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ABSTRACT

The efectiveness of supervised learning techniques has made them

ubiquitous in research and practice. In high-dimensional settings,

supervised learning commonly relies on dimensionality reduction

to improve performance and identify the most important factors in

predicting outcomes. However, the economic importance of learn-

ing has made it a natural target for adversarial manipulation of

training data, which we term poisoning attacks. Prior approaches to

dealing with robust supervised learning rely on strong assumptions

about the nature of the feature matrix, such as feature independence

and sub-Gaussian noise with low variance. We propose an inte-

grated method for robust regression that relaxes these assumptions,

assuming only that the feature matrix can be well approximated

by a low-rank matrix. Our techniques integrate improved robust

low-rank matrix approximation and robust principle component

regression, and yield strong performance guarantees. Moreover,

we experimentally show that our methods signiicantly outper-

form state-of-the-art robust regression both in running time and

prediction error.

1 INTRODUCTION

Machine learning has become widely deployed in a broad array of

applications. An important class of machine learning applications

enable scalable security defenses, such as spam iltering, traic anal-

ysis, and fraud detection [2, 8, 27]. In these applications, reliability

of the machine learning system is crucial to enforce security against

powerful adversaries, but strong incentives exist to reduce learning

eicacy (e.g., to bypass spam ilters).

An important factor in building a reliable machine learning

system is the availability of a collection of high-quality training

samples. To achieve this, practitioners can either rely on public

crowd-sourcing services, such as Amazon Mechanical Turk, or pri-

vate teams to collect training data sets. However, both of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

AISec ’17, , November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN ISBN 978-1-4503-5202-4/17/11. . . $15.00
https://doi.org/10.1145/3128572.3140447

approaches also open the door to allow adversaries injecting cor-

rupted (poisoned) data points.

On the other hand, recent research demonstrates that existing

systems are vulnerable in the presence of adversaries who can

manipulate either the training set (i.e., poisoning attacks [28]) or

test data (i.e., evasion attacks [19ś21]). Consequently, an important

agenda in both machine learning and security research is to develop

learning algorithms that are robust to data manipulation.

In this work, we focus on designing supervised learning algo-

rithms that are resilient against adversarial poisoning attacks with

formal guarantees. Existing research on robust machine learning

dates back to algorithms for robust PCA [7]. Most of them assume

that a fraction of the underlying dataset is randomly, rather than ad-

versarially, corrupted. Recently, Chen et al. [10] and Feng et al. [14]

considered robust regression in face of adversarial corruption. The

former considers robust linear regression and the latter logistic

regression. However, both make extremely strong assumptions on

feature independence and sub-Gaussian distribution per feature

with vanishing variance (as O( 1n )), rendering them impractical and

severely limiting the scope of associated theoretical guarantees.

We study a common framework for high-dimensional regression,

which proceeds through the following two steps: First, dimension re-

duction, such as PCA, is performed to project the high-dimensional

features into a low-dimensional subspace corresponding to the

space where pristine data can be sampled. Second, linear regression

is performed to learn the model to best characterize the data.

We consider adversaries who might try to poison and mislead

either or both of the two steps, and thus we have two design goals

in mind. First, we must make sure that the dimensionality reduction

step can reliably recover the low-rank subspace; second, the result-

ing regression performed on the subspace can recover suiciently

accurate predictions. We aim to achieve these goals despite noise in

the dataset and adversarially-poisoned samples. While these prob-

lems have previously been considered in isolation, ours is the irst

integrated approach. More signiicantly, the efectiveness of our

approach relies on far weaker assumptions than prior art (for exam-

ple, we do not need the typical assumption of sub-Gaussian noise

with vanishing variance; see, e.g. [10]), and, as a result, our pro-

posed practical algorithms signiicantly outperform state-of-the-art

alternatives.

Speciically, we assume that labels y are a linear function of the

true feature matrix X⋆ with additive zero-mean noise. In addition,



X⋆ is corrupted with noise, and the adversary subsequently adds

a collection of corrupted rows to the training data. In this model,

our approach involves two parts: irst, we develop a novel robust

matrix factorization algorithm which correctly recovers the sub-

space whenever this is possible, and second, a trimmed principle

component regression, which uses the recovered basis and trimmed

optimization to estimate linear model parameters.

Our main contributions are as follows:

• Novel algorithm for robust matrix factorization: We

develop a novel algorithm that reliably recovers the low-

rank subspace of the feature matrix despite both noise

(about which we make few assumptions) and adversarial

examples. We prove that our algorithm is efective if and

only if subspace recovery is possible.

• Novel robust regression algorithmwith signiicantly

weaker assumptions: In contrast to prior robust regres-

sion work, we do not require either feature independence

or low-variance sub-Gaussian distribution of features. We

prove that our algorithm can reliably learn the low-dimensional

linear model despite data corruption and noise.

• Signiicant improvement in running time and accu-

racy: We conduct empirical evaluation and demonstrate

that our algorithms signiicantly outperform prior art in

both running time and prediction eicacy.

2 OVERVIEW

Given a dataset (Xi ,yi )i ∈[1,n], the machine learning problem is to

recover the function f that can best characterize the hidden rela-

tionship between Xi and yi , i.e., f (Xi ) and yi are close. Depending
on the values that yi can take, a machine learning problem is either

a classiication problem, in which yi can only take a value from a

inite discrete set of łclasses", or a regression problem, in which

yi can take values from a continuous space, on which a distance

function is well-deined.

In this work, we focus on the regression problem. In particular we

consider the most fundamental and widely used machine learning

models Ð linear models. Given a dataset of samples (X,y), where y
is the dependent variable depending on X, a linear model assumes

that y is łclose" to β · X with respect to the distance function, for a

set of parametersw .

In this section, we irst present the threat model; then we formal-

ize the problem considered in this work; last, we give a road-map

of our approach while explaining the paper organization.

2.1 Threat Model

In this work, we assume that the defender collects a set of training

data, which can be manipulated by the adversary. The defender

thus does not have access to the pristine data before adversarial

manipulation. The defender can choose its defense strategy and

the training approach. But the defender does not know the attack

strategies employed by the adversary.

The attacker has access to the pristine training data, and can

insert new data samples whose volume is a fraction of the pristine

one up to an upper bound. We assume that the attacker knows the

training algorithm used by the defender, and all hyper-parameters

that will be used if any.

The above threat model may be stronger than real-world at-

tackers, since in the real world scenarios, the attacker may not be

able to know the defense strategy employed, or the entire pristine

training data. By assuming such a strong attacker, we can analyze

the worst-case performance of the defense algorithm, and thus all

security guarantees under our model automatically apply to any

weaker threat models based on the Kerckhofs’s principle [26].

This threat model can also be simulated by a zero-sum Stack-

elberg game, in which the defender chooses the defense strategy

irst, and then the attacker chooses the attack strategy based on the

defender’s choice. The defender’s goal is to maximize her utility,

which is the expected serving time accuracy, while the attacker

tries to minimize this utility given a certain budget on the number

of training instances that can be poisoned.

2.2 Problem Setup

We start with the pristine training dataset of n labeled examples,

⟨X⋆,y⋆⟩, which subsequently sufers from two types of corrup-

tion: noise is added to feature vectors, and the adversary adds n1
malicious examples (feature vectors and labels) to best mislead the

learning. We assume that the adversary has full knowledge of the

learning algorithm. The learner’s goal is to learn a model on the

corrupted dataset which is similar to the true model. The feature

space is high-dimensional, and the learner will perform dimension-

ality reduction prior to learning. In particular, we assume that X⋆

is low-rank with a basis B, and we assume that the true model is

the associated low-dimensional linear regression.

Formally, observed training data is generated as follows:

(1) Ground truth: y⋆ = X⋆β
⋆
= Uβ⋆

U
, where β⋆ is the

true model, β⋆
U

is its low-dimensional representation, and

U = X⋆B is the low-dimensional embedding of X⋆.

(2) Noise: X0 = X⋆ + N, where N is a noise matrix with

∥N∥∞ ≤ ϵ ; y0 = y⋆+e , where e is i.i.d. zero-meanGaussian

noise with variance σ .

(3) Corruption: The attacker adds n1 adversarially crafted

examples (xa ,ya ) to get ⟨X,y⟩, which maximally skews

prediction performance of low-dimensional linear regres-

sion.

To formally characterize how well the learner performs in this

setting, we deine (1) amodel function f (X0,y0) which is the model

learned on ⟨X⋆,y⋆⟩; (2) a loss function l ; and (3) a threshold function
δ (z) which takes as input z > 1, and is increasing in z. Our metric

is (f , l ,δ )-tolerance:
Definition 1 ((f , l ,δ )-tolerance). We say that learner L is

(f , l ,δ )-tolerant, if for any attacker, and any z > 1, we have

l(L (X, y), f (X0, y0)) ≤ δ (z)
with probability at least 1 − c1z−c2 , for some constant c1, c2 > 0.

In our setting, f (X0,y0) returns β⋆ and l is expected quadratic

loss Ex
[

(x(β
∧

− β⋆))2
]

.



n Number of pristine samples

n1 Number of poisoning samples

n + n1 Total number of training samples

γ The corruption ratio n1/n
β
∧

Estimated parameter vector

β⋆ True parameter vector

β⋆
U

Low-dimensional representation of β⋆

⟨X⋆,y⋆⟩ Pristine training data

⟨X0,y0⟩ Examples with Gaussian uncertainty

⟨xa ,ya⟩ Adversarially crafted examples

⟨X,y⟩ Dataset after injecting poisoning instances

B Basis for X⋆

f Learning model

l Loss function

Table 1: Notation Table

For convenience, we let O denote the set of (unknown) indices

of the samples in X coming from X0 and A = {1, ...,n + n1} − O

the set of indices for adversarial samples in X. For an index set I

and matrixM ,MI denotes the sub-matrix containing only rows

in I ; similar notation is used for vectors. We deine γ = n1
n as the

corruption ratio, or the ratio of corrupted and pristine data.

All solutions presented in this work assume that n is given. In

practice, we only need estimaten as a lower bound on the number of

pristine samples. When there are n′ pristine samples where n′ > n,

we can simply consider this case as the adversary has n′−n unused

budget during poisoning, and our analysis still holds in such a case.

We summarize the notations used in the paper in Table 1.

2.3 Solution overview

Our goal is to design a learner L to estimate the coeicients β
∧

of

the true model β⋆ using low-dimensional embedding of a high-

dimensional model. We achieve this goal in two steps: (1) recover

the subspace B of X⋆; (2) project X onto B, and estimate β
∧

using

robust principle component regression. The key challenge is that

an adversary can design corrupted data to interfere with both the

irst and second steps of the process.

For the irst step (Section 3), we develop a robust subspace recov-

ery algorithm which can account for both noise N and adversarial

examples in correctly recovering the subspace of X⋆. We charac-

terize necessary and suicient conditions for successful subspace

recovery, showing that our algorithm succeeds whenever recovery

is possible. The challenge in the second step (Section 4) is that the

adversary can construct XA from the same subspace as X⋆, but

with the diferent distribution of ⟨XA
,yA ⟩ from ⟨X⋆,y⋆⟩. To ad-

dress this, we propose the trimmed principle component regression

algorithm to minimize the loss function over only a subset of the

dataset ensuring that the adversary can have only a limited impact

by adding n1 arbitrary corrupted samples without having these

instances being discarded. Our theoretical results demonstrate that

the combined approach is an (f , l ,δ )-tolerant learning algorithm. Fi-

nally, in Section 5, we present an eicient practical implementation

of our methods, which we evaluate in Section 6.

3 ROBUST SUBSPACE RECOVERY

In this section, we discuss how to recover the low-rank subspace of

X⋆ from X. Our goal is to exactly recover the low-rank subspace,

i.e., returning a basis for X⋆. We show suicient and necessary

conditions for this problem to be solvable, and provide algorithms

when this is possible. As a warmup, we irst discuss the noise-

free version of the problem, and then present our results for the

case when noise is added to training data. Proofs of the theorems

presented in this section can be found in Appendix A. Formally, we

consider the following problem:

Problem Definition 1 (Subspace Recovery). Design an algo-

rithm Lrecovery, which takes as input X, and returns a set of vectors

B which form the basis of X⋆.

3.1 Warmup: Noise-free Subspace Recovery

We irst consider an easier version of Problem 1 with N = 0. In

this case, we know that XO
= X⋆. We assume that we know

rank(X⋆) = k (or have an upper bound on it). Below we demon-

strate that there exists a sharp threshold θ on n1 such that when-

ever n1 < θ , we can solve Problem 1 exactly with high probability,

whereas if n1 ≥ θ , Problem 1 cannot be solved. To characterize

this threshold, we deine the cardinality of the maximal rank k − 1
subspace MSk−1(X⋆) as the optimal value of the following problem:

max
I

|I | s.t. rank(XI
⋆ ) ≤ k − 1

Intuitively, the adversary can insertn1 = n−MSk−1(X⋆) samples

to form a rank k subspace, which does not span X⋆. The following

theorem shows that in this case, there is indeed no learner that can

successfully recover the subspace of X⋆.

Theorem 1. Ifn1+MSk−1(X⋆) ≥ n, then there exists an adversary

such that no algorithm Lrecover solves Problem 1 with probability

greater than 1/2.

On the other hand, when n1 is below this threshold, we can use

Algorithm 1 to recover the subspace of X⋆.

Algorithm 1 Exact recover algorithm for Problem 1 (Noisy-free)

We search for a subset I of indices, such that |I | = n, and
rank(XI ) = k

return a basis of XI .

In fact, we can prove the following theorem.

Theorem 2. If n1 + MSk−1(X⋆) < n, then Algorithm 1 solves

Problem 1 for any adversary.

Theorems 1 and 2 together give the necessary and suicient

conditions on when Problem 1 is solvable, and Algorithm 1 provides

a solution. We further show an implication of these theorems on

the corruption ratio γ . We can prove that MSk−1(X⋆) ≥ k − 1

(see Appendix A). Combining this with Theorem 1, we obtain the

following upper bound on γ .

Corollary 1. If γ ≥ 1 − k−1
n , then Problem 1 cannot be solved.



3.2 Dealing with Noise

We now consider Problem 1 with noise. Before we discuss the

adversary, we irst need to assume that the uncorrupted version

is solvable. In particular, we assume that X⋆ is the unique optimal

solution to the following problem:

min
X′
| |X0 − X′ | | (1a)

s.t. rank(X′) ≤ k . (1b)

Unless otherwise mentioned, we use | | · | | to denote the Frobenius

norm. We put no additional restrictions on N except above. Note

that this assumption is implied by the classical PCA problem [13,

15, 16]. We focus on the optimal value of the above problem, which

we term the noise residual, denoted as NR(X0) = N. Noise residual

is a key component to characterize the necessary and suicient

conditions for the solvability of Problem 1.

Characterization of the defender’s ability to accurately recover

the true basis B ofX⋆ after the attacker adds n1 malicious instances

stems from the attacker’s ability to mislead the defender into think-

ing that some other basis, B̄, better represents X⋆. Intuitively, since

the defender does not know X0, X⋆, or which n1 rows of the data

matrix X are adversarial, this comes down to the ability to identify

the n−n1 rows that correspond to the correct basis (note that it will
suice to obtain the correct basis even if some adversarial rows are

used, since the adversary may be forced to align malicious exam-

ples with the correct basis to evade explicit detection). As we show

below, whether the defender can succeed is determined by the rela-

tionship between the noise residualNR(X0) and sub-matrix residual,

denoted as SR(X0), which we deine as the value optimizing the

following problem:

min
I ,B,U

| |XI

0 − UB̄| | (2a)

s.t. rank(B̄) = k, B̄B̄T = Ik ,X⋆B̄
T B̄ , X⋆ (2b)

I ⊆ {1, 2, ...,n}, |I | = n − n1. (2c)

We now explain the above optimization problem. U and B̄ are

(n−n1)×k and k×mmatrixes separately. Here B̄ is a basis which the

attacker łtargetsž; for convenience, we require B̄ to be orthogonal

(i.e., B̄B̄T = Ik ). Since the attacker succeeds only if they can induce

a basis diferent from the true B, we require that B̄ does not span

of X⋆, which is equivalent to saying X⋆B̄
T B̄ , X⋆. Thus, this

optimization problem seeks n − n1 rows of X⋆, where I is the

corresponding index set. The objective is to minimize the distance

between XI

0 and the span space of the target basis B̄, (i.e., | |XI

0 −
UB̄| |).

Algorithm 2 Exact recovery algorithm for Problem 1

Solve the following optimization problem and get I .

minI ,L | |XI − L| |
s.t. rank(L) ≤ k,I ⊆ {1, ...,n + n1}, |I | = n

(3)

return a basis of XI .

To understand the importance of SR(X0), consider Algorithm 2

for recovering the basis of X⋆, B. If the optimal objective value

of optimization problem (2), SR(X0), exceeds the noise NR(X0), it
follows that the defender can obtain the correct basis B using Algo-

rithm 2, as it yields a better low-rank approximation of X than any

other basis. Else, it is, indeed, possible for the adversary to induce

an incorrect choice of basis. The following theorem formalizes this

argument.

Theorem 3. If SR(X0) ≤ NR(X0), then no algorithm can re-

cover the exact subspace of X⋆ with probability greater than 1/2.
If SR(X0) > NR(X0), then Algorithm 2 solves Problem 1.

To draw connection between the noisy case and the noise-free

case, we can view Theorem 1 and 2 as special cases of Theorem 3.

Theorem 4. When N = 0, SR(X0) > NR(X0) = 0 if and only if

n1 +MSk−1(X⋆) < n.

4 TRIMMED PRINCIPAL COMPONENT

REGRESSION

In this section, we present trimmed principal component regres-

sion (T-PCR) algorithm. The key idea is to leverage the principal

component regression (PCR) approach to estimate β
∧

, but during the

process trimming out those malicious samples that try to deviate

the estimator from the true ones. In the following, we present the

approach, which is similar to the standard PCR approach, though

we do not require computing the exact singular vectors of X⋆.

Assume we recover a basis B of X⋆. Without loss of generality,

we assume that B is an orthogonal basis of k row vectors. Since

B is a basis for X⋆, we assume X⋆ = U⋆B. Then we know that,

by optimization (1), U⋆ = argminU | |X0 −UB| |. We compute U =

argminU | |X−UB| |, and, by deinition, we knowU⋆ = UO . By OLS

estimator, we know that UT
= (BBT )−1BXT , and thus U = XBT .

To estimate y = X⋆β+e , we assume βU = Bβ . SinceX⋆ = U⋆B,

we convert the estimation problem of β from a high dimensional

space to the estimation problem of βU from a low dimensional space,

such that y = UβU + e . After estimating for βU
∧

, we can convert

it back to get β
∧

= BβU

∧

. Notice that this is similar to principal

component regression [17].

However, the adversary may corrupt n1 rows in U to fool the

learner to make a wrong estimation on βU

∧

, and thus on β
∧

. To

mitigate this problem, we design Algorithm 3. Intuitively, during

Algorithm 3 Trimmed Principal Component Regression

Input: X,y

(1) Use Algorithm 2 to compute a basis from X, and orthogo-

nalize it to get B

(2) Project X onto the span space of B and get U← XBT

(3) Solve the following minimization problem to get βU
∧

min
βU

n
∑

j=1

{(yi − uiβU )2 for i = 1, ...,n + n1}(j) (4)

where z(j) denotes the j-th smallest element in sequence z.

(4) return β
∧

← BβU

∧

.



the training process, we trim out the top n1 samples that maximize

the diference between the observed response yi and the predicted

response uiβU , where ui denotes the i-th row ofU . Since we know

the variances of these diferences are small (i.e., recall Section 2,

σ is the variance of the random noise y − xβ⋆), these samples

corresponding to the largest diferences are more likely to be the

adversarial ones.

Next, we theoretically bound the prediction diferences between

our model and the linear regression model learnt on X⋆,y⋆.

Lemma 1 (TPCR Lemma). Algorithm 3 returns β
∧

, such that for any

real value h > 1 with at least 1 − ch−2 probability for some constant

c , we have

Ex
[

(x(β
∧

− β⋆))2
]

≤ 4σ 2

(

1 +

√

1

1 − γ

)2

log c (5)

We explain the intuition of this Lemma, and defer the detailed

proof to Appendix B. If an adversary wants to fool Algorithm 3,

it needs to generate samples (ui ,yi ), such that the loss function

(yi −uiβU
∧

)2 is among the smallestn. Since for samples fromX⋆,y⋆,

these loss functions are already bounded according to σ , the adver-

sary does not have an ability to signiicantly skew the estimator. In

particular, if σ = 0, i.e., there is no error while generating y0 from

X⋆, then the adversary can do nothing when γ < 1, and thus the

estimator is the same as the linear regression’s estimator on the

uncorrupted data.

As an immediate consequence of Lemma 1, we have

Theorem 5. Given δ (c) = 4σ 2

(

1 +
√

1
1−γ

)2

log c , Algorithm 3 is

(f , l ,δ (c))-tolerant.

5 PRACTICAL ALGORITHMS

Algorithms 1, 2, and 3 require enumerating a subset of indices, and

are thus all exponential time. To make our approach practical, we

develop eicient implementations of Algorithms 2 and 3.

5.1 Eicient Robust Subspace Recovery

Consider the objective function (3). Since rank(L) ≤ k , we can

rewrite L = UBT where U’s and B’s shapes are n × k , andm × k
respectively. Therefore, we can rewrite objective (3) as

min
I ,U,B

| |XI − UBT | | s.t. |I | = n

which is equivalent to

min
U,B

n
∑

j=1

{| |xi − uiBT | | for i = 1, ...,n + n1}(j) (6)

where xi andui denote the ith row ofX andU respectively. Solving

Objective 6 can be done using alternating minimization, which

iteratively optimizes the objective forU andBwhile ixing the other.

Speciically, in thewth iteration, we optimize for the following two

objectives:

Uw+1
= argminU | |X −U (Bw )T | |

Algorithm 4 Trimmed Optimization

(1) Randomly assign τi ∈ {0, 1} for i = 1, ...,n + n1, such that
∑n+n1
i=1 τi = n

(2) Optimize θ ← argminθ
∑n+n1
i=1 τi l(yi , fθ (xi ));

(3) Compute ranki as the rank of l(yi , fθ (x)) in the ascending

order;

(4) Set τi ← 1 for ranki ≤ n, and τi ← 0 otherwise;

(5) Go to 2 if any of τi changes;

(6) return θ .

Bw+1 = argminB

n
∑

j=1

{| |xi − uw+1i BT | | for i = 1, ...,n + n1}(j).

Notice that the second step computes the entire U regardless of the

sub-matrix restriction. This is because we need the entire U to be

computed to update B. The key challenge is to compute Bw+1 in

each iteration, which is, again, a trimmed optimization problem.

The next section presents a scalable solution for such problems.

5.2 Eicient Algorithm for Trimmed

Optimization Problems

Both robust subspace recovery and optimizing for (4) rely on solving

optimization problems in the form

min
θ

n
∑

j=1

{l(yi , fθ (xi )) for i = 1, ...,n + n1}(j)

where fθ (xi ) computes the prediction over xi using parameter θ ,

and l(·, ·) is the loss function. We refer to such problems as trimmed

optimization problems. It is easy to see that solving this problem is

equivalent to solving

minθ,τ1, ...,τn+n1
∑n+n1
i=1 τi l(yi , fθ (xi ))

s.t. 0 ≤ τi ≤ 1,
∑n+n1
i=1 τi = n

We can use alternating minimization technique to solve this prob-

lem, by optimizing for θ , and τi respectively. We present this in

Algorithm 4. In particular, the algorithm iteratively seeks optimal

arguments for θ and τ1, ...,τn+n1 respectively. Optimizing for θ is

a standard least square optimization problem. When optimizing

τ1, ...,τn+n1 , it is easy to see that τi = 1 if l(yi , fθ (xi )) is among

the largest n; and τi = 0 otherwise. Therefore, optimizing for

τ1, ...,τn+n1 is a simple sorting step. While this algorithm is not

guaranteed to converge to a global optimal, in our evaluation,we

observe that a random start of τ typically yields near-optimal solu-

tions.

6 EVALUATIONS

In this section, we evaluate our approach, i.e., T-PCR. First, we

evaluate the two components, subspace recovery algorithms and

the regression algorithms separately. We employ synthetic datasets

to evaluate both the runtime and the efectiveness of the T-PCR

approach with the previous state-of-the-art. Second, we evaluate

the efectiveness of the entire algorithm using a real-world dataset.



In the following, we irst present the setup of our evaluation,

and then present the results for each experiment.

6.1 Setup

We implement all algorithms. All programs are run on aworkstation

with a Intel i7-6800K CPU running at 3.4GHz, 128G memory, and

1TB SSD hard drive. In the following, we explain the baselines used

for comparison, datasets, and poisoning strategies.

6.1.1 Implementation details. We implement our defense strate-

gies based on Algorithm 4 discussed in Section 5.

6.1.2 Baseline. We compare our approach with the state-of-the-

art alternatives in the literature. For the subspace recovery problem,

we compare to two approaches: Chen et al. [11] and Xu et al. [30].

For the end-to-end linear regression problem, we compare our

T-PCR algorithm with the recent robust regression approach [10]

and standard ridge regression algorithm.

6.1.3 Datasets. In this work, we use two classes of datasets to

evaluate our approach: synthetically generated data, and real data.

We explain them below.

Synthetic Datasets. We generate datasets using a routine with

hyper-parameters n, n1, k , andm, which represent the number of

samples in total, poisoned data samples, intrinsic rank of the data,

and the number of features. We setm = 400 for all experiments,

but n, n1, and k can be varied to evaluate diferent aspects of our

approach.

For a given (k,n), we generate X⋆ as follows: sample two ma-

trices U,B with shape n × k and k ×m respectively. Each element

is sampled independently from a Gaussian distribution N (0, 1).
Once a matrix (e.g., U or B) is sampled, we verify that the matrix

has rank k ; or otherwise, we will keep re-sampling the matrix until

the matrix has rank k . Once both U and B are sampled, and we

set X⋆ = UB. We do not add noise to X⋆, unless explicitly stated.

When noise is added, the pristine data is generated as X⋆ + N,

where each element in N is randomly sampled from the Gaussian

distribution N (0, 0.01).

Real-world Dataset: malicious domains.We obtained a dataset

including HTTP logs collected from a large enterprise spanning

a period of four months (February, March, July, and August) in

2015. The dataset includes features extracted from the inbound

and outbound HTTP and HTTPs communications captured at the

border of the enterprise by web proxies. Each log event includes

ields from the HTTP headers of the connections, e.g., connection

timestamp, source and destination IP address, contacted domain

and URL, result code, HTTP action, web referrer, user-agent string

and bytes sent and received.

Some ilters were applied to the raw datasets to eliminate popu-

lar web sites (domains contacted by more than 50 hosts), domains

involved in advertisement or CDNs, and also domains with only

limited number of connections (less than 5). For the remaining

domains, the dataset includes 91 features typically used in security

applications for lagging malicious communications. The features

extracted from the proxy logs belong to several categories: Com-

munication structure (e.g., number of hosts contacting the domain,

total number of connections, bytes sent and received to the do-

main, number of POST, GET connections); Domain structure (e.g.,

number of levels in the domain, number of sub-domains on the

same second-level domain and domain name length); URL structure

(e.g., number of distinct URLs, URL path length and depth, number

of parameters, number of values per parameter); User-agent string

features (e.g., total number of UAs, popularity of the UA across

the enterprise, ratio of UA across hosts); Web referrer features (e.g.,

total number of referer domains, fraction of connections without

referer); Result-code features (e.g., number of successful and failed

connections); Content-type features (e.g., number of distinct content

types).

At the same time, a number of features extracted from publicly

available external sources are added. They include: WHOIS-related

features (e.g., domain age deined as the time since the domain was

registered, registration validity deined as time until registration

expires), geographical location (number of countries and ASNs of the

IP address of the domain. For labeling the domains in the datasets,

a cloud-based anti-virus engine (VirusTotal) was used. We consider

malicious all domains lagged by at least three anti-virus engines

in VirusTotal. We consider benign the domains with a score of 0

on VirusTotal that are in top 100K according to Alexa ranking.

Domains with score 1 or 2 are considered unknown and removed

from the dataset.

For the evaluation purpose, we use the data from Feburary,

March, and July as the training set, and the data from August as

the test set.

6.1.4 Poisoning Strategy. We employ two poisoning strategies

for attacking the subspace recovery problem and the linear regres-

sion problem respectively. We present them below.

Poisoning strategy for subspace recovery. We evaluate difer-

ent approaches for the subspace recovery problem using only syn-

thetic data. Thus, we assume the adversary has access to X⋆, the

generated pristine data. We generate corruptions XA also as a

low rank matrix by generating UA and BA in the same way as

generating U and B, where UA has n1 rows.

For BA , we set the irst half of BA by choosing k/2 rows of X⋆,

and generating the remaining k/2 rows randomly, while ensuring

that B has rank k . We concatenate X⋆ and XA
= UA BA to get

the matrix with n +n1 rows, and then shule them. In doing so, we

know that XA shares a common subspace of rank k/2 with X⋆,

but the two subspaces are still diferent.

Notice that this strategy is designed to trigger the worst case

performance for our algorithms. Later, in the evaluation, we will

demonstrate that although this strategy does not leverage the in-

formation of the baseline algorithms, our approach outperform the

baseline approaches.

Poisoning strategy for linear regression. We employ Xiao et

al.. [28], the state-of-the-art poisoning strategy for linear models









whole network. Therefore, how to conduct poisoning attack on

deep networks in an end-to-end manner still remains open.

Robust Algorithm. Robust PCA is widely used as a statistical tool

for data analysis and dimensionality reduction that is robust to i.i.d.

noise [7]. However, these methods cannot deal with łmaliciousž

corruptions, where the sophisticated adversaries can manipulate

rows from the subspace of the true feature matrix. In contrast, our

approach handles both noise and malicious corruption. Recently,

robust learning for several learning models, such as linear and lo-

gistic regression have also been proposed [10, 14]. The limitation

of these approaches is their assumption that the feature matrix is

sub-Gaussian with vanishing variance, and that features are inde-

pendent. Similarly, a provably robust algorithm has been proposed

to remove random noise based on conditional correlation among

data points [9]. Our approach, in contrast, only assumes that the

true feature matrix (prior to corruption) is low rank. Yan et al.

proposed an outlier pursuit algorithm to deal with the matrix com-

pletion problem with corruptions [31], and a similar algorithm is

applied by Xu et al. to deal with the noisy version of feature matrix

[30]. However, these methods only consider the matrix recovery

problem and are not scalable. A more scalable algorithm based on

the alternating minimization approach was recently proposed by

Rodriguez et al. [24]; however, this method does not consider data

noise or corruption. A number of heuristic techniques have also

been proposed for poisoning attacks [3, 5, 25] for other problems,

such as robust anomaly detection source identiication.

8 CONCLUSION

This paper considers the poisoning attack for linear regression

problem with dimensionality reduction. We address the problem

in two steps: 1) introducing a novel robust matrix factorization

method to recover the true subspace, and 2) novel robust principle

component regression to prune adversarial instances based on the

basis recovered in step (1). We characterize necessary and sui-

cient conditions for our approach to be successful in recovering

the true subspace, and present a bound on expected prediction loss

compared to ground truth. Experimental results suggest that the

proposed approach is extremely efective, and signiicantly outper-

forms prior art.
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A PROOF OF THEOREMS ABOUT ROBUST

MATRIX FACTORIZATION

In this appendix, we present the proofs of theorems in Section 3.

Since this section does not involve y, we will omit y without loss

of clarity.

A.1 Theorem 1

Proof of Theorem 1. We prove by contradiction. Assume we

have a learner Lrecover, can solve Problem 1 with probability more

than 1/2. We want to show that there exist two diferent spaces

of rank-k , and one input X such that Lrecover(X1) should return

both two spaces with a probability > 1/2, which is impossible. In

the following, we construct such two spaces. Particularly, we will

discuss how adversary can manipulate the matrix.

The adversary can choose I which maximize |I | such that

while rank(XI
⋆
) ≤ k − 1. We know |I | = MSk−1(X⋆) ≥ n − n1.

This means that |O | − |I | ≤ n1.

Suppose v1, ...,vk−1 be a set of basis for the row space of XI
⋆
.

The adversary then choose a vector v ′
k
which is orthogonal to X⋆.

Then we know the span space of V ′ = {v1, ...,vk1 ,v ′k } is diferent
fromX⋆. Then the adversary draws n1 samples from the span space

ofV ′, and insert them into X⋆ to form X. Moreover, we denote X′
⋆

to be a matrix of |I | + n1 rows, so that the irst |I | rows are XI
⋆
,

and the rest n1 rows sampled by the adversary. Therefore, we know

X′
⋆
is also a submatrix of X, and we know that there are at most

|O | − |I | ≤ n1 rows in X not coming from X′
⋆
.

In doing so, we know that X is constructed by corrupting X⋆.

On the other hand, we can also see X as the result of corrupting X′
⋆

by inserting |O | − |I | ≤ n1 rows. Therefore, Lrecover(X⋆) should
return both X⋆ and X′

⋆
with a probability greater than 1/2, which

is impossible. Therefore, our conclusion holds true. □

A.2 Theorem 2

Proof of Theorem 2. We show that Algorithm 1 recovers the

subspace of X⋆ exactly. Assume B is returned by Algorithm 1 over

X. We only need to show that B is a basis of X⋆. By Algorithm 1,

we know that B is a basis of n rows in I of X. Since we know

any adversary can corrupt at most n1 rows, thus |I ∩ A | ≤ n1.

Therefore, by combining the assumption n1 +MSk−1(X⋆) < n, we

know that

|I ∩ O | = |I | − |I ∩A | ≥ n − n1 > MSk−1(X⋆) (7)

Therefore, we know B is a basis for XI∩O
⋆

. By the deinition of

MSk−1(X⋆) and inequality (7), we know that

rank(XI∩O
⋆ ) = k

Therefore, we know that XI∩O
⋆

is exactly the same subspace as

X⋆, and thus B is the basis of X⋆. □

A.3 Corollary 1

Lemma 2. MSk−1(X⋆) ≥ k − 1

Proof. We can choose the I = {1, ...,k − 1}, then we have

rank(XI
⋆
) ≤ k − 1. Therefore, MSk−1(X⋆) ≥ |I | = k − 1. □

Now, we can prove Corollary 1.

Proof of Corollary 1. Given n1
n = γ ≥ 1 − k−1

n , we have

n1 + (k − 1) ≥ n

Combining MSk−1(X⋆) ≥ k − 1, we know
n1 +MSk−1(X⋆) ≥ n1 + (k − 1) ≥ n

Applying Theorem 1, we can conclude this corollary. □

A.4 Theorem 3

Proof of Theorem 3. The proof of this theorem is similar to

the proof of Theorem 1 and 2. First, when SR(X0) ≤ NR(X0), the
adversary can constructX such that two subspaces should be recov-

ered with a probability greater than 1/2. Particularly, we assume

I ,U,B minimize objective 2, and thus SR(X0) = | |XI

0 − UB| |.
The adversary samples n1 rows Xcorrupt from the span space of B,

which does not belong to the span of X⋆. We add a small noise over

Xcorrupt to get X1, such that (1) Xcorrupt minimize | |X1 −Xcorrupt | |;
and (2) | |X1 − Xcorrupt | | = NR(X0) − SR(X0). Then the adversary

insert X1 into X0 to get X. In this case, we know that X⋆ optimizes

its distance fromX0, while the [XI
⋆
;Xcorrupt] optimizes its distance

from [XI

0 ;Xcorrupt], where we use [A;B] to denote the concatena-

tion of rows from A and B respectively. Further, by deinition, we

know both of these two distances is NR(X0). Therefore, the learner
should recover fromX bothX⋆ and [XI

0 ;Xcorrupt]with probability
greater than 1/2. This is impossible! Therefore the irst part of the

theorem holds true.

For the second part, we follow the proof of Theorem 2 verbatim,

and present the diference. We show that Algorithm 2 recovers the

subspace of X⋆ exactly. Assume B is returned by Algorithm 2 over

X. We only need to show that B is a basis of X⋆. By Algorithm 2,

we know that B optimizes its pan distance from a subset of n rows

in X, which is denoted as I . Since we know any adversary can

corrupt at most n1 rows, thus |I ∩A | ≤ n1. Therefore, we know

that

|I ∩ O | = |I | − |I ∩A | ≥ n − n1 (8)

If B is not a basis of X⋆, which means that X⋆B
TB , X⋆, then we

know that the distance between the span space of B and XI∩O

is greater than SR(X0) > NR(X0). This is impossible, since Algo-

rithm 2 guarantees that this distance should be no greater than

NR(X0). Contradiction! Therefore the second part of the theorem

holds true. □

A.5 Theorem 4

Proof of Theorem 4. When N = 0, we know that SR(X0) >
NR(X0) if and only if SR(X0) , 0. This means that for any |I | =
n − n1, X

I
⋆
= UB implies that X⋆B

TB = X⋆ (condition (2b)),

which implies that rank(XI
⋆
|) = k for all I . Therefore, we know

MSk−1(X⋆) < n − n1, which concludes this theorem. □



B PROOF OF TPCR LEMMA

We present the proof of TPCR Lemma 1 below.

Proof. Assume βU
∧

is the solution for this optimization problem.

We assume the adversary wants to induce the regression system to

compute βU
∧

. In this case, he has to corrupt γn rows in U . W.L.O.G.

we can assume O = {1, ...,n1}. We denote β⋆
U
= Bβ⋆. Since X⋆ =

U⋆B, we know that

y − X⋆β
⋆
= y − U⋆β

⋆

U

Since βU
∧

optimize Eq (4), we assume (yi−uiβU
∧

)2 are the smallest

n values for i ∈ {1, ...,n}.
Then we have

n1
∑

i=1

(yi − uiβU
∧

)2 +
n
∑

i=n1+1

(yi − uiβU
∧

)2 ≤
n+n1
∑

i=n1+1

(yi − uTi β
⋆

U )
2

Therefore we have

n
∑

i=n1+1

(yi − uiβU
∧

)2 ≤
n+n1
∑

i=n1+1

(yi − uiβ⋆U )
2 (9)

Further, we know

n
∑

i=n1+1

(yi − uiβU
∧

)2

=

n
∑

i=n1+1

(

(yi − uiβ⋆U ) + (uiβ
⋆

U − uiβU
∧

)
)2

≥
n
∑

i=n1+1

{

(yi − uiβ⋆U )
2
+ (uiβ⋆U − uiβU

∧

)2

−2|yi − uiβ⋆U | · |uiβ
⋆

U − uiβU
∧

|
}

=

n
∑

i=n1+1

(yi − uiβ⋆U )
2
+

n
∑

i=n1+1

(ui (β⋆U − βU
∧

))2

−2
( n

∑

i=n1+1

|ui (β⋆U − βU
∧

)| · |yi − uiβ⋆U |
)

(10)

According to Cauchy-Schwarz inequality, we have

(

∑n
i=n1+1

|ui (β⋆U − βU
∧

)| · |yi − uiβ⋆U |
)2

≤
(

∑n
i=n1+1

(ui (β⋆U − βU
∧

))2
)

·
(

∑n
i=n1+1

(yi − uiβ⋆U )
2

)

We assume C =
√

∑n
i=n1+1

(ui (β⋆U − βU
∧

))2), then, we have

−2
( n

∑

i=n1+1

|ui (β⋆U − βU
∧

)| · |yi − uiβ⋆U |
)

≥ −2

√

√

√( n
∑

i=n1+1

(ui (β⋆U − βU
∧

))2
)

·
( n

∑

i=n1+1

(yi − uiβ⋆U )2
)

= −2C
√

Σ
n
i=n1+1

e2i

Substituting this inequality into (10) and combining with (9), we

have
n+n1
∑

i=n1+1

e2i ≥
n
∑

i=n1+1

e2i +C
2 − 2C

√

Σ
n
i=n1+1

e2i

By simple rearrangement, we have

C2 − 2C

√

√

√ n
∑

i=n1+1

e2i ≤
n+n1
∑

i=n+1

e2i

Since we know yi − uiβ⋆U ∼ N (0,σ ), we know that for any

parameter h > 1, we have Pr(ei ≤ 2σ
√

logh) ≥ 1 − ch−2 for some

constant c . Therefore, we know, with high probability (at least

1 − ch−2), we have

C2 − 2√n − n1C(2σ
√

logh) ≤ C2 − 2C

√

√

n
∑

i=n+1

e2i

≤
n+n1
∑

i=n+1

e2i

≤ n1(2σ
√

logh)2

Therefore, we have
(

C − 2σ√n − n1
√

logh

)2

≤ n(2σ
√

logh)2

and thus

C ≤ 2σ

(√
n +
√
n − n1

)

√

logh

Therefore, we know
√

∑n
i=n1
| |ui (β⋆U − βU

∧

)| |2

n − n1
≤ 2σ

(

1 +

√

1

1 − γ

)

√

logh

We notice the right hand side of the above inequality does not

depend on n,n1. Therefore, we take n → +∞, and we know that

n − n1 = (1 − γ )n → +∞, and apply the law of large numbers, we

have
√

Eu
[

(u(β⋆
U
− βU
∧

))2
]

≤ 2σ

(

1 +

√

1

1 − γ

)

√

logh

where left hand side is the same as

√

Ex
[

(x(β
∧

− β⋆))2]. Then the

conclusion of Lemma 1 is a simple rearrangement of the above

inequality. □
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