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Abstract
In arctic tundra and boreal forest ecosystems vegetation structural and functional influences on the
surface energy balance can strongly influence permafrost soil temperatures. As such, vegetation
changes will likely play an important role in permafrost soil carbon dynamics and associated climate
feedbacks. Processes that lead to changes in vegetation, such aswildfire or ecosystem responses to
rising temperatures, are of critical importance to understanding the impacts of arctic and boreal
ecosystems on future climate. Yet these processes varywithin and between ecosystems and this
variability has not been systematically characterized across the arctic-boreal region.Here we quantify
the distribution of vegetation productivity trends, wildfire, and near-surface soil carbon, by vegetation
type, across the zones of continuous and discontinuous permafrost. Siberian larch forests contain
more than one quarter of permafrost soil carbon in areas of continuous permafrost.We observe
pervasive positive trends in vegetation productivity in areas of continuous permafrost, whereas areas
underlain by discontinuous permafrost have proportionally less positive productivity trends and an
increase in areas exhibiting negative productivity trends. Fire affects amuch smaller proportion of the
total area and thus a smaller amount of permafrost soil carbon, with the vastmajority occurring in
deciduous needleleaf forests. Our results indicate that vegetation productivity trendsmay be linked to
permafrost distribution, fire affects a relatively small proportion of permafrost soil carbon, and
Siberian larch forests will play a crucial role in the strength of the permafrost carbon climate feedback.

1. Introduction

Vegetation in arctic and boreal ecosystems is changing
in response to climatic drivers (Beck and Goetz 2011,
Elmendorf et al 2012, e.g. Hagedorn et al 2014) and
climate mediated fire regime changes (Johnstone
et al 2010a, e.g. Barrett et al 2011). These changes have
potentially important climate feedback implications
that include effects of changes in biomass accumula-
tion on global carbon cycling (Ma et al 2012, Pearson
et al 2013, Abbott et al 2016) and albedo feedbacks on
regional and global atmospheric temperatures

(Chapin et al 2005, Beck et al 2011c, Pearson
et al 2013). The effects of vegetation change on
warming induced thaw and mineralization of perma-
frost soil carbon is another potentially large yet less
studied positive climate feedback from arctic and
boreal ecosystems. Permafrost soil temperatures
under current and future climate scenarios are modu-
lated by a series of interrelated ecological factors
including vegetation cover, soil properties, surface
wetness, and snow cover (Shur and Jorgenson 2007,
Jorgenson et al 2010). As such, the strength of the
permafrost carbon-climate feedback will be strongly
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modulated by changes in ecosystem structure caused
directly by vegetation responses to climate (Elmendorf
et al 2012, Myers-Smith et al 2015) and indirectly by
climate induced increases in wildfire extent (Yoshi-
kawa et al 2003, Tchebakova et al 2009, O’Donnell
et al 2011) and severity (Jafarov et al 2013, Nossov
et al 2013) that affect vegetation structure (Johnstone
et al 2010b).

Changes in vegetation productivity and composi-
tion can affect permafrost thermal dynamics through
impacts on ground insulation, surface hydrology and
shading. Widespread productivity increases, or green-
ing trends, inferred from satellite observations (Beck
and Goetz 2011) have been linked to a transition from
graminoid to shrub dominance in tundra ecosystems
(Frost and Epstein 2014, Myers-Smith et al 2015). In
contrast, both greening and declining productivity, or
browning trends, have been observed in boreal forests
(Verbyla 2008, Beck and Goetz 2011) and linked with
growth trends captured in tree rings (Beck et al 2011a).
Expansion of woody shrubs in tundra ecosystems is
associated with decreased summer soil temperature
and permafrost thaw depth via canopy shading (Blok
et al 2010, Myers-Smith and Hik 2013). Forest cover
also reduces summer soil temperatures and active
layer depths (Roy-Léveillée et al 2014, Jean and
Payette 2014b). Experimental removal of shrubs (Blok
et al 2010) and trees (Iwahana et al 2005) has increased
soil temperature and permafrost thaw depth via
altered surface energy partitioning and associated
changes in soil hydrology. Snow accumulation around
shrubs (Sturm et al 2001) and trees (Jean and
Payette 2014b) can warm soil in winter and affect sur-
face energy dynamics of the subsequent growing sea-
son (Stiegler et al 2016). However, the insulating
effects of snow cover can be reversed in larger patches
(Roy-Léveillée et al 2014) or offset by other factors
such as organic layer thickness (Jean and
Payette 2014a) and so the large scale effects of vegeta-
tion change on winter soil temperatures remains
unclear.

The extent and severity of wildfires in arctic and
boreal ecosystems is increasing (Soja et al 2007, Tur-
etsky et al 2011), but the effects on permafrost vary
within and between boreal forest and tundra ecosys-
tems (Jiang et al 2015). Combustion of vegetation and
organic soil, and decreased surface albedo after fire
typically lead to rapid increases in soil temperature
and active layer thickness (Rocha and Shaver 2011,
Jiang et al 2015). Degraded permafrost may recover
during succession of vegetation and organic soils in
the decades after fire (Rocha et al 2012, Jiang
et al 2015). Fire severity influences successional path-
ways inways that affect post-disturbance regrowth tra-
jectories and plant species composition (Racine
et al 2004, Johnstone et al 2010b, Jones et al 2013).
Thus, fire influences on ecosystem succession may
impact permafrost thermal dynamics in ways compar-
able to those associated with climate-induced changes

in vegetation composition and distribution (Pearson
et al 2013).

It is clear that ecosystem changes associated with
vegetation productivity responses to climate and fire
disturbance will exert strong influence over future
permafrost soil temperatures, and therefore the per-
mafrost soil carbon dynamics (Grosse et al 2011,
2016). Yet despite the high degree heterogeneity in
ecosystem structure, vegetation productivity trends,
and fire regimes across the arctic-boreal region there
has been no systematic analysis of how the spatial dis-
tribution of these properties and permafrost soil car-
bon co-vary in space. The objective of this study is to
quantify the distribution of permafrost soil carbon in
relation to vegetation type, vegetation productivity
changes, and fire disturbance in order to understand
the relative importance of these factors with respect to
future permafrost soil carbon dynamics. In addition
we seek to understand how vegetation productivity
trends and fire disturbance vary with permafrost dis-
tribution and vegetation type. To accomplish these
objectives we quantify the distribution of carbon in
permafrost soils (CP; defined as 0–1 m depth) (Huge-
lius et al 2014) in areas affected by changes in vegeta-
tion productivity and fire, by vegetation type
underlain by continuous and discontinuous perma-
frost across the circumarctic-boreal region.

2.Methods

2.1. Study area delineation
The spatial domain for this studywas defined using the
Circum-Arctic Map of Permafrost and Ground Ice
Conditions (CAMP; Brown et al 1998). This map
covers the northern hemisphere poleward of 20° N
latitude, and categorizes permafrost affected areas as
continuous (90%–100% areal cover), discontinuous
(50%–90% areal cover), sporadic (10%–50% areal
cover), and intermittent (<10% areal cover) perma-
frost zones. Our analyses were restricted to the
continuous and discontinuous permafrost zones to
avoid including large areas unaffected by permafrost.
Because one of our aims was to quantify the amount of
permafrost soil carbon underlying areas affected by
fire and vegetation change within different ecosystems
we further restricted our study area using theNorthern
Circumpolar Soil Carbon Database v2 (NCSCD;
Hugelius et al 2013). This effectively removed altitu-
dinal permafrost at lower latitudes (i.e. in the Alps and
Himalayan mountain ranges). The final study domain
included approximately 11 million km2 underlain by
continuous permafrost and 3.5 million km2 with
discontinuous permafrost (figure 1, table 1).

2.2.Mapped variables
Soil organic carbon content to a depth of 1 m across
the study region was quantified using the NCSCDv2
(NCSCDv2; Hugelius et al 2013). The NCSCDv2
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represents a synthesis of multiple national and regio-
nal soil maps and pedon data, and is the source of the
most recent and widely accepted estimates of organic
carbon stored in permafrost soils. We chose to
quantify organic carbon stocks in the upper 1 m
because these near surface soils will be most affected
by changes in ecosystem structure and disturbance
regimes, and also because the 0–1 m data set is better
constrained than deeper pools which are based upon
fewer observations. The original dataset was in geo-
graphic coordinates on a 0.012° grid.

Variability in ecosystem types within the con-
tinuous and discontinuous permafrost zones were
quantified using the Global Land Cover 2000 dataset
(GLC2000; Bartholomé and Belward 2005). Percent
tree canopy cover was mapped using the MODIS
Vegetation Continuous Fields Collection 5.1 data pro-
duct (MOD44B; Hansen et al 2003). We combined the
19 original GLC2000 land cover classes present in the

study region into six aggregate classes for analysis.
Aggregation of the land cover classes was informed by
preliminary assessment of the spatial extent, percent
canopy cover, other regional land cover products
(Walker et al 2005, Sulla-Menashe et al 2011), and
overall relevance to the study. Needleleaf deciduous
and needleleaf evergreen classes were retained due to
their extent and importance in the region, and all
broadleaf ormixed leaf classes and burned forests were
aggregated to an other forest class. These classes were
aggregated because of their relatively small areal
extents, and in the case of burned forests the dominant
pre-fire vegetation type could not be determined.
Mosaic forest and evergreen shrub were aggregated to
themosaic forest class. Evergreen shrubwas included in
this class because the two original classes were found
in close proximity near latitudinal treeline (figure S1),
and because the dominant shrub species in these sys-
tems are deciduous (e.g.Walker et al 2005). Moreover,

Figure 1.Distribution (A) vegetation, and (B) areas of observed vegetation productivity changes andwildfire in the continuous and
discontinuous permafrost zones. Gray outline denotes areas of discontinuous permafrost.
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the GLC2000 criteria for forest height is aminimumof
5 m, and it is likely that the evergreen shrub class con-
sists of openwoodlands with short slow-growing trees,
and analysis of MODIS VCF data showed the ever-
green shrub class to have a mean canopy cover of 16%
(table 1), which is higher than the original mosaic for-
est class, and on par with needleleaf deciduous forests
in the continuous permafrost zone. The remaining
shrub and herbaceous classes were aggregated into the
tundra class. Lastly, all non-vegetated classes that
included any sort ofmanagement were aggregated into
the other class. A summary of the classes is shown in
table 1.

Vegetation productivity changes were quantified
using a normalized difference vegetation index
(NDVI) trend map produced by Guay et al (2014) that
depicts linear changes in average annual June–August
landscape greenness from 1982 to 2012. The trend
map was derived from the Global Inventory Modeling
and Mapping Studies 3rd generation (GIMMS3g)
NDVI dataset, which is based on measurements from
Advanced Very High Resolution Radiometer instru-
ments carried by National Oceanic and Atmospheric
Administration satellites (Pinzon and Tucker 2014).
The per-pixel trend analysis involved pre-whitening
theNDVI time series, followed by assessment of statis-
tical significance and slope using the Mann-Kendall
(Mann 1945) and Theil-Sen (Theil 1992) approaches,

respectively, as implemented by the zyp package (Bro-
naugh and Werner 2012) in R (R Development Core
Team2014).

Fire extent and distribution across the study region
for the 2000–2014 period was mapped using the Col-
lection 5.1 MODIS Burned Area product (MCD45A1;
Roy et al 2005, 2008). Annual composites were derived
from monthly files spanning the months of May
through September. We excluded October through
April because the study area is typically snow covered
during this period and fires are highly unlikely.
Monthly burned area files indicate the first day on
which a pixel was determined to have burned, and
annual composites were constructed by taking the
minimum value for the five-month period (i.e. earliest
date of burning). TheMODIS product tends to under-
estimate burned area, and errors of omission are typi-
cally higher than errors of commission in boreal
forests (Padilla et al 2014) therefore data were not
screened using the embeddedQAflags.

2.3. Resampling and data analysis
Prior to analyses all data were transformed from
native resolution and projection to Lambert
Azimuthal Equal Area Projection (LAEA) with
MODIS 500 m resolution. The 500 m spatial resolu-
tion was chosen to avoid loss or creation of data
associated with resampling the MODIS burned

Table 1.Aggregated and original land cover classes derived from theGLC2000 data set.

Continuous Discontinuous

Aggregated class GLC2000 class
Area

km2 106 Canopy cover%
Area

km2 106 Canopy cover%

Other forest Broadleaved deciduous closed 0.03 26.1 0.03 34.0
Other forest Broadleaved deciduous open

(15%–40%)
0.00 9.0 0.00 10.9

Other forest Mixed leaf tree cover 0.09 36.9 0.09 44.4
Other forest Burned tree cover 0.09 16.5 0.09 21.8

Needleleaf evergreen Needleleaf evergreen 0.21 34.5 0.56 38.0

Needleleaf deciduous Needleleaf deciduous 2.49 17.4 0.54 30.1

Mosaic forest Mosaic (tree cover/other) 0.55 11.3 0.45 18.6
Mosaic forest Shrub cover, closed-open, evergreen 0.28 16.1 0.24 22.5

Tundra Shrub cover closed-open, deciduous 1.28 6.2 0.25 12.7
Tundra Herbaceous cover closed-open 0.86 5.5 0.12 9.3
Tundra Sparse herbaceous or sparse shrub 3.32 5.6 0.40 10.6
Tundra Regularlyflooded shrub and/or

herbaceous
0.23 12.9 0.14 16.3

Other Cultivated andmanaged 0.03 8.7 0.01 12.9
Other Mosaic crop/tree/other natural 0.00 21.3 0.00 23.2
Other Mosaic crop/shrub or grass 0.02 11.1 0.01 12.0
Other Bare 0.55 5.8 0.03 9.4
Other Water 0.46 13.7 0.16 23.9
Other Snow and ice 0.39 2.4 0.05 2.9
Other Aritifical surfaces 0.00 8.6 0.00 13.5
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area data. The MODIS Reprojection Tool (https://
lpdaac.usgs.gov/tools/modis_reprojection_tool) was
used to mosaic the monthly burned area product,
reproject each file from sinusoidal to LAEA, and finally
convert files to GeoTiff. These mosaics included data
poleward of approximately 40° N latitude, and served
as a template for resampling the remaining datasets.
The CAMP, NCSCDv2, GLC2000, VCF, and GIMMS
datasets were then reprojected and resampled to
match the spatial extent and resolution of the burned
area data set. The CAMP and GLC2000 include
categorical variables and so were transformed using
nearest neighbor resampling. The remaining maps
included continuous variables and so were resampled
using bilinear interpolation. All transformations were
performed using the Raster package (Hijmans and van
Etten 2013) in R.

Once all data were resampled to the common pro-
jection and spatial resolution the CAMP map was
reclassified to exclude the sporadic and intermittent
permafrost classes, and then masked to further
exclude areas not covered by the NCSCDv2. Similarly,
the NCSCDv2 was then masked using the modified
CAMP map so that both maps covered the same area.
We then masked the remaining data sets to include
only data within the delineated study area (figure 1).
The zonal function in the Raster package was used to
quantify the distribution and variability in ecosystem
structural and functional properties within the con-
tinuous and discontinuous permafrost zones, and also
ecosystem structural and functional properties within
vegetation zones.

3. Results

3.1.Distribution of ecosystem type and permafrost
carbon
Areas of continuous permafrost store an estimated
274 Pg of Cp (table 2). Within this zone, deciduous
needleleaf (i.e. larch) forests contain 71.5 Pg or 26% of
the total Cp pool (figure 2, table 2). An additional
141.5 Pg or 52% of the total Cp pool occurs in tundra
ecosystems, with the remaining 61 Pg distributed

among four additional land cover classes (figure 2,
table 2). Areas of discontinuous permafrost contain
65 Pg of Cp, with 18.2 Pg or 28% occurring in tundra
ecosystems. Evergreen needleleaf, deciduous needle-
leaf, and forest mosaic contain 12.6 Pg or 19%, 11.0 Pg
or 17%, and 15.1 Pg or 23% of Cp, respectively. Note
that the mosaic forest class occurs primarily in North
America because the Eurasian latitudinal treeline
ecotone occurs in the deciduous needleleaf class
(figure 1). Differences in total Cp stocks between
ecosystem types reflect, in large part, their spatial
extent.

3.2. Vegetation productivity trends
Over the 30 year study period we observed greening
trends in 41% and 23% of areas underlain by
continuous and discontinuous permafrost respec-
tively, while browning trends were observed in 5% of
the continuous and 12% of the discontinuous zones.
For all vegetation classes, the magnitude of greening
trends in areas of continuous permafrost was greater
than those in discontinuous permafrost (table 3). The
amount of Cp in ecosystems affected by productivity
changes was 130 Pg in continuous and 22 Pg in
discontinuous permafrost, and the majority, 117 Pg,
occurred in areas of continuous permafrost exhibiting
greening trends (figure 3, table S4). Areas of increasing
productivity in tundra and deciduous needleleaf
forests of the continuous permafrost zone contain
58 Pg CP (49%) and 33 Pg CP (28%), respectively. By
comparison, for all other vegetation classes, areas of
greening or browning in either permafrost zone
contained nomore than 11 PgCP.

3.3.Wildfire distribution
In contrast to decadal trends in vegetation productiv-
ity, wildfire has immediate effects on permafrost
through combustion of vegetation and organic soil,
and consequences of these changes on ground thaw.
During the 2000–2014 period wildfire occurred over
181 000 km2 (1.7%) of the continuous and
108 000 km2 (3.1%) of the discontinuous permafrost
zones (figure 1(B)). Burned areas contained a total of
7.7 Pg of CP, of which half (3.8 Pg) occurred beneath

Table 2.Distribution ofmajor vegetation classes and their total CP content across the continuous and discontinuous permafrost zones.

Continuous Discontinuous

Total area (km2×106) Total CP (Pg) Total area (km2×106) Total CP (Pg)

Other forest7 0.21 5.7 0.21 3.7
Mosaic forest7 0.84 22.9 0.69 15.1
Evergreen needleleaf forest 0.21 6.2 0.56 12.6
Deciduous needleleaf forest 2.49 71.5 0.54 11.0
Tundra7 5.68 141.5 0.90 18.2
Other7 1.45 26.9 0.26 4.3

Total 10.9 274.6 3.2 64.9

7 Details regarding aggregation of vegetation classes are provided in themethods and supplementalmaterial.
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deciduous needleleaf forests (figure 4). In the contin-
uous permafrost zone, the total burned area of
deciduous needleleaf forests (112 000 km2; table S4)
and CP contained therein (3.3 Pg)was greater than the
total for all classes in the discontinuous permafrost
zone (109 000 km2 and 2.2 Pg). An additional 1.0 Pg of
CP was located in tundra ecosystems affected by fire
over the study period. In discontinuous permafrost
deciduous needleleaf, evergreen needleleaf, and
mosaic forests, burned areas contained 0.5 Pg, 0.4 Pg,
and 0.5 Pg of CP respectively. Here we note that the
evergreen needleleaf and mosaic classes represent
North American boreal forests likely comprised of
similar vegetation types that have been separated as an
artifact of mapping methods, as described above.
Thus, wildfire in North American boreal forests affect
the largest proportion of CP in the discontinuous
permafrost zone, whereas deciduous needleleaf forests
in Eurasian affect the largest proportion of CP in areas
of continuous permafrost. Overall the annual area
burned in deciduous needleleaf forests was approxi-
mately an order of magnitude larger than any other
vegetation class (figure 5), which reflects its broad
spatial extent.

4.Discussion

Regarding the potential role of vegetation in modulat-
ing the strength of the permafrost-carbon climate
feedback our results indicate that: (1) Siberian larch
forests represent a substantial yet relatively under-
studied component of the arctic-boreal permafrost
region, and (2) at present vegetation productivity

trends over the past 30 years affect a much larger
portion of the CP pool than fire. However, this does
not imply that the contribution of a particular
phenomenon (i.e. greening or fire), or ecosystem type
to the permafrost carbon feedback will necessarily be
proportional to its areal extent or the amount of
permafrost carbon contained therein. Changes in
ecosystem structure associated with productivity
trends and fire will alter permafrost soil thermal
dynamics in predictable ways via influences on surface
energy dynamics. But these changes and their effects
on permafrost will vary within and between ecosys-
tems, and are also likely to alter soil moisture, carbon
allocation, and other factors that influence permafrost
soil temperatures in ways that are less well understood.
Moreover, the spatial distribution of ecosystems,
productivity trends, and fire are likely to change in
response to continued climate warming. Nonetheless
our results provide important context for understand-
ing the role of vegetation in the permafrost carbon
climate feedback.

4.1. Vegetation productivity–permafrost
interactions
The structural effects of changing forest productivity
and associated impacts on permafrost temperatures
remain largely unstudied. While treeline advance is
slower than shrub expansion, both have been observed
in recent decades (Frost and Epstein 2014). In
deciduous needleleaf forests, average canopy cover is
just 17.4%, so productivity trends may be indicative of
canopy infilling, understory vegetation responses to
climate, or both. The structural consequences of
widespread productivity increases in boreal larch

Figure 2.Total soil carbon pools (0–1 m) by aggregatedGLC-2000 land cover classes for continuous (solid) and discontinuous
(hashed) permafrost zones.
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Table 3.Total area andmagnitude of significant GIMMSNDVI trends for 1982–2012 by land cover type and permafrost distribution for aggregated land cover classes.

Continuous Discontinuous

Greening Browning Greening Browning

Area (km2) Mean8 SD9 Area (km2) Mean8 SD9 Area (km2) Mean8 SD9 Area (km2) Mean8 SD9

Other forest 72 199 0.0030 0.0016 13 047 –0.0026 0.0014 37 742 0.0027 0.0015 27 707 –0.0031 0.0016
Tundra 2382 585 0.0038 0.0018 256 130 –0.0036 0.0020 243 201 0.0036 0.0019 93 688 –0.0035 0.0022
Other 376 496 0.0036 0.0021 73 468 –0.0035 0.0025 58 943 0.0035 0.0020 27 162 –0.0038 0.0034
Evergreen needle leaf 67 212 0.0029 0.0015 16 912 –0.0027 0.0013 93 011 0.0028 0.0014 90 084 –0.0029 0.0013
Deciduous neddle leaf 1125 066 0.0034 0.0016 84 204 –0.0026 0.0012 138 021 0.0024 0.0011 28 814 –0.0024 0.0013
Mosaic forest 415 154 0.0039 0.0018 52 544 –0.0036 0.0019 166 777 0.0034 0.0015 120 816 –0.0034 0.0015

8 Units areNDVI yr–1.
9 SD= standard deviation.
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forests represent an important yet understudied pro-
cess influencing the vulnerability of permafrost to
thaw with climate warming. Unlike shrub removal in
tundra (Nauta et al 2015), experimental tree removal
in a larch forest has not resulted in sustained perma-
frost thaw, as reduced transpiration increases latent
heat content of the soil (Iwahana et al 2005). Wide-
spread increases in boreal canopy cover result in
regional warming (Chapin et al 2005), thus the effect

of boreal greening on permafrost temperatures is the
net of both positive and negative influences on the soil
thermal regimes. This interaction varies with time as
vegetation changes progress and interact with surface
temperature and hydrologic dynamics, both season-
ally and longer-term.

Shrub expansion associated with greening (Frost
and Epstein 2014, Myers-Smith et al 2015) may pro-
tect against permafrost thaw at the ecosystem scale due

Figure 3. Soil carbon pools (0–1 m) for areas of each vegetation class that exhibit greening (left) and browning (right) trends from1982
to 2012. Solid portions of the bars represent areas of continuous permafrost and hashed portions represent areas of discontinuous
permafrost.

Figure 4. Soil carbon pools (0–1 m) in areas that burned during the 2000–2014 period, by vegetation class. Solid portions of the bars
represent areas of continuous permafrost and hashed portions represent areas of discontinuous permafrost.
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to canopy shading (Blok et al 2010, Myers-Smith and
Hik 2013). At larger scales regional albedo feedbacks
(Loranty et al 2011) associated with widespread expan-
sion of tall shrubs (e.g. >100 cm) may overwhelm
local effects and lead to permafrost thaw (Lawrence
and Swenson 2011). However, at the landscape scale,
tall shrubs may be fairly uncommon, and their dis-
tribution is limited by a combination of climatic and
environmental factors (Beck et al 2011b, Swan-
son 2015). Warming experiments show consistent
declines in moss associated with shrub expansion
(Elmendorf et al 2012), which would warm soils by
removing the insulating layer mosses provide. On the
other hand, shrub expansion will increase the amount
of recalcitrant woody litter (Cornelissen et al 2007,
Elmendorf et al 2012), changing rates of organic mat-
ter accumulation, which also affects permafrost tem-
peratures (Jorgenson et al 2010, Grosse et al 2016). It is
therefore still undetermined how shrub expansionwill
affect permafrost soil carbon dynamics.

Increasing vegetation productivity in areas of con-
tinuous permafrost will not prevent gradual pro-
longed thaw and release of CP to the atmosphere that is
likely to occur over the next decades to centuries
(Schuur et al 2015). Our results suggest productivity
changes, which are important yet unaccounted for in
recent estimates of feedback strength (Koven
et al 2015), are pervasive enough to influence the rate
of CP release. Initially, greening may counteract the
effects of continued climate warming on permafrost
temperatures, although the effects will likely vary
within and between tundra and boreal forest ecosys-
tems. Greater carbon uptake with greening will par-
tially offset CP release (Pries et al 2015). Changes in soil
moisture may accompany vegetation changes (Iwa-
hana et al 2005, Nauta et al 2015), which could have
important influences on the fate of mineralized soil

carbon (Schädel et al 2016). Thus, productivity chan-
ges will have important effects on the permafrost car-
bon climate feedback via awide range of controls, both
direct and indirect, on regional carbon dynamics.

More widespread and stronger greening trends,
and less prevalent browning trends over our 30 year
study period suggest that soil moisture retention in
areas of continuous permafrost may buffer ecosystems
from hydrologic stress associated with climate warm-
ing, which has been implicated as a cause for boreal
productivity declines (Juday et al 2015, Walker
et al 2015). Differences between continuous and dis-
continuous permafrost were associated with a sub-
stantial reduction (>50%) in the relative extent of
greening, along with a three-fold increase in the rela-
tive extent of browning, suggesting that rising tem-
peratures are less beneficial to tree growth in the
discontinuous permafrost zone and, in some areas,
could be detrimental due to increased drought-stress
andmore frequent disturbance by wildfire and insects.
Several tree-ring and remote sensing studies have
demonstrated recent reductions in tree growth in
parts of northern Eurasia and North America that
have been linked with temperature-induced drought-
stress (Barber et al 2000, Beck et al 2011a, Berner
et al 2011, Porter and Pisaric 2011, Buermann
et al 2014, Juday et al 2015). These observed changes
are congruent with model projections suggesting that
higher temperatures and increased rates of dis-
turbance will lead to a northward migration of the
boreal forest biome over the 21st century (Lucht
et al 2006, Tchebakova et al 2010, Pearson et al 2013).

Alternatively, several recent studies in Canadian
boreal forests have shown that inundation associated
with permafrost degradation in poorly drained low-
lands can result in productivity declines (Chasmer
et al 2011) and forest loss (Iwasaki et al 2010, Baltzer

Figure 5. Summary ofmean annual area burned from2000 to 2014 by aggregate land cover class for continuous and discontinuous
permafrost. Boxes show themedian and interquartile range, whiskers indicateminimumandmaximumvalues.
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et al 2014, Frost and Epstein 2014), and that this
phenomenon appears to be widespread (Helbig
et al 2016). These results imply that browning trends
may become more prevalent in areas where perma-
frost degradation results in increased surface wetness.
However, productivity declines or forest loss asso-
ciated with this type of hydrologic change has not been
widely identified as a cause for observed browning
trends. Regardless of the explanatory mechanism,
increased prevalence of browning trends in areas of
discontinuous permafrost will likely (i) translate into
greater permafrost thaw associated with stronger cou-
pling between air and permafrost temperatures, (ii)
increase the strength of the permafrost carbon climate
feedback as a result of diminishing offsets from vegeta-
tion productivity.

4.2. Fire disturbance–permafrost interactions
The vast majority of wildfire across the continuous
and discontinuous permafrost zones occurs in decid-
uous needleleaf forests. The effects of wildfire on
permafrost temperatures and CP vary with the degree
of organic layer combustion, a common metric of
burn severity that varies within and between vegeta-
tion types (Jiang et al 2015, Rogers et al 2015). Removal
of the insulating soil organic layer leads to deeper
seasonal thaw in the years to decades following fire
(Viereck and Dyrness 1979, Swanson 1996, Viereck
et al 2008, Jiang et al 2015), increasing the pool of
thawed organic matter available to microbial decom-
posers. Fire effects on ground thaw also varies across
landscape, soil, and vegetation classes, which affect
organic layer depth, soil moisture, and ice content
(Swanson 1996, Jorgenson et al 2010, Nossov
et al 2013). Permafrost with high ice content may be
more resistant to thawing following fire because of
high latent heat content but, once thawed, ground
subsidence leads to a shift in local topography
(Mackay 1995) and mobilization of deeper soil carbon
(Nossov et al 2013). At the same time, loss of labile
carbon coupled with microbial community and abio-
tic changes may limit decomposition following fire
(Taş et al 2014). Recovery of vegetation and soil
accumulation after fire can promote permafrost
aggradation enabling recovery of active layer depths to
pre-fire conditions (Mackay 1995, Viereck et al 2008,
Rocha et al 2012, Loranty et al 2014). In the discontin-
uous zone, permafrost is often thermally protected by
denser vegetation canopies and deeper soil organic
layers, meaning disturbance that removes these insu-
lating layers may lead to greater thawing of permafrost
(Jorgenson et al 2010).

On longer timescales, variability in fire severity
may lead to shifts in ecosystem types (Mack et al 2008,
Sofronov and Volokitina 2010, Beck et al 2011c, Jones
et al 2013)with impacts on permafrost that are similar
to the effects of productivity changes. This leads to

shifts towards deciduous broadleaf dominance in
evergreen conifer forests (Johnstone et al 2010b),
shrub dominance in tundra (Jones et al 2013), and
shifts in stand density in larch forests (Sofronov and
Volokitina 2010). The associated impacts on perma-
frost temperatures may therefore be similar to those
induced by structural changes accompanying warm-
ing induced greening trends. The influence of fire
severity on post-fire succession is well documented in
North American evergreen forests (Johnstone
et al 2010b, Beck et al 2011c), however the total area
and amount of CP affected by tundra fire is of a similar
magnitude to that of North American boreal forests
(evergreen needleleaf andmosaic classes), highlighting
a need for improved understanding of tundra fire
dynamics. There is also a relative paucity of informa-
tion onfire severity effects in the extensive larch forests
of Siberia where the majority of permafrost-affecting
fires occur (Berner et al 2012).

5. Conclusions

Across the zones of continuous and discontinuous
permafrost more than half of all soil carbon occurs in
areas affected by productivity changes andwildfire that
are likely to influence permafrost soil thermal
dynamics via changes in ecosystem structure and
function. Understanding the net feedback effects of
such changes on climate and soil carbon vulnerability
in permafrost regions is complex because processes
such as greening, which tend to foster negative feed-
backs to local permafrost temperatures, also have
positive feedbacks to regional warming. Proportion-
ally, areas of discontinuous permafrost exhibit less
greening, more browning, and more fire relative to
continuous permafrost, indicating the distribution of
these processes will change over time as permafrost
degrades. Ourfindings indicate that deciduous needle-
leaf boreal forests, and links between the distribution
of permafrost and vegetation productivity trends are
likely to influence the timing and magnitude arctic-
boreal terrestrial ecosystem feedbacks to climate.
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