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ABSTRACT

The effectiveness of supervised learning techniques has made them
ubiquitous in research and practice. In high-dimensional settings,
supervised learning commonly relies on dimensionality reduction
to improve performance and identify the most important factors in
predicting outcomes. However, the economic importance of learn-
ing has made it a natural target for adversarial manipulation of
training data, which we term poisoning attacks. Prior approaches to
dealing with robust supervised learning rely on strong assumptions
about the nature of the feature matrix, such as feature independence
and sub-Gaussian noise with low variance. We propose an inte-
grated method for robust regression that relaxes these assumptions,
assuming only that the feature matrix can be well approximated
by a low-rank matrix. Our techniques integrate improved robust
low-rank matrix approximation and robust principle component
regression, and yield strong performance guarantees. Moreover,
we experimentally show that our methods significantly outper-
form state-of-the-art robust regression both in running time and
prediction error.

1 INTRODUCTION

Machine learning has become widely deployed in a broad array of
applications. An important class of machine learning applications
enable scalable security defenses, such as spam filtering, traffic anal-
ysis, and fraud detection [2, 8, 27]. In these applications, reliability
of the machine learning system is crucial to enforce security against
powerful adversaries, but strong incentives exist to reduce learning
efficacy (e.g., to bypass spam filters).

An important factor in building a reliable machine learning
system is the availability of a collection of high-quality training
samples. To achieve this, practitioners can either rely on public
crowd-sourcing services, such as Amazon Mechanical Turk, or pri-
vate teams to collect training data sets. However, both of these
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approaches also open the door to allow adversaries injecting cor-
rupted (poisoned) data points.

On the other hand, recent research demonstrates that existing
systems are vulnerable in the presence of adversaries who can
manipulate either the training set (i.e., poisoning attacks [28]) or
test data (i.e., evasion attacks [19-21]). Consequently, an important
agenda in both machine learning and security research is to develop
learning algorithms that are robust to data manipulation.

In this work, we focus on designing supervised learning algo-
rithms that are resilient against adversarial poisoning attacks with
formal guarantees. Existing research on robust machine learning
dates back to algorithms for robust PCA [7]. Most of them assume
that a fraction of the underlying dataset is randomly, rather than ad-
versarially, corrupted. Recently, Chen et al. [10] and Feng et al. [14]
considered robust regression in face of adversarial corruption. The
former considers robust linear regression and the latter logistic
regression. However, both make extremely strong assumptions on
feature independence and sub-Gaussian distribution per feature
with vanishing variance (as O(%)), rendering them impractical and
severely limiting the scope of associated theoretical guarantees.

We study a common framework for high-dimensional regression,
which proceeds through the following two steps: First, dimension re-
duction, such as PCA, is performed to project the high-dimensional
features into a low-dimensional subspace corresponding to the
space where pristine data can be sampled. Second, linear regression
is performed to learn the model to best characterize the data.

We consider adversaries who might try to poison and mislead
either or both of the two steps, and thus we have two design goals
in mind. First, we must make sure that the dimensionality reduction
step can reliably recover the low-rank subspace; second, the result-
ing regression performed on the subspace can recover sufficiently
accurate predictions. We aim to achieve these goals despite noise in
the dataset and adversarially-poisoned samples. While these prob-
lems have previously been considered in isolation, ours is the first
integrated approach. More significantly, the effectiveness of our
approach relies on far weaker assumptions than prior art (for exam-
ple, we do not need the typical assumption of sub-Gaussian noise
with vanishing variance; see, e.g. [10]), and, as a result, our pro-
posed practical algorithms significantly outperform state-of-the-art
alternatives.

Specifically, we assume that labels y are a linear function of the
true feature matrix X, with additive zero-mean noise. In addition,



X is corrupted with noise, and the adversary subsequently adds
a collection of corrupted rows to the training data. In this model,
our approach involves two parts: first, we develop a novel robust
matrix factorization algorithm which correctly recovers the sub-
space whenever this is possible, and second, a trimmed principle
component regression, which uses the recovered basis and trimmed
optimization to estimate linear model parameters.

Our main contributions are as follows:

e Novel algorithm for robust matrix factorization: We
develop a novel algorithm that reliably recovers the low-
rank subspace of the feature matrix despite both noise
(about which we make few assumptions) and adversarial
examples. We prove that our algorithm is effective if and
only if subspace recovery is possible.

¢ Novel robust regression algorithm with significantly
weaker assumptions: In contrast to prior robust regres-
sion work, we do not require either feature independence
or low-variance sub-Gaussian distribution of features. We

prove that our algorithm can reliably learn the low-dimensional

linear model despite data corruption and noise.

e Significant improvement in running time and accu-
racy: We conduct empirical evaluation and demonstrate
that our algorithms significantly outperform prior art in
both running time and prediction efficacy.

2 OVERVIEW

Given a dataset (X, yi);e[1,n]> the machine learning problem is to
recover the function f that can best characterize the hidden rela-
tionship between X; and y;, i.e., f(X;) and y; are close. Depending
on the values that y; can take, a machine learning problem is either
a classification problem, in which y; can only take a value from a
finite discrete set of “classes", or a regression problem, in which
y; can take values from a continuous space, on which a distance
function is well-defined.

In this work, we focus on the regression problem. In particular we
consider the most fundamental and widely used machine learning
models — linear models. Given a dataset of samples (X, y), where y
is the dependent variable depending on X, a linear model assumes
that y is “close" to - X with respect to the distance function, for a
set of parameters w.

In this section, we first present the threat model; then we formal-
ize the problem considered in this work; last, we give a road-map
of our approach while explaining the paper organization.

2.1 Threat Model

In this work, we assume that the defender collects a set of training
data, which can be manipulated by the adversary. The defender
thus does not have access to the pristine data before adversarial
manipulation. The defender can choose its defense strategy and
the training approach. But the defender does not know the attack
strategies employed by the adversary.

The attacker has access to the pristine training data, and can
insert new data samples whose volume is a fraction of the pristine

one up to an upper bound. We assume that the attacker knows the
training algorithm used by the defender, and all hyper-parameters
that will be used if any.

The above threat model may be stronger than real-world at-
tackers, since in the real world scenarios, the attacker may not be
able to know the defense strategy employed, or the entire pristine
training data. By assuming such a strong attacker, we can analyze
the worst-case performance of the defense algorithm, and thus all
security guarantees under our model automatically apply to any
weaker threat models based on the Kerckhoffs’s principle [26].

This threat model can also be simulated by a zero-sum Stack-
elberg game, in which the defender chooses the defense strategy
first, and then the attacker chooses the attack strategy based on the
defender’s choice. The defender’s goal is to maximize her utility,
which is the expected serving time accuracy, while the attacker
tries to minimize this utility given a certain budget on the number
of training instances that can be poisoned.

2.2 Problem Setup

We start with the pristine training dataset of n labeled examples,
(X, ¥, ), which subsequently suffers from two types of corrup-
tion: noise is added to feature vectors, and the adversary adds nq
malicious examples (feature vectors and labels) to best mislead the
learning. We assume that the adversary has full knowledge of the
learning algorithm. The learner’s goal is to learn a model on the
corrupted dataset which is similar to the true model. The feature
space is high-dimensional, and the learner will perform dimension-
ality reduction prior to learning. In particular, we assume that X,
is low-rank with a basis B, and we assume that the true model is
the associated low-dimensional linear regression.

Formally, observed training data is generated as follows:

(1) Ground truth: y, = X,f* = U}, where p* is the
true model, [3[’} is its low-dimensional representation, and
U = X, B is the low-dimensional embedding of X.

(2) Noise: Xy = X4 + N, where N is a noise matrix with
INllo < €;¥ = Yy« +e, Where eisii.d. zero-mean Gaussian
noise with variance o.

(3) Corruption: The attacker adds n; adversarially crafted
examples (Xq4,Yy,) to get (X,y), which maximally skews
prediction performance of low-dimensional linear regres-
sion.

To formally characterize how well the learner performs in this
setting, we define (1) a model function f(Xo,y,) which is the model
learned on (X4, y,); (2) a loss function I; and (3) a threshold function
d(z) which takes as input z > 1, and is increasing in z. Our metric
is (f, 1, 8)-tolerance:

DEFINITION 1 ((f, [, §)-TOLERANCE). We say that learner £ is
(f, 1, 6)-tolerant, if for any attacker, and any z > 1, we have

(Z(X. y). f(Xo. y)) < 6(2)

with probability at least 1 — ¢1z2~°2, for some constant c1, ¢y > 0.

In our setting, f(Xo,y,) returns f* and [ is expected quadratic

loss Ex [(x(B = B*))?].



n Number of pristine samples
ni Number of poisoning samples
n+n; | Total number of training samples
Y The corruption ratio ni/n
B Estimated parameter vector
B* True parameter vector
B Low-dimensional representation of f*
(Xx,y,) | Pristine training data
(Xo,yy) | Examples with Gaussian uncertainty
(Xa,y,) | Adversarially crafted examples
(X,y) | Dataset after injecting poisoning instances
B Basis for Xy
f Learning model
) Loss function

Table 1: Notation Table

For convenience, we let & denote the set of (unknown) indices
of the samples in X coming from Xy and &/ = {1,...,n+n1} - 0
the set of indices for adversarial samples in X. For an index set .#
and matrix M, M~ denotes the sub-matrix containing only rows
in .#; similar notation is used for vectors. We define y = % as the
corruption ratio, or the ratio of corrupted and pristine data.

All solutions presented in this work assume that n is given. In
practice, we only need estimate n as a lower bound on the number of
pristine samples. When there are n’ pristine samples where n” > n,
we can simply consider this case as the adversary has n” —n unused
budget during poisoning, and our analysis still holds in such a case.

We summarize the notations used in the paper in Table 1.

2.3 Solution overview

Our goal is to design a learner .Z to estimate the coefficients B of
the true model f* using low-dimensional embedding of a high-
dimensional model. We achieve this goal in two steps: (1) recover
the subspace B of Xy; (2) project X onto B, and estimate B using
robust principle component regression. The key challenge is that
an adversary can design corrupted data to interfere with both the
first and second steps of the process.

For the first step (Section 3), we develop a robust subspace recov-
ery algorithm which can account for both noise N and adversarial
examples in correctly recovering the subspace of X,. We charac-
terize necessary and sufficient conditions for successful subspace
recovery, showing that our algorithm succeeds whenever recovery
is possible. The challenge in the second step (Section 4) is that the
adversary can construct X< from the same subspace as X4, but
with the different distribution of (X%, yg{ ) from (X4, y,). To ad-
dress this, we propose the trimmed principle component regression
algorithm to minimize the loss function over only a subset of the
dataset ensuring that the adversary can have only a limited impact
by adding n; arbitrary corrupted samples without having these
instances being discarded. Our theoretical results demonstrate that
the combined approach is an (f, I, §)-tolerant learning algorithm. Fi-
nally, in Section 5, we present an efficient practical implementation
of our methods, which we evaluate in Section 6.

3 ROBUST SUBSPACE RECOVERY

In this section, we discuss how to recover the low-rank subspace of
X4 from X. Our goal is to exactly recover the low-rank subspace,
i.e,, returning a basis for X,. We show sufficient and necessary
conditions for this problem to be solvable, and provide algorithms
when this is possible. As a warmup, we first discuss the noise-
free version of the problem, and then present our results for the
case when noise is added to training data. Proofs of the theorems
presented in this section can be found in Appendix A. Formally, we
consider the following problem:

PROBLEM DEFINITION 1 (SUBSPACE RECOVERY). Design an algo-
rithm ZLyecovery, which takes as input X, and returns a set of vectors
B which form the basis of Xx.

3.1 Warmup: Noise-free Subspace Recovery

We first consider an easier version of Problem 1 with N = 0. In
this case, we know that X% = X4. We assume that we know
rank(X4) = k (or have an upper bound on it). Below we demon-
strate that there exists a sharp threshold § on ny such that when-
ever n1 < 0, we can solve Problem 1 exactly with high probability,
whereas if n;y > 0, Problem 1 cannot be solved. To characterize

this threshold, we define the cardinality of the maximal rank k — 1
subspace MSy._1(X) as the optimal value of the following problem:

m;x | 7] s.t. rank(Xf) <k-1

Intuitively, the adversary can insert ny = n—MSj._; (X« ) samples
to form a rank k subspace, which does not span X,. The following
theorem shows that in this case, there is indeed no learner that can
successfully recover the subspace of X.

THEOREM 1. Ifni+MSy_1(Xx) > n, then there exists an adversary
such that no algorithm Zyecover solves Problem 1 with probability
greater than 1/2.

On the other hand, when n; is below this threshold, we can use
Algorithm 1 to recover the subspace of X.

Algorithm 1 Exact recover algorithm for Problem 1 (Noisy-free)

We search for a subset .# of indices, such that |.#| = n, and
rank(X?) = k
return a basis of X7

In fact, we can prove the following theorem.

THEOREM 2. If n; + MSi_1(Xx) < n, then Algorithm 1 solves
Problem 1 for any adversary.

Theorems 1 and 2 together give the necessary and sufficient
conditions on when Problem 1 is solvable, and Algorithm 1 provides
a solution. We further show an implication of these theorems on
the corruption ratio y. We can prove that MS;_;{(Xx) = k-1
(see Appendix A). Combining this with Theorem 1, we obtain the
following upper bound on y.

CoroLLARY 1. Ify 21— %, then Problem 1 cannot be solved.



3.2 Dealing with Noise

We now consider Problem 1 with noise. Before we discuss the
adversary, we first need to assume that the uncorrupted version
is solvable. In particular, we assume that X, is the unique optimal
solution to the following problem:

min X - X' (1a)
s.t. rank(X’) < k. (1b)
Unless otherwise mentioned, we use || - || to denote the Frobenius

norm. We put no additional restrictions on N except above. Note
that this assumption is implied by the classical PCA problem [13,
15, 16]. We focus on the optimal value of the above problem, which
we term the noise residual, denoted as NR(X() = N. Noise residual
is a key component to characterize the necessary and sufficient
conditions for the solvability of Problem 1.

Characterization of the defender’s ability to accurately recover
the true basis B of X after the attacker adds ny malicious instances
stems from the attacker’s ability to mislead the defender into think-
ing that some other basis, B, better represents X, . Intuitively, since
the defender does not know Xy, Xy, or which ny rows of the data
matrix X are adversarial, this comes down to the ability to identify
the n—n; rows that correspond to the correct basis (note that it will
suffice to obtain the correct basis even if some adversarial rows are
used, since the adversary may be forced to align malicious exam-
ples with the correct basis to evade explicit detection). As we show
below, whether the defender can succeed is determined by the rela-
tionship between the noise residual NR(Xo) and sub-matrix residual,
denoted as SR(Xp), which we define as the value optimizing the
following problem:

. 7 =
min ||X5 —UB 2a
min IIX{" - UB| (22)
st. rank(B) = k,BBT = [, X, BB # X, (2b)
S c{12,...,n}, || =n-n;. (2¢)

We now explain the above optimization problem. U and B are
(n—n1)xk and kX m matrixes separately. Here B is a basis which the
attacker “targets”; for convenience, we require B to be orthogonal
(ie., BBT = I1.). Since the attacker succeeds only if they can induce
a basis different from the true B, we require that B does not span
of Xy, which is equivalent to saying X*BTB # Xx. Thus, this
optimization problem seeks n — nj rows of X4, where .# is the
corresponding index set. The objective is to minimize the distance
beEween X({ and the span space of the target basis B, (i.e., ||X57 -
UB||).

Algorithm 2 Exact recovery algorithm for Problem 1

Solve the following optimization problem and get .¥.

min 7, [|X7 - L|| )
st.rank(L) < k,.# C {1,...,n+n1},|.7| =n

return a basis of X7

To understand the importance of SR(X), consider Algorithm 2
for recovering the basis of Xy, B. If the optimal objective value

of optimization problem (2), SR(Xy), exceeds the noise NR(X)), it
follows that the defender can obtain the correct basis B using Algo-
rithm 2, as it yields a better low-rank approximation of X than any
other basis. Else, it is, indeed, possible for the adversary to induce
an incorrect choice of basis. The following theorem formalizes this
argument.

THEOREM 3. If SR(Xp) < NR(Xy), then no algorithm can re-
cover the exact subspace of X with probability greater than 1/2.
If SR(Xo) > NR(Xy), then Algorithm 2 solves Problem 1.

To draw connection between the noisy case and the noise-free
case, we can view Theorem 1 and 2 as special cases of Theorem 3.

THEOREM 4. When N = 0, SR(Xp) > NR(Xo) = 0 if and only if
n; + MSk_l(X*) <n

4 TRIMMED PRINCIPAL COMPONENT
REGRESSION

In this section, we present trimmed principal component regres-
sion (T-PCR) algorithm. The key idea is to leverage the principal
component regression (PCR) approach to estimate B but during the
process trimming out those malicious samples that try to deviate
the estimator from the true ones. In the following, we present the
approach, which is similar to the standard PCR approach, though
we do not require computing the exact singular vectors of X.

Assume we recover a basis B of X,. Without loss of generality,
we assume that B is an orthogonal basis of k row vectors. Since
B is a basis for X4, we assume X, = UxB. Then we know that,
by optimization (1), Ux = argming;||Xo — UB||. We compute U =
argming; || X —UBJ||, and, by definition, we know U, = U?.By OLS

estimator, we know that U7 = (BBT)"'BX”, and thus U = XB”.

To estimate y = X4 f+e, we assume Sy = Bf. Since Xy = UyxB,
we convert the estimation problem of § from a high dimensional
space to the estimation problem of i from a low dimensional space,
such that y = UBy + e. After estimating for EE, we can convert
it back to get B = BEE. Notice that this is similar to principal
component regression [17].

However, the adversary may corrupt ni rows in U to fool the

learner to make a wrong estimation on ﬁU, and thus on ﬁ To
mitigate this problem, we design Algorithm 3. Intuitively, during

Algorithm 3 Trimmed Principal Component Regression

Input: X,y
(1) Use Algorithm 2 to compute a basis from X, and orthogo-
nalize it to get B
(2) Project X onto the span space of B and get U «— XBT
(3) Solve the following minimization problem to get BE
n
r’rglriJnZ{(yi —uiﬁU)z fori=1,...n+n1} (4)

where 2(j) denotes the j-th smallest element in sequence z.

(4) return ﬁ — B,BU




the training process, we trim out the top nq samples that maximize
the difference between the observed response y; and the predicted
response u; fy, where u; denotes the i-th row of U. Since we know
the variances of these differences are small (i.e., recall Section 2,
o is the variance of the random noise y — x*), these samples
corresponding to the largest differences are more likely to be the
adversarial ones.

Next, we theoretically bound the prediction differences between
our model and the linear regression model learnt on Xy, y,.

LEmMA 1 (TPCR LEMMA). Algorithm 3 returns ﬁ, such that for any
real value h > 1 with at least 1 — ch™2 probability for some constant
¢, we have

2
Ex [(x(E - ﬁ*))z] < 40'2(1 + 4 ’ﬁ) loge (5)

We explain the intuition of this Lemma, and defer the detailed
proof to Appendix B. If an adversary wants to fool Algorithm 3,
it needs to generate samples (u;, y;), such that the loss function
(yi —u,ﬁ(;)z is among the smallest n. Since for samples from X4, y,,
these loss functions are already bounded according to o, the adver-
sary does not have an ability to significantly skew the estimator. In
particular, if ¢ = 0, i.e., there is no error while generating y, from
X4, then the adversary can do nothing when y < 1, and thus the
estimator is the same as the linear regression’s estimator on the
uncorrupted data.

As an immediate consequence of Lemma 1, we have

2
Tconss. Given 300 = 40*(11+\[i57 | Toge, Algorthm 31
(f,1,6(c))-tolerant.

5 PRACTICAL ALGORITHMS

Algorithms 1, 2, and 3 require enumerating a subset of indices, and
are thus all exponential time. To make our approach practical, we
develop efficient implementations of Algorithms 2 and 3.

5.1 Efficient Robust Subspace Recovery

Consider the objective function (3). Since rank(L) < k, we can
rewrite L = UBT where U’s and B’s shapes are n x k, and m x k
respectively. Therefore, we can rewrite objective (3) as

min |[X7 - UBT||st. |.Z] =n
#,U,B

which is equivalent to
n
rlrjl’ilrsljz_;{||xi—u,~BT||f0ri= Lown+nikg) (6)

where x; and u; denote the ith row of X and U respectively. Solving
Objective 6 can be done using alternating minimization, which
iteratively optimizes the objective for U and B while fixing the other.
Specifically, in the wth iteration, we optimize for the following two
objectives:

U™*! = argming | |X - UBY)T ||

Algorithm 4 Trimmed Optimization

(1) Randomly assign 7; € {0,1} fori = 1,...,n + ny, such that

Zn+n1 i=n
i=1 =
(2) Optimize § « argming Z?:lnl 7il(yi, fo(xi));
(3) Compute rank; as the rank of I(y;, fp(x)) in the ascendin,
p Yi> Jo g

order;

(4) Set r; « 1 for rank; < n, and 7; < 0 otherwise;

(5) Go to 2 if any of 7; changes;

(6) return 0.

n
BY*! = argming Z{Hxi - ul-w+1BT|| fori=1,...,n+n1}).
j=1

Notice that the second step computes the entire U regardless of the
sub-matrix restriction. This is because we need the entire U to be
computed to update B. The key challenge is to compute B¥*! in
each iteration, which is, again, a trimmed optimization problem.
The next section presents a scalable solution for such problems.

5.2 Efficient Algorithm for Trimmed
Optimization Problems

Both robust subspace recovery and optimizing for (4) rely on solving
optimization problems in the form

n
min Z{l(y,—,fg(xi)) fori=1,...,n+n1};
6

where fp(x;) computes the prediction over x; using parameter 6,
and (-, -) is the loss function. We refer to such problems as trimmed
optimization problems. It is easy to see that solving this problem is
equivalent to solving

. +
mln@,rl,...,rn+nl Z?:{h Til(yi’ fé'(xi))

st.0<17 < 1,2?:1n1 Ti=n

We can use alternating minimization technique to solve this prob-
lem, by optimizing for 6, and 7; respectively. We present this in
Algorithm 4. In particular, the algorithm iteratively seeks optimal
arguments for 6 and 7y, ..., Tp+p, respectively. Optimizing for 6 is
a standard least square optimization problem. When optimizing
T1, ..., Tntn,, it is easy to see that 7; = 1if I(y;, fp(x;)) is among
the largest n; and 7; = 0 otherwise. Therefore, optimizing for
T1, ..., Tn+n, is a simple sorting step. While this algorithm is not
guaranteed to converge to a global optimal, in our evaluation,we
observe that a random start of 7 typically yields near-optimal solu-
tions.

6 EVALUATIONS

In this section, we evaluate our approach, i.e., T-PCR. First, we
evaluate the two components, subspace recovery algorithms and
the regression algorithms separately. We employ synthetic datasets
to evaluate both the runtime and the effectiveness of the T-PCR
approach with the previous state-of-the-art. Second, we evaluate
the effectiveness of the entire algorithm using a real-world dataset.



In the following, we first present the setup of our evaluation,
and then present the results for each experiment.

6.1 Setup

We implement all algorithms. All programs are run on a workstation
with a Intel 17-6800K CPU running at 3.4GHz, 128G memory, and
1TB SSD hard drive. In the following, we explain the baselines used
for comparison, datasets, and poisoning strategies.

6.1.1 Implementation details. We implement our defense strate-
gies based on Algorithm 4 discussed in Section 5.

6.1.2  Baseline. We compare our approach with the state-of-the-
art alternatives in the literature. For the subspace recovery problem,
we compare to two approaches: Chen et al. [11] and Xu et al. [30].

For the end-to-end linear regression problem, we compare our
T-PCR algorithm with the recent robust regression approach [10]
and standard ridge regression algorithm.

6.1.3 Datasets. In this work, we use two classes of datasets to
evaluate our approach: synthetically generated data, and real data.
We explain them below.

Synthetic Datasets. We generate datasets using a routine with
hyper-parameters n, ny, k, and m, which represent the number of
samples in total, poisoned data samples, intrinsic rank of the data,
and the number of features. We set m = 400 for all experiments,
but n, n1, and k can be varied to evaluate different aspects of our
approach.

For a given (k, n), we generate X4 as follows: sample two ma-
trices U, B with shape n X k and k X m respectively. Each element
is sampled independently from a Gaussian distribution .47(0, 1).
Once a matrix (e.g., U or B) is sampled, we verify that the matrix
has rank k; or otherwise, we will keep re-sampling the matrix until
the matrix has rank k. Once both U and B are sampled, and we
set X, = UB. We do not add noise to Xy, unless explicitly stated.
When noise is added, the pristine data is generated as X4 + N,
where each element in N is randomly sampled from the Gaussian
distribution .47(0,0.01).

Real-world Dataset: malicious domains. We obtained a dataset
including HTTP logs collected from a large enterprise spanning
a period of four months (February, March, July, and August) in
2015. The dataset includes features extracted from the inbound
and outbound HTTP and HTTPs communications captured at the
border of the enterprise by web proxies. Each log event includes
fields from the HTTP headers of the connections, e.g., connection
timestamp, source and destination IP address, contacted domain
and URL, result code, HTTP action, web referrer, user-agent string
and bytes sent and received.

Some filters were applied to the raw datasets to eliminate popu-
lar web sites (domains contacted by more than 50 hosts), domains
involved in advertisement or CDNs, and also domains with only
limited number of connections (less than 5). For the remaining
domains, the dataset includes 91 features typically used in security

applications for flagging malicious communications. The features
extracted from the proxy logs belong to several categories: Com-
munication structure (e.g., number of hosts contacting the domain,
total number of connections, bytes sent and received to the do-
main, number of POST, GET connections); Domain structure (e.g.,
number of levels in the domain, number of sub-domains on the
same second-level domain and domain name length); URL structure
(e.g., number of distinct URLs, URL path length and depth, number
of parameters, number of values per parameter); User-agent string
features (e.g., total number of UAs, popularity of the UA across
the enterprise, ratio of UA across hosts); Web referrer features (e.g.,
total number of referer domains, fraction of connections without
referer); Result-code features (e.g., number of successful and failed
connections); Content-type features (e.g., number of distinct content
types).

At the same time, a number of features extracted from publicly
available external sources are added. They include: WHOIS-related
features (e.g., domain age defined as the time since the domain was
registered, registration validity defined as time until registration
expires), geographical location (number of countries and ASNs of the
IP address of the domain. For labeling the domains in the datasets,
a cloud-based anti-virus engine (VirusTotal) was used. We consider
malicious all domains flagged by at least three anti-virus engines
in VirusTotal. We consider benign the domains with a score of 0
on VirusTotal that are in top 100K according to Alexa ranking.
Domains with score 1 or 2 are considered unknown and removed
from the dataset.

For the evaluation purpose, we use the data from Feburary,
March, and July as the training set, and the data from August as
the test set.

6.1.4  Poisoning Strategy. We employ two poisoning strategies
for attacking the subspace recovery problem and the linear regres-
sion problem respectively. We present them below.

Poisoning strategy for subspace recovery. We evaluate differ-
ent approaches for the subspace recovery problem using only syn-
thetic data. Thus, we assume the adversary has access to Xy, the
generated pristine data. We generate corruptions X< also as a
low rank matrix by generating U¥ and B in the same way as
generating U and B, where U? has n; rows.

For BZ , we set the first half of BY by choosing k/2 rows of X,
and generating the remaining k/2 rows randomly, while ensuring
that B has rank k. We concatenate X4 and X = U?B to get
the matrix with n + n; rows, and then shuffle them. In doing so, we
know that X shares a common subspace of rank k/2 with X,
but the two subspaces are still different.

Notice that this strategy is designed to trigger the worst case
performance for our algorithms. Later, in the evaluation, we will
demonstrate that although this strategy does not leverage the in-
formation of the baseline algorithms, our approach outperform the
baseline approaches.

Poisoning strategy for linear regression. We employ Xiao et
al.. [28], the state-of-the-art poisoning strategy for linear models
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and variants to create the adversarial labels. The basic idea is to
move the data samples along the direction to maximally modify the
learned estimator. This process is repeated multiple iterations until
the learned model cannot predict correctly. We refer the readers
to [28] for more details.

6.2 Subspace recovery

6.2.1 Runtime. We evaluate the runtime of our approach in

comparison with baselines by varying the intrinsic rank k and the
number of pristine data n.

First, we set n = 350, n; = 50 and vary k from 1 to 20 with the
step to be 1. For each k, we evaluate the runtime of our algorithm
along with the two baselines [11] and [30]. The results are plotted in
Figure 1. Our algorithm is significantly faster than [11] and [30]. The
reason is our algorithm is designed in the alternative minimization
fashion, so that its runtime is linear to the size of the matrix, and also
linear to the intrinsic rank k. On the other hand, both [11] and [30]
employ SVD as its sub-routine, which is very time-consuming. The
SVD algorithm thus dominants the runtime of both [11] and [30].
Notice that the SVD algorithm’s runtime does not rely on k. This is
also the reason why these two baseline approaches’ runtime does
not increase as fast as our approache’s when k is increased.
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Figure 3: Effectiveness on the subspace recover task using
the rate of correct identification of corrupted rows.

Second, we fix ny = 50 and k = 20, and vary n from 1000 to 8000
with the step to be 400. The results of this experiment are presented
in Figure 2. We can observe that as long as the pristine training
samples increase, our algorithm’s runtime increases slowly, while
the two baseline approaches are slowing down dramatically. As we
have explained above, this is due to that the SVD algorithm domi-
nants most of the runtime of [11] and [30], and the SVD algorithm’s
runtime increases dramatically when the total number of rows is
increased.

From these two comparisons, we conclude that our approach is
much more efficient than the baseline approaches and scales well
in terms of both the intrinsic rank and the training data volume.

6.2.2  Effectiveness of the subspace recovery algorithm. We study
the effectiveness of our subspace recovery algorithm using two
metrics. First, we evaluate the percentage of the corrupted rows that
can be identified. Intuitively, if a high percentage of the corrupted
rows can be identified, then the defender can simply remove those
rows to recover the original pristine data.

Second, we evaluate the distance between the recovered matrix
and the pristine matrix on noisy data. The smaller this distance is,
the more effective the recovery algorithm is.

Identification rate of corrupted rows. We compare our algo-
rithm with the two baselines [11, 30] on the identification rate of
corrupted rows. That is the ratio of the of corrupted rows that can
be identified in the total number of rows. We fix k = 10, and vary
ny from 10 to 200 with a step size 10, and n = 400 — n; to keep
n+ n1 = 400.

The results are presented in Figure 3. Our approach matches the
upper bound of y provided by Corollary 1. In particular, when n; =
ny < n(1-k/n) = n —k, which means n; < 190, the identification
rate of our algorithm is 100%. In this case, our approach can perfectly
identify the corrupted rows with 100% accuracy. On the other hand,
when nj > 190, our approach fails, as expected.

In this experiment, the algorithms used in [30] and [11] are
identical, and we refer to both as Xu et al. [30]. We can observe that
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Figure 4: Effectiveness on the robust regression task

the identification rate plummets for n; > 20, even though only 5%
of the rows are corrupted.

RMSE. We then evaluate our approach’s effectiveness on the noisy
data. In particular, we add noise to the dataset, and employ the
poisoning strategy discussed in Section 6.1.4, which is designed
against our approach. Since [11] cannot handle noise, we only
compare with [30]. We evaluate the distance between the ground
truth matrix and the recovered matrix, i.e., using the root of mean
square (RMSE) metric of the residual matrix. This metric is used
by [30] as well.

Figure 4a and 4b show the RMSE of the difference from recovered
X% and the true X,. We use the grayscale to denote the RMSE:
lighter color corresponds to smaller RMSE. On most test cases
our algorithm successfully recovers the true subspace, while [30]
fails on most cases. Particularly, when n; < 120, our approach
can completely recover the underlying low-rank matrix. When nq
increases, the condition SR(Xy) > NR(Xo) might not hold true, and
Theorem 3 says that no algorithm can recover the true subspace
with probability greater than 1/2. However, this theorem does not
prevent our algorithm succeeding with probability < 1/2, which is
why we observe several white spots for high n;.

6.3 Robust regression

In this section, we evaluate the trimmed regression component
(Algorithm 3) in comparison with baseline approaches, i.e., vanilla
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linear regression and Chen et al. 2013 [10], which is the only alter-
native method for linear regression that is designed to be robust to
the adversarial data poisoning.

We eliminate the effect of dimension reduction, and set m = k =
20 for evaluation purpose. Thus, the generated feature matrix X
is guaranteed to be of full rank. We set n + ny = 400, and vary nq
from 10 to 200 with a step size 10. In this setting, we choose the
Robust Thresholding Regression algorithm proposed by Chen et al.
2013, which is designed for this setting. We evaluate both runtime
and the effectiveness.

Runtime comparison. The runtime comparison results are pre-
sented in Figure 5. As we can observe, our T-PCR approach’s run-
time is almost the same as Chen et al. 2013’s runtime, though our
approach’s runtime is not as stable as Chen et al. 2013’s. This is be-
cause our approach uses an iterative algorithm, and its convergence
rate relies on both the initial guess on the poisoning data samples,
and the distribution of the poisoning data samples themselves. Thus
different poisoned dataset may result in different runtime. In con-
trast, Chen et al. 2013’s approach is deterministic, and its runtime
does not depend on the data at all, and thus its performance is more
stable.

When compared with vanilla linear regression, both of our ap-
proach and Chen et al. 2013 are around 7x slower. This is reasonable,
since our approach employs the algorithm solving linear regression
in each iteration. Further, we observe that the overall runtime of our
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Figure 7: Evaluation on a real-world dataset.

approach is at the order of milliseconds. Therefore, we argue that
such a slow-down over vanilla linear regression does not hinder our
approach’s practicality, considering that the matrix factorization
component will take a much longer time.

Effectiveness. We evaluate the effectiveness of the robust regres-
sion algorithms by evaluating the root-of-mean-square (RMSE) of
the prediction using the learned model on test dataset. The results
are presented in Figure 6. As a baseline, we also present results
for standard OLS linear regression with and without adversarial
instances (LR(O+A) and LR(O), respectively). Results are evaluated
using a ground truth test set not used for training. The results
demonstrate that our algorithm significantly outperforms the al-
ternatives. Surprisingly, Chen et al. 2013’s approach results in an
orders of magnitude larger RMSE, thus we omit these results from
the figure. We can observe that our method works nearly as well
as linear regression without adversarial instances!

6.4 End-to-end evaluation on Real World
Dataset

We evaluate our end-to-end approach combining both subspace
recovery algorithms and trimmed regression algorithms over the
real world malicious domain dataset. As explained in Section 6.1.3,

we use three months (Feburary, March, and July) of data for training,
and one month (August) of data for testing. We poison the data
using Xiao et al. [28]. This data set contains 18,000 samples in total.

We choose Ridge regression as our baseline, since in our eval-
uation on synthetic data Chen et al. 2013 did not prove effective.
Further, we include the results using Ridge regression trained on
pristine data as a secure reference. We use Algorithm 4 to imple-
ment the TPCR algorithm.

We first evaluate the accuracy of different algorithms. In fact,
each data sample (a domain) in the dataset corresponds to a value,
called score, from [0, 1] indicating how likely the domain is mali-
cious. We set a threshold to be 0.5, and consider all domains with
scores larger than 0.5 as malicious, or benign otherwise. Then we
can evaluate the accuracy as the percentage of test data that are
classified correctly. The results are presented in Figure 7a. From the
figure, we can observe that when the number of poisoned samples
increases, the Ridge regression approach’s accuracy drops dramat-
ically, i.e., after 4000, i.e., 22%, of the entire training samples are
poisoned. On the other hand, our TPCR approach remains an al-
most perfect accuracy until more than 10000, i.e., 55%, over the
entire datasets are poisoned. We also evaluate the RMSE of differ-
ent algorithms, and present the results in Figure 7b. We observe the
same phenomenon as we study the accuracy of different algorithms.
Therefore, we conclude that our approach provides more resilience
than existing approaches.

We also observe in Figure 7b that TPCR’s performance on RMSE
is worse than the baseline when there are more than 10,000 number
of rows corrupted. Notice that in such cases, the poisoning samples
are over 50% of the training dataset. In this case, the TPCR algorithm
will be fooled to think the poisoning samples, which constitute the
majority, represent the “pristine data". In this case, as we prove
in Section 3, it is impossible to recover the true space. Note that
poisoning over half of the training data is also less realistic in real
application scenarios.

7 RELATED WORK

Poisoning Attack. In this big data era, adversarial machine learn-
ing has drawn a lot of attention [4, 12, 19-21]. With the increasing
popularity of crowdsourcing systems, poisoning attacks, where
adversaries are able to manipulate the training data to fulfill their
malicious goals, have raised severe security problems. Biggio et
al. has pioneered the research of optimizing malicious data-driven
attacks for kernel-based learning algorithms such as SVM [6]. The
key technique for such optimization based attack strategy is to
approximately compute implicit gradients of the solution of an opti-
mization problem based on the first-order KKT conditions. Similar
poisoning attack techniques have also been generalized to other
widely used learning algorithms, such as Lasso regression [29],
topic modeling [22], and autoregressive models [1]. A general algo-
rithmic framework for generating poisoning attack instances on
various machine learning models is analyzed in [23]. Recently, poi-
soning attack against deep neural networks has also been proposed
to attack the substitute model via influence function [18]. In their
work, the attack is restricted to only the last layer instead of the



whole network. Therefore, how to conduct poisoning attack on
deep networks in an end-to-end manner still remains open.

Robust Algorithm. Robust PCA is widely used as a statistical tool
for data analysis and dimensionality reduction that is robust to ii.d.
noise [7]. However, these methods cannot deal with “malicious”
corruptions, where the sophisticated adversaries can manipulate
rows from the subspace of the true feature matrix. In contrast, our
approach handles both noise and malicious corruption. Recently,
robust learning for several learning models, such as linear and lo-
gistic regression have also been proposed [10, 14]. The limitation
of these approaches is their assumption that the feature matrix is
sub-Gaussian with vanishing variance, and that features are inde-
pendent. Similarly, a provably robust algorithm has been proposed
to remove random noise based on conditional correlation among
data points [9]. Our approach, in contrast, only assumes that the
true feature matrix (prior to corruption) is low rank. Yan et al.
proposed an outlier pursuit algorithm to deal with the matrix com-
pletion problem with corruptions [31], and a similar algorithm is
applied by Xu et al. to deal with the noisy version of feature matrix
[30]. However, these methods only consider the matrix recovery
problem and are not scalable. A more scalable algorithm based on
the alternating minimization approach was recently proposed by
Rodriguez et al. [24]; however, this method does not consider data
noise or corruption. A number of heuristic techniques have also
been proposed for poisoning attacks [3, 5, 25] for other problems,
such as robust anomaly detection source identification.

8 CONCLUSION

This paper considers the poisoning attack for linear regression
problem with dimensionality reduction. We address the problem
in two steps: 1) introducing a novel robust matrix factorization
method to recover the true subspace, and 2) novel robust principle
component regression to prune adversarial instances based on the
basis recovered in step (1). We characterize necessary and suffi-
cient conditions for our approach to be successful in recovering
the true subspace, and present a bound on expected prediction loss
compared to ground truth. Experimental results suggest that the
proposed approach is extremely effective, and significantly outper-
forms prior art.
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A PROOF OF THEOREMS ABOUT ROBUST
MATRIX FACTORIZATION

In this appendix, we present the proofs of theorems in Section 3.
Since this section does not involve y, we will omit y without loss
of clarity.

A.1 Theorem 1

Proor oF THEOREM 1. We prove by contradiction. Assume we
have a learner .Zecover, can solve Problem 1 with probability more
than 1/2. We want to show that there exist two different spaces
of rank-k, and one input X such that Zecover(X1) should return
both two spaces with a probability > 1/2, which is impossible. In
the following, we construct such two spaces. Particularly, we will
discuss how adversary can manipulate the matrix.

The adversary can choose .# which maximize |.#| such that
while rank(Xf) < k- 1. We know |.¥| = MS;_;(Xx) = n—nj.
This means that |0| — |.Z| < ny.

Suppose vy, ..., vg_1 be a set of basis for the row space of Xf.
The adversary then choose a vector vl’C which is orthogonal to X,.
Then we know the span space of V/ = {v1, ..., vk, ‘U;(} is different
from X. Then the adversary draws n; samples from the span space
of V’, and insert them into X, to form X. Moreover, we denote X/,
to be a matrix of |.#| + n1 rows, so that the first |.#| rows are Xf,
and the rest n; rows sampled by the adversary. Therefore, we know
X; is also a submatrix of X, and we know that there are at most
|O] = |.#| < n1 rows in X not coming from X/, .

In doing so, we know that X is constructed by corrupting Xy.
On the other hand, we can also see X as the result of corrupting X/,
by inserting |0| — |.#| < ny rows. Therefore, Zrecover(X«) should
return both X, and X/, with a probability greater than 1/2, which
is impossible. Therefore, our conclusion holds true. O

A.2 Theorem 2

Proor oF THEOREM 2. We show that Algorithm 1 recovers the
subspace of X, exactly. Assume B is returned by Algorithm 1 over
X. We only need to show that B is a basis of X4. By Algorithm 1,
we know that B is a basis of n rows in .# of X. Since we know
any adversary can corrupt at most nj rows, thus |.# N &7| < nj.
Therefore, by combining the assumption ny + MS_;(Xx) < n, we
know that

|7 N0 = I - 1IN >n—n >MS_1(Xy)  (7)

Therefore, we know B is a basis for Xf NG By the definition of
MS._1(X«) and inequality (7), we know that

rank(X;¢ ﬁﬁ) =k

Therefore, we know that Xf NY s exactly the same subspace as

Xy, and thus B is the basis of X. m]

A.3 Corollary 1
LEMMA 2. MSp_1(Xx) =2 k-1

Proor. We can choose the .# = {1,...,k — 1}, then we have
rank(Xf) < k — 1. Therefore, MS;_{(Xx) = | 7| =k - 1. o

Now, we can prove Corollary 1.

k-1

Proor or COROLLARY 1. Given % =y 21— %=, wehave

nm+k-1)2=n
Combining MS;_1(Xx) = k — 1, we know
n+MS_1Xy)2n+(k-1)=n

Applying Theorem 1, we can conclude this corollary. O

A.4 Theorem 3

Proor oF THEOREM 3. The proof of this theorem is similar to
the proof of Theorem 1 and 2. First, when SR(Xy) < NR(Xj), the
adversary can construct X such that two subspaces should be recov-
ered with a probability greater than 1/2. Particularly, we assume
#,U, B minimize objective 2, and thus SR(Xy) = ||X57 — UB||.
The adversary samples nj rows Xcorrupt from the span space of B,
which does not belong to the span of X, . We add a small noise over
Xcorrupt to get X1, such that (1) Xcorrupt minimize [|X; — Xcorruptl l;
and (2) ||X1 = Xcorrupt|| = NR(Xo) — SR(Xo). Then the adversary
insert X into Xy to get X. In this case, we know that X, optimizes
its distance from Xy, while the [X‘f ; Xcorrupt] optimizes its distance
from [X(‘)ﬂ ; Xcorrupt], where we use [A; B] to denote the concatena-
tion of rows from A and B respectively. Further, by definition, we
know both of these two distances is NR(Xg). Therefore, the learner
should recover from X both X, and [X(‘)ﬁ ; Xcorrupt] with probability
greater than 1/2. This is impossible! Therefore the first part of the
theorem holds true.

For the second part, we follow the proof of Theorem 2 verbatim,
and present the difference. We show that Algorithm 2 recovers the
subspace of X, exactly. Assume B is returned by Algorithm 2 over
X. We only need to show that B is a basis of X,. By Algorithm 2,
we know that B optimizes its pan distance from a subset of n rows
in X, which is denoted as .#. Since we know any adversary can
corrupt at most nq rows, thus [.# N 7| < n;. Therefore, we know
that

| INO|=|I|-|INA|2n—n (8)
If B is not a basis of X4, which means that X, BT B # X, then we
know that the distance between the span space of B and X7
is greater than SR(X() > NR(X). This is impossible, since Algo-
rithm 2 guarantees that this distance should be no greater than
NR(Xjp). Contradiction! Therefore the second part of the theorem
holds true. O

A.5 Theorem 4

Proor oF THEOREM 4. When N = 0, we know that SR(X() >
NR(Xp) if and only if SR(Xy) # 0. This means that for any |.7| =
n— ni, X‘f = UB implies that X4«BTB = X, (condition (2b)),
which implies that rank(Xf |) = k for all .#. Therefore, we know
MS;._1(Xx) < n — nq, which concludes this theorem. ]



B PROOF OF TPCR LEMMA

We present the proof of TPCR Lemma 1 below.

PrROOF. Assume ,EL\I is the solution for this optimization problem.

We assume the adversary wants to induce the regression system to

compute EE In this case, he has to corrupt yn rows in U. W.L.O.G.

we can assume & = {1, ... = BB*. Since X =

U4B, we know that

,n1}. We denote ﬁ;

y =X =y - Usfif;

Since E(\] optimize Eq (4), we assume (y; —u i/?;)z are the smallest
n values for i € {1, ...,n}.

Then we have

n+n;

i Wi —uwpu)® < Y (yi—u] B

i=n;+1 i=n;+1

ny

D (i —uifu)* +
i=1
Therefore we have

> wi—wpui < D (i —wiph)? ©)

i=n;+1 i=n;+1

Further, we know

>, wi-wipu)
i=n;+1
n - 2
= Z ((yi —uifly) + (wiffy - uiﬁU))
i=n;+1
D {(yi —uif)? + Wil - uibu)?

i=ng+1

\%

~2ly; — il - iy — mﬁ?ﬂ}

= Z (yl—uzﬂU) + Z (ul(ﬂU ﬂU))z

i=n;+1 i=n;+1

—2( D lwiB = Bu)l - lys

i=ni+1

- uiﬂﬁl) (10)
According to Cauchy-Schwarz inequality, we have

2
( m B = Bo)l - lyi u,-ﬁ5|)

< (Z?:nlﬂ(ui(ﬁ{, - EE»Z) - (z;l=nl+1<yi - uiﬁl*])Z)

We assume C = \/Z n1+1(u’(ﬂU ,BU))Z) then, we have

<o D s Bl s - )
i=ni+1
> —Z\J( > (ui(ﬁﬁ—ﬁAU))z)-( >, (yi—uiﬂ?})z)
i=n;+1 i=n;+1

— 2
- _2CVZ? n1+1 i

Substituting this inequality into (10) and combining with (9), we
have

n+np n
2 2 _ n 2
E e; = E e +C ZC,IZL m+1€i
i=n;+1 i=nj;+1

By simple rearrangement, we have

n+ny
ctoac| 3 @< 3 d
i=n;+1 i=n+1

Since we know y; — u;ff; ~ -4(0,0), we know that for any

parameter h > 1, we have Pr(e; < 20+/logh) > 1 — ch™2 for some
constant c. Therefore, we know, with high probability (at least
1- ch_z), we have

A
@]
)
|
oo
O
o
)

C? —2yn—nCoylogh) < :

IA
“.M
&

n1(2o+/log h)?

IA

Therefore, we have

2
(C — 20+4/n — n1+/log h) < n(204/log h)?
and thus
C< 20(\/_+ Vn - nl)\/log

Therefore, we know

L (B = Bu)ll? [1
\/ n—n < 20’(l+ E)vlogh

We notice the right hand side of the above inequality does not
depend on n, ni. Therefore, we take n — +co, and we know that
n—nj = (1—y)n — +oo, and apply the law of large numbers, we

have
Eu[(u(BE — Bu))?] < 20(1 +4 /ﬁ)\/@
where left hand side is the same as /Ex [(x(B — $*))2]. Then the

conclusion of Lemma 1 is a simple rearrangement of the above
inequality. O
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