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ABSTRACT

Autonomous underwater vehicles (AUVs) are the platform of choice

for ocean exploration and surveillance in the ice-covered regions.

Due to the large attenuation of radio signals in water, acoustic com-

munications have been the major technique for underwater wire-

less information transfer. In the under-ice environment, the acous-

tic propagation is largely determined by a strati�ed sound speed

pro�le (SSP) and the ice-re�ection characteristics. Based on the ray

theory, this work develops an inversion algorithm to estimate the

SSP and the ice re�ection coe�cient via an iterative method. The

acoustic measurements collected during data transmission within

the AUV network, including the propagation delay and the am-

plitude of the received signal along each eigen path, are used for

the inversion. With the estimated SSP and the ice-re�ection coe�-

cient, the under-ice acoustic �eld can then be constructed to guide

future acoustic communications among the AUVs. The proposed

algorithm is evaluated via Bellhop synthesized data and achieves

decent accuracy in the SSP and the ice-re�ection coe�cient esti-

mation.
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1 INTRODUCTION

Autonomous underwater vehicles (AUVs) have been extensively

used for ocean and inland lake exploration, oil and gas drilling,

and environment monitoring [8], particularly in the ice-covered re-

gions. Due to the large attenuation of radio signals in water, acous-

tic waveforms are typically used for underwater wireless informa-

tion transfer and AUV navigation control.

Relative to the open-water acoustic environment, the under-ice

acoustic environment exhibits unique characteristics. First, the und
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er-ice environment features an upper-refracting sound spe

ed pro�le (SSP) which along with the ice cover, yields surface-

ducted sound propagation [10]. Secondly, with the ice cover as a

rigid re�ector, the under-ice acoustic channel is much more sta-

ble than its open-water counterpart with large surface dynamics.

Thirdly, the under-ice ambient noise level is lower than that in

open water, and is characterized by spiky ice cracking noise. The

stationarity of the under-ice acoustic channel and the low ambi-

ent noise level allow e�cient inversion of the water environment

parameters, such as the SSP and the ice-re�ection coe�cient.

The knowledge of the SSP is critical for AUVs to make informa-

tive navigational decisions and choose appropriate acoustic com-

munication strategies. However, the SSP varies with the water en-

vironment parameters such as the salinity and the temperature. It

is often ine�cient for an AUV to measure the SSP online, as it is

required to navigate through the whole water column.

Inversion of the SSP has been studied based on acoustic mea-

surements from vertical or horizontal hydrophone arrays. In [5], a

linearization technique is developed based on the ray theory to es-

timate the SSP and the source location. In [3], a state-space model

is proposed based on the normal mode theory to estimate the SSP

recursively. The compressive sensing technique is recently applied

for the SSP estimation in [1]. A matched �eld processing method is

developed in [6] to estimate the re�ection amplitudes and phases

by the Arctic ice.

Di�erent from most existing works that focus on the SSP inver-

sion in range-independent environments using acoustic measure-

ments collected by hydrophone arrays, this work takes the acoustic

measurements obtained during acoustic communications among

an AUV network for the inversion. The spatial distribution of the

AUVs in the water area of interest allows the estimation of the

three-dimensional sound speed �eldwhichmay be range-dependent.

In this work, we develop an inversion algorithm to estimate the

range-dependent SSP and the surface re�ection coe�cient in the

under-ice environment. A basis-expansion model is introduced to

parameterize the range-dependent sound speed �eld. The acous-

tic measurements at receiving AUVs, speci�cally, the propagation

delay and the amplitude of the received signal along each eigen

path, are used for the inversion. Based on the ray theory [9], the

problem is formulated as a nonlinear optimization problem, and is

solved via an interior point method [2]. For a given source node,

the estimated SSP and the ice-re�ection coe�cient allow the con-

struction of the sound pressure �eld, which enables informative

decision-making on AUV navigation and acoustic communication

strategies. The performance of the proposed algorithm is validated

via Monte Carlo simulations.
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Figure 1: Illustration of the acoustic paths

2 PROBLEM FORMULATION

An underwater acoustic channel can be represented as

h(τ ) =

Npa
∑

n=1

anδ (τ − τn ), (1)

where Npa is the number of paths, an and τn represent the am-

plitude and the delay of the nth path, respectively. In open-water

acoustic channels, an and τn could be time-varying. However, as

justi�ed in the introduction, it is reasonable to assume a time-invar

iant channel in the under-ice environment.

Due to the re�ection and refraction of di�erent propagation

traces, di�erent paths, such as direct path (D), the �rst surface-

bounced path (S) and the �rst bottom-bounced path (B), will ex-

perience di�erent signal losses and propagation delays. According

to the ray theory, each ray is characterized by the ray parameter p

de�ned as

p =
cos(θs)

c(zs, 0)
=

cos(θ )

c(z, r )
, (2)

where θ is the grazing angle of the ray at a certain location, c(z, r )

is the range dependent sound speed at depth z and horizontal dis-

tance r , the subscript s represents the corresponding variables at

the source location. Dividing an area into J regions, the range-

dependent SSP can be approximated by the weighted summation

of empirical orthogonal functions (EOFs) as

c(z, r ) = c̄(z, r ) +

Nb
∑

i=1

J
∑

j=1

γi, jϕi (z)ψj (r ), (3)

where Nb is the number of basis functions for the approximation,

γi, j is the weight of ith EOF ϕi in the jth region, where the basis

functions can be obtained from the sound speed covariance matrix

[5]. ψj (r ) is a rectangular function, which equals to 1 in the jth

region and 0 elsewhere. c̄(z, r ) is themean SSP and is obtained from

the empirical measurements. De�ne γ = [γ1,1,γ1,2, · · · ,γNb, J ]
T,

the range-dependent SSP can be represented as a function of the

EOF coe�cient vector, c(γ ).

The amplitude a and the propagation delay τ of each path in (1)

are determined by the locations of the transmitter and the receiver

and the SSP c(γ ). A�ected by either the re�ections or the refraction,

a ray can be divided into several segments by the turning points

where the ray changes its vertical direction. As demonstrated in

Fig. 1, the paths S and B have turning points at the surface and

bottom respectively due to the re�ection. The direct path D depicts

the possibility of a turning point purely caused by the refraction.

More often than not, the refraction-caused turning point does not

exists in path D. The following calculations related to path D are

based on this assumption. Otherwise, subsection integral should

be carried out accordingly.

De�ne zj−1 and zj as the depths of the starting point and the

ending point of the ray in the jth region, where j = [1, 2, · · · , J ],

and z0 = zs and z J = zr are the depths of the source and the

receiving node, respectively. In addition, zj−1 and zj are related by

the horizontal distance r j of the jth ray segment as

r j =

∫ zj

zj−1

pc j (z)
√

1 − p2c j (z)2
dz. (4)

Assuming the re�ections of path B and path S happened in the

mth and nth region, respectively, the τ ’s can be found by [7]

τD =

J
∑

j=1

∫ zj

zj−1

1

c j (z)
√

1 − p2
D
c2j (z)

dz, (5)

τB =

J
∑

j=1, j,m

∫ zj

zj−1

1

c j (z)
√

1 − p2
B
c2j (z)

dz

+

∫ zd

zm−1

1

cm (z)
√

1 − p2
B
c2m (z)

dz +

∫ zd

zm

1

cm (z)
√

1 − p2
B
c2m (z)

dz,

(6)

τS =

J
∑

j=1, j,n

∫ zj

zj−1

1

c j (z)
√

1 − p2
S
c2j (z)

dz

+

∫ zn−1

0

1

cn(z)
√

1 − p2
S
c2n(z)

dz +

∫ zn

0

1

cn(z)
√

1 − p2
S
c2n(z)

dz,

(7)

where the equivalent SSP in the jth region is expressed as c j (z) =

c̄(z) +
∑Nb

i=1 γi, jϕi (z). zd represents the depth of the water column.

Similarly, the path length along each ray can be found as

dD =

J
∑

j=1

∫ zj

zj−1

1
√

1 − p2
D
c2j (z)

dz, (8)

dB =

J
∑

j=1, j,m

∫ zj

zj−1

1
√

1 − p2
B
c2j (z)

dz

+

∫ zd

zm−1

1
√

1 − p2
B
c2m (z)

dz +

∫ zd

zm

1
√

1 − p2
B
c2m (z)

dz, (9)

dS =

J
∑

j=1, j,n

∫ zj

zj−1

1
√

1 − p2
S
c2j (z)

dz

+

∫ zn−1

0

1
√

1 − p2
S
c2n(z)

dz +

∫ zn

0

1
√

1 − p2
S
c2n(z)

dz, (10)
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Considering a point acoustic source, the amplitude of each ray

can be expressed as

aD = as

√

d
−β
D
e−αdD , (11)

aB = asRB(θ )

√

d
−β
B
e−αdB , (12)

aS = asRS(θ )

√

d
−β
S
e−αdS , (13)

where as is the amplitude at the source, and the term d−β captures

the spreading loss. β is the spreading factor whose practical value

is taken as 1.5. R(θ ) is the re�ection coe�cient of either the top or

the bottom interface and it depends on the grazing angle θ at top or

bottom boundary [6], which can be found using (2). Dependence of

R on the grazing angle could be linear, quadratic or square root [6],

and the quadratic form is used as R(θ ) = 1 − дθ2. The term e−αd

represents the absorption loss and α is the frequency dependent

attenuation coe�cient which can be found according to the Thorp

formula [4].

For notation convenience, we group parameters of the same cat-

egory into vectors, i.e., a = [aD,aS,aB]
T, τττ = [τD,τS,τB]

T, g =

[дS,дB]
T and stack all the ray parameters into p. Assuming prior

knowledge of the source and the receiver locations (zs, zr, r ), and

the EOFs ϕ of the SSP, we can represent the amplitudes and the

delays as generic functions of the EOF coe�cients γ and the re-

�ection coe�cient constants g, respectively,

a = f(g,γ ),

τττ = h(γ ).
(14)

Our goal is to estimate the re�ection coe�cients R and the SSP

expansion coe�cients γ using the delay and amplitude measure-

ments. Thus, the underwater acoustic pressure �eld estimation can

be obtained.

With an synchronized AUV network ofm nodes distributed in

an area, the amplitude information a, the delay information τττ can

be easily extracted from the acoustic waveform recorded by the

nodes. The number of independent amplitude and delay measure-

ments ism(m − 1)/2, assuming the reciprocity of the channel [11].

The problem is well-de�ned as long as the number of measure-

ments is greater than the number of unknowns, which is usually

the case. Stacking all the measurements into y and the unknown

parameters into x, the unknown parameters can be found by min-

imizing the least square error,

xopt = argmin
x

| |Θ(x) − y| |2,

subject to 1 − pkc(γ ) > 0,
(15)

where Θ(x) represents the functions capturing the relationship be-

tween the measurements and the unknowns as shown in (14), pk is

the ray parameter corresponding to the kth measurement, which

refers to a path between a node pair. The constraints are applied

to guarantee that the integrands in (5) and (8) are real.

3 THE ALGORITHM FOR SSP AND
REFLECTION COEFFICIENT ESTIMATION

The optimization problem (15) is a nonlinear optimization prob-

lem including integration over the water depth. The estimation

of the SSP requires the knowledge of the ray parameters p, vice

versa. Thus we propose an algorithm to iteratively estimate the

ray parameters and the SSP, where we take turn to treat one as

known and estimate the other. Speci�cally, given the prior SSP es-

timation c(γ̂ (i−1)) and the corresponding horizontal range r in the

ith iteration, the ray parameters are estimated via �nding p such

that the calculated horizontal distance r (p, c(γ̂ (i−1))) approaches

the known horizontal distance r [7]. The r (p, c(γ̂ (i−1))) for di�er-

ent paths can be found similarly as (5)-(7), except that the integrand

becomes the one used in (4).

In another word, the ray parameters in p can be estimated via

solving the optimization problem,

p̂(i) = argmin
p

| |r − r(p, c(γ̂ (i−1)))| |2,

subject to 0 < p <
1

c(γ̂ (i−1))min

,

(16)

The constraint is set according to the de�nition of the ray param-

eter in (2), c(γ̂ (i−1))min is the minimum speed of the previously

estimated SSP.

Given the estimated ray parameters, the estimation of the SSP

can be cast as an optimization problem,

γ̂ (i)
= argmin

γ
| |y − Θ(p̂(i), c(γ ))| |2,

subject to 1 − p̂
(i)

k
c(γ ) > 0.

(17)

The iteration stops when the tolerance threshold is met.

Both the optimization problems of (16) and (17) can be solved

by the primal-dual interior point method [2]. In general, the algo-

rithm �rst introduces a logarithmic barrier function to associate

the original objective function and the nonlinear constraints via

the Lagrange multiplier method. The original problem is approxi-

mated by jointly �nding the primal and the dual variables which

minimize the barrier function. The update of the variables can be

obtained by the Newton’s method. For detailed theory, please refer

to [2].

4 THEORETIC BASICS FOR ACOUSTIC
PRESSURE FIELD RECONSTRUCTION

After obtaining the estimated SSP and the re�ection coe�cients,

the acoustic pressure �eld P(u) at a certain frequency in a Carte-

sian coordinate system can be reconstructed according to the ray

theory [4]. Starting from the Helmholtz equation,

▽2 P +
ω2

c(u)2
P = −δ (u − u0), (18)

where ω is the acoustic frequency in radiance and u0 is the source

location. With proper boundary conditions, the acoustic pressure

�eld can be derived and expressed as a summation of the ray series,

P(u) = e jω
∞
∑

i=0

Ai (u)

(jω)i
, (19)

whereAi (u) is the amplitude of the ith ray at location u. In practice,

the constructed acoustic pressure �eld is summed over �nite num-

ber of rays. More detailed information can be found in [4]. More-

over, the transmission loss can be obtained from the reconstructed
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Figure 2: Simulation setup

acoustic pressure �eld as

TL(u) = −20 log
|P(u)|

|P(ur )|
, (20)

where ur is the reference pressure level measurement location and

is usually 1 m away from the source.

5 SIMULATION

5.1 Simulation setup

The proposed algorithm is evaluated by 200 Monte Carlo simula-

tions using Bellhop [9]. In each run, an AUV network of 10 nodes

are randomly distributed within an shallow water area, where the

maximum distance is 2000 m and the water column depth is 100 m.

Without loss of generality, only the channel measurements associ-

ated with a common source node is considered. The location of the

source node is �xed at 40 m throughout the simulation. In practice,

each sensor node can act as both a transmitter and a receiver, thus

more measurements can be collected. The emitting angle of the

source is [−45, 45] degree. The working frequency of the nodes is

17 kHz. The SSP is generated according to (3) using �xed EOFs, and

the coe�cients of the EOFs are randomly generated within �xed

upper and lower bounds following the uniform distribution. The

cubic spline is applied to smoothing the SSPs. The top and bottom

re�ection coe�cients are assumed quadratic and the re�ection co-

e�cients at 10 degree for the top and bottom boundary are 0.99

and 0.92, respectively. Fig. 2 shows one realization of the geome-

try of the AUV network along with the SSP and the acoustic �eld

generated by the transmitter. The circle represents the �xed source

node and the stars are the randomly distributed receiving nodes in

the network.

The normalized mean square error (NMSE) de�ned as

NMSE =
‖(y − ŷ)‖22

‖y‖22

is used as the error metric for the estimated parameters, where ‖.‖2
is the l-2 norm.

5.2 Parameter estimation results

Fig. 3 illustrates the accuracy of the estimated unknown system

parameters including the normalized absolute error of the ice and

the bottom re�ection coe�cient constants дS and дB , the NMSE of

the ray parameters p, and the NMSE of the EOF coe�cients of the

SSP γ . One can observe that the average errors of дS and дB are

around 0.2. The main reason of the estimation error for дS and дB
is that the amplitude measurements are more sensitive to the SSP

change than the re�ection coe�cients according to (12) and (13).

The average NMSE of the ray parameter p is less than 0.001, indi-

cating the considerable accuracy of the estimated p. The NMSEs of

the EOF coe�cients are less than 0.2 and skewed towards 0.

5.3 SSP estimation results

Fig. 4 shows the histogram of the NMSEs of the estimated SSP. The

estimated SSPs are close to the true ones since all the normalized

NMSEs are less than 4 × 10−7. Fig. 5 compares the true SSP with

the estimated SSP using the proposed method in one realization.

Fig. 4 and Fig. 5 show that the proposed method is able to capture

the main trend of true SSP with �uctuations at depths. The �uc-

tuations are closely related to the depths of the nodes in the AUV

network. It is expected that sampling more depths will reduce the

�uctuations because the integrals in (5) and (8) depend only on the

depths of the transmitter and receiver.

5.4 Acoustic pressure �eld reconstruction and
transmission loss

The sound pressure �eld is reconstructed using the estimated SSP

and the boundary re�ection coe�cients. Quantitative evaluations

of the reconstructed acoustic pressure �eld is performed by calcu-

lating the NMSE of the transmission loss at di�erent ranges and

depths over all the simulation runs. The data points in Fig. 6(a) is
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Figure 3: The errors of the estimated parameters
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the average value of the NMSE of the transmission loss at �xed

depths. One can observe that the largest error occurs around the

source depth 40m. Because the transmission loss around the source

depth is mainly a�ected by the fragment of the SSP in the same

depth region according to (11). Thus the transmission loss is more

sensitive to the SSP error. However, the NMSE is less than 0.03,

showing the accuracy of the estimated transmission loss. More-

over, Fig. 6b depicts the NMSE of the transmission loss at �xed

ranges. It is observed that the reconstruction error slowly increases

with range. ThemaximumNMSE is less than 2×10−6, which shows

the accuracy of the estimated transmission loss.

6 CONCLUSIONS

In this work, we developed a ray theory-based iterative method for

inversion of the SSP and the ice-re�ection coe�cient in the under-

ice environment, where the acoustic measurements collected dur-

ing regular acoustic communications among an AUV network are

used for the inversion. With the spatial distribution of the AUVs,

inversion of the three-dimensional range-dependent sound speed

�eld is achieved through introducing a low-dimensional basis-expa

nsion-based representation. The e�ectiveness of the proposed al-

gorithm was demonstrated via Monte Carlo simulations. The esti-

mated SSP and the ice-re�ection coe�cient can be used to compute

the sound pressure �eld and allow informative decision-making on

AUV navigation and acoustic communications.
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