Future Generation Computer Systems I (1IN) IRE-100

Contents lists available at ScienceDirect 2
FGICIS!
Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs —

Component-oriented access control—Application servers meet tuple

spaces for the masses

Kirill Belyaev*, Indrakshi Ray

Department of Computer Science, Colorado State University, Fort Collins, CO, USA

HIGHLIGHTS

Deployment on UNIX based OS in the cloud datacenters.
User-space reference monitor and its performance evaluation.

Comprehensive details of the component-oriented access control framework.
Deployment of application services in isolated environments on a single multi-core server instance.

ARTICLE INFO

ABSTRACT

Article history:

Received 15 November 2016
Received in revised form

13 April 2017

Accepted 5 May 2017
Available online xxxx

Keywords:

Access control

Service and systems design
Tuple spaces

Data and application security
Denial of service protection
Security architectures

With the advancements in contemporary multi-core CPU architectures and increase in main memory
capacity, it is now possible for a server operating system (OS), such as Linux, to handle a large number
of concurrent application services on a single server instance. Individual application components of
such services may run in different isolated runtime environments, such as chrooted jails or application
containers, and may need access to system resources and the ability to collaborate and coordinate
with each other in a regulated and secure manner. We implemented an access control framework for
policy formulation, management, and enforcement that allows access to OS resources and also permits
controlled collaboration and coordination for service components running in disjoint containerized
environments under a single Linux OS server instance. The framework consists of two models and the
policy formulation is based on the concept of policy classes for ease of administration and enforcement.
The policy classes are managed and enforced through a Linux Policy Machine (LPM) that acts as the
centralized reference monitor and provides a uniform interface for accessing system resources and
requesting application data and control objects. We present the details of our framework and also discuss
the preliminary implementation to demonstrate the feasibility of our approach.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The emergence of application containers [1,2], introduction
of support for kernel namespaces [3], allows a set of loosely

The advancements in contemporary multi-core CPU architec-
tures and increase in main memory capacity have greatly improved
the ability of modern server operating systems (OS) such as Linux
to deploy a large number of concurrent application services on
a single server instance. Such deployments become increasingly
common as large data centers and cloud-centric application ser-
vices become more popular. New developments, such as Internet
of Things (IoT), may contain a set of smart IoT devices which are in-
terconnected and controlled through software services using cloud
infrastructure.

* Corresponding author.
E-mail addresses: kirill.belyaev@outlook.com (K. Belyaev),
Indrakshi.Ray@colostate.edu (1. Ray).

http://dx.doi.org/10.1016/j.future.2017.05.003
0167-739X/© 2017 Elsevier B.V. All rights reserved.

coupled service components to be executed in isolation from
each other and also from the main operating system. Application
service providers may lower their total cost of ownership by
deploying large numbers of services on a single server instance
and possibly minimize horizontal scaling of components across
multiple nodes [4]. In conventional UNIX or Linux OS, applications
can be deployed in isolated (containerized) environments, such as
chrooted jails [5,6]. Such isolated environments limit the access of
the components and have the potential to offer enhanced security
and performance. However, we need to regulate the access that
each component has on the system resources and also control
the communication and sharing of data objects between service
components executing in different isolated environments.

Our objective is to give each component minimum privileges
to system resources and also provide regulated coordination and

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

http://dx.doi.org/10.1016/j.future.2017.05.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:kirill.belyaev@outlook.com
mailto:Indrakshi.Ray@colostate.edu
http://dx.doi.org/10.1016/j.future.2017.05.003

2 K. Belyaev, I. Ray / Future Generation Computer Systems 1 (11E1) III-RI1

data sharing across service components executing in isolated run-
time environments. We introduce a new framework referred to
as Linux Policy Machine [7] middleware (and shorten it to just
LPM in the rest of the paper) to address the identified challenges.
Our LPM allows the management and enforcement of access
to OS resources for individual service components and it also
allows regulated inter-component communication. Our uniform
framework provides a coherent business logic interface available
to administrative personnel to manage access control for a set of
application services both at the level of OS resources and at the
level of inter-component interaction.

Our policy formulation and enforcement framework consists
of two types of policy classes. We propose the notion of
capabilities classes, each of which is associated with a set of Linux
capabilities [8]. The capabilities classes differ from each other on
the basis of capabilities they possess. Each service component
is placed in at most one capabilities class. The OS resources the
component can access depends on the Linux capabilities associated
with that class. Our implementation provides a way by which
Linux capabilities can be administered to the services executing in
isolated environments.

We also propose the concept of communicative classes for
communication of components that belong to different isolated
environments. We adapt the generative communication paradigm
introduced by Linda programming model [9] which uses the
concept of tuple spaces for process communication. However, the
traditional tuple spaces lack any security features and also have
operational limitations [7,10]. We enhance the original paradigm
and also provide rules such that only components belonging to the
same communicative class can communicate using this approach.
The communication between service components is mediated
through a module of the LPM called a Tuple Space Controller (TSC)
which is allowed limited access to a component’s tuple space.
Our LPM middleware allows a regulated way of coordinating and
collaborating among components using tuple spaces. Note that,
such coordination and collaboration will be allowed even if each of
the components executes under different system UIDs and group
identifiers (GIDs).

Our LPM is resident in user-space and it acts as a reference mon-
itor [11] for a set of administered application services deployed
on a single Linux server instance. We incorporate the access con-
trol modeling and decision control in user-space with robust and
expressive persistence layer [7]. This allows high interoperabil-
ity and usage of the framework on any general-purpose Linux OS
without a requirement for custom kernel patching [11]. The cur-
rent work extends our earlier works and provides additional de-
tails on the inter-component communication architecture realized
through the concept of Tuple Space Library (TSL) [10] and also de-
scribes the implementation aspects.

The rest of the paper is organized as follows. Section 2 gives
an overview of our framework that consists of two types of policy
classes. Section 3 provides the details of the inter-component
communication architecture. Section 4 provides the details of
tuple space transactions that provides secure coordination and
collaboration between service components. Section 5 provides
details on security of our framework. Section 6 gives system
architecture. Section 7 demonstrates the feasibility of our approach
by describing the implementation experience with a focus on tuple
space paradigm. Section 8 provides the benefits and drawbacks of
user-space solution in contrast to kernel-space implementation.
Section 9 discusses related work. Section 10 concludes the paper.

2. Component-oriented access control framework

We first present a real-world motivating example where a
single application/data service can consist of several components,
each deployed in isolation [10,7].

IEC:catild be Linux OS instance | OS/hardware

unavailable resources
uib uib
100 \VA 9 102
Isolate: H Isolate: ? Isolate:

environmel nvironment nvironment
Cwe:]) Or /_\OI Web
ache P » | | Analyzer !
Server & > y b Server
\ Analytics A [—
ache log output IPC TML pages
uib
101
Byte-level -- too complex

for modern applications | Web Cache Analytics
Data Service

Bound to UID/GID

Fig. 1. Problems of controlled sharing.
2.1. Motivating example

Consider a service deployment scenario illustrated in Fig. 1 that
is taken from a real-world telecom service provider [12]. A Linux
server has three applications, namely, Squid Web Cache Server,
Squid Log Analyzer,and HTTP Web Server, deployed in three separate
isolated environments (chrooted jail directories), each under a dis-
tinct unprivileged user identifier (UID). Combined all three applica-
tions represent individual components of a single service—ISP web
caching that caches Internet HTTP traffic of a large customer base
to minimize the utilization of ISP’s Internet backbone. Squid Web
Cache Server component generates daily operational cache logs in
its respective runtime environment. Squid Log Analyzer component
needs to perform data analytics on those operational log files on a
daily basis. It then creates analytical results in the form of HTML
files that need to be accessible by the HTTP Web Server component
to be available through the web browser for administrative person-
nel. Each component may also need access to system resources. For
example, Squid Web Cache Server component needs access to net-
work socket I/O resources and some advanced networking capabil-
ities of the Linux kernel [13] in order to operate.

As the example above demonstrates each service component
has customized requirements for access to various OS resources
and also specific needs with respect to communication with other
components. We implement a new object-oriented access control
framework based on the notion of policy classes that regulates
access to OS resources and also permits regulated and fine-grained
inter-component communication [7]. We now provide a brief
overview of our access control framework based on the concept
of such policy classes.

2.2. Capabilities class

The individual containerized components of an application
service often need regulated access to OS resources. In the
Linux environments, the application runtime access control to
the underlying OS resources has been traditionally regulated by
root privileges which provides all permissions on system and user
resources. The applications regulated by root privileges run with a
special user identifier (UID = 0) that allows them to bypass access
control checks. However, giving root permissions to an application
violates the principle of least privilege and can be misused.
Subsequently, in Linux kernels starting from version 2.1, the root
privilege was partitioned into disjoint capabilities [14]. Instead of
providing “root” or “non-root” access, capabilities provide more
fine-grained access control—full root permissions no longer need
to be granted to processes accessing some OS resources. For

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, . Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

K. Belyaev, I. Ray / Future Generation Computer Systems 1 (1111) INI-EIN 3

Capabilities Class Linux OS instance

for network components

OS/hardware I
resources

\J

CAP_NET_BIND_SERVICE
capability

Service
component

A Ay
Service Service
component component
S]
Service Service Service
component component component
’

A AR N 7
Service Service Service
component component component

Fig. 2. Capabilities class for components accessing the network.

teraction
P

example, a web server daemon needs to listen to port 80. Instead
of giving this daemon all root permissions, we can set a capability
on the web server binary, like CAP_NET_BIND_SERVICE using which
it can open up port 80 (and 443 for HTTPS) and listen to it,
like intended. The new emerging concept of Linux application
containers such as Docker service [2] and CoreOS [15] heavily
leverages the Linux capabilities model. Despite the incorporation
of capabilities in mainstream Linux and application containers,
capabilities management in user-space is challenging [16] and is
only sufficiently addressed in our work [7].

In service provider context, the only capabilities, realistically
required by the containerized data and application services de-
ployed on the same OS server instance are the capabilities asso-
ciated with access to OS network communication resources. That
is because some customer facing service components, such as web
server component might need access to this type of OS resources.
The rest of Linux capabilities mostly represent highly specialized
super-user capabilities that are of no interest to general-purpose
containerized service deployments and could be even dangerous
in the multi-service settings. For instance CAP_CHOWN capability
gives unnecessary capability to allow making changes to the file
UIDs and GIDs. Another capability, CAP_DAC_OVERRIDE allows to
bypass file read, write and execute permission checks that poses
imminent security threat to the OS environment. Therefore, indi-
vidual service components could be conferred with specific capa-
bility(s) based on the principle of least privilege.

We introduced the notion of a capabilities class that is associated
with a set of Linux capabilities. Each capabilities class can have
one or more service components. The components in such a class
have all the capabilities associated with this class and can therefore
access the same set of OS resources as illustrated in Fig. 2. Each
service component can belong to at most one capabilities class,
but a class can have multiple components. Note that, two distinct
capabilities classes will be associated with different sets of Linux
capabilities. As a part of our unified framework, capabilities class
supports a set of management operations on it [7].

2.3. Communicative class

In order to address the requirements of the regulated commu-
nication between isolated service components, we introduced the
notion of a communicative class that consists of a group of appli-
cations (service components) that reside in different isolated en-
vironments and need to collaborate and/or coordinate with each
other in order to provide a service offering [7]. Our notion of com-
municative class is different from the conventional notion of UNIX
groups. In the conventional groups, the privileges assigned to a

2

Component Component
B A

1
Component Component
A B

—>

Coordination (Dafdy gidirectional [(DaA
Flow [obiect| “DaaFlow |obiect]

3

4
Component ‘ Component] (Component h
A B A
> >
"m Unidirectional 1-75.7?) 1-7:1?5' Unidirectional 1-75.1?)
Data Flow Data Flow
5

Component Component Component Component
i L U T
Data> Data> Data>
[object] 4————{objct|-4———— abject| +—" {otyect]

Unidirectional Pipelined Data Flow

Component
B

Fig. 3. Various types of flow control for service components in isolated
environments.

group are applied uniformly to all members of that group. In this
case, we allow controlled sharing of private data objects among
members of the communicative class via object replication. Such
a sharing can be very fine-grained and it may be unidirectional—an
isolated component can request a replica of a data object belonging
to another isolated component but not the other way around.

Some service components may require bidirectional access
requests where both components can request replicas of respective
data objects. Such types of possible information flow are depicted
in Fig. 3 where green arrow denotes the granted request for a
replicated data object in the direction of an arrow, while red
one with a cross signifies the forbidden request. Implementing
such rules may be non-trivial as isolated environments are non-
traversable due to isolation properties. This necessitates proposing
alternative communication constructs. The access control policies
of a communicative class specify how the individual components
in such a class can request a replica of mutual data objects.
Only components within the same communicative class can
communicate and therefore communication across different
communicative classes is forbidden. Such a regulation is well-
suited for multiple data services hosted on a single server instance.
The assignment of individual data service to a separate class
facilitates the fine-grained specification of communication policies
between various isolated service components [7,10].

The construct of communicative class is designed to support the
following communication patterns between the components in a
single class. (i) coordination—often components acting as a single
service do not require direct access to mutual data objects or their
replicas but rather need an exchange of messages to perform co-
ordinated invocation or maintain collective state [7]. Coordination
across mutually isolated environments is problematic. However,
if components belong to a single communicative class, it enables
the exchange of coordination messages without reliance on usual
UNIX IPC mechanisms that may be unavailable under security con-
strained conditions. (ii) collaboration—components acting as a sin-
gle data service may need to access mutual data or runtime file
objects to collaborate and perform joint or codependent measure-
ments or calculations as illustrated in the description of the web
caching service. Empowering a component with the ability to ob-
tain a replica of a data object that belongs to another component
in the same communicative class makes such a collaboration pos-
sible.

Based on the described communication patterns between
service components, a single communicative class can be classified
as a coordinative class if it contains a set of coordination policies.
Consequently, it can also be classified as a collaborative class if it
contains a set of collaboration policies. As a part of our unified
framework, communicative class supports a set of management
operations on it [7].

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

4 K. Belyaev, I. Ray / Future Generation Computer Systems 1 (11E1) III-RI1

3. Communication architecture

As discussed in Section 2, communication between various ser-
vice components is regulated via the concept of communicative
policy classes. Such an access control abstraction has to be prop-
erly supported at the level of LPM reference monitor that needs to
possess the necessary communication primitives to enforce such a
regulation. We now discuss the issues with available OS commu-
nication mechanisms and then provide details on our enforcement
architecture for communicative class model that is one of the main
contributions of this work.

3.1. IPC constraints

In general, applications that need to communicate across ma-
chine boundaries use TCP/IP level communication primitives such
as sockets. However, that is unnecessary for individual applications
located on a single server instance [17]. Moreover, application con-
tainers currently resort to inter-container communication using
available TCP/IP sockets that essentially opens wide possibilities
for unregulated information flow between service components.
Applications that need to communicate on a modern UNIX-like
0S may use UNIX domain sockets or similar constructs. However,
socket level communication is usually complex and requires the
development and integration of dedicated network server func-
tionality into an application. Modern data service components also
prefer information-oriented communication at the level of ob-
jects [18]. The necessity of adequate authentication primitives to
prove application identity may also be non-trivial. Moreover, as il-
lustrated in Section 2.3, many localized applications may require to
communicate across isolated environments but may not need ac-
cess to the network I/O mechanisms. Thus, more privileges must be
conferred to these applications just for the purpose of collaboration
or coordination, which violates our principle of least privilege [7].

Reliance on kernel-space UNIX IPC primitives may also be
problematic. First, such an IPC may be unavailable for security
reasons in order to avoid potential malicious inter-application
exchange on a single server instance that hosts a large number
of isolated application services [4]. In other words, IPC may be
disabled on the level of OS kernel [19]. Aside from that, the basic IPC
primitives such as various forms of pipes are simply inaccessible
to components in the scope of an isolated runtime environment.
That is because such primitives have been designed for centralized
systems where components could have shared access to them.
Second, modern applications often require more advanced, higher-
level message-oriented communication that is not offered by
the legacy byte-level IPC constructs. Third, UNIX IPC is bound
to UID/GID access control associations that does not provide
fine-grained control at the level of individual applications [19].
Therefore, kernel-space IPC mechanisms do not offer regulated
way of inter-application interaction [7].

The usage of system-wide user-space IPC frameworks such as
D-Bus [20] may also be problematic. D-Bus is the IPC and Remote
Procedure Call (RPC) mechanism that primarily allows commu-
nication between GUI desktop applications (such as within KDE
desktop environment) concurrently running on the same machine.
D-Bus offers a relatively high-level message-oriented communi-
cation between applications on the same machine. However, it is
not designed to transmit data objects such as logs. Although it is
a widely accepted standard for desktop applications, D-Bus may
not fit the requirements of modern server-based data services. In
fact, the main design objective of D-Bus is not message passing
but rather process lifecycle tracking and service discovery [20].
It also does not possess a flexible access control mechanism de-
spite its ability to transport arbitrary byte strings (but not file ob-
jects). Moreover, applications have to connect to D-Bus daemon us-
ing UNIX domain sockets or TCP sockets. Before the flow of mes-
sages begins, two applications must also authenticate themselves

which adds extra complexity layer to the communication. How-
ever, the more pressing problem is the possibility that user-space
D-Bus daemon in line with kernel-space IPC may be disabled on
the server node for security reasons. Moreover, system-wide com-
munication resources such as global UNIX domain socket for the
D-Bus daemon may be inaccessible for applications running in iso-
lated environments [7].

3.2. Tuple space paradigm

In order to address the complexities introduced in 3.1, we
proposed an alternative approach that can be classified as a special
case of generative communication paradigm introduced by Linda
programming model [9]. In this approach, processes communicate
indirectly by placing tuples in a tuple space, from which other
processes can read or remove them. Tuples do not have an
address but rather are accessible by matching on content therefore
being a type of content-addressable associative memory [17].
This programming model allows decoupled interaction between
processes separated in time and space: communicating processes
need not know each other’s identity, nor have a dedicated
connection established between them [21]. In comparison to
general-purpose message-passing that provides a rather low-level
programming abstraction for building distributed systems and
enabling inter-application interaction, Linda, instead, provides a
simple coordination model with higher level of abstraction that
makes it very intuitive and easy to use [22].

3.2.1. Paradigm limitations

The lack of any protection mechanism in the basic model
[21,17] makes the single global shared tuple space unsuitable for
interaction and coordination among untrusted components. There
is also the danger of possible tuple collisions—as the number of tu-
ples that belongs to a large set of divergent applications in a tuple
space increases, there is an increasing chance of accidental match-
ing of a tuple that was requested by another application. More-
over, the traditional in-memory implementation of tuple space,
oriented at language-level interaction [23], makes it unsuitable in
our current work due to a wide array of possible security attacks
and memory utilization overheads. Therefore, we adapt the tuple
space model that will satisfy our requirements for secure and reli-
able communication between service components within a single
communicative policy class [7]. Note that, in this adaptation the
content-based nature of retrieval from a tuple space will necessi-
tate content-based access control approaches [17].

Another problem identified with the RAM-based tuple spaces
is that it is suitable mainly for a single application with multiple
threads that share the same memory address space or applications
that rely on some form of shared memory support [24]. In such
a simplified deployment scenario, a global tuple space is easily ac-
cessible by consumer and producer threads within a single applica-
tion. However in the context of our current work we deal with sep-
arate data service applications that do not share the same address
space in memory which makes such a solution unsuitable [18]. For
instance, two isolated service components written in Java cannot
access mutual tuple spaces because each component is deployed in
a separate Java Virtual Machine (JVM) instance [25]. The discussed
limitations are depicted in Fig. 4.

3.2.2. Paradigm adaptation

We proposed a tuple space calculus that is compliant with the
originally introduced base model [9] but is applied on dedicated
tuple spaces of individual applications instead of a global space.
Our tuple space calculus comprises the following operations:
(i) create tuple space operation, (ii) delete tuple space operation—
deletes tuple space only if it is empty, (iii) read operation—returns

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, . Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

K. Belyaev, I. Ray / Future Generation Computer Systems 1 (1111) INI-EIN 5

1 Component) | Address | Component 2 pplicationII Address |[A pplicationll
Space L B Services Space Services
? ;
Address ¢ m : m
Space A

Global RAM-based TS issues Data II
object:

3 RAM
buffer
Component Component
A B
. Dedicated disk-based TS
) A
(Fiesystem]) [Coudbesiow] | Flesystem])

Fig. 4. Tuple space limitations.

Global RAM-based TS issues

)
f

the value of individual tuple without affecting the contents of a
tuple space, (iv) append operation—adds a tuple without affecting
existing tuples in a tuple space, and (v) take operation—returns
a tuple while removing it from a tuple space. We adhere to the
immutability property—tuples are immutable and applications can
either append or remove tuples in a tuple space without changing
contents of individual tuples.

An application is allowed to perform all the described
operations in its tuple space while LPM is restricted to read and
append operations only. Note, that the take operation is the only
manner in which tuples get deleted from a tuple space because
the delete tuple space operation is allowed only on an empty tuple
space [7].

Tuple space is implemented as an abstraction in the form
of a filesystem directory with its calculus performed via Tuple
Space Library (TSL) employed by the applications and the
LPM reference monitor through its TSC. Therefore, this part
of the proposed unified framework is not transparent and the
applications may need to be modified in order to utilize the tuple
space communication. However, in certain cases that may not
be necessary. For instance, if components require only limited
collaboration, such as periodic requests for replicas of data objects
(the case for daily logs), a separate data requester application that
employs TSL can handle such a task without the need to modify the
existing application such as a log analyzer [7].

The LPM plays a mediating role in the communication between
applications. The communication takes place through two types of
tuples: control tuples and content tuples. Control tuples can carry
messages for coordination or requests for sharing. Content tuples
are the mechanism by which data gets shared across applications
(service components). The LPM periodically checks for control
tuples in the tuple spaces for applications registered in its database.
We have two different types of communication between a pair of
applications. The first case is where the two applications do not
share any data but must communicate with each other in order
to coordinate activities or computation. The second case is where
an application shares its data with another one. Note, that in our
calculus, at most one control tuple and one content tuple could be
appended into a tuple space at any given time [7,10].

The structure of the tuples is shown in Fig. 5. Control
tuples are placed by an application into its tuple space for
the purpose of coordination or for requesting data from other
applications. A control tuple has the following fields: (i) Source
ID—indicates an absolute path of the application that acts as an
application ID of the communication requester. (ii) Destination
ID—indicates an absolute path of the application that acts as an
application ID of the communication recipient. (iii) Type—indicates

Structure of the Control Tuple

Collaboration Message

Source ID
(/containers/container-1/bin/service-component)

‘containers/container-2/logs/log.tx

Opaque/encrypted

/ Coordination Message

Destination ID
(/containers/container-2/bin/service-component)

Type
(Coordination/Collaboration)

Message
(Coordination/Collaboration Info)

Structure of the Content Tuple

Destination ID
(/containers/container-1/bin/service-component)

Collaboration Payload

ASCII object

Fig. 5. Tuples structure.

Sequence Number
(Chunk Number of Data Object)

Payload
(Data Object Chunk)

whether it is a collaborative or coordinative communication. (iv)
Message—contains the collaborative/coordinative information. For
collaboration it is the request for an absolute path of data object.
Coordination message may be opaque as other entities may be
oblivious of this inter-application communication. It may even be
encrypted to ensure the security and privacy of inter-application
coordination efforts. XML or JSON are possible formats that can be
used for the representation of coordination messages. LPM merely
shuttles the coordination tuples between respective applications’
spaces and is not aware of their semantics [7].

Content tuples are used for sharing data objects across ap-
plications and they have the following fields: (i) Destination ID—
indicates the ID of recipient application that is an absolute path of
an application. (ii) Sequence Number —indicates the sequence num-
ber of a data object chunk that is transported. ASCII objects in the
form of chunks are the primary target of inter-application collab-
oration. (iii) Payload—contains the chunk of a data object. Content
tuples are placed by the LPM reference monitor into corresponding
tuple space of the requesting application that needs to receive con-
tent. Note that content tuples are designed for collaboration only.
Coordination is performed exclusively through control tuples [7].

Containerized service components are often not aware of
whether they are deployed in an isolated runtime environment,
such as a chrooted jail or not. Therefore, tuple fields, such as
Source/Destination IDs and object paths that technically require
the absolute path to the object on the filesystem can be substituted
with the isolated environment ID, such as a container ID. This
permits the service deployment with individual components that
are only aware of immediate containerized path locations or
corresponding components’ service identifiers. For instance, the
containerized identifier, such as /100/opt/bin/service-component-2
can be mapped to a system-wide path of Jopt/containers/container-
100/opt/bin/service-component-2 by the LPM reference monitor
with a proper support for such a composite service mapping [10].

4. Tuple space transactions

We provide the sample transactional flow involved in tuple
space operations, necessary to carry out collaborative and coor-
dinative types of communication between isolated service com-
ponents. Since loosely coupled processes cannot communicate di-
rectly due to isolation properties, the flow is conducted indirectly
via the Tuple Space Controller (TSC) [10].

4.1. Coordinative transaction

Coordinative communication between two components is
depicted in Fig. 6. Intrinsically, coordination is bidirectional,

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

6 K. Belyaev, I. Ray / Future Generation Computer Systems 1 (11E1) III-RI1

Tuple Space Operations ‘ Append a control tuple

@ - Coordination(A) @

\Qperations:

5 . . Read a content tuple

. Take a content tuple

Tuple Space Read a control tuple

Controller

. Take a control tuple

Append a content tuple

‘ Read the data file

Assemble the content
tuples into a single file

Fig. 6. Coordination through tuple spaces.

since both endpoints need to obtain coordinative messages. Both
components need to create the corresponding tuple spaces in the
isolated runtime environments. In the first phase, Component 1
delivers a message to Component 2.

e [Step 1:] Component 1 appends a control tuple (see the
structure of tuples in Fig. 5) to its tuple space TS 1. This control
tuple (denoted as message A) has to be subsequently delivered
to Component 2;

e [Step 2:] TSC reads the control tuple from TS 1;

e [Step 3:] Component 1 retracts the control tuple via the take
operation;

e [Step 4:] TSC appends the control tuple into tuple space TS 2 of
Component 2;

e [Step 5:] Component 2 takes the appended control tuple
(message A from Component (1)) from its tuple space TS 2.

In the next phase of coordinative communication, Component
2 has to deliver its coordination message to Component 1.
Such a message could contain independently new coordinative
information, or serve as the acknowledgment for the control
tuple that has just been received. Such a decision is service-
specific. However, we require that coordinative transactional flow
is terminated through such a confirmative control tuple from
Component 2. The steps in the second phase are described next.

e [Step 6:] Component 2 appends a control tuple to its tuple
space TS 2. This control tuple (denoted as message B) has to be
subsequently delivered to Component 1;

e [Step 7:] TSC reads the control tuple from TS 2;

e [Step 8:] Component 2 retracts the control tuple via the take
operation;

e [Step 9:] TSC appends the control tuple into tuple space TS 1 of
Component 1;

e [Step 10:] Component 1 takes the appended control tuple
(message B from Component (2)) from its tuple space TS 1. This
step completes the coordinative transaction.

Note that the coordination messages could be of any type.
Therefore, our communication architecture allows full trans-
parency in inter-component exchange and does not require pro-
prietary formats. Most common formats that could be incorpo-
rated into the message field of a control tuple are XML, JSON or
ASCII strings. Such a choice is service-dependent. Moreover, the
service components could utilize the serialization libraries such as
XStream [26], to represent class objects in the form of XML mes-
sages. In this case, isolated components that use our TSL library
can perform complete object-based transport within a single ser-
vice solely through provided tuple space communication [10].

3 chunks I Tuple Space Operatlons 3 chunks I . Append a control tuple

/ W W\ Read a control tuple
<—>

m @ e . Take a control tuple

Symmetric

Collaboration
Operations: Operations: Operations:

' @ z ' @
5 ‘ . . 3 ’ 5 Take a content tuple
[. [

6 6

Tuple Space
Controller

Append a content tuple

. Read a content tuple

‘ Read the data file

€ . ‘ . Assemble the content

tuples into a single file

Fig. 7. Collaboration through tuple spaces.
4.2. Collaborative transaction

Collaborative communication is depicted in Fig. 7. Intrinsically,
collaboration is unidirectional, since the workflow is only directed
from a single requester to TSC and back in the form of content
tuples [10]. In contrast to a control tuple, a content tuple only
has a Destination ID field, as depicted in Fig. 5. However, at the
level of service logic, collaboration flow could conceptually be
bidirectional. Both endpoints could obtain replicas of mutual data
objects through TSC, if such a replication is explicitly permitted
in the policies store of a reference monitor. Such a scenario
of symmetric collaboration is depicted in Fig. 7. The steps of
collaborative transaction, on the left, are shown below.

e [Step 1:] Component 1 appends a control tuple to its tuple space
TS 1 with indication of request for data object that is owned by
Component 2;

e [Step 2:] TSC reads the control tuple from TS 1;

e [Step 3:] TSC reads the requested data object on the filesystem.
Note that this step is not a part of the actual transactional flow,
but represents the internal operations of TSL;

e [Step 4:] TSC appends the replica of a data object, fragmented in
three content tuples, into tuple space TS 1, one tuple at a time.
Note that TSC can append the next content tuple only after the
current one is taken from a tuple space. The step shows four
actual tuples—TSC has to append a special End of Flow (EOF)
content tuple to indicate the end of data flow. Such a tuple has
the Payload field set to empty string and Sequence Number field
set to —1 to indicate the EOF condition;

e [Step 5:] Component 1 takes appended content tuples, one
tuple at a time;

e [Step 6:] Component 1 assembles the appended content tuples
into a replica of the requested data object. Note that this step
is not a part of the actual transactional flow, but represents the
internal operations of TSL;

e [Step 7:] Component 1 takes a control tuple from its tuple space
TS 1. This step completes the collaborative transaction.

The flow of second collaborative transaction, on the right, is
identical. The communication starts with the creation of a tuple
space and ends with its deletion after the transactional flow
completes.

4.3. Transactional API

The complexity for both types of transactional communication
is hidden from applications that want to use it. TSL provides public

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, . Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

K. Belyaev, I. Ray / Future Generation Computer Systems 1 (1111) INI-EIN 7

<<interface>>
C T

+ facilitate_BidirectionalPersistentCoordinative Transaction(String, String): int

+ facilitate_PersistentCollaborativeTransaction(String): int

<<interface>>
AgentTransactionManager

+ perform_ActivePersistentCoordinative Transaction(Control Tuple_implement, String) : int

+ perform_PassivePersistentCoordinative Transaction(String) : int
+ perform_PersistentCollaborative Transaction(ControlTuple_implement, String, String) : int

+ get_ReplyControlTuple() : ControlTuple_implement

Fig. 8. Tuple space transactions API.

Application Programming Interface (API) methods without expos-
ing internal operations of tuple space calculus [27]. The API meth-
ods for Tuple Space Transactions are depicted in Fig. 8. TSC ex-
ecutes the implementation of the ControllerTransactionManager
class while the service component executes the implementation
of the AgentTransactionManager class within the TSL library.

ControllerTransactionManager implementation implements the
following public methods:

e facilitate_BidirectionalPersistentCoordinativeTransaction()—
facilitates the exchange of control tuples between corre-
sponding tuple spaces of service components. The actual
implementation of this method uses the private facilitate_
UnidirectionalPersistentCoordinativeTransaction() method to ap-
pend control tuples to individual tuple spaces involved in coor-
dination

e facilitate_PersistentCollaborativeTransaction()—facilitates the
replication of a data object requested in the collaborative re-
quest issued by the component.

AgentTransactionManager implementation implements the
following public methods:

e perform_ActivePersistentCoordinativeTransaction()—initiates a
start of coordinative transaction by appending the initial con-
trol tuple

e perform_PassivePersistentCoordinativeTransaction()—initiates an
end of coordinative transaction with a wait for a control tuple
from original destination

e perform_PersistentCollaborativeTransaction()—initiates and com-
pletes the collaborative transaction by assembling the replica at
component’s end

e get_ReplyControlTuple()—obtains the control tuple appended by
TSC from the participating component.

5. Security aspects

In this section, we discuss the security of our component-
oriented access control framework. Each component executes in an
isolated runtime environment. The isolated runtime is populated
with all required program files, configuration files, device nodes
and shared libraries that are required for the successful service
component execution. Note that, the shared libraries (if present)
have to be properly audited before inclusion in the runtime
environment [7].

Our framework aims to give each component only those capa-
bilities that it needs and only those inter-component interactions
that are required for offering services. We assume that the LPM
which is our reference monitor is trusted. We also assume that the
capabilities policies and communicative policies have been written
correctly. The LPM is responsible for executing these policies and

putting components in their respective policy classes. Thus, a com-
ponent can access only those system resources that is permitted by
the capabilities policy class to which it has been assigned.

In our design, the communication across components takes
place through their individual tuple spaces. Thus, we must protect
the confidentiality, integrity, and availability of the tuple space
of each component. Each component in an isolated runtime
environment has a directory structure within the filesystem in
which it can create its own tuple space. The communicative
policies bind a component to its tuple space location. Only the
individual component can perform all the operations, namely,
create tuple space, delete tuple space, read, append, and take. The LPM
reference monitor can only perform read and append operations on
the tuple space. Thus, no one other than the component itself can
remove anything from its tuple space. A service component cannot
access the tuple space of its peers—this protects the confidentiality
and integrity of the tuple space and the data contained in it. A
service component cannot also cause denial-of-service on another
component’s tuple space. This is because even if a component
requests a large sized data object, this data is decomposed into
fixed size chunks and only one chunk at a time is loaded into and
transferred from the tuple space.

A malicious entity cannot impersonate as an honest component
and compromise the confidentiality and integrity of the data of
any components. The components and their tuple space in the
directory structure are binded in the policy store. Consequently,
even if a malicious entity poses as an honest component, it will not
be able to access the tuple space that is in the directory structure of
the honest component. If a component is dishonest or has a trojan
horse, it will get access only to those resources that are allowed by
the policy classes that contain it.

6. System architecture

LPM acts as a centralized enforcement point and reference
monitor [7,11] for the application services deployed on the single
OS server instance. The unified framework uses the embedded
SQLite database library to store and manage policy classes
abstractions and their policy records. The usage of embedded
database facility eliminates the dependency on a separate database
server that is prone to potential availability downtimes and
security breaches. The LPM implemented in Java Standard
Edition (SE) is deployed under unprivileged UID with elevated
privileges using Linux capabilities within the same OS outside the
containerized environments such as chrooted jails and application
containers. Fig. 9 illustrates the components of the LPM. These are
described below.

e [User interface layer:] This layer provides operator with
command-line interface (CLI) to issue commands to manage the
framework.

o [Parser layer:] This layer parses the user input from the CLI
shell and forwards the parsed input to the underlying layers for
execution.

o [Enforcer layer:] This layer enforces the capabilities on
the given application using Linux LibCap [8] library and
grants/denies access to OS resources depending on the capabil-
ities class associated with the component. The layer also inte-
grates a TSC [17] responsible for tuple space operations for the
enforcement of collaboration and coordination of service com-
ponents in a single communicative class.

o [Persistence layer:] This layer provides the Create/Read/
Update/Delete (CRUD) functionality to manage records using
embedded database facilities. The schema of the embedded
database for storing framework policies appears in Fig. 10.
Due to considerable complexity, the detailed description of the
schema, the business logic, the relationship between three main
tables, the possible access control records and formal model is
subject to a separate publication.

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

8 K. Belyaev, I. Ray / Future Generation Computer Systems 1 (11E1) III-RI1

Provides user with Command-Line Interface
User to issue commands to manage

Interface various policy classes
N

v
Parses the user input from the CLI and executes
Parser the underlying layers that correspond
to the command input
i Tuple Space
Controller

Enforcer Enforces the framework on the selected component(s)
using Linux LibCap and Tuple Space libraries

Provides the CRUD (Create/Read//Update/Delete)
functionality to manage policy classes records
using embedded database store

Persistence]
Layer

Capabilities Classes

Fig. 9. Linux policy machine (LPM) architecture.

:

Communicative Classes DI

Communicative
Classes Table Classes Table

COLUMN_CLASS_NAME COLUMN_CLASS_NAME
COLUMN_CLASS_ID COLUMN_CLASS_ID
-

COLUMN_COORDINATIO
COLUMN_COMPONENT. N_RECORI

COLUMN_CAPABILITIES || RD
COMMUNICATIVE_CLASS
D
COLUMN_COLLABORATI
ON_RECORD
CONTAINER_ID COLUMN_STATUS

COLUMN_STATUS COLUMN_STATUS

Fig. 10. Database schema of persistence layer.

Capabilities
Components Table

COLUMN_COMPONENT_
DESC

COLUMN_COMPONENT.
CAPABILITIES_CLASS_ID

COLUMN_COMPONENT_

System implementation features tens of classes and packages
associated with corresponding layers, with overall volume of
current production code exceeding 12 000 lines, not counting the
unit tests per individual class [27].

7. Experimental results

The deployment of component-oriented access control frame-
work in the real-world settings requires a thorough performance
evaluation. The model for capabilities classes does not incur any
significant performance overheads for the unified framework. This
is because its enforcement is based on the calls to the LibCap li-
brary [8] that essentially updates the filesystem capabilities meta-
data information for a process [28]. Such operations do not incur
the performance overheads because library mediations do not re-
quire extra disk I/O aside from the I/O load of the base system
[29,30]. There is also no additional memory utilization required
aside from the RAM consumption by the LPM reference monitor
itself.

However the situation is quite different for the model of
communicative classes. The enforcement is based on the tuple
space paradigm that is known to be quite resource intensive [17].
The performance overheads for a memory-resident global shared
tuple space are well known and include memory consumption
overheads, efficiency problems with tuple matching at high
speeds and search complexity with a large number of divergent
tuples present in a single space continuum [21]. Those properties
essentially pose a limit on a number of tuple objects in a given
tuple space [21,17,9]. Taking that into consideration as discussed
in Section 3, the design of our tuple space implementation is

Replication Statistics for Sequential Collaboration

€ @ 64 MB object

300 L 4 @ @ 128 MB object
@ @ 256 MB object

350

) @ @ 512 MB object
£ 250 € ¢ 1024 MB object
& © ¢ 2048 MB object
& 200
]
2
[=}
2 150
[
=
= 100
=

50 * L 2 .

4
2
o .
0 2 4 6 8 10 12 14 16 18

Replication Time (seconds)

Fig. 11. Replication performance for sequential collaboration.

reliant on the alternative strategy of the persistent filesystem-
based solution with personal tuple space per component [10].

The initial prototype of the TSL implemented in Java SE is
publicly available through the LPM’s GitHub repository [27]. The
specification of the machine involved in the benchmarking is
depicted in Table 1. Memory utilization and time information
has been obtained using JVM’s internal Runtime and System
packages. Due to space limitations, we do not provide the
benchmarking results for coordinative transaction. Despite its
implementation complexity, such a transaction involves only
exchange of two control tuples and therefore does not incur
any significant performance overheads in terms of CPU and
RAM utilization. The actual unit test for coordination is available
at: https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/
java/TSLib_UnitTests_Coordination.java.

For collaboration, the payload of individual content tuple is
set at 1 MB. Therefore, for instance, it takes 64 content tuples to
replicate a 64 MB data object. Six sizes of data objects have been
chosen—64, 128, 256, 512, 1024 and 2048 MB objects respectively.
Collaborative transactional flow, as discussed in Section 3, is
performed on the EXT4 filesystem, where the requesting service
component creates a tuple space in its isolated directory structure
and assembles the content tuples appended by the TSC into
a replica in its isolated environment outside the tuple space
directory.

Replication performance for sequential collaboration is de-
picted in Fig. 11. The create_ObjectReplica() method in Utilities
package of the TSL library is a reference method that sequentially
executes the collaborative transaction conducted between TSC and
the service component within a single thread of execution. We can
observe that the replication time progressively doubles with an in-
crease of the object size. On average, it takes 0.625 s to replicate a
64 MB object, 1.065 s a 128 MB object, 1.955 s a 256 MB object,
3.950 s a 512 MB object, 8.550 s a 1024 MB object and 17.505 s
to replicate a 2048 MB object. Java Virtual Machine (JVM) memory
utilization during sequential collaboration has been observed to be
negligible. That is largely due to the usage of Java NIO library [31]
in our Utilities package that is designed to provide efficient access
to the low-level 1/O operations of modern operating systems. On
average, memory usage is 23 MB for replication of a 64 MB object,
34 MB for a 128 MB object, 56 MB for a 256 MB object, 305 MB for
a 512 MB object (an outlier, repeatedly observed with this object
size that might be specific to the garbage collector for this partic-
ular JVM), 58 MB for a 1024 MB objects, and 36 MB for replication
of a 2048 MB object. Note, that since the measured JVM memory
utilization takes into account the processing of both TSC and re-
quester components within a single thread of execution, the actual
JVM utilization will be roughly twice lower for two endpoints in
the collaborative transaction when endpoints execute in separate

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Coordination.java

K. Belyaev, I. Ray / Future Generation Computer Systems 1 (1111) INI-EIN 9

Table 1
Node specifications.
Attribute Info
CPU Intel(R) Xeon (R) X3450 @ 2.67 GHz; Cores: 8
Disk SATA: 3 Gb/s; RPM: 10 000; Model: WDC; Sector size: 512 bytes
Filesystem EXT4-fs; Block size: 4096 bytes; Size: 53 GB; Use: 1%
RAM 8 GB
0S Fedora 23, Linux kernel 4.4.9-300
JavavVM Open]DK 64-Bit server SE 8.0_92

Replication Statistics for Concurrent Collaboration
20 .

18
16
14 A

12 A

A A 64 MB object

A A 128 MB object
A A 256 MB object
A A 512 MB object
8 A A A 1024 MB object
A A A 2048 MB object

10

JVM Memory Usage (MB)

0 50 160 150 200 250
Replication Time (seconds)

Fig. 12. Replication performance for concurrent collaboration.

JVMs. This shows the practical feasibility of our collaborative im-
plementation even for replication of large data objects. According
to obtained results, we can anticipate that TSC can handle a large
number of concurrent collaborative transactions without consum-
ing significant amounts of physical RAM. We observed partially full
utilization of a single CPU core during replication of the largest
data object (2048 MB). The actual unit test for sequential collab-
oration is available at: https://github.com/kirillbelyaev/tinypm/
blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java.

In real-world settings TSC and service component execute
concurrently in separate threads, and in fact in different JVMs.
Replication performance for concurrent collaboration is depicted
in Fig. 12, where TSC and service component execute as concurrent
threads in a single JVM. In such settings, TCS thread performs a
short sleep in its section of TSL library after every append operation
to allow the service component thread to take a content tuple from
its tuple space. That results in a longer replication time compared
to sequential execution depicted in Fig. 11. Due to concurrent
execution, two CPU cores have been partially utilized by the
JVM during concurrent collaboration. The obtained results show
that replication time is sufficient for non-critical, non-real-time
services where medium-size data objects need to be replicated
across service components. Further decrease in replication time
is possible through the usage of faster storage media, such as
Solid-State Drives (SSDs) and Non-Volatile Memory (NVM) [32].
Again, we can observe that the replication time progressively
doubles with an increase of the object size. On average, it takes
17.152 s to replicate a 64 MB object, 23.8 s a 128 MB object,
37.1 s a 256 MB object, 63.8 s a 512 MB object, 1175 s a
1024 MB object and 246.505 s to replicate a 2048 MB object. In
line with sequential collaboration, JVM memory utilization during
concurrent collaboration also has been observed to be negligible.
On average, memory usage is 7 MB for replication of a 64 MB object,
14 MB for a 128 MB object (an outlier, repeatedly observed with
this object size that might be specific to the garbage collector for
this particular JVM that is not related to the outlier depicted in
Fig. 11 during sequential collaboration), 8 MB for a 256 MB object,
9 MB for a 512 MB object, 12 MB for a 1024 MB objects, and
19 MB for replication of a 2048 MB object. In fact, the utilization

is much lower then in case of sequential collaboration. Again,
when executed in separate JVMs, the memory footprint for every
endpoint in the transactional flow will be further diminished.
Therefore, TSC memory usage during real-life operations for
handling multi-component collaborative transactions is expected
to be minimal. Note, that due to preliminary nature of conducted
transactional benchmarks, the focus is on functionality, rather then
availability. Therefore, no actual saturation of storage media has
been attempted. The actual unit test for concurrent collaboration is
available at: https://github.com/kirillbelyaev/tinypm/blob/LPM2/
src/test/java/TSLib_UnitTests_Collaboration.java.

Note, that due to basic DoS protection properties of collabora-
tive transaction that requires a consumption of every content tu-
ple before a new one is appended to a given tuple space, the speed
of object replication in our solution is theoretically slower in com-
parison to existing IPC mechanisms that do not address DoS issues.
In the future, we may consider to conduct explicit comparison of
replication speeds between our solution and basic copy operation
using cp command in user space.

7.1. Load simulation of tuple space controller

The focus of our access control framework is on provision
of flexible types of information flow between infrequently
communicating (not real-time) service components. Therefore,
as already noted, it is not intended for High-Performance
Computing (HPC) services and large data object transfers between
components. Nevertheless, it is important to provide an accurate
estimate of the resource consumption incurred by the TSC that
is responsible for the information flow transport. In this part we
provide the actual memory allocation (Resident Set Size (RSS)
info obtained through ps and htop utilities)-the non-swapped
physical memory that a replication task (a single collaborative
transaction) has used. In contrast to the previously reported
JVM memory allocation that is subject to arbitrary fluctuations
related to garbage collection mechanism, RSS provides the real
memory allocation estimates on the actual hardware. The TSC load
simulation has been conducted on the enhanced server hardware.
The specification of the machine is depicted in Table 2.

We have simulated the tentative resource consumption by the
TSC conducting concurrent sequential collaborative transactions
for a large number of service components—1, 8, 16, 32, 64
and 128 concurrent transactions respectively, each executing in
a separate JVM thread. Two object sizes have been used for
replication—64 MB for the lower bound and 2048 MB for the upper
bound of the load assessment. No external processes unrelated
to benchmarking were present during the simulation load on the
system. Note, that every individual experiment has been repeated
for up to 10 times to verify the consistency of performance
indicators. The actual unit tests for TSC load simulation are
available at: https://github.com/kirillbelyaev/tinypm/blob/LPM2/
src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java.

We observed that the load has been evenly distributed on all
CPU cores by the JVM and OS SMP facility and initially utilizes 100%
on every core, gradually decreasing, as every thread executing
collaborative transaction passes the peak work section. Our main

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_Utilities_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_UnitTests_Collaboration.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java
https://github.com/kirillbelyaev/tinypm/blob/LPM2/src/test/java/TSLib_TSC_SequentialCollaboration_UnitTests.java

10 K. Belyaev, I. Ray / Future Generation Computer Systems 1 (11E1) III-RI1

Table 2
Server node specifications.
Attribute Info
CPU Intel(R) Xeon (R) E5520 @ 2.27 GHz; Cores: 8
Disk SAS: 3 Gb/s; RPM: 15 000; Model: Fujitsu; Sector size: 512 bytes
Filesystem EXT4-fs; Block size: 4096 bytes; Size: 40 GB; Use: 1%
RAM 24GB
oS Fedora 24, Linux kernel 4.7.5-200
Java VM Open]DK 64-Bit Server SE 8.0_102

. TSC Simulation Statistics - Sequential Collaboration

3000

2500

2000

1500

B B 1 thread
B-B 8threads
™ H-W 16 threads
I B 32 threads
=00 B-B 64 threads
F [@ 128 threads
00

1000

Resident Set Size in RAM (MB)

20 40 60 80 100 120
Replication Time (seconds)

Fig. 13. Tuple space controller simulation information for a 64 MB Object.

3500 TSC Simulation Statistics - Sequential Collaboration

[Peak RSS
3000 || mmm EOE RSS

2500
2000
1500

1000

500 :.
0

1 8 16 32 64 128
Number of Transactional Threads

Resident Set Size in RAM (MB)

Fig. 14. Tuple space controller simulation information for a 2048 MB object.

focus is on RAM consumption since it is critically important to
estimate its usage by potentially tens of concurrent transactions
performed by TSC. The replication time and RSS info associated
with a 64 MB data object is depicted in Fig. 13. For a single
transaction executing within a single JVM thread the RSS is 159 MB
with replication time at 0.78 s. For 128 concurrent transactions
executing in independent JVM threads the cumulative upper
bound for RSS is 3415 MB with last transaction to complete
replication at the threshold of 110.858 s. The replication time
nearly doubles with the proportional increase of the number of
objects that need to be replicated. However, the memory usage
does not generally double with load increase. The upper bound of
3415 MBrepresents only 14 to 15% of the available system memory
depicted in Table 2. Therefore, the simulation shows that TSC
could be rather memory-efficient on a larger scale with replication
of small data objects for a large number of requesting service
components.

The RSS info, associated with replication of a 2048 MB data
object is depicted in Fig. 14. Due to limitations of disk partition
size we have not been able to run the 32, 64 and 128 thread
experiments until completion to record the final replication
time. The experiments terminate at the point of partition space
saturation. However, two key indicators have been observed: peak
RSS shows the highest memory allocation observed for a repeated
number of simulations; End of Execution (EOE) RSS shows the

highest memory allocation observed at transaction termination
time for a repeated number of simulations. For a single transaction
executing within a single JVM thread, the peak RSS was observed
to be 552 MB with EOE RSS at 515 MB. We can see a consistent
increase in peak RSS with progressive increase in the number
of transactions. For 128 concurrent transactions executing in
independent JVM threads, the peak RSS reaches 3298 MB with EOE
RSS at 3170 MB. However, we do not see the drastic difference in
memory consumption between 8 and 128 transactional threads. In
fact, peak RSS for 8 concurrent threads is 2525 MB—a mere 700 MB
difference observed with peak RSS for 128 threads. Such results,
once again, empirically confirm that actual TSC implementation
could be rather memory efficient at a larger scale, occupying only
a fraction of available system RAM at peak load times on modern
server hardware.

The important fact to observe is that the peak RSS with
the same number of concurrent transactions has been nearly
identical for two different data object sizes depicted in Figs. 13
and 14. In fact, the RSS is slightly larger for 128 transactions
associated with a 64 MB data object. That shows, that object
size does not have a strong impact on the real memory usage
of individual collaborative transaction conducted through our TSL
implementation. As already mentioned, this is largely due to the
use of Java NIO library [31] in our TSL implementation. It also shows
that modern Java platforms could often times provide a viable
alternative to compiled languages such as C++ for complex and
secure enterprise-grade middleware implementations [33].

For the sake of completeness we provide the actual replication
time before disk saturation observed for the TSC load simulation
associated with a 2048 data object depicted in Fig. 14. For a
single transaction executing within a single JVM thread the average
replication time is 22.406 s. For 8 threads the average replication
time is 199.545 s. For 16 threads the average replication time
to concurrently complete the replication of 16 2048 MB data
objects is reported to be 431.72 s. Note, that reported replication
time might be nearly irrelevant in real-world settings where
dozens of concurrently running service components could add
additional 1/O load on the server storage hardware with service-
specific filesystem activity. That could significantly increase the
completion time of a single collaborative transaction for a set of
large data objects.

8. Discussion on user-space LPM

Our framework is supported through the user-space LPM refer-
ence monitor which becomes the main differentiator in contrast to
most existing works (covered in Section 9) that are mainly based
on kernel-space solution such as SELinux [34] and DTE [29]. In con-
trast to such kernel-level solutions, LPM provides access control fa-
cilities that are mainly oriented towards containerized application
services that operate in user space under unprivileged UIDs and
may need incremental access to OS and hardware resources me-
diated through kernel. The isolated components of such services
that require specific elevated privileges are given them through the
notion of LPM’s capabilities classes abstraction (discussed in Sec-
tion 2) without a need to incorporate direct kernel-level support

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

K. Belyaev, I. Ray / Future Generation Computer Systems 1 (1111) INI-EIN 11

into the reference monitor. At the same time, secure information
flow between such components does not require kernel-space sup-
port because components exchange business-logic flows through
customized tuple space abstraction in user-space. In fact, media-
tion of intensive data flows through kernel-level IPC has two in-
herent problems. First, its performance is architecturally limited
by the cost of invoking the kernel and mediating cross-address
space interaction for two communicating components. Inherently,
the cost of context switching from kernel space to user space for
large data transfers can be detrimental to overall system perfor-
mance [24]. Second, service components execute in user space and
therefore benefit from IPC mechanism implemented through user-
level libraries [24] such as our TSL implementation that avoids
complexities of message passing that requires additional synchro-
nization primitives [7]. For instance, user-space IPC daemons such
as D-Bus [20] (discussed in Section 3) have been specifically de-
signed to leverage such user-space advantages. Moreover, having
the kernel copy application-level data and coordination messages
between address spaces of interacting service components is nei-
ther necessary nor sufficient to guarantee safety [24,11].

One of the main advantages of the user-space design for the
reference monitor are portability, ease of implementation and in
some sense correctness. LPM does not destabilize the kernel [7,
11]. At the same time, our user-space reference monitor may
benefit from tighter integration with OS kernel through user-level
interface such as Linux Security Modules [28] (LSM) hooks or
related mediation layers. For instance, LPM already utilizes the
capabilities management through calls to user-space LibCap [8]
library that has direct interface to kernel. Note, that enforcement
of more fine-grained, execution-specific security policies for
individual isolated service components is possible through existing
kernel-space access control solutions such as SELinux that may be
used in combination with our user-space reference monitor.

9. Related work

Traditionally, Linux environments supported DAC which allows
read, write, and execute permissions for three categories of users,
namely, owners, groups, and all others for managing access to
files and directories in the user-space. Another type of supported
access control is based on the Mandatory Access Control (MAC)
designed to enforce system policies: system administrators specify
policies which are checked via run-time hooks inserted into many
places in the operating system’s kernel. For managing access
to system resources, typically superuser privileges are needed.
Each file in the system is annotated with a numerical ownership
UID. Applications needing access to system resources temporarily
acquire the privilege of the superuser. The superuser is assigned
UID = 0—a process executing with this UID can bypass all access
control rules. This simple model violates the principle of least
privilege.

Researchers have proposed Domain and Type Enforcement
(DTE) [35,29,30] for Linux and UNIX environments. Type enforce-
ment views a system as a collection of active entities (subjects) and
a collection of passive entities (objects) [29,30]. DTE is designed to
provide MAC to protect a system from subverted superuser pro-
cesses as the access control is based on enforceable rule sets. The
DTE model, unlike the other Linux approaches, avoids the concept
of users and only concentrates on applications [29,30]. Our work,
like DTE, also concentrates on access control requirements of appli-
cations and their interaction. We also express policies in a human
readable form. However, our LPM is entirely resident in user-space
in contrast to DTE that offers kernel level solution. Moreover, we
target the access control requirements necessary for the manage-
able deployment of large numbers of localized isolated application
services under unprivileged UIDs in isolated environments, such as

chrooted jails and application containers. Such environments were
outside the scope of DTE.

Security-Enhanced Linux (SELinux) [36,37] allows for the
specification and enforcement of MAC policies at the kernel level.
SELinux uses the Linux Security Modules (LSM) [28] hooks in the
kernel to implement its policy. The SELinux architecture is based
on the Generalized Framework for Access Control (GFAC) proposed
by Abrams [38] and LaPadula [39] and supports multiple security
models. In SELinux the policy server makes access control decisions
and the object managers are responsible for enforcing access
control decisions. It provides a policy description language for
expressing various types of policies. SELinux supports the concepts
of roles and users but is not intended for enforcing policies
at the level of individual applications. Policy description and
configuration in SELinux is non-trivial because of the relationships
between multiple models of SELinux and consequently it is a little
challenging to use [40]. Our work complements the efforts of
SELinux in that it provides access control for isolated applications
in user-space.

The Rule Set Based Access Control (RSBAC) [41] attempts to
bring more advanced access control model to Linux based server
systems. RSBAC is an open source security extension for current
Linux kernels. The kernel based patch provides high level of se-
curity to the Linux kernel and operating environment. All RS-
BAC framework components are hard-linked into the custom-built
Linux kernel. RSBAC supports divergent security policies imple-
mented as modules in a single framework. However, the frame-
work does not have a mature representation format to provide a
unified way of modeling and expressing the policies for all the di-
verse policy modules that the framework claims to support. This
limits its wide-spread adaptability. In contrast to RSBAC, our work
provides domain-specific expressive policy formulation frame-
work and is implemented in user-space that allows it to be de-
ployed on any Linux server system.

The Grsecurity package [42] is a composition of Linux kernel
patches combined with a small set of control programs. The
package aims to harden known vulnerabilities in the Linux system
while paying special attention to privilege escalation and root
exploits. The set of patches provides protection mechanisms
for file systems, executables and networks. It does this by
placing additional logic on the Linux kernel and also alters the
kernel’s own mechanisms to comply with the desired behavior.
Grsecurity does not follow any formal model of security and access
control, but emerged as a composition of countermeasures against
several known weaknesses, vulnerabilities, or concrete attacks.
Consequently, analysis of the security properties of the various
mechanisms is non-trivial.

The application-level access control is emphasized in Decen-
tralized Information Flow Control (DIFC) [43]. DIFC allows applica-
tion writers to control how data flows between the pieces of an ap-
plication and the outside world. As applied to privacy, DIFC allows
untrusted software to compute with private data while trusted se-
curity code controls the release of that data. As applied to integrity,
DIFC allows trusted code to protect untrusted software from un-
expected malicious inputs. In either case, only bugs in the trusted
code, which tend to be small and isolated, can lead to security vi-
olations. Current DIFC systems that run on commodity hardware
can be broadly categorized into two types: language-level and op-
erating system-level DIFC[11,44]. Language level solutions provide
no guarantees against security violations on system resources, like
files and sockets. Operating system solutions can mediate accesses
to system resources, but are inefficient at monitoring the flow of
information through fine-grained program data structures [44].
However, application code has to be modified and performance
overheads are incurred on the modified binaries. Moreover the
complexities of rewriting parts of the application code to use the

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

12 K. Belyaev, I. Ray / Future Generation Computer Systems 1 (11E1) III-RI1

DIFC security guarantees are not trivial and require extensive API
and domain knowledge [44]. These challenges, despite the pro-
vided benefits, limits the widespread applicability of this approach.
Our solution allows to divide the information flow between ser-
vice components into data and control planes that are regulated
through the user-space reference monitor. Therefore, no modifica-
tion to OS kernel is required. The rewrite of existing applications
for utilization of data flow may not be necessary, since a separate
flow requesting application that leverages our TSL can handle such
a task and deliver the replica of a data object to unmodified appli-
cation.

Application-defined decentralized access control (DCAC) for
Linux has been recently proposed by Xu et al. [40] that allows or-
dinary users to perform administrative operations enabling isola-
tion and privilege separation for applications. In DCAC applications
control their privileges with a mechanism implemented and en-
forced by the operating system, but without centralized policy en-
forcement and administration. DCAC is configurable on a per-user
basis only [40]. The objective of DCAC is decentralization with fa-
cilitation of data sharing between users in a multi-user environ-
ment. Our work is designed for a different deployment domain—
provision of access control framework for isolated applications
where access control has to be managed and enforced by the cen-
tralized user-space reference monitor at the granularity of individ-
ual applications using expressive high-level policy language with-
out a need to modify OS kernel.

In the realm of enterprise computing applications running on
top of Microsoft Windows Server infrastructure the aim is to pro-
vide data services (DSs) to its users. Examples of such services are
email, workflow management, and calendar management. NIST
Policy Machine (PM) [45] was proposed so that a single access
control framework can control and manage the individual capa-
bilities of the different DSs. Each DS operates in its own environ-
ment which has its unique rules for specifying and analyzing ac-
cess control. The PM tries to provide an enterprise operating en-
vironment for multi-user base in which policies can be specified
and enforced in a uniform manner. The PM follows the attribute-
based access control model and can express a wide range of policies
that arise in enterprise applications and also provides the mecha-
nism for enforcing such policies. Our research efforts are similar
to NIST PM [45] since it offers the policy management and me-
diation of data services through a centralized reference monitor.
However, our access control goals are different. We do not attempt
to model user-level policies as done by NIST PM. Our framework,
on the other hand, provides the mechanism exclusively for con-
trolled inter-application collaboration and coordination of local-
ized service components across Linux-based isolated runtime en-
vironments that also regulates access to system resources based on
the principle of least privilege. Note that, the importance of such a
mechanism that is not currently present in NIST PM is acknowl-
edged by its researchers [45].

In the mobile devices environment Android Intents [46] offers
message passing infrastructure for sandboxed applications; this is
similar in objectives to our tuple space communication paradigm
proposed for the enforcement of regulated inter-application com-
munication for isolated service components using our model of
communicative policy classes. Under the Android security model,
each application runs in its own process with a low-privilege user
ID (UID), and applications can only access their own files by de-
fault. That is similar to our deployment scheme. Our notion of ca-
pabilities policy classes is similar to Android permissions that are
also based on the principle of least privilege. Permissions are la-
bels, attached to application to declare which sensitive resources
it wants to access. However, Android permissions are granted at
the user’s discretion [47]. Our server-oriented centralized frame-
work deterministically enforces capabilities and information flow

accesses between isolated service components without consent of
such components based on the concept of policy classes. Despite
their default isolation, Android applications can optionally com-
municate via message passing. However, communication can be-
come an attack vector since the Intent messages can be vulnerable
to passive eavesdropping or active denial of service attacks [46].
We eliminate such a possibility in our proposed communication ar-
chitecture due to the virtue of tuple space communication that of-
fers connectionless inter-application communication as discussed
in Section 3. Malicious applications cannot infer on or intercept
the inter-application traffic of other services deployed on the same
server instance because communication is performed via isolated
tuple spaces on a filesystem. Moreover, message spoofing is also
precluded by our architecture since the enforcement of message
passing is conducted via the centralized LPM reference monitor
that regulates the delivery of messages according to its policies
store.

Our work also bears resemblance to the Law-Governed
Interactions (LGI) proposed by Minsky et al. [17,48] which allows
an open group of distributed active entities to interact with each
other under a specified policy called the law of the group. The
inter-application communication in our work is proposed in the
same manner via the tuple space using the Tuple Space Controller
integrated in our centralized LPM reference monitor that has
complete control over inter-application interaction [48,49].

The tuple space model as a type of shared memory, origi-
nally introduced by Linda [9] has been widely adapted for par-
allel programming tasks [50,22], support for language-level co-
ordination [21], multi-agent systems [18,49] and distributed sys-
tems [51,17,48] in general. Several commercial implementations
of tuple space paradigm have also been developed in the past,
targeting highly parallel and High-Performance Computing (HPC)
applications with enhanced support for tuple persistence, distri-
bution across network nodes and matching capabilities [22]. We
have adapted the original Linda model to serve the requirements
of secure inter-component communication within a single-node
0S with dedicated filesystem-level space per component. In com-
parison to traditional tuple spaces that allow potentially thou-
sands of tuples per single space, our search complexity is mini-
mal since only at most two tuples are allowed to be present in a
given tuple space. That is a deliberate restriction imposed by the
necessity of providing basic DoS protection and resource preserva-
tion when dealing with concurrent transfers of large data objects
made possible through our LPM middleware. As covered in Sec-
tion 3, the original paradigm has a number of resource-oriented
limitations [22] and does not offer security guarantees. For that
matter, many researchers [17,18,21,52] have conducted adapta-
tion of the original tuple space model to fit the domain-specific
requirements. The LighTS tuple space framework [53] is some-
what similar to our work in a sense that it also provides local-
ized variant of a tuple space per application with a possibility of
persistence. However, it has adapted the original operations on
Linda tuple space for use in context-aware applications. LighTS
offers support for aggregated content matching of tuple objects
and other advanced functionality such as matches on value ranges
and support for uncertain matches. Our adaptation allows coor-
dination and collaboration between isolated service components
based on precise content matching on a set of tuple fields. Our
model allows a mixed mode of information transfer between ser-
vice components—tuples can contain actual language-level objects
or could be used to replicate larger data objects such as large ASCII
file objects. Note, that no restriction on types of replicated ob-
jects exists in our TSL implementation—aside from ASCII objects,
a complete byte-level replication is entirely possible. Therefore,
data objects, such as images, could be potentially replicated be-
tween service components. We also enable dual planes of inter-
component communication—components can communicate using

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, . Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

K. Belyaev, I. Ray / Future Generation Computer Systems 1 (1111) INI-EIN 13

a control plane, data plane or both. To the best of our knowledge,
we offer the first persistent tuple space implementation that fa-
cilitates the regulated inter-application communication without a
need for applications to share a common memory address space or
requirements for address space mapping mechanisms [10,24].

10. Conclusion and future work

We have demonstrated how a Linux Policy Machine (LPM) can
be developed for the Linux environment that provides access con-
trol specification and enforcement for various service components
running in isolated environments. LPM may also be utilized in
other UNIX-based operating environments. We proposed the no-
tion of policy classes to manage policies pertaining to accessing
system and application level resources and demonstrated how reg-
ulated inter-component communication can take place through
tuple spaces. The initial prototype demonstrates the feasibility of
our approach. We plan to extend this work for distributed set-
tings [54-56] where service policies are managed, formulated and
updated in a centralized location, and then distributed and en-
forced at LPM nodes in data center settings.

We also plan to investigate the possibility of adapting
the developed framework for use with resource-constrained
devices such as IoT nodes. Consider a smart home that has
numerous interconnected devices each providing different types
of functionalities to enhance the user experience. A smart
home contains sensitive personal information about individuals,
disclosure of which has catastrophic consequences. Examples
include data related to health, finance, utility usage patterns, and
physical security. The data belonging to such multiple domains
(health, finance, work, home operation) are needed by different
stakeholders (health care providers, home security agency, utility
companies) and the access control mechanism must be ensured
that only authorized users have access to the data they need.
Many current applications and also some futuristic ones often
span multiple domains. This makes access control extremely
challenging. The access control enforcement using tuple space
paradigm may be extended for such ubiquitous environments [57].

Acknowledgments

This work was supported, in part, by support from NIST under
award nos. 70NANB15H264, 60NANB16D249 and 60NANB16D250
and by support from National Science Foundation (NSF) under
award nos. CNS 1619641 and IIP 1540041.

References

[1] Linux Containers Developers. What are Linux Containers? 2016.
https://linuxcontainers.org/lxc/introduction/ (accessed 18.09.16).

[2] Docker Developers. What is Docker? 2016. https://www.docker.com/what-
docker/ (accessed 18.09.16).

[3] Linux Programmers Manual. Kernel Namespaces, 2016. http://man7.org/
linux/man-pages/man7/namespaces.7.html (accessed 18.09.16).

[4] Poul-Henning Kamp, Robert Watson, Building systems to be shared, securely,
ACM Queue 2 (5) (2004) 42.

[5] Poul-Henning Kamp, Robert Watson, Jails: Confining the omnipotent root, in:
Proc. of SANE, Vol. 43, 2000, p. 116.

[6] Solaris Zones Developers. What are Solaris Zones? 2016. http://docs.oracle.
com/cd/E36784_01/html/E36848/docinfo.html (accessed 01.11.16).

[7] Kirill Belyaev, Indrakshi Ray, Towards access control for isolated applications,
in: Proc. of SECRYPT, SCITEPRESS, 2016, pp. 171-182.

[8] Linux Programmer’s Manual. LIBCAP Manual, 2016. http://man7.org/linux/
man-pages/man3/libcap.3.html (accessed 18.09.16).

[9] David Gelernter, Generative communication in Linda, ACM Trans. Program.
Lang. Syst. (TOPLAS) 7 (1) (1985) 80-112.

[10] Kirill Belyaev, Indrakshi Ray, Component-oriented access control for deploy-
ment of application services in containerized environments, in: Proc. of CANS,
in: LNCS, vol. 10052, Springer, 2016, pp. 383-399. volume.

[11] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, Robert Morris, Information flow control for standard
0S abstractions, ACM SIGOPS Oper. Syst. Rev. 41 (6) (2007) 321-334.

[12] n-Logic Ltd. n-Logic Web Caching Service Provider, 2016.
http://n-logic.weebly.com/ (accessed 18.09.16).

[13] Linux Kernel Developers. Transparent Proxy Support, 2017. https://www.
kernel.org/doc/Documentation/networking/tproxy.txt (accessed 10.03.17).

[14] Linux Developers. Linux Programmer’s Manual, 2016. http://man7.org/linux/
man-pages/man7/capabilities.7.html (accessed 18.09.16).

[15] CoreOS Developers. What is Core0S? 2016. https://coreos.com/docs/ (ac-
cessed 18.09.16).

[16] Serge E. Hallyn, Andrew G. Morgan, Linux capabilities: Making them work, in:
Proceedings of OLS, 2008, p. 163.

[17] Naftaly H. Minsky, Yaron M. Minsky, Victoria Ungureanu, Making tuple spaces
safe for heterogeneous distributed systems, in: Proc. of ACM SAC, 2000, pp.
218-226.

[18] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, XML dataspaces for
mobile agent coordination, in: Proc. of ACM SAC, ACM, 2000, pp. 181-188.

[19] Michael K. Johnson, Erik W. Troan, Linux Application Development, Addison-
Wesley Professional, 2004.

[20] Inc. Havoc Pennington, Red Hat. D-Bus Specification, 2016. https://dbus.
freedesktop.org/doc/dbus-specification.html (accessed 18.09.16).

[21] Jan Vitek, Ciaran Bryce, Manuel Oriol, Coordinating processes with secure
spaces, Sci. Comput. Programming 46 (1) (2003) 163-193.

[22] Vitaly Buravlev, Rocco De Nicola, Claudio Antares Mezzina, Tuple spaces
implementations and their efficiency, in: Coordination, Springer, 2016,
pp. 51-66.

[23] George C. Wells, New and improved: Linda in Java, Sci. Comput. Programming
59 (1) (2006) 82-96.

[24] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, Henry M. Levy,
User-level interprocess communication for shared memory multiprocessors,
ACM Trans. Comput. Syst. (TOCS) 9 (2) (1991) 175-198.

[25] George Wells, Interprocess communication in Java, in: PDPTA, 2009, pp.
407-413.

[26] XStream Developers. XStream Serialization Library, 2016. http://x-
stream.github.io/ (accessed 18.09.16).

[27] Kirill Belyaev, Linux Policy Machine (LPM) - Managing the Application-Level
OS Resource Control in the Linux Environment, 2016. https://github.com/
kirillbelyaev/tinypm/tree/LPM2 (accessed 18.09.16).

[28] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, Greg Kroah-
Hartman, Linux Security Modules: General security support for the Linux
Kernel, in: Proceedings of USENIX SS, 2002, pp. 17-31.

[29] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, Sheila
Haghighat, Practical domain and type enforcement for UNIX, in: Proceedings
of IEEE SSP, IEEE, 1995, pp. 66-77.

[30] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, Sheila A.
Haghighat, A domain and type enforcement UNIX prototype, Comput. Syst. 9
(1)(1996) 47-83.

[31] Java NIO Developers. Java Non-blocking I/O Library, 2016. http://en.wikipedia.
org/wiki/Non-blocking_I/O_(Java) (accessed 25.10.16).

[32] Xianzhang Chen, Edwin H.-M. Sha, Qingfeng Zhuge, Weiwen Jiang, Junxi Chen,
Jun Chen, Jun Xu, A unified framework for designing high performance in-
memory and hybrid memory file systems, J. Softw. Appl. 68 (2016) 51-64.

[33] Matt Welsh, David Culler, Eric Brewer, SEDA: An architecture for well-
conditioned, scalable Internet services, ACM SIGOPS Oper. Syst. Rev. 35 (5)
(2001) 230-243.

[34] SELinux Developers. Security Enhanced Linux, 2016. http://selinuxproject.
org (accessed 18.09.16).

[35] Serge Hallyn, Phil Kearns, Domain and type enforcement for Linux, in:
Proceedings of ALS, 2000, pp. 247-260.

[36] Peter Loscocco, Integrating flexible support for security policies into the linux
operating system. in: Proceedings of USENIX ATC, FREENIX Track, 2001, p. 29.

[37] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, J. Lepreau, The
flask security architecture: System support for diverse security policies, in:
Proceedings of USENIX SS, 1999.

[38] M.D. Abrams, K.W. Eggers, L.J. LaPadula, .M. Olson, Generalized framework for
access control: An informal description, in: Proceedings of NCSC, 1990.

[39] Leonard LaPadula, Rule-set modeling of trusted computer system,
in: M. Abrams, S. Jajodia, H. Podell (Eds.), Information Security: An Inte-
grated Collection of Essays, IEEE Computer Society Press, 1995.

[40] Yuanzhong Xu, Alan M. Dunn, Owen S. Hofmann, Michael Z. Lee, Syed Akbar
Mehdi, Emmett Witchel, Application-defined decentralized access control, in:
Proc. of USENIX ATC, 2014, pp. 395-408.

[41] Amon Ott, Simone Fischer-Hiibner, The rule set based access control (RSBAC)
framework for Linux, in: Proceedings of ILK, 2001.

[42] GrSecurity Developers. What is GrSecurity? 2016. https://grsecurity.net (ac-
cessed 18.09.16).

[43] Andrew C. Myers, Barbara Liskov, Protecting privacy using the decentralized
label model, ACM Trans. Softw. Eng. Methodol. (TOSEM) 9 (4) (2000) 410-442.

[44] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. Mckinley,
Emmett Witchel, Laminar: Practical fine-grained decentralized information
flow control, ACM SIGPLAN Not. 44 (6) (2009) 63-74.

[45] David Ferraiolo, Serban Gavrila, Wayne Jansen, On the unification of access
control and data services, in: Proceedings of IEEE IRI, IEEE, 2014, pp. 450-457.

[46] Erika Chin, Adrienne Porter Felt, Kate Greenwood, David Wagner, Analyzing
inter-application communication in android, in: Proc. of ACM MobiSys, ACM,
2011, pp. 239-252.

[47] Alessandro Armando, Roberto Carbone, Gabriele Costa, Alessio Merlo, Android
permissions unleashed, in: Proceedings of IEEE CSF, IEEE, 2015, pp. 320-333.

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

https://linuxcontainers.org/lxc/introduction/
https://www.docker.com/what-docker/
https://www.docker.com/what-docker/
https://www.docker.com/what-docker/
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref4
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://docs.oracle.com/cd/E36784_01/html/E36848/docinfo.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://man7.org/linux/man-pages/man3/libcap.3.html
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref9
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref10
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref11
http://n-logic.weebly.com/
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
https://www.kernel.org/doc/Documentation/networking/tproxy.txt
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://coreos.com/docs/
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref18
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref19
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref21
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref22
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref23
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref24
http://x-stream.github.io/
http://x-stream.github.io/
http://x-stream.github.io/
https://github.com/kirillbelyaev/tinypm/tree/LPM2
https://github.com/kirillbelyaev/tinypm/tree/LPM2
https://github.com/kirillbelyaev/tinypm/tree/LPM2
https://github.com/kirillbelyaev/tinypm/tree/LPM2
https://github.com/kirillbelyaev/tinypm/tree/LPM2
https://github.com/kirillbelyaev/tinypm/tree/LPM2
https://github.com/kirillbelyaev/tinypm/tree/LPM2
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref29
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref30
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://en.wikipedia.org/wiki/Non-blocking_I/O_(Java)
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref32
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref33
http://selinuxproject.org
http://selinuxproject.org
http://selinuxproject.org
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref39
https://grsecurity.net
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref43
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref44
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref45
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref46
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref47

14 K. Belyaev, I. Ray / Future Generation Computer Systems 1 (11E1) III-RI1

[48] Naftaly H. Minsky, Victoria Ungureanu, Unified support for heterogeneous
security policies in distributed systems, in: Proc. of USENIX SS, 1998, pp.
131-142.

[49] Marco Cremonini, Andrea Omicini, Franco Zambonelli, Coordination and
access control in open distributed agent systems: The TuCSoN approach,
in: Proc. of Coordination, Springer, 2000, pp. 99-114.

[50] George C. Wells, Alan G. Chalmers, Peter G. Clayton, Linda Implementations
in Java for concurrent systems, Concurr. Comput.: Pract. Exper. 16 (10) (2004)
1005-1022.

[51] Roberto Lucchi, Gianluigi Zavattaro, WSSecSpaces: a secure data-driven
coordination service for web services applications, in: Proceedings of ACM
SAC, ACM, 2004, pp. 487-491.

[52] Jia Yu, Rajkumar Buyya, A novel architecture for realizing grid workflow using
tuple spaces, in: Proc. of Intl. Workshop on Grid Computing, IEEE, 2004, pp.
119-128.

[53] Davide Balzarotti, Paolo Costa, Gian Pietro Picco, The LighTS tuple space
framework and its customization for context-aware applications, WAIS 5 (2)
(2007) 215-231.

[54] Kirill Belyaev, Indrakshi Ray, Towards efficient dissemination and filtering of
XML data streams, in: Proc. of IEEE DASC, IEEE, 2015, pp. 1870-1877.

[55] Jatinder Singh, Jean Bacon, David Eyers, Policy enforcement within emerging
distributed, event-based systems, in: Proceedings of ACM DEBS, ACM, 2014,
pp. 246-255.

[56] Kirill Belyaev, Indrakshi Ray, Enhancing applications with filtering of XML
message streams, in: Proc. of IDEAS, ACM, 2016, pp. 322-327.

[57] Paolo Costa, Luca Mottola, Amy L. Murphy, Gian Pietro Picco, TeenyLIME:
Transiently shared tuple space middleware for wireless sensor networks,
in: Proc. of MidSens, ACM, 2006, pp. 43-48.

Kirill Belyaev is a Ph.D. Candidate in the Department of
Computer Science at Colorado State University.

Indrakshi Ray is a Professor of Computer Science at
Colorado State University. She obtained her Ph.D. from
George Mason University.

Please cite this article in press as: K. Belyaev, I. Ray, Component-oriented access control—Application servers meet tuple spaces for the masses, Future Generation Computer

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.05.003

http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref49
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref50
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref51
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref53
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref54
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref55
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref56
http://refhub.elsevier.com/S0167-739X(17)30927-5/sbref57

	Component-oriented access control---Application servers meet tuple spaces for the masses
	Introduction
	Component-oriented access control framework
	Motivating example
	Capabilities class
	Communicative class

	Communication architecture
	IPC constraints
	Tuple space paradigm
	Paradigm limitations
	Paradigm adaptation

	Tuple space transactions
	Coordinative transaction
	Collaborative transaction
	Transactional API

	Security aspects
	System architecture
	Experimental results
	Load simulation of tuple space controller

	Discussion on user-space LPM
	Related work
	Conclusion and future work
	Acknowledgments
	References

