Session 9

PODC’17, July 25-27, 2017, Washington, DC, USA

Brief Announcement: Certified Multiplicative Weights Update
Verified Learning Without Regret

Alexander Bagnall Samuel Merten Gordon Stewart
Ohio University Ohio University Ohio University
ab667712@ohio.edu sm137907@ohio.edu gstewart@ohio.edu
ABSTRACT This simple algorithm performs remarkably well: In number

The Multiplicative Weights Update method (MWU) is a simple
yet powerful algorithm for learning linear classifiers, for ensem-
ble learning a la boosting, for approximately solving linear and
semidefinite systems, for computing approximate solutions to mul-
ticommodity flow problems, and for online convex optimization,
among other applications.

In this brief announcement, we apply techniques from interactive
theorem proving to define and prove correct the first formally
verified implementation of MWU (specifically, we show that our
MWU is no regret). Our primary application — and one justification
of the relevance of our work to the PODC community - is to verified
multi-agent systems, such as distributed multi-agent network flow
and load balancing games, for which verified MWU provides a
convenient method for distributed computation of approximate
Coarse Correlated Equilibria.

CCS CONCEPTS

«Theory of computation — Program verification; Algorith-
mic game theory; Convergence and learning in games; Multi-agent
learning; Network games; «Software and its engineering — Dis-
tributed systems organizing principles;

KEYWORDS

The Multiplicative Weights Update Method; Interactive Theorem
Proving; Coq

1 INTRODUCTION

The Multiplicative Weights Update method (MWU, [1, 6]) solves the
general problem of “combining expert advice”, in which an agent
repeatedly chooses which action, or “expert”, to play against an
adaptive environment. The agent, after playing an action, learns
from the environment both the cost of that action and of other
actions it could have played in that round. The environment, in
turn, may adapt in order to minimize environment costs. MWU
works by maintaining a weighted distribution over the action space,
in which each action initially has equal weight, and by updating
weights with a linear or exponential loss function to penalize poorly
performing actions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC’17, July 25-27, 2017, Washington, DC, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4992-5/17/07.

DOI: http://dx.doi.org/10.1145/3087801.3087852

459

of rounds logarithmic in the size of the action space, MWU’s ex-
pected cost approaches to within a small bound € that of the best
fixed action the agent could have chosen in hindsight (MWU has
bounded external regret). In [1], Arora, Hazan, and Kale showed
that MWU has wide-ranging connections to numerous problems in
computer science, including optimization, linear and semidefinite
programming, and machine learning (cf. boosting [4]).

Our work targets another important application of MWU that is
perhaps of greater interest to the PODC community: the approxi-
mate solution of multi-agent games, especially as such games relate
to the construction of distributed systems. It is well known (cf. [7,
Chapter 4]) that no-regret algorithms converge, in expectation
when played by multiple independent agents, to a large equilibrium
class known as Coarse Correlated Equilibria (CCEs). CCEs may
not be socially optimal, but for some games (e.g., Roughgarden’s
smooth games [8]) the social, or objective, cost of such equilibrium
states can be bounded with respect to the optimal cost (the Price of
Anarchy, or POA, of the game). Our broader research program, the
CAGE project:

https://github.com/gstew5/cage

seeks to use such results and others from algorithmic game theory
and distributed optimization to build distributed systems - e.g.,
distributed network routers and load balancers — that have verified
convergence and correctness properties by design.

Contributions. In promotion of the first part of our broader re-
search program, this brief announcement reports on the design,
construction, and verification of the first formally certified imple-
mentation of the MWU algorithm, available open-source on the
CAGE project’s website.

By verified, we mean our MWU implementation has mechani-
cally checked convergence bounds and correctness proof within an
interactive theorem prover (specifically, Ssreflect [5], an extension
of the Coq [2] system). By convergence and correctness, we mean
that we prove both that MWU produces the right answer (func-
tional correctness wrt. a high-level functional specification), but
also that it does so with external regret bounded by a function of
the number of iterations of the protocol (convergence).

As we’ve mentioned, MWU has broad application across a num-
ber of subdisciplines of computer science, including linear pro-
gramming, optimization, and machine learning. Our work uses
MWU to implement no-regret dynamics, a general strategy for
computing the CCEs of multi-agent games. By formally proving
correctness and convergence results for our implementation of
MWU, we demonstrate a new architecture for formal verification of
(a subclass of) distributed systems: represent the system as a game,
prove POA bounds for the game, then compose the POA results

Session 9

High-Level Functional Specification

jan)

Definition update_weights (w:weights) (c:costs) c;g_
1 weights := finfun (fun a:A => w a * (1 - etax(c a))).

aREFINES =z

— Operational Semantics e

MODELS Fco=>c,0 £

MWU DSL ’ ’ 8

REFINES
Fixpoint interp (c:com A.t) (s:cstate)
IMPLEMENTS ° option cstate := match ¢ with .. end. %

Executable Interpreter

Figure 1: MWU Architecture

with our general proof of correctness and convergence of MWU —
which drives any such game to an approximate CCE, or e-CCE -
to yield correctness and performance results of the overall system.
Section 3 sketches how these pieces fit together when applied to
problem of distributed routing with affine latency functions.

2 MWU IMPLEMENTATION AND PROOF

Our implementation and proof of MWU (Figure 1) were designed to
be extensible. At a high level, the structure of the proof follows the
program refinement methodology, in which a high-level mathemat-
ical but inefficient specification of the MWU algorithm (High-Level
Functional Specification) is gradually made more efficient by a se-
ries of refinements to various features of the program (for example,
by replacing an inefficient implementation of a key-value map with
a more efficient balanced binary tree).

For each such refinement, we prove that every behavior of the
lower-level program is one of the acceptable behaviors of the higher-
level program it refines. Thus specifications proved for all behaviors
of the high-level program also apply to each behavior at the low
level. By behavior here, we mean the trace of action distributions
output by MWU as it interacts with, and receives cost vectors from,
the environment.

In order to make our MWU implementation and proof extensible,
we factor the lower implementation layers (Medium and Low) into
an interpreter and semantics over a domain-specific language spe-
cialized to MWU-style algorithms. The DSL defines commands for
updating the weights table as well as commands for interacting with
the environment, in the style of process calculi or message-passing
concurrency.

At the top level, the convergence theorem we prove of our high-
level functional MWU is:

Theorem perstep_weights_boundedregret :
(expCostsR — OPTR)/T < etaR + (In size_A) / (etaR«T).

Here expCostsR is the expected cost of MWU on a sequence of cost
vectors, OPTR is the cumulative cost of the best fixed action, etaR
is the algorithm’s exploration parameter 7 (required to lie in the
range (0,1/2]), In size_A is the natural log of the size of the action
space A, and T is the number of time steps.

460

PODC’17, July 25-27, 2017, Washington, DC, USA

) =x ...
‘-“"""."'uégenti

** 3

o £,(x) = 10x + 10 io

Figure 2: Routing game with source s, sink ¢, and affine cost
functions f.(x) = a.x + b where x is the amount of traffic
on an edge e. Solutions of the game are assignments of play-
ers to source-sink paths. An optimal solution minimizes the
total cost to all players.

The exploration parameter 1 controls how quickly actions are
penalized in MWU’s update rule w'*1(a) = w’(a) - (1 — 7 - ¢! (a)),
and can therefore be tuned to balance exploration of the state
space versus exploitation of cost information learned from the
environment. Since our MWU interpreter performs exact rational
arithmetic (in fact, dyadic rational arithmetic for performance), we
require that 7 be representable as a dyadic rational number.

As a second consequence of our use of exact arithmetic, our
verified MWU uses the linear scaling term 1 — 5 - ¢(a) to update
the weight of action a in each round, where c(a) denotes the cost
of a in the previous round. A variant of the algorithm uses the
exponential scaling term exp(—7 - ¢(a)), which we cannot represent
exactly in our executable version of MWU. One could use the Taylor-
series approximation of e* to approximate exp(—n - c(a)) at each
update step, but only at the expense of additional reasoning about
approximation error bounds in the rest of the proof.

3 APPLICATIONS

No-regret algorithms such as MWU can be used to drive multi-
agent systems toward the e-CCEs of arbitrary games. Although
the CCEs of general games may have high social cost, those of
smooth games, as identified by Roughgarden [8], have robust Price
of Anarchy (POA) bounds that extend even to e-CCEs.

Our generic algorithm for proving bounds on the social cost of
games like multi-agent affine routing has the following steps:

(1) Prove that the game is (A,)-smooth, for smoothness pa-
rameters A and p. The smoothness parameters are specific
to the game. In affine routing, A = % while p = %

Use smoothness from (1) to prove robust POA bounds for
the game. For example, the POA of an e-CCE of a (4, y)-

%. The POA of affine routing wrt.
€-CCE:s is therefore approximately 5/2.

Prove that N agents each running verified MWU together
drive the system to an e-CCE. This proof follows directly
from the per-agent regret bound that results from each
agent running our verified MWU.

Compose the results in (2) and (3) to prove overall bounds
on the social cost of the resulting state.

(2)
smooth game is

(3)

4

We illustrate with an application — distributed routing — in which
we let multiple agents independently run our verified MWU to

Session 9

drive each other toward an e-CCE.! In a simple version of the
distributed routing game with affine latency functions (Figure 2),
N routing agents each choose a path from a global source vertex
s to a global sink vertex t (a generalization of this game allows s
and t to differ across players). Latency over edge e, modeled by an
affine cost function f, (x) = aex + b, scales in the amount of traffic
x over that edge. An optimal solution minimizes the total cost to
all agents. Roughgarden [8] showed that such games are (% %)—
smooth, implying a robust POA bound of 5/2; thus even e-CCEs as
produced by MWU are bounded with respect to the socially optimal
solutions of the game.
In Coq, we represent games as pairs (A,C) of

o afinite type A, the strategy or action space; and

e a cost function C(i,s) : Q, which for a given player i €
[0,N) returns the cost to that player of state s, a strategy
profile of type [0, N) — A mapping players to strategies.

As an example game, consider a simplified version of resource
(congestion) games [3] in which agents may choose to use (or not
use) just a single resource.? The cost to a player of this game is the
total number of players using the resource, assuming the player
chooses to use the resource, and 0 otherwise.

In Coq, we represent this game’s strategy space A as the in-
ductive data type Resource = RYes | RNo in which the constructor
RYes indicates that the agent chose to use the resource and RNo
otherwise.> The cost function for Resource is:

CResource (i,$) = if s; is RYes then traffic s else 0

where traffic s equals the total number of agents who used the
resource in state s.

From basic games such as (Resource, Cresource) We build more
complicated ones using a language of game combinators (functions
mapping games to games). For example, the product combinator
over games — which can be thought of informally as running two
games in parallel - takes as input games (A,C4) and (B,Cp) and
produces as output the new game (A X B,Caxp) over states map-
ping players to ordered pairs (a,b). The cost function Caxp of the
resulting game sums the costs with respect to C4 and Cg. To prove
smoothness of both basic games such as (Resource, Cresource) and of
derived games, we developed a library of smoothness preservation
proofs following the structure of our language of game combinators.
In the product game, for example, if (A,C4) is (A4, 1a)-smooth and
(B,Cp) is (AB,pp)-smooth, then (A X B,Caxp) is (max(d4,AB),
max(pia, up))-smooth. We prove smoothness of basic games such
as (Resource, Cresource) by mechanizing the standard paper-and-
pencil proofs (e.g., [8, 2.3.1] for congestion games).

In our implementation of the affine routing games of Figure 2, we
model each edge e in the network as a Resource under application
of a second combinator, Affine(ae,be,CResource)> Which maps the
CResource cost function to the more general

Ce(i,s) = if sj is RYes then ag«(traffic s) + b, else 0.

The resulting game over edge e has cost 0 if an agent does not use
edge e in state s, and cost ae+(traffic s) + b, otherwise.

The project website includes a second application, to distributed load balancing.
2We generalize below to multiple-resource games with arbitrary affine cost functions.
3We define a new inductive type RYes | RNo as opposed to letting Resource equal the
isomorphic bool for technical reasons related to Coq’s typeclass resolution.

461

PODC’17, July 25-27, 2017, Washington, DC, USA

We generalize from games over a single edge to those over all
source-sink paths in a network in two steps:

First, we construct an m-edge game, in which the agents are free
to use any subset of the Resources modeling the graph’s edges, by
building the product of m affine resources:

Afﬁne(ael B bel »CResource)
- X Affine(ae,,be,,CResource)

x Affine(ae,,,be,,CResource)

The associated cost function of the game over type T is the sum of
the individual Affine(a, b, CRresource) cost functions.

Second, to transform the unrestricted game over type T — in
which players are free to choose any subset of the edges — to one
in which the players may choose only valid paths, we apply a
final combinator to T that limits the strategy space to those actions
satisfying a predicate, isValidPath(G, s, t), specifying the set of valid
paths from source s to sink ¢ under a particular topology G.

All the combinators we apply in the affine routing game preserve
smoothness. To prove that the game thus implemented by N agents
each running MWU converges to an optimal routing configuration,
it’s therefore sufficient to compose our MWU proof with the robust
POA guarantee we have proved generically for all smooth games.

Conclusion. This brief announcement reports on the first for-
mally verified implementation of Multiplicative Weights Update, a
simple yet powerful algorithm for approximately solving Coarse
Correlated Equilibria (CCE), among many other applications. We
prove our MWU implementation correct via a series of program
refinements with respect to a high-level implementation of the algo-
rithm. As part of the larger CAGE project, we use our certified MWU
to prototype a new architecture for verified distributed systems
in which MWU generically drives game-based distributed systems
with robust Price of Anarchy bounds to socially optimal CCEs.

ACKNOWLEDGMENTS

We thank the PODC reviewers for their comments on an earlier
draft. The research was supported in part by NSF award #1657358.

REFERENCES

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The Multiplicative Weights
Update Method: a Meta-Algorithm and Applications. Theory of Computing 8, 1
(2012), 121-164.

Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer Science &
Business Media.

George Christodoulou and Elias Koutsoupias. 2005. The price of anarchy of finite
congestion games. In Proceedings of the 37th annual ACM Symposium on Theory
of Computing. ACM, 67-73.

Yoav Freund and Robert E Schapire. 1995. A decision-theoretic generalization
of on-line learning and an application to boosting. In European conference on
computational learning theory. Springer, 23-37.

Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2015. A small scale reflection
extension for the Coq system. Technical Report. INRIA.

Nick Littlestone and Manfred K Warmuth. 1989. The weighted majority algorithm.
In Proceedings of the 30th Annual Symposium on Foundations of Computer Science.
IEEE, 256-261.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. 2007. Algo-
rithmic Game Theory. Vol. 1. Cambridge University Press.

Tim Roughgarden. 2009. Intrinsic robustness of the price of anarchy. In Pro-
ceedings of the 41st annual ACM Symposium on Theory of Computing. ACM,
513-522.

[2]

[3]

