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ARTICLE INFO ABSTRACT

Keywords: This work combines nanoscale tribological wear methods, used to prepare zinc dialkyldithiophosphate (ZDDP)
ZDDP tribofilms under conditions of controlled loading, with site specific nanopillar compression testing to derive a
MeCh?}nical properties relationship between the ZDDP growth conditions and resultant mechanical properties. The key finding is that
gg;msny ZDDP films grown at higher loads exhibit lower yield strengths, which correlate with differences in tribofilm

chemistry. We hypothesize that the load sensitivity of tribofilm properties may underlie the efficacy of ZDDP in

suppressing wear by functioning as a hard coating at low loads while exhibiting enhanced lubricity at high loads.

1. Introduction

Engineering optimized lubricant additives underlies the efficient
function of engines and mechanical systems. Antiwear additives
improve system lifetime and have become increasingly important in
engines functioning in ever more extreme environments [1]. The most
successful and prolific antiwear additive, zinc dialkyldithiophosphate
(ZDDP), has been an important lubricant component since the 1940's
[2—4]. The removal of lead from automotive fuels placed ZDDP
amongst the most important antiwear additives for automotive appli-
cations. However, phosphorous and sulfur tend to poison metal
nanoparticle catalysts present in catalytic converters [5]. This fact
motivates significant efforts in the last two decades to reduce or replace
ZDDP. Suitable complete replacements have evaded discovery partially
owing to our limited understanding of the deformation mechanisms of
ZDDP during wear and the fundamental properties underpinning its
efficacy [6].

Elucidating the fundamental constitutive properties of ZDDP
underlying its antiwear efficacy presents challenges due to both the
chemomechanical complexity of wear and the chemical heterogeneity
of ZDDP tribofilms [3,7-12]. ZDDP films typically contain glassy
phosphates, zinc polyphosphates, zinc sulphides, and when grown on
metallic substrates the films also contain other metal sulphides and
oxides [3,13,14]. The chemical distribution in tribofilms exhibit spatial
heterogeneity on the micron and nanoscale both laterally and out of
plane [15-17]. This distribution may result in part from the thermo-
mechanical nature of ZDDP tribofilm formation, where they can grow

via a thermally activated decomposition at elevated temperatures,
stress dependent mechanically activated contact sliding at lower
temperatures, or a synergistic combination of the two effects [6,12].
Tribological stress during sliding wear inherently localizes at micro-
scale and nanoscale asperities, which likely induces the chemical
heterogeneity observed in tribofilms. Kinetic growth models for
ZDDP tribofilm formation as a function of stress and temperature
were recently established based on single asperity contact growth
studies using diamond coated atomic force microscope tips [6]. The
growth rate was given by,

AU — cA
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where U is the internal activation energy, V is the activation volume, o
is applied stress, kT is the thermal energy. While the data could be fit
well to a single activation energy (AU=0.8 eV) and activation volume
(AV=3.8 A%), it remains to be determined whether the properties of the
tribofilm that forms under different conditions are also nominally
determined by a single descriptor. A number of nanoindentation based
hardness values have been reported in the literature and range from 1
to 10 GPa with significant variations observed even within individual
samples [8,16,18—25]. The discrepancies in the data suggest that the
mechanical properties may in fact be sensitive to the local growth
conditions and are inherently spatially heterogeneous. While efforts
have been made in prior studies to correlated hardness and chemistry,
the local growth conditions are not well known for bulk tribolayer
formation. Indentation hardness measurements are not ideal for
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spatially heterogeneous materials because they sample volumes much
larger than the indent size. They may also be subject to substrate
induced artifacts, particularly in films of unknown local thickness.
However, the prior observations motivate the two primary questions
being investigated here: i) are the properties of ZDDP tribofilms
sensitive to growth load and, if so, ii) what are the correlations between
growth conditions, chemistry, and film properties?

The emergence of single asperity ZDDP growth techniques and site-
specific nanopillar mechanical properties characterization provide an
unprecedented opportunity to correlate tribofilm growth conditions
and their associated properties [6,26—28]. In this effort, we induce
localized tribofilm growth from 1% ZDDP polyalpha olefin solutions
onto silicon wafers under contact sliding of a 2.5 um diameter cono-
spherical diamond tip under different applied loads at 80 °C. Si serves
as a model substrate to characterize the inherent properties of the
ZDDP free of artifacts associated with chemical reactions with the
substrate. We characterize the chemistry of the deposited tribofilms via
energy dispersive spectroscopy (EDS) and auger electron spectroscopy
(AES), and quantify their mechanical properties through in-situ
transmission electron microscopy based nanopillar compression. The
experimental approach allows us to directly correlate the relationship
between single-asperity growth conditions and the resultant materials
properties, providing new insights into the factors governing the
performance of ZDDP tribolayers.
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2. Experimental methods

We prepared synthetic base-stock by mixing of 3.3 wt% commercial
break-in oil additive (containing 30 wt% Zinc Dialkyldithiophosphate)
with 96.7 wt% Dec-1-ene (homopolymer hydrogenated, 100 wt%,
INEOS Oligomers, Feluy, Belgium). The base-stock was placed in an
aluminum pan and contacted to a heating stage with silver paste. Pre-
cleaned Si wafers were immersed in the oil and heated to 80 °C.
Tribofilms were grown under a 2.5 um cono-spherical diamond tip
(90°, VR25736, Micro Star Technologies, Huntsville, TX) in a TI-950
TriboIndenter (Hysitron, Inc., Minneapolis, MN). Films were grown at
a 3 Hz scan rate and different loads between 175 uN and 700 pN in
5 umx5 pm squares. Thermal films with similar thickness were grown
in the same base stock at 150 °C for 13 h on Si substrates. The films
were cleaned by rinsing in hexane (98.5%, Fisher Scientific, Hampton,
NH) to remove remaining base-stock and dried in an Ar filled glove
box. Auger electron spectroscopy was performed in a PHI 660 scanning
Auger microprobe. Raman spectra were obtained on a Horiba confocal
Raman using a 532 nm laser source (Fig. S2).

In order to protect the films and provide a contacting plane during
nanocompression, 300 nm thick Cr (99.95%, Lesker) layers were
deposited on top of the films by Magnetron Sputtering (AJA
International INC. N Scituate) under 3 mTorr Ar with a base pressure
below 107° Torr. Nanopillar samples were fabricated through focused
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Fig. 1. Height profiles measured in-situ during ZDDP tribolayer growth at (a) 350 uN and (b) 700 uN. The height versus cycle number is plotted in (c) along with an example scan probe

topographic of the film obtained in-situ.

104



X. Liu et al.

ion beam lift out (FEI Helios), mounted on wedge-shaped Si substrates,
and milled to final diameter of =300 nm with an aspect ratio of =2:1—
3:1. The top of each pillar was cut to provide a flat contact surface for
subsequent nanocompression testing in the transmission electron
microscope (TEM, JEOL 2010 LaB6 200 kV). Pillars were compressed
in displacement-control mode at a rate of 1nms™ with a 2 um
diameter flat diamond punch (PI 95 TEM Picolndenter, Hysitron,
Inc., Minneapolis, MN). The mean values are reported from multiple
measurements with error reported as one standard deviation.

3. Results and discussion

Fig. 1 shows the evolution of a tribofilm grown at 350 uN imaged
intermittently in-situ in the liquid. A relatively smooth and continuous
deposit results from just a few cycles and grows approximately linearly
with cycle number up to 40 cycles. Similar growth behavior is observed
at each load. The general growth behavior is consistent with prior work
by Gosvami et al.,[6] although the growth rate per cycle is higher and
the surface roughness is lower. Assuming maximum Hertzian contact,
this material was grown at an approximate pressure of =2 GPa.
Gosvami et al. reported growth rates at 80 °C, and similar pressures,
to be 102 nm® s~1. Our rates are ~10° nm® s!, however our calculated
contact areas are ~10° larger. Thus accounting for contact area, the
results are consistent to an order of magnitude. Normalizing by area,
we measure growth rates of 1.1x1072 nm s™*, which is also similar to
bulk growth rates of 0.9x1072 nm s~ measured by Zhang and Spikes
using a 19 mm ball-on-flat contact at 100 °C and =2.5 GPa [29]. Again,
the growth rates agree to an order of magnitude, which is reasonable
considering the major differences in scale. Fig. 2 shows a series of
adjacent tribolayers grown at different loads imaged in-situ by the
scanning probe and optically: The ability to reproducibly grow tribo-
layers under controlled load allows us to probe the relationships
between growth conditions, chemistry and properties.

Nanopillars for compression testing were prepared by sputter
coating the free surface with 300 nm of Cr necessary to protect the
surface and provide a flat contact for the diamond indenter after ion
milling. Site-specific focused ion beam lift-out methods were used to
prepare nanopillars from ZDDP tribofilms grown under controlled
loads. We also prepared nanopillars from ZDDP films thermally
deposited at 150 °C for 13 h. This time and temperature produced
films that on average were of comparable thickness to the tribofilms,
however the thermal films exhibited significant variability in thickness.
The radial surface of the Si substrate amorphizes due to ion beam
milling during pillar preparation and this amorphous layer has a
similar appearance in bright-field imaging as the amorphous ZDDP
film in the TEM images. To confirm the chemistry of the =30 nm thick
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tribofilm, lying between Si and Cr, energy dispersive spectroscopy
mapping was employed (Fig. S1). Fig. 3 provides example time-lapse
images of nanopillar compression performed using controlled displace-
ment conditions of 1 nm s™'. The lateral strain of the tribolayer was
measured from the images and correlated with load measurements
from the indenter (see Fig. 3). The thermally grown ZDDP tribofilm
yields at 2.43 + 0.19 GPa, reported as experimental mean and standard
deviation. The tribofilms grown at loads of 350 uN and 700 uN yield at
1.16 + 0.08 GPa and 0.42 + 0.02 GPa, respectively. The trend of re-
duced yield strength with increased processing load is rather unex-
pected, as most materials tend to work harden rather than work soften.
However, the chemistry of ZDDP varies with growth stress in a manner
that affects the underlying mechanical properties. Auger electron
spectroscopy was used to map the local composition (Fig. 4) of
tribofilms grown under different conditions both after cleaning the
sample in hexane (Table SI) and after removing ~3 nm of material
using in situ Ar* sputtering (Table 1). Due to the exposure of the native
surface to both oil and hexane, we consider the sub-surface composi-
tions to be more representative. The P, and S content of the tribofilms
tend to decrease with increasing contact sliding load, which results in a
reduce yield strength. The results support the hypothesis that local
growth load experienced under asperity contact control tribofilm
composition. The chemistry of this amorphous film must ultimately
govern its mechanical properties. However, no fundamental basis
currently exists for predicting how the properties should vary with
anion composition. We note that metallic substrates on which ZDDP
films are typically grown may have a catalyzing effect on the ZDDP
decomposition reaction that would cause the chemistry to differ on
different substrates [2,30]. However, utilizing a chemically inert
substrate here demonstrates an inherent sensitivity of ZDDP tribofilm
chemistry and properties to growth stress. In fact, Shimizu and Spikes
found that initial tribofilm formation on Fe alloys is S rich, and
subsequently becomes more Zn and P rich [31]. However, it is
reasonable to expect that S will have stronger bonding interactions
with Fe than the Si-O terminated substrate utilized here. This could
explain why our films initially grow more Zn and P rich.

We postulate that the growth stress dependence of yield strength
underlies the unique antiwear performance of ZDDP. Under low shear
stress a hard tribofilm forms that can resist wear in a manner
consistent with Archard's equation. At higher shear stresses, the more
compliant tribofilm is more lubricious and favors sliding of asperities.
The spatial variation in properties resulting from the heterogeneous
stress distribution during wear also produces a tribofilm that is
effectively a multiphase nanocomposite composed of hard and soft
phases. The spontaneous nanocomposite formation that persists in
steady-state and provides wear resistance at low loads and lubricity at

Fig. 2. Images of tribofilms obtained from nanoscale wear tests performed at 80 °C under varying levels of load. (a) provides a topographic image obtained in-situ after growth, while (b)

shows the same material imaged optically after cleaning in hexane.
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Fig. 3. Time-lapse images obtained during in-situ nanocompression testing with examples shown for the initial loading, near the yield strength, and at high strain, along with a plot of
stress versus lateral strain of the ZDDP tribofilm. The lateral strain was measured from the width of the ZDDP tribofilm in each of the images.
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Fig. 4. Auger electron spectra for ZDDP tribofilms grown under different conditions after removing ~3 nm via Ar* sputtering. Note that each curve is offset by 1000 and that the data for
the thermal film was rescaled to 25% of its original value such that the peak heights are comparable on the plot. The image also shows the image of the sample acquired in the AES along

with a Zn map showing each of the tribofilms.

Table 1

Compositions of ZDDP tribofilms measured via Auger electron spectroscopy after
removing ~3 nm via Ar* sputtering. Standard deviation values from measurements at
multiple locations on the thermal film were 4%, 27%, 9%, 1%, and 6% for Zn, P, S, C, and
O, respectively.

Load (nN) Zn P S C o

700 3.2 1.4 0.8 51.9 42.8
525 3.1 5.8 0.7 36.3 54.1
350 3.9 8.2 3.0 28.3 56.7
175 5.0 7.3 2.7 35.0 49.9
Thermal 2.1 0.9 0.4 40.3 56.3

high loads is anticipated to be a key feature of ZDDP's antiwear
performance.

4. Conclusions

This work demonstrates that the local properties of ZDDP films,
grown under model conditions, correlate with differences in growth
stress and consequently differences in local chemistry. We hypothesize
that the dependence of chemistry and properties on local growth stress
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could account for the heterogeneity in mechanical properties observed
in ZDDP films. For growth on SiO, on Si, the yield strength of the
ZDDP decreased with increasing growth stress.
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