POSTER: PriReMat: A Distributed Tool for Privacy Preserving
Record Linking in Healthcare

Diptendu Mohan Kar
Colorado State University
Diptendu.Kar@colostate.edu

Indrajit Ray
Colorado State University
Indrajit.Ray@colostate.edu

ABSTRACT

Medical institutions must comply with various federal and state
policies when they share sensitive medical data with others. Tra-
ditionally, such sharing is performed by sanitizing the identifying
information from individual records. However, such sanitization
removes the ability to later link the records belonging to the same
patient across multiple institutions which is essential for medical
cohort discovery. Currently, human honest brokers assume stew-
ardship of non sanitized data and manually facilitate such cohort
discovery. However, this is slow and prone to error, not to mention
that any compromise of the honest broker breaks the system. In
this work, we describe PriReMat, a toolset that we have developed
for privacy preserving record linkage. The underlying protocol is
based on strong security primitives that we had presented earlier.
This work describes the distributed implementation over untrusted
machines and networks.

1 INTRODUCTION

PriReMat is a distributed application to perform privacy preserving
record linkage in the healthcare area. The distributed application
is executed by a group of healthcare providers who are ready to
share (or publish) patient related data and a group of healthcare
researchers (subscribers) that have the need for the data minus the
personally identifying information in the data but need the ability
to link records belonging to the same patient. PriReMat uses a semi-
trusted third party to facilitate the record linkage. The role of the
third party is to automatically and blindly perform record matching
on encrypted data. The third party is honest in the sense that it
follows the protocol correctly but is not trusted to keep a secret,
secret. It is curious about the sensitive information contained in
individual records. However, PriReMat ensures that it is prevented
from getting any useful information without colluding with pub-
lishers. PriReMat is based on our earlier work that is described
in [6]. We also identified a security weakness in our earlier work,
which we fix in PriReMat.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4946-8/17/10.

https://doi.org/10.1145/3133956.3138845

Ibrahim Lazrig
Colorado State University
Ibrahim. Lazrig@colostate.edu

Indrakshi Ray

Colorado State University
Indrakshi.Ray@colostate.edu

PriReMat is implemented using Oracle’s JavaT™ technology. We
used the following packages from the Java Development Kit (JDK)
1.8.0131: java.io, java.math, java.net, java.sql, java.util. The MySQL
database management system acts as the data source. The three
major components of PriReMat namely, the Broker, Publisher, and
Subscriber are independent of each other and coordinate via pass-
ing messages. When distributed over a network, any host on the
network can function as any one of the three components. The
databases for the broker and publisher needs to be configured dur-
ing installation. The publishers and the subscribers need to execute
some protocol to know the IP address of the broker.

In this implementation, we use the El-Gamal cryptosystem along
with its multiplicative homomorphic property. Although there are
several APIs available for the El-Gamal cryptosystem, none of them
that we could identify implement the homomorphic property. As
a result, the entire cryptosystem had to be designed from scratch
to include this property. We plan to release this new API to the
public domain via Github so that others may benefit from our
implementation.

2 RELATED WORK

Privacy preserving data sharing has been a well-studied problem,
particularly in the context of sharing information from databases
controlled by multiple parties. In our setting, the challenge is that
competing publishers who are not ready to reveal any informa-
tion about their data to each other but nonetheless would like to
anonymously and securely share some information with the sub-
scriber. In addition, the subscriber is not only interested in querying
their data separately, but across jointly in order to find connected
records across the databases. Furthermore, the subscriber wants to
be able to retrieve updates about some previously queried entities —
a requirement that we call retrospective queries.

Searchable encryption schemes where the data to be joined must
be encrypted under same key (such as [2, 7, 8], cannot directly be
applied to our scenario. On the other hand, private set intersec-
tion [4, 5] and multi-party computation are potential solutions but
are not very efficient for large settings. Yin and Yau [9] propose a
privacy preserving repository for data integration across data shar-
ing services that allow owners to specify integration requirements
and data sharing services to safeguard their privacy. However, the
scheme requires a mandatory secret sharing between competing
parties and is not acceptable under our setup. A similar problem
occurs with the scheme proposed by Carbunar and Sion [1]. Chow
et al’s proposed protocol [3], called Two-Party Query computation,

https://doi.org/10.1145/3133956.3138845

has limited applicability to our scenario since it does not support
retrospective queries.

3 PRIREMAT SCHEME CONSTRUCTION

Our scheme works in three phases: the setup phase, the encryption
of query results phase, and the secure record matching phase. We
briefly describe the phases here. The interested reader is referred
to [6] for further details.

Setup: The setup phase generates the publishers’ key converters
that allow the broker to transform an encrypted data into another
encrypted data with a different key without first decrypting it. A
publisher collaborates with other publisher’s to generate its key
converter. When a publisher joins a group for the first time, it
goes through the setup phase. An existing publisher also needs to
participate in the setup phase, if a refreshing of keys is required
when new publishers join the system. These key converters are
delegated to the third party (broker) and are used to convert records
encrypted under different keys of different publishers, to records
encrypted under a common key. This common key is such that it
cannot be reconstructed by any of the parties, namely, individual
publishers, broker and subscribers without collusion.

We use the ElGamal homomorphic cryptosystem that supports
product operations over the encrypted keys. At the end of this
phase, every publisher is associated with a special key converter
that allows the broker to perform the matching process.

Encryption of query results: This phase is triggered by a
query sent by a subscriber requesting information from publishers.
This represents a data pull model; however, our scheme can be
also used in a data push mode where publishers send data directly
to the broker, which then redirects the data to the corresponding
subscribers. After executing the query, each publisher encrypts the
identifying parts of the query results using a cryptosystem that
relies on the DDH (Decisional Diffie-Hellman) or DL (Discrete Log-
arithm) hardness assumptions, such as the ElGamal cryptosystem.

Finally, each record is composed of the encrypted identification
part, plus, the other client’s information. The data in plaintext in
each record will be sanitized if necessary, according to the pub-
lisher’s policy, before being sent to the broker. Sanitizing techniques
details are out of the scope of this work.

Secured Record Matching: The broker receives the encrypted
identifiers with different keys from different publishers. The bro-
ker’s job is to merge similar clients’ records from different publish-
ers such that they will map to the same newly generated identifier.
The broker will use the key converters form each publisher to
change the encryption key in such a way that similar data will be
deterministically encrypted with the same key without requiring
any decryption to be performed along the way.

In order to maintain the linkages between publishers’ data records
and the randomly generated identifiers for subscribers, the broker
keeps track of the processed identifiers for both flows, i.e., from
publishers to subscribers and vice versa. The aim of this mapping is
two folds: first, we do not want to give the ability to the subscribers
to know whether they share the same client and second give the
ability to the broker to map back these random values to the same
client.

4 ADDRESSING SECURITY WEAKNESS OF
EARLIER WORK

Our previous work [6] had a security weakness: After the com-
pletion of the setup phase, each publisher has their individual
“key-converter” and “encryption key”. This “key-converter” and
“encryption key” does not change for each of the associated publish-
ers unless the setup phase is executed again. This implies that if the
same records are requested by the subscriber, again and again, the
broker can infer this by studying the incoming encrypted records
from the publisher. We eliminate this PriReMat by utilizing an ad-
ditional step in the encryption of query results phase. After the
completion of setup phase, when any publisher receives a query via
the broker, it chooses a new random number ry,,, encrypts it with
the broker’s public key and homomorphically multiplies with its
existing “key-converter”. Also, the publisher computes the modulo
inverse of rpew, ey, and homomorphically multiplies with the
existing “encryption key”. This additional step ensures that even the
same record when fetched more than once will result in a different
cipher text but still the common records can be determined.

5 IMPLEMENTATION

PriReMat is implemented as three independently executing compo-
nents. Broker, Publisher, and Subscriber. In a given setup, we assume
that there can be only one instance of the Broker application run-
ning. However, there can be multiple instances of the Publisher and
Subscriber components. Each instance of a component executes
as a multi-threaded process. Also, we assume that the databases
used by the publishers and the subscribers have the same schema.
PriReMat uses MySQL for these databases. Any one or all of the
three components can be distributed over a network. All communi-
cations between these components are of the form of “events” and
are comprised of different message types. The broker is provided a
port number on which it listens for all incoming requests. A listener
thread runs on that port and upon receiving a request it is passed
on to another thread which processes the request depending on
its type. The publisher and the subscriber need to provide the IP
address and the port number of the broker to connect and register
with it.

When a publisher or subscriber connects using the broker’s IP ad-
dress and port, a registration request is sent to the broker and upon
successful registration, the broker sends a registration response
with a success message and the next ID from a list of sequentially
increasing ID numbers for the publishers and subscribers. The bro-
ker keeps a list of all publishers and subscribers that it is presently
connected to by maintaining a database with their IP address and
listening port number and ID numbers. The publisher and the sub-
scriber when connecting chooses a randomly available port and
runs a listener thread on that port. This port information is shared
with the broker during registration so that the broker is able to
send messages to this port. When any message is received by the
publisher or subscriber on its listening port, it passes the request
to another thread which then processes it depending on its type.

As soon as there are two registered publishers, the broker gener-
ates a list (“PublisherNeighborOverlay”) which contains informa-
tion about a publisher and its downstream publisher (next higher
ID). This information is sent to each publisher at the initiation of the

setup phase. Whenever a new publisher joins the system or an ex-
isting publisher leaves the system this “PublisherNeighborOverlay”
list is updated. In our implementation, the setup phase is triggered
by the broker as soon as there are two registered publishers. When-
ever any new publisher joins or any existing publisher leaves, the
setup phase is re-invoked.

During the setup phase, the broker sends a setup initiate re-
quest to each of the active publishers and shares its cryptographic
primitives - prime, generator, and public key and also the neighbor
information. Each publisher after its designated task creates a setup
forward request and forwards the result to its neighbor. The setup
forward message contains an origin field and a traversed nodes
field. When the setup forward message returns to the originating
publisher, it compares the origin and the traversed nodes informa-
tion to infer that its key-converter has been created. It then sends a
setup completed message to the broker and stores the key-converter.
A sequence diagram of the setup phase is described below.

Broker Publisher #1 Publisher #2 Publisher #N

SetupForwardRequest

SetupForwardRequest

Se

SetupCompletedResponse

~ SetupForwardRequest

SetupCompletedResponse

Figure 1: Setup phase sequence diagram

When the subscriber sends a query to the broker to fetch records,
the broker computes the list of the publishers (“QueriedPublisher-
sList”) from which the records needs to be fetched and forwards the
query to the respective publishers. The publishers after encrypting
the records with their own encryption key send the result back
to the broker along with their key-converter. The publishers also
send an acknowledgment message to the broker notifying that it
has completed sending all the records. The broker upon receiving
the encrypted records from each publisher, re-encrypts them with
their provided key-converter. When the broker receives all the ac-
knowledgment messages, it compares the source with the list of all
the publishers it had sent the request to. When all of the publishers
have finished sending their records, the broker compares the re-
encrypted records for any common record and sends the result to
the subscriber. The broker keeps a mapping between the encrypted
records received from each publisher and the re-encrypted record.
The publishers also keep a mapping between the original record
and the encrypted record. A sequence diagram of phase 2 and 3
together is described below.

When the subscriber needs to look-up more information about
any record (retrospective query), it provides the re-encrypted ID to
the broker. The broker from its mapping table finds the received
record ID and the publisher associated with it and sends a request
to those publishers. The publishers also contain their mapping table
and from there each publisher finds the exact record requested and
sends the requested information back to the broker which it then
forwards to the subscriber.

Subscriber| [Broker | #2 (i #N

Fetch Records

DataFetchRequest

DataFetchRequest

-

Figure 2: Phase 2 and 3 sequence diagram

6 ACKNOWLEDGEMENT

This work was partially supported by the U.S. NSF CNS under Grant
No. 1650573, by the NIST under Grant No. 60NANB16D250, Uni-
versity of Colorado Anschutz Medical Center, CableLabs, Furuno
Electric Company and SecureNok.

7 CONCLUSIONS

This work describes PriReMat, a software that we have developed
for performing privacy preserving record linkage in the healthcare
sector without using manually participating honest brokers. The
work is based on our earlier work [6] and addresses a certain weak-
ness in that work. PriReMat is a completely distributed application
that can be ported easily to any architecture and OS supporting
the Java technology. Different components of the application have
been implemented as multithreaded processes. A secondary contri-
bution of this work is the development of an API for the El-Gamal
cryptosystem that enables the use of the multiplicative homomor-
phic property of this cryptosystem. We have tested this system on
synthetic datasets and are currently working with the Anschutz
Medical Center of the University of Colorado, Denver to field test
it on live data.

REFERENCES

[1] B. Carbunar and R. Sion. 2012. Toward private joins on outsourced data. Knowl-
edge and Data Engineering, IEEE Transactions on 24 (2012), 1699-1710.

[2] M. Chase and S Kamara. 2010. Structured encryption and controlled disclosure.
In Proceedings of the 16th International Conference on the Theory and Application
of Cryptology and Information Security. Singapore, 577-594.

[3] S.S.Chow,J. H. Lee, and L. Subramanian. 2009. Two-party computation model
for privacy- preserving queries over distributed databases. In Proceedings of the
2009 Network and Distributed System Security Symposium. San Diego, CA, USA.

[4] D.Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. 2012. Effcient robust

private set intersection. International Journal of Applied Cryptography 2 (2012),

289-303.

S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. 2013. Scaling private set

inter- section to billion-element sets. Technical Report. MSR-TR-2013-63.

[6] Ibrahim Lazrig, Tarik Moataz, Indrajit Ray, Indrakshi Ray, Toan Ong, Michael G.
Kahn, Frédéric Cuppens, and Nora Cuppens-Boulahia. 2015. Privacy Preserving
Record Matching Using Automated Semi-trusted Broker., In Proceedings of the
29th IFIP TC 11, WG 11.3 Conference on Data and Applications Security and
Privacy. DBSec 9149 (2015), 103-118.

[7] E.Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas. 2013.
Path ORAM: an extremely simple oblivious RAM protocol. In ACM Conference
on Computer and Communications Security. 299-310.

[8] M. Strizhov and I. Ray. 2014. Multi-keyword similarity search over encrypted

cloud data. In Proceedings of 29th IFIP TC 11 International Conference, Marrakech,

Morocco. 52—65.

S. Yau and Y. Yin. 2008. A privacy preserving repository for data integration

across data sharing services. Services Computing, IEEE Transactions on 1 (2008),

130-140.

[5

[

	Abstract
	1 Introduction
	2 Related Work
	3 PriReMat Scheme Construction
	4 Addressing Security Weakness of Earlier Work
	5 Implementation
	6 Acknowledgement
	7 Conclusions
	References

