaction; Table 2c). This is in agreement with post-disturbance studies throughout the boreal
370 region (cf. Thiffault et al. 2011), wherein most forest has experienced wildfire or harvest. In
371 Canada (Bhatti and Apps 2000), Siberia (Siewert et al. 2015), and Fennoscandia (Callesen et al.
372 2003; Strand et al. 2016) an increase in OL SOC is generally observed in upland boreal forests
373 underlain with finer textured soil.

374 ***Distribution of Organic C Pools a Decade Following Fire***

375 The interaction between aspect and fine textured mineral soil in governing the severity of
376 burning into the OL had a resulting effect on the fate of dead woody debris in either standing or
377 down pools. This is perhaps not surprising because of the shallow lateral root system of black
378 spruce (LeBarron 1945), rendering this species particularly vulnerable to uprooting when the
379 canopy is more exposed (Ruel 1995; Angers et al. 2011) - this would be prevalent with severe
380 burning at higher elevation sites underlain with drier soils lacking fine textures. In addition,
381 increased depth of burn consumes and/or kills shallow roots, making residual SDWD more
382 susceptible to windfall, and increasing DDWD pools following wildfire (Smirnova et al. 2008).
383 Prior work has suggested large changes in the residence times of woody debris C in standing or
384 down pools, with downed wood likely representing a significant component of the total OL C
385 stock (Moroni et al. 2015). For example, Seedre et al. (2014) documented a redistribution of
386 SDWD to the DDWD pool approximately eight years after wildfire. This input is likely to be
387 more important in lowland forests with deeper antecedent OL depths and continuous
388 proliferation of mosses (Hagemann et al. 2010; Jacobs et al. 2015), which may be more effective
389 in protecting wood-derived C in the OL from burning in subsequent fire events. However, our
390 study suggests that more time may be required for flat lowland SDWD to be incorporated in
391 downed or soil C pools than SDWD in upland and sloped sites. Prior research along a boreal
392 Canadian fire chronosequence has estimated that between 10% and 60% of OL C stocks were
393 derived from woody biomass inputs, with the majority of this input occurring between 20-40
394 years post fire (Manies et al. 2005). Sensitivity analyses conducted by Manies et al. (2005)
395 suggested that variation in woody debris inputs, in addition to variation in post-fire inputs from
396 primary production and the products of burning (char) with changes in landscape position, could

397 account for large differences in deep-soil carbon. We suggest here that in addition to these
398 variables, the underlying mineral soil texture exerts direct and indirect controls on the
399 distribution of woody debris C. Knowledge of mineral soil composition in relation to landscape
400 position should therefore improve estimates of SOC recovery following wildfire.

401 Field estimates of the heterogeneous residues from burning accumulated at the surface of
402 the soil, or “soil char layer” are somewhat problematic from a C assessment perspective because
403 ocular estimates cannot distinguish different types of char (Soucémarianadin et al. 2015a) and its
404 vertical stratification changes in variable ways with time since disturbance as it is leached within
405 and from the soil (Santin et al. 2016). That said, surface char material is distinct from live or
406 unburned moss and can represent a significant portion of the post fire SOC stock (Harden et al.
407 2004). In this study, C within the operationally defined char pool comprised a significant
408 amount of variation in SOC stocks across sites, was almost double the size of the DDWD C pool,
409 and was generally larger than measurements obtained one year following fire. However, we
410 caution here that char delineated in this way ten years after fire is likely not representative of the
411 char layer measured in the year following fire, and an investigation of the fate and mobility of
412 char in the decade following fire was not possible in this study. While we measured changes in
413 SDWD relative to DDWD pools, it is hard to know how charred woody debris continued to
414 contribute to SOC pools in the decade following fire. Earlier study across the AK study region
415 had observed higher accumulation of burn residues in mineral soils from southerly aspects with
416 more complete combustion of the OL than north-facing or toe-slope forests (Kane et al. 2007),
417 and the products of burning have been shown to accumulate within the surface mineral soils of
418 other boreal spruce forests (Soucémarianadin et al. 2015b). These prior investigations have
419 shown little correlation between fire frequency and the accumulation of burn residues in mineral

420 soil- suggesting alternative mechanisms of fire derived C stabilization, or a susceptibility to
421 combustion of this pool in subsequent wildfires before it reaches the mineral soil (Kane et al.
422 2010). However there has been little attention to the complexation of fire-derived C with clay
423 textured mineral soil in boreal forests, which has been shown to exert strong control over SOC
424 stabilization in other forested ecosystems (Santos et al. 2012; Wang et al. 2016). The co-
425 occurrence of increased fine textures in mineral soils and deeper OL depths in flat lowland
426 landscape positions may be conducive to the stabilization of relatively more char C in deeper
427 soils (Knicker 2007). Systematic examination of the products of burning in deep soil profiles
428 with changes in landscape position (cf. Manies et al. 2005) and mineral soil texture would
429 certainly be helpful in explaining the large variation observed in the size of this significant C
430 pool a decade following fire.

431 ***Broader Implications for SOC Assessments***

432 In recent geospatial analyses synthesizing hundreds of SOC profiles in Alaska, climatic
433 variables (temperature and soil moisture) explained the most variance in regional SOC stocks as
434 might be expected (Johnson et al. 2011; Mishra and Riley 2012). In these studies, soil moisture
435 was a significant predictor of SOC stocks- independent of precipitation regime- highlighting the
436 important controls of topographic attributes and parent material on water holding capacity.
437 Mishra and Riley (2012) suggest that poor representation of these controls on “soil wetness”
438 could contribute to large uncertainty in predicted SOC stocks in response to future climate
439 change in Earth system modeling scenarios. The data presented here agree with this assessment
440 and suggest that incorporating an understanding of parent material texture, as provided in the
441 Family level of soil taxonomy, would constrain the variation in SOC stock estimates in
442 geospatial analyses of SOC changes in response to disturbances.

443 ***Conclusions***

444 Parent material texture as a 'state factor' control over soil development was shown to be
445 at least as important as landscape position in controlling SOC stock recovery in the decade
446 following wildfire in interior Alaskan black spruce forests. Together, parent material and
447 landscape position explained most of the variance in SOC changes over ten years since burning,
448 with the largest contributions to variability in stock assessments likely being associated with
449 changes in BD and char C pools across sites. The influence of mineral soil texture was likely
450 present at the time of burning in controlling depth of burn as well as in the years following fire;
451 this was evident in the significant effects of texture on the percent of OL consumed measured in
452 the year following fire. Aspect and parent material texture also influenced the fate of dead
453 woody debris in either standing or down pools in the decade following fire, largely through their
454 controls on fire severity and OL consumed in fire. Collectively these findings demonstrate the
455 importance of understanding the source of soils in designing studies to understand fire ecology in
456 interior Alaska.

457 **Acknowledgements**

458 We thank Rosanne Broyd and Melissa Nelson (Bergstrom) for assistance with fieldwork. We
459 acknowledge financial support from: a NSERC Discovery grant to MRT, a Michigan Tech
460 University Research Excellence Fund Seed (REF-Seed) Grant to ESK, the Bonanza Creek Long-
461 Term Ecological Research program (funded jointly by NSF Grant DEB-0620579, and USDA
462 Forest Service Pacific Northwest Research Grant PNW01-JV11261952-231), NASA (grant
463 NNG04GD25G), and in kind support from the US Forest Service, Northern Research Station.

464 **References**

465

466 Amundson, R., Jenny, H. 1997. On a State Factor Model of Ecosystems. *BioScience*, **47(8)**: 536-543.

467

468

469 Angers, V.A., Gauthier, S., Drapeau, P., Jayen, K., Bergeron, Y. 2011. Tree mortality and snag
470 dynamics in North American boreal tree species after a wildfire: a long-term study. *International
471 Journal of Wildland Fire*, **20**: 751-763.

472

473 Banfield, G.E., Bhatti, J.S., Jiang, H., Apps, M.J. 2002. Variability in regional scale estimates of
474 carbon stocks in boreal forest ecosystems: results from West-Central Alberta. *Forest Ecology
475 and Management*, **169**: 15-27.

476

477 Beget, J.E., Stone, D., Verbyla, D.L. 2006. Regional Overview of Interior Alaska. In, Alaska's
478 Changing Boreal Forest. Edited by, Chapin III, F.S., Oswood, M.W., Van Cleve, K., Viereck,
479 L.A., Verbyla, D.L. Oxford University Press, Inc. New York, New York, pp. 12-20.

480

481 Bhatti, J.S., Apps, M.J. 2000. Carbon and Nitrogen Storage in Upland Boreal Forests. In, Global
482 Climate Change and Cold Regions Ecosystems. Edited by, Lal, R., Kimble, J.M., Stewart, B.A.
483 CRC Press, LLC., Boca-Raton, Florida. pp. 79-90.

484

485 Boby, L.A., Schuur, E.A.G., Mack, M.C., Verbyla, D., Johnstone, J.F. 2010. Quantifying fire
486 severity, carbon, and nitrogen emissions in Alaska's boreal forest. *Ecological Applications*,
487 **20(6)**: 1633-1647.

488

489 Bona, K.A., Fyles, J.W., Shaw, C., Kurz, W.A. 2013. Are Mosses Required to Accurately
490 Predict Upland Black Spruce Forest Soil Carbon in National-Scale Forest C Accounting Models?
491 *Ecosystems*, **16**: 1071-1086.

492

493 Bond-Lamberty, B., Wang, C., Gower, S.T. 2004. Net primary production and net ecosystem
494 production of a boreal black spruce wildfire chronosequence. *Global Change Biology*, **10**: 473-487.

495

496 Bond-Lamberty, B., Peckham, S.D., Ahl, D.E., Gower, S.T. 2007. Fire as the dominant driver of
497 central Canadian boreal forest carbon balance. *Nature*, **450**: 89-93.

498

500 Brown, J.K. 1974. Handbook for inventorying downed woody material. USDA Forest Service,
501 Intermountain Forest and Range Experiment Station, General Technical Report, INT-16.

502

503 Brown, C.D., Johnstone, J.F. 2011. How does increased fire frequency affect carbon loss
504 from fire? A case study in the northern boreal forest. *International Journal of Wildland Fire*, **20**:
505 829-837.

506

507 Brown, D.R.N., Jorgenson, M.T., Douglass, T.A., Romanovsky, V.E., Kielland, K., Hiemstra,
508 C., Euskirchen, S.E., Ruess, R.W. 2015. Interactive effects of wildfire and climate on permafrost
509 degradation in Alaskan lowland forests. *Journal of Geophysical Research: Biogeosciences*, **120**,
510 doi:10.1002/2015JG003033.

511

512 Callesen, I., Liski, J., Raulund-Rasmussen, K., Olsson, M.T., Tau-Strand, L., Vesterdal, L.,
513 Westman, C.J. 2003. Soil carbon stores in Nordic well-drained forest soils- relationships with
514 climate and texture class. *Global Change Biology*, **9**: 358-370.

515

516 Dokuchaev, V.V. 1879. Abridged historical account and critical examination of the principal soil
517 classifications existing. *Transactions of the Petersburg Society of Naturalists*, **1**: 64-67.

518

519 Gee, G.W., Bauder, J.W. 1986. Particle-size Analysis. In, *Methods of Soil Analysis Part 1-
520 Physical and Mineralogical Methods*; SSSA Book Series: 5. Edited by, Klute, A. *Soil Science
521 Society of America, Inc.*, Madison, Wisconsin USA. pp. 404-408.

522

523 Gibson, C.M., Turetsky, M.R., Cottenie, K., Kane, E.S., Houle, G., Kasischke, E.S. 2016.
524 Variation in plant community composition and vegetation carbon pools a decade following a
525 severe fire season in interior Alaska. *Journal of Vegetation Science*, **27**: 1187-1197.

526

527 Hagemann, U., Moroni, M.T., Gleißner, J., Makeschin, F. 2010. Accumulation and Preservation
528 of Dead Wood upon Burial by Bryophytes. *Ecosystems*, **13**: 600-611.

529

530 Hambidge, G. 1938. Soils and Men- a summary. In, "Soils and Men- a summary", U.S.
531 Department of Agriculture; *Yearbook of Agriculture* 1938, pp. 38-40.

532

533 Harden, J.W., Trumbore, S.E., Stocks, B.J., Hirsch, A., Gower, S.T., O'Neill, K.P., Kasischke,
534 E.S. 2000. The role of fire in the boreal carbon budget. *Global Change Biology*, **6(1)**: 174-184.

535

536 Harden, J.W., Neff, J.C., Sandberg, D.V., Turetsky, M.R., Ottmar, R., Gleixner, G., Fries, T.L.,
537 Manies, K.L. 2004. Chemistry of burning the forest floor during the FROSTFIRE experimental
538 burn, interior Alaska, 1999. *Global Biogeochemical Cycles*, **18**: GB3014,
539 doi:10.1029/2003GB002194.

540

541 Harden, J.W., Manies, K.L., O'Donnell, J.A., Johnson, K., Frolking, S., Fan, Z. 2012.
542 Spatiotemporal analysis of black spruce forest soils and implications for the fate of C. *Journal of
543 Geophysical Research*, **117**, G01012, doi:10.1029/2011JG001826.

544

545 Hoy, E.E., Turetsky, M.R., and Kasischke, E.S. 2016. More frequent burning increases
546 vulnerability of Alaskan boreal black spruce forests. *Environmental Research Letters*, **11(9)**:
547 095001 [10.1088/1748-9326/11/9/095001].

548

549 Jacobs, J., Work, T., Pare, D., Bergeron, Y. 2015. Paludification of boreal soils
550 reduces wood decomposition rates and increases wood-based carbon storage. *Ecosphere*, **6(12)**:
551 292. <http://dx.doi.org/10.1890/ES14-00063.1>.

552

553 Johnson, M.G., and Kern, J.S. 2003. Quantifying the organic carbon held in forested soils of the
554 United States and Puerto Rico. In *The potential of U.S. forest soils to sequester carbon and
555 mitigate the greenhouse effect*. Edited by J.M. Kimble, L.S. Heath, R.A. Birdsey, and R. Lal.
556 CRC press, Boca Raton, Fla. pp. 47-72.

557

558 Johnson, K.D., Harden, J., McGuire, A.D., Bliss, N.B., Bockheim, J.G., Clark, M., Nettleton-
559 Hollingsworth, T., Jorgenson, M.T., Kane, E.S., Mack, M., O'Donnell, J., Ping, C-L., Schuur,
560 E.A.G., Turetsky, M.R., Valentine, D.W. 2011. Soil carbon distribution in Alaska in relation to
561 soil-forming factors. *Geoderma*, doi:10.1016/j.geoderma.2011.10.006.

562

563 Johnstone, J.F., Chapin III, F.S., Hollingsworth, T.N., Mack, M.M., Romanovsky, V., Turetsky,
564 M. 2010. Fire, climate change, and forest resilience in interior Alaska. *Canadian Journal of
565 Forest Research*, **40**: 1302–1312.

566

567 Kane, E.S., Vogel, J.G. 2009. Patterns of Total Ecosystem Carbon Storage with Changes in Soil
568 Temperature in Boreal Black Spruce Forests. *Ecosystems*, **12**(2): 322–335.

569

570 Kane, E.S., Kasischke, E.S., Valentine, D.W., Turetsky, M.R., McGuire, A.D. 2007.
571 Topographic influences on wildfire consumption of soil organic carbon in interior Alaska:
572 Implications for black carbon accumulation. *Journal of Geophysical Research*, G03017,
573 doi:10.1029/2007JG000458.

574

575 Kane, E.S., Hockaday, W.C., Turetsky, M.R., Masiello, C.A., Valentine, D.W., Finney, B.,
576 Baldock, J.A. 2010. Topographic controls on black carbon accumulation in Alaskan black spruce
577 forest soils: implications for organic matter dynamics. *Biogeochemistry*, **100**: 39–56.

578

579 Kasischke, E.S., Hoy, E.E. 2012. Controls on carbon consumption during Alaskan wildland fires.
580 *Global Change Biology*, **18**: 685–699.

581

582 Kasischke, E.S. & Turetsky, M.R. 2006. Recent changes in the fire regime across the North
583 American boreal region – spatial and temporal patterns of burning across Canada and Alaska.
584 *Geophysical Research Letters*, **33**: L09703.

585

586 Kasischke, E.S., Turetsky, M.R., Ottmar, R.D., French, N.H.F., Hoy, E.E., Kane, E.S. 2008.
587 Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce
588 forests. *International Journal of Wildland Fire*, **17**: 515–526.

589

590 Kasischke, E.S., Verbyla, D.L., Rupp, T.S., McGuire, A.D., Murphy, K.A., Jandt, R., Barnes,
591 J.L., Hoy, E.E., Duffy, P.A., Calef, M. & Turetsky, M.R. 2010. Alaska's changing fire regime –
592 implications for the vulnerability of its boreal forests. *Canadian Journal of Forest Research*, **40**:
593 1313–1324.

594

595 Kishchuk, B.E., Thiffault, E., Lorente, M., Quideau, S., Keddy, T., and Sidders, D. 2015.
596 Decadal soil and stand response to fire, harvest, and salvage-logging disturbances in the western
597 boreal mixedwood forest of Alberta, Canada. *Canadian Journal of Forest Research*, **45**: 141–152.

598

599 Knicker, H. 2007. How Does Fire Affect the Nature and Stability of Soil Organic Nitrogen and
600 Carbon? A Review. *Biogeochemistry*, **85**(1): 91–118.

601

602 LeBarron, R.K. 1945. Adjustment of black spruce root systems to increasing depth of peat.
603 *Ecology*, **26**: 309–311.

604
605 Manies, K.L., Harden, J.W., Bond-Lamberty, B.P., O'Neill, K.P. 2005. Woody debris along an
606 upland chronosequence in boreal Manitoba and its impact on long-term carbon storage. Canadian
607 Journal of Forest Research, **35**: 472–482.

608
609 Manies, K.L., Harden, J.W., Fuller, C.C., Turetsky, M.R. 2016. Decadal and long-term boreal
610 soil carbon and nitrogen sequestration rates across a variety of ecosystems. Biogeosciences, **13**:
611 4315–4327.

612
613 McGuire, A.D.M., Melillo, J.W., Kicklighter, D.W., and Joyce, L.A. 1995. Equilibrium
614 responses of soil carbon to climate change: Empirical and process-based estimates. Journal of
615 Biogeography, **22**: 785–796.

616
617 Mishra, U., and Riley, W.J. 2012. Alaskan soil carbon stocks: spatial variability and dependence
618 on environmental factors. Biogeosciences, **9**: 3637–3645.

619
620 Moroni, M.T., Morris, D.M., Shaw, C., Stokland, J.N., Harmon, M.E., Fenton, N.J.,
621 Merganicova, K., Merganic, J., Okabe, K., Hagemann, U. 2015. Buried Wood: A Common Yet
622 Poorly Documented Form of Deadwood. Ecosystems, **18(4)**: 605–628.

623
624 Muhs, D.R., Ager, T.A., Bettis III, E.A., McGeehin, J., Been, J.M., Beget, J.E., Pavich, M.J.,
625 Stafford Jr., T.W., Stevens D.S.P. 2003. Stratigraphy and palaeoclimatic significance of Late
626 Quaternary loess–palaeosol sequences of the Last Interglacial–Glacial cycle in central Alaska.
627 Quaternary Science Reviews, **22**: 1947–1986.

628
629 Mulligan, D.K. 2005. Soil Survey of the Greater Fairbanks Area. U.S. Dept. of Agriculture,
630 Natural Resources Conservation Service, Fairbanks, Alaska.

631
632 Nalder, I.A., Wein, R.W. 1998. A New Forest Floor Corer for Rapid Sampling, Minimal
633 Disturbance and Adequate Precision. *Sylva Fennica*, **32(4)**: 373–382.

633
634 Nalder, I.A., Wein, R.W., Alexander, M.E., de Groot, W.J. 1997. Physical properties of dead and
635 downed round-wood fuels in the boreal forests of Alberta and Northwest Territories. Canadian
636 Journal of Forest Research, **27**: 1513–1517.

637
638 O'Donnell, J.A., Harden, J.W., Manies, K.L., Jorgenson, M.T., Kanevskiy, M., Xu, X. 2013. Soil
639 Data from Fire and Permafrost-Thaw Chronosequences in Upland Black Spruce (*Picea mariana*)
640 Stands near Hess Creek and Tok, Interior Alaska. U.S. Geological Survey Open-File Report
641 2013–1045, 16 p.

642
643 Pan, Y., Birdsey, R.A., Phillips, O.L., Jackson, R.B. 2013. The Structure, Distribution, and
644 Biomass of the World's Forests. *Annu. Rev. Ecol. Evol. Syst.*, **44**: 593–622.

645
646 Peng, C., Apps, M.J., Price, D.T., Nalder, I.A., Halliwell, D. 1998. Simulating carbon dynamics
647 along the boreal forest transect case study (BFTCS) in Central Canada: 1. Model validation.
648 Global Biogeochemical Cycles, **12**: 381–392.

650
651 Pewe, T.L. 1955. Origin of the upland silt near Fairbanks, Alaska. *Bulletin of the Geological*
652 *Society of America*, **67**: 699-724.

653
654 Pewe, T.L., and Reger, R.D. 1983. Guidebook to permafrost and quaternary geology along the
655 Richardson and Glenn Highways between Fairbanks and Anchorage, Alaska. Division of
656 Geological and Geophysical Surveys publication, Department of Natural Resources, State of
657 Alaska, Fairbanks, Alaska.

658
659 Ping, C-L., Boone, R.D., Clark, M.H., Packee, E.C., Swanson, D.K. 2006. State Factor Control
660 of Soil Formation in Interior Alaska. In, *Alaska's Changing Boreal Forest*. Edited by, Chapin III,
661 F.S., Oswood, M.W., Van Cleve, K., Viereck, L.A., Verbyla, D.L. Oxford University Press, Inc.
662 New York, New York, pp. 21-38.

663
664 Ping, C-L., Michaelson, G.J., Kane, E.S., Packee, E.C., Stiles, C.A., Swanson, D.K., Zaman,
665 N.D. 2010. Carbon Stores and Biogeochemical Properties of Soils under Black Spruce Forest,
666 Alaska. *Soil Science Society of America Journal*, **74**: 969-978.

667
668 Ruel, J-C. 1995. Understanding windthrow: silvicultural implications. *Forestry Chronicle*, **71**:
669 434-445.

670
671 Santin, C., Doerr, S.H., Kane, E.S., Masiello, C.A., Ohlson, M., De La Rosa, J.M., Preston,
672 C.M., Dittmar, T. 2016. Towards a global assessment of pyrogenic carbon from vegetation fires.
673 *Global Change Biology*, **22**: 76-91, doi: 10.1111/gcb.12985.

674
675 Santos, F., Torn, M.S., Bird, J.A., Biological degradation of pyrogenic organic matter in
676 temperate forest soils. *Soil Biology and Biochemistry*, **51**: 115-124.

677
678 Seedre, M., Taylor, A.R., Brassard, B.W., Chen, H.Y.H., Jogiste, K. 2014. Stocks in Young
679 Boreal Forests: A Comparison of Harvesting and Wildfire Disturbance. *Ecosystems*, **17**: 851-
680 863.

681
682 Siewert, M.B., Hanisch, J., Weiss, N., Kuhry, P., Maximov, T.C., Hugelius, G. 2015. Comparing
683 carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution.
684 *Journal of Geophysical Research: Biogeosciences*, **120**: 1973-1994, doi:10.1002/2015JG002999.

685
686 Slaughter, C.W., and Viereck, L.A. 1986. Climate characteristics of the Taiga in interior Alaska.
687 In *Forest ecosystems in the Alaskan taiga*. Edited by K. Van Cleve, F.S. Chapin III, P.W.
688 Flanagan, L.A. Viereck, and C.T. Dyrness. Springer-Verlag, New York. pp. 9-21.

689
690 Smirnova, E., Bergeron, Y., Brais, S., Granstrom, A. 2008. Post-fire root distribution of Scots
691 pine in relation to fire behaviour. *Canadian Journal of Forest Research*, **38**: 353-362.

692
693 Soucémarianadin, L.N., Quideau, S.A., Wasylshen, R.E., Munson, A.D. 2015a. Early-season
694 fires in boreal black spruce forests produce pyrogenic carbon with low intrinsic recalcitrance.
695 *Ecology*, **96(6)**: 1575-1585.

696
697 Soucémaranadin, L.N., Quideau, S.A., MacKenzie, M.D., Munson, A.D., Boiffin, J., Bernard,
698 G.M., Wasylisen, R.E. 2015b. Total and pyrogenic carbon stocks in black spruce forest floors
699 from eastern Canada. *Organic Geochemistry*, **82**: 1-11.

700
701 Strand, L.T., Callesen, I., Dalsgaard, L., de Wit, H.A. 2016. Carbon and nitrogen stocks in
702 Norwegian forest soils — the importance of soil formation, climate, and vegetation type for
703 organic matter accumulation. *Canadian Journal of Forest Research*, **46**: 1459–1473.

704
705 Swanson, D.K. 1996. Soil geomorphology on bedrock and colluvial terrain with permafrost in
706 central Alaska, USA. *Geoderma*, **71**: 157-172.

707
708 Thiffault, E., Hannam, K.D., Pare, D., Titus, B.D., Hazlett, P.W., Maynard, D.G., Brais, S. 2011.
709 Effects of forest biomass harvesting on soil productivity in boreal and temperate forests- a
710 review. *Environmental Reviews*, **19**: 278-309.

711
712 Thomas, S.C., Martin, A.R. 2012. Carbon Content of Tree Tissues: A Synthesis. *Forests*, **3**: 332-
713 352.

714
715 Todd, S.K., and Jewkes, H.A. 2006. Fire in Alaska: a history of organized fire suppression and
716 management in the last frontier. *Agriculture and Forestry Experiment Station Bulletin* 114.
717 University of Alaska Fairbanks, Fairbanks, AK, US.

718
719 Turetsky, M.R., Mack, M.C., Hollingsworth, T.N., Harden, J.W. 2010. The role of mosses in
720 ecosystem succession and function in Alaska's boreal forest. *Canadian Journal of Forest
721 Research*, **40**: 1237–1264.

722
723 Turetsky, M.R., Kane, E.S., Harden, J.W., Ottmar, R.D., Manies, K.L., Hoy, E. & Kasischke,
724 E.S. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and
725 peatlands. *Nature Geoscience*, **4**: 27–31.

726
727 Van Cleve, K., and Yarie, J. 1986. Interaction of temperature, moisture, and soil chemistry in
728 controlling nutrient cycling and ecosystem development in the taiga of Alaska. In, *Forest
729 ecosystems in the Alaskan taiga*. Edited by, K. Van Cleve, F.S. Chapin III, P.W. Flanagan, L.A.
730 Viereck, and C.T. Dyrness. Springer-Verlag, New York. pp. 160–189.

731
732 Van Cleve, K., Oliver, L., Schlentner, R., Viereck, L.A., Dyrness, C.T. 1983. Productivity and
733 nutrient cycling in taiga forest ecosystems. *Canadian Journal of Forest Research*, **13**: 747-766.

734
735 Van Cleve, K., Chapin III, F.S., Dyrness, C.T., Viereck, L.A. 1991. Element cycling in taiga
736 forest: State-factor control. *BioScience*, **41**(2): 78-88.

737
738 Viereck, L.A., Dyrness, C.T. 1979. Ecological Effects of the Wickersham Dome Fire Near
739 Fairbanks, AK. U.S. Forest Service, Pacific Northwest Forest and Range Experiment Station
740 General Technical Report, 90.

741

742 Viereck, L.A., Dyrness, C.T., Van Cleve, K., Foote, M.J. 1983. Vegetation, soils, and forest
743 productivity in selected forest types in interior Alaska. *Canadian Journal of Forest Research*, **13**:
744 703-720.

745

746 Viereck, L.A., Dyrness, C.T., Foote, M.J. 1993. An overview of the vegetation and soils of the
747 floodplain ecosystems of the Tanana River, interior Alaska. *Canadian Journal of Forest
748 Research*, **23**: 889-898.

749

750 Wang, J.Y., Xiong, Z.Q., Kuzyakov, Y. 2016. Biochar stability in soil: meta-analysis of
751 decomposition and priming effects. *Global Change Biology Bioenergy*, **8(3)**: 512-523.

752

753 White, J.D., Koepke, B.E., and Swanson, D.K. 2002. Soil survey of North Star area, Alaska.
754 USDA Natural Resources Conservation Service, North Star Borough, Alaska.

755

756 Yarie, J. 1981. Forest fire cycles and life tables: a case study from interior Alaska. *Canadian
757 Journal of Forest Research*, **11**: 554–62.

758

759 Yarie, J., Kane, E.S., Mack, M.M. 2007. Aboveground biomass equations for the trees of interior
760 Alaska. Agricultural and Forestry Experiment Station, Bulletin 115. Fairbanks: University of
761 Alaska Press, University of Alaska. p 15.

Table 1: Mixed effect models describing percent changes in organic layer depths from pre-fire to one (a) and ten (b) years post fire. Asterisks denote level of significance (* = $p \leq 0.05$; ** = $p < 0.01$; Model n=38).

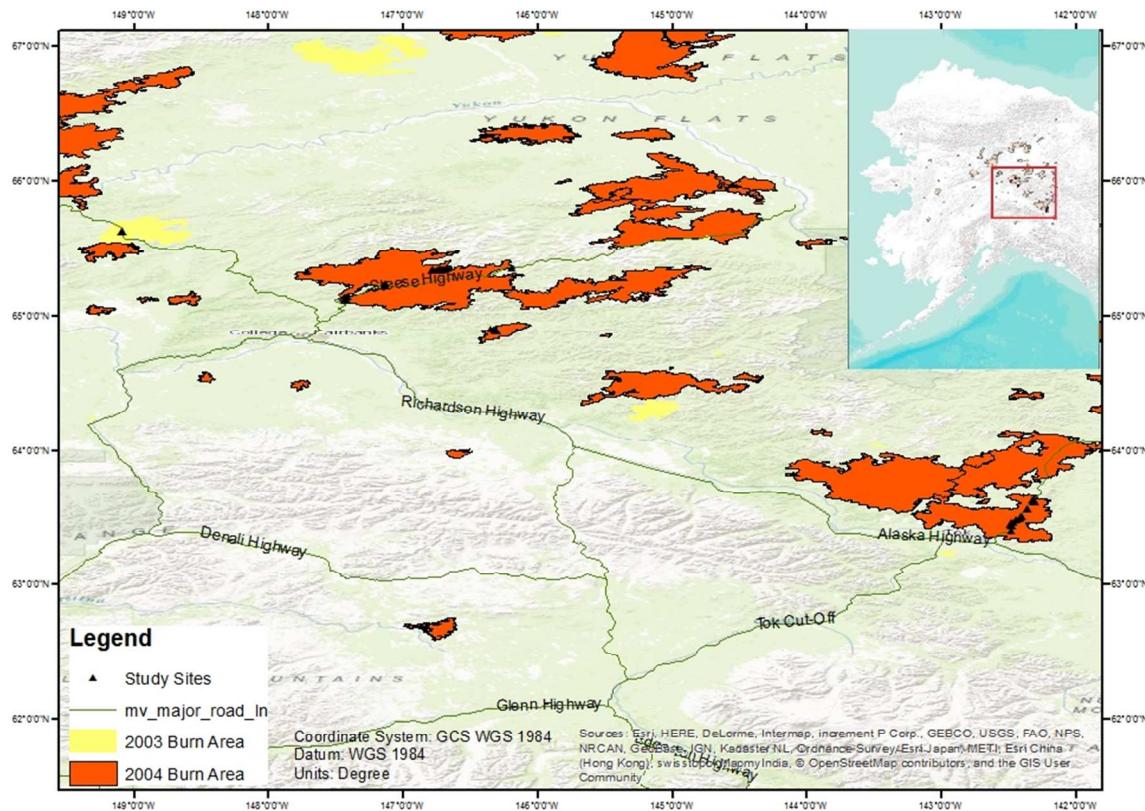

Effect	(a) Percent change 1 year post fire		(b) Percent change 10 years post fire	
	F Value	P	F Value	P
Slope	1.16	0.2910	30.88	<.0001 **
Elevation	1.93	0.1756	10.11	0.0036 **
Percent Clay	10.98	0.0025 **	50.28	<.0001 **
Aspect	0.77	0.3869	1.92	0.1764
Aspect*Clay	0.04	0.8403	2.66	0.1139
Slope*Clay	2.50	0.1251	7.49	0.0107 **
Elevation*Clay	6.29	0.0182 **	20.63	<.0001 **
Slope*Elevation	1.37	0.2522	21.68	<.0001 **
Slope*Elevation*Clay	2.15	0.1534	6.59	0.0159 *

Table 2: Mixed effect models describing changes in organic layer depths (a), bulk densities (b), and carbon stocks (c) from one year post fire to ten years post fire. Model n=38 for organic layers and n=20 for bulk density and C stocks. Asterisks denote level of significance (* = $p \leq 0.05$; ** = $p < 0.01$).

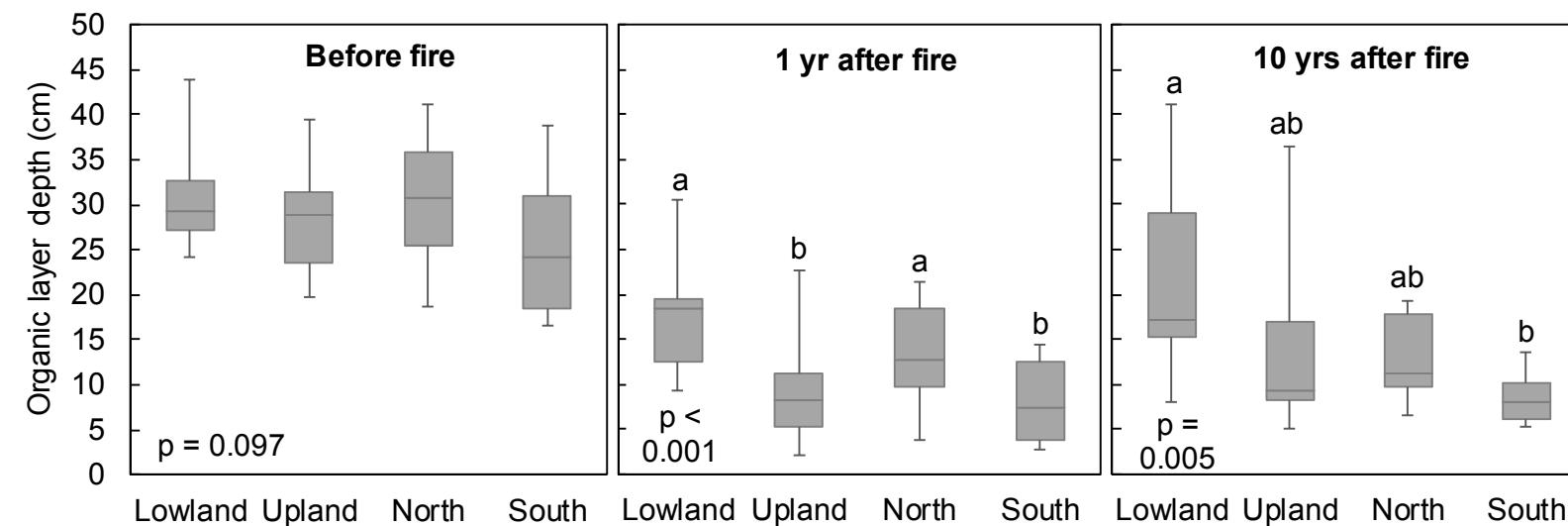
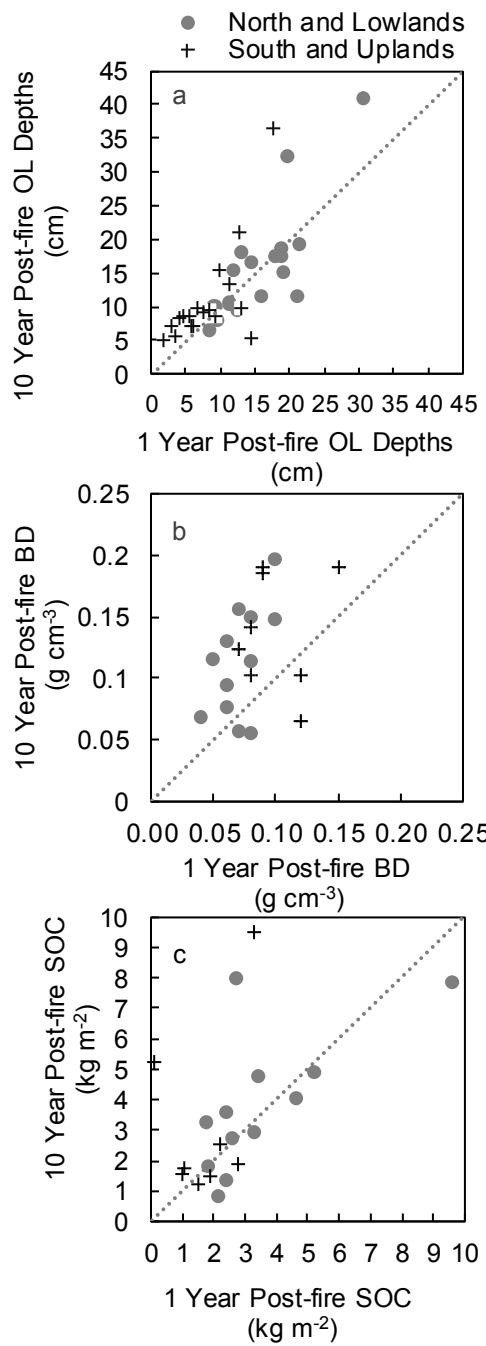
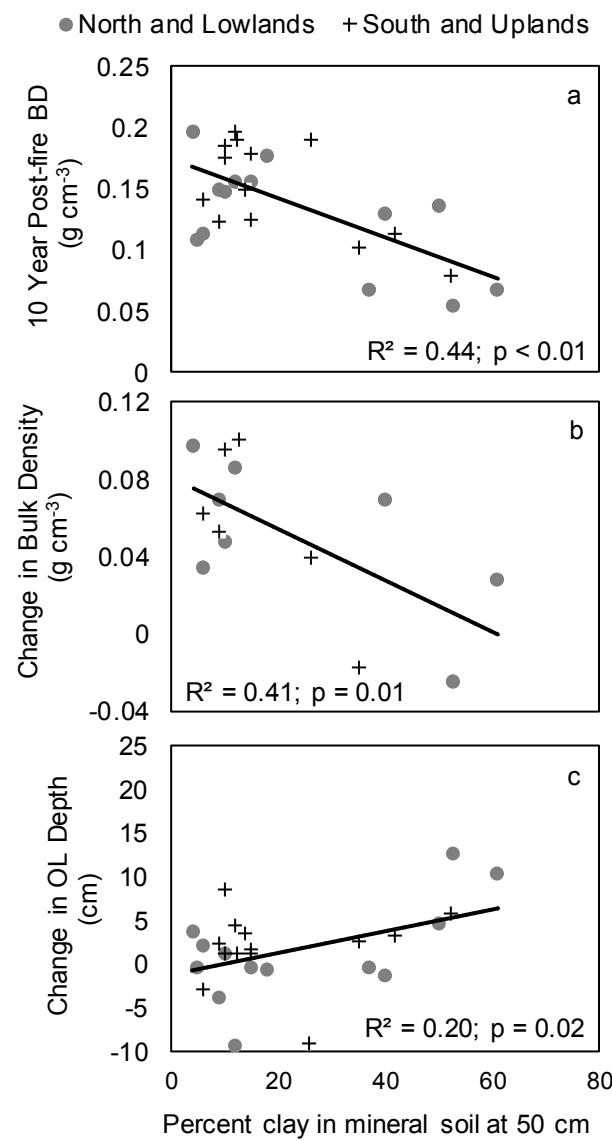
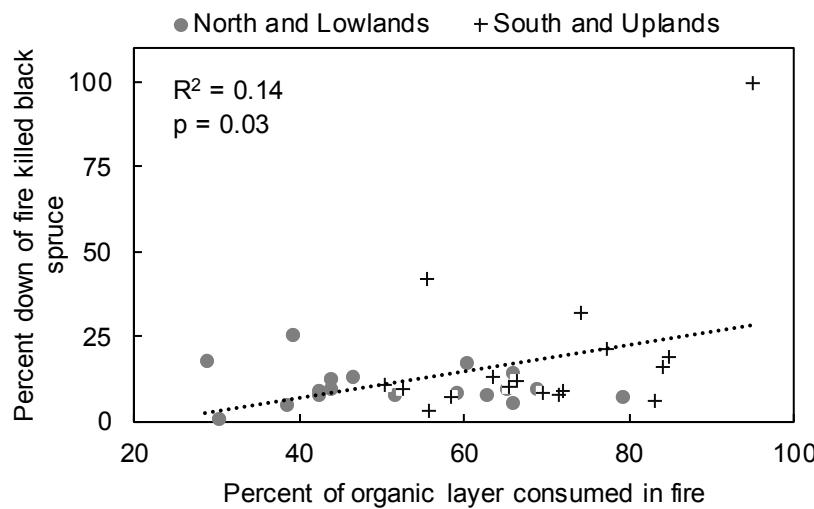

Effect	(a) Change in Organic Layer Depth		(b) Change in Organic Layer Bulk Density		(c) Change in Organic Layer C Stock	
	F Value	P	F Value	P	F Value	P
Slope	11.27	0.0023 **	1.19	0.3016	1.96	0.1916
Elevation	1.40	0.2466	2.39	0.1530	0.28	0.6060
Percent Clay	10.07	0.0036 **	0.00	0.9505	0.42	0.5337
Aspect	1.48	0.2333	0.03	0.8566	9.10	0.0130 *
Aspect*Clay	0.09	0.7647	1.96	0.1918	22.95	0.0007 **
Slope*Clay	1.81	0.1894	0.07	0.7978	0.03	0.8742
Elevation*Clay	4.42	0.0447 *	0.00	0.9992	3.43	0.0936
Slope*Elevation	8.07	0.0083 **	2.93	0.1179	2.99	0.1144
Slope*Elevation*Clay	1.65	0.2091	0.00	0.9662	0.68	0.4292

Table 3: Mixed effects model describing changes in the pool size of organic carbon in dead down woody debris ten years post-fire. Asterisks denote level of significance (* = $p \leq 0.05$; ** = $p < 0.01$).


Dead Down Woody Debris Carbon			
Effect	DF	F Value	P
Slope	28	0.52	0.4771
Elevation	28	3.74	0.0633
Percent Clay	28	9.40	0.0048 **
Aspect	28	1.27	0.2698
Aspect*Clay	28	3.87	0.0592 *
Slope*Clay	28	0.28	0.5994
Elevation*Clay	28	1.97	0.1711
Slope*Elevation	28	0.48	0.4959
Slope*Elevation*Clay	28	0.02	0.8843


Figure 1: Map of 38 sites burned in 2003 and 2004 revisited for measurements in 2014. Inset depicts study region within the interior region of Alaska, USA.


Figure 2: Mean organic layer depths before wildfires (adventitious root method) and one and ten years after wildfires (direct measurements) on different landscape positions. Different letters denote significant differences across landscape positions (post-hoc comparisons of means by landscape position).

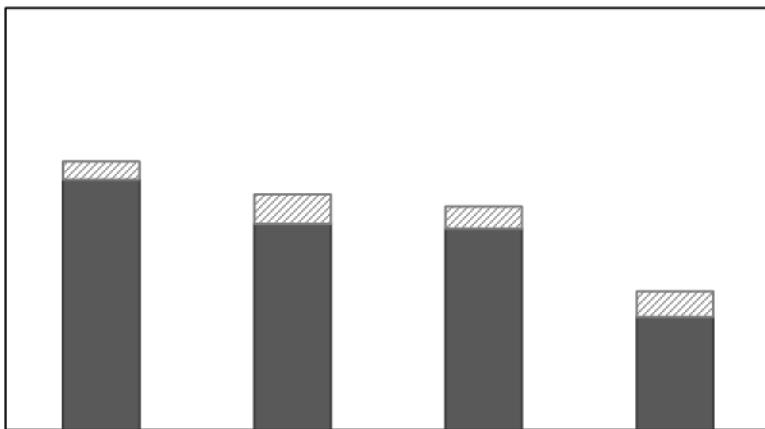

Figure 3: Comparisons of post-fire organic layer depths (a), organic layer bulk densities (b) and soil organic carbon stocks (c) one year following wildfire (x axes) vs. ten years following wildfire (y axes). The dashed line in each plot is $y=x$.

Figure 4: Organic layer physical properties are regressed against mineral soil clay content. Mean bulk density for the whole organic layer measured ten years after wildfire (a) and the change in organic layer bulk densities from one to ten years following wildfire (b) both declined with increasing mineral soil clay content. The change in organic layer depths from one to ten years following wildfire increased with mineral soil clay content (c). Coefficients describing the regression lines (\pm standard error) are: (a) $\beta_0 = 0.174 \pm 0.013$; $\beta_1 = -0.0017 \pm 0.0005$ (b) $\beta_0 = 0.080 \pm 0.013$; $\beta_1 = -0.0013 \pm 0.0005$, and (c) $\beta_0 = -0.150 \pm 1.443$; $\beta_1 = 0.125 \pm 0.051$.

Figure 5: The proportional amount of down dead woody debris ten years following wildfire increased as the severity of burning within the organic layer increased across all sites. Coefficients describing the regression line are: $\beta_0 = -8.85 \pm 10.55$; $\beta_1 = 0.40 \pm 0.17$.

Figure 6: Changes in the distributions of organic carbon pools across four landscape positions a decade following wildfire. Different letters denote significant differences in pool sizes across landscape positions (no significant differences across char or standing dead WD pools). Error bars represent standard errors of pool sums for a given landscape class.