
Fresh-Phish: A Framework for Auto-Detection of Phishing Websites

Hossein Shirazi, Kyle Haefner, Indrakshi Ray

Department of Computer Science
Colorado State University

Fort Collins, USA
Email: {shirazi, kyle.haefner , iray}@colostate.edu

Abstract—Denizens of the Internet are coming under a
barrage of phishing attacks of increasing frequency and sophis-
tication. Emails accompanied by authentic looking websites are
ensnaring users who, unwittingly, hand over their credentials
compromising both their privacy and security. Methods such
as the blacklisting of these phishing websites become untenable
and cannot keep pace with the explosion of fake sites. Detection
of nefarious websites must become automated and be able to
adapt to this ever evolving form of social engineering.

We develop a framework, called "Fresh-Phish", for creating
current machine learning data for phishing websites. Using 30
different website features that we query using python, we build
a large labeled dataset and analyze several machine learning
classifiers against this dataset to determine which is the most
accurate. We analyze not just the accuracy of the technique,
but also how long it takes to train the model.

Keywords-Phishing, Machine Learning, TensorFlow

I. INTRODUCTION

Phishing, defined as, "the attempt to obtain sensitive

information such as user-names, passwords, and credit card

details, often for malicious reasons, by masquerading as a

trustworthy entity in an electronic communication" [1], is a

problem that is as old as the Internet itself. Trying to get

unsuspecting users to give up their money, credentials or

privacy is a particularly insidious form of social engineering

that can have disastrous affects on people’s lives. Often this

type of attack arrives in the form of an email containing the

first part of what Chaudhry et al. describe as the lure, the

hook and the catch [2].

The lure is what entices the user to click on a link.

It can be advertising a way to get easy money, obtain

an illicit product, or a warning that a user’s account has

been compromised or blocked in some fashion. The hook

is often a website that is designed to mimic a legitimate

website of a reputable organization such as a bank or other

financial institution. The hook is used to trick the user into

entering and submitting their credentials such as user-name,

password, credit card number, etc. The catch is when the user

has submitted their private information and the malicious

owner of the website collects and uses this information to

exploit the user and his accounts.

Figure 1 shows the number of phishing attacks has been

increased year over year for the last decade. Anti-Phishing

Figure 1: Graph of reported phishing incidents - First quarter

of 2016

Working Group (APWG) reported an alarming 250% in-

crease from the last quarter of 2015 to the first quarter of

2016 [3].

Not only have phishing attempts evolved and become

more sophisticated, the motivation for implementing these

attacks has changed as well. Attackers today are no longer

curious hackers probing the security of systems: their pri-

mary goal has become financial gain. Figure 2 charts the

fourth quarter of 2016 showing that 41% targeted industries

are retail/services and 19% of them financial institutions.

This wide diversity of targeted services, coupled with the

trend of increasing attacks demonstrates that end-users are

in more danger from more sources than ever before. [4]

Phishing is a growing multi-vector problem that has real

and devastating consequences for users. It is a problem

growing in sophistication, scope and reach. Automated de-

tection techniques are critical to a safe and secure Internet.

We believe that machine learning is an ideal method for

providing this automated detection, however work to date

leaves out one critical variable in this equation; we need an

open and extensible framework capable of generating up-

to-date data for researchers. We call this framework, Fresh-

Phish.

There is no recent machine learning data that has been

published on phishing websites. The data that does exist

is several years out of date, a serious problem given the

2017 IEEE International Conference on Information Reuse and Integration

978-0-7695-6243-8/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.40

137

2017 IEEE International Conference on Information Reuse and Integration (IRI)

978-1-5386-1562-1/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.40

137

2017 IEEE International Conference on Information Reuse and Integration

978-1-5386-1562-1/17 $31.00 © 2017 IEEE

DOI 10.1109/IRI.2017.40

137

Figure 2: Graph of reported phishing incidents - Fourth

quarter of 2016 [4]

dynamic nature of the Internet. There is also no published

framework, that we are aware of, for gathering new data.

In this paper we introduce an open-source python-based

framework called Fresh-Phish for generating up-to-date data

of websites for training machine learning algorithms. The

Fresh-Phish framework is intended to be an extensible

building block that other researchers can modify, add, delete,

or change what features are used to build datasets. We used

our framework to crawl over 12,000 websites to generate

a large labeled dataset with which we tested and analyzed

several different machine learning techniques to accurately

identify phishing websites.

The rest of the paper is organized as follows: In Section

II we discuss several works that use automated techniques

to identify phishing websites. In Section III , we layout how

we implement our Fresh-Phish framework for calculating

a phish rank on 30 website features originally defined by

Mohammad et al. [5]. We show how we use our framework

to build a up-to-date dataset with thousands of labeled

examples. In Section IV we calculate which features are

the most important in detecting phishing websites as well

as examine various machine learning algorithms trained

and tested on our dataset for accuracy and training time.

In Section V we summarize how our open and published

framework was built and how it can be successfully used

to generate data for further research and also discuss future

works with regards to the other features that we plan to

explore and additional machine learning algorithms that we

would like to apply for detecting phishing websites. In

the Appendix we show how we define and calculate each

website feature.

II. RELATED WORKS

Work to date on detecting phishing attacks largely follows

a two pronged approach: detecting and filtering of phishing

email, and detecting and filtering of the phishing websites

that are linked in the email. Both of these approaches are

necessary. Phishing email has become more sophisticated

and targeted and can slip past filters. Additionally, there are

several other vectors that are used by phishers that bypass

emails such as malware attacks, session hijacking, search

engine phishing, SMS, social networking and even online

games! [6].

Basnet et al. employed a wide range of machine learn-

ing techniques including Support Vector Machines (SVM),

Neural-Networks, self-organizing maps and K-Means to

detect phishing emails [7]. They used features of emails only,

not the websites that were linked in the email.

Miyamoto et al. [8] provide an overview of several differ-

ent machine learning techniques, including SVM, Random

Forests, Neural Networks, Naive Bayes and Bayesian Addi-

tive Regression Trees. They analyze how accurate each one

is on a dataset developed by Z. Hong et al., called CANTINA

[9]. Miyomoto et al. achieved a maximum accuracy of

91.34%.

The popular browser, Firefox, checks each website that

you visit against reported phishing, unwanted software and

malware lists. These lists are automatically downloaded and

updated every 30 minutes or so when the "Phishing and

Malware Protection" feature is enabled [10].

Finally we looked at Mohammad et al. [5] data published

to the UCI database and their follow-up work that applies

machine learning techniques to this data where they achieve

an accuracy of 94.07%. They defined a good set of features

and then created their dataset. [11]. While Mohammad

et al. published just their dataset, we created an open-

source framework which can measure all features defined by

Mohammad et al. The framework can be used as a standard

base in which to build up-to-date datasets as well as can be

extended by other researchers to address the dynamic nature

of phishing websites.

III. METHODS

A. Creating a phishing dataset

The data based on features of websites on the Internet

quickly become out of date and stale. To get an up-to-

date analysis on the performance of our classifiers we built

a framework for creating a new dataset for testing and it

uses the same feature definitions that Mohammad et al. [5]

used, but implemented in python. For determining Whois

data, we used the API provided by Whoisxmlapi.com [12].

To create our dataset, we scanned the top 6000 sites in

the Alexa database and 6000 online phishing sites obtained

from phishtank.com. We made two assumptions here. First,

all of the top 6000 websites on Alexa were legitimate

sites. We believe this to be a valid assumption because

of the ephemeral nature of phishing websites, they tend to

pop in and out of existence (as is evidenced by the short

domain registration times) to evade being blocked or tagged

as phishing. The top 6000 sites ranked in Alexa must be

popular, and have been around for a longer period of time

to attain this ranking.

138138138

Second, we assumed that websites found on the phish-

tank.com were phishing websites. Phishtank incorporates a

community of registered users who report sites as phishing.

Each member is ranked by the community and builds a good

reputation by correctly reporting if a website is phishing or

not. Since it is a very well-known repository for phishing

websites, we can trust its decision for labeling a website as

a phishing one.

B. Implemented Features

Mohammad et al. [5] used 30 different features to create

their dataset. In this work, we used their definitions to create

our own dataset. These features can be categorized in five

different categories:

• URL Based

• DNS Based

• External Statistics

• HTML Based

• JavaScript Based

1) URL Based: URL based features are based on some

aspect of the URL of the website. Attackers try to use the

URL to deceive users by obsufucating it in some fashion.

For example, URLs that have an IP address, an ‘at‘’ symbol

(@), double slash, contain a prefix or suffix are all methods

employed to disguise a URL. Other notable methods are the

length of URL, whether the website has a sub-domain, uses

a shortening service or uses a non-standard port.

2) DNS Based: DNS based features use information of

the domain such as when the domain was first registered

and how long the registration is valid.

3) External Statistics: External statistics based features

use data gathered from places like Alexa’s page rank, and

if the site is present in Google’s search index.

4) HTML Based: The HTML served by a website con-

tains many valuable features used to determine if the site

is phishing or not. Examples of these features include

whether the website has a favicon, and if the images and

JavaScript have the same source URL as the serving website.

Other HTML based features are whether the site implements

iFrames, how many links point outside the serving domain,

etc.

5) JavaScript Based: JavaScript based features look for

specific ways that JavaScript can be used to trick the end

user. Some of these include things like using JavaScript to

submit form data to email, mouse over techniques that hide

URLs or prevent right clicks and pop-up windows.

The definitions of the features are described in Appendix.

C. Fresh-Phish dataset

Using our framework we were able to gather information

about 6000 legitimate and 6000 phishing websites. We have

published this dataset and made it publicly available on [13].

It includes values for 30 different features, assigned label

and URL of each data item. Each feature was assigned

a value based on if it was believed to be legitimate (-1),

or phishy (1). For non-binary features like (age of domain

or linksPointingToPage) we used a threshold. You can find

detailed explanation of each in the Appendix.

Each example had a corresponding label: 1 for phishy, -1

for legitimate.

D. Classifiers

We implemented four classifiers using the Tfcontrib [14]

library, and two classifiers using the scikit-learn library [15]

to compare their accuracy on our dataset.

Using TensorFlow and TFcontrib we built a deep neural

network (DNN) using the following built-in optimizations,

Adadelta, Adagrad, and GradientDescent. For each opti-

mization we varied the structure of the neural network by

changing the number of hidden layers from one to three and

varying the number of neurons in each hidden layer from

10 to 1000. We also used TensorFlow to implement a linear

classifier.

Using scikit-learn we built an SVM using stratified K fold

for validation and grid search with cost C = [10−3...105]
and γ = [10−3...105]. The best hyper-parameters found

were: C = 100 and the kernel coefficient gamma: γ = 0.316
The best kernel was the Gaussian/RBF kernel. Finally we

built a SVM using a linear kernel, again using stratified K

fold for validation.

The code for the Fresh-Phish framework has been pub-

lished on Github [16]

IV. RESULTS AND DISCUSSION

A. Feature Elimination

To find the most important features in our dataset, we

used the coefficients of a linear model as an external

estimator that assigns weights to features. We next employed

a recursive feature elimination (RFE) approach to reduce

the set of features to the most relevant by creating an RFE

object in scikit-learn and computing a cross-validated score

whose accuracy is proportional to the number of correct

classifications.

Figure 3 shows the trend of accuracy versus selected

features. According to Figure 3, we recursively train the

model and at each step we remove the weakest performing

feature. Each feature is weighted according to when it was

removed. The figure shows the accuracy as we add our

top performing features into the model. Accuracy climbs

until we reach the tenth most important feature, thereafter

accuracy declines sharply and then becomes flat.

Based on what we have done, the following are the list

of 10 most important features of Fresh-Phish dataset:

• URL length

• Using shortening service

• Prefix and suffix

• Uses non-standardstandard port

139139139

Figure 3: Feature removal vs. Accuracy

Figure 4: ROC Curve of implemented models

• HTTPS token

• Request URL

• Redirect page

• OnMouseOver

• PopUp widnow

• Google index

For details of features definition and implementation,

please refer to Appendix.

B. Receiver Operating Characteristic of Classifier

For observing True-Positive (TP) and False-Positive (FP)

rates in a classifier, a very common method is to plot

Receiver Operating Characteristic (ROC) [17]. Figure 4

shows the ROC curve for the six models implemented. As

seen in the figure, the TensorFlow neural network using

the GradientDescent optimizer is the best model followed

closely by SVM using the Gaussian kernel. The least effec-

tive classifiers were the two linear classifiers.

C. Accuracy of Classifier

We ran all of our trained classifiers against the data col-

lected by the Fresh-Phish framework. We randomly selected

80% of Fresh-Phish dataset for training and reserved 20%

for testing. We ran this experiment 10 times and used the

average as the final results.

Table.I shows the Accuracy Under the Curve (AUC) for

all six different classifier which we tested on our data set as

well as the true-positive and true-negative accuracy of each

website. With the exception of linear SVM and TensorFlow,

all classifiers have an AUC around 90%. Notably, the results

show that linear classifiers are not an ideal model for this

data.

Accuracy of legitimate websites for different classifiers

are around 90% except linear ones. Accuracy for phishing

sites are around 89%. This symmetry shows that the clas-

sifiers were able to correctly label both true-positives and

true-negatives with an acceptable rate.

An interesting observation here is: SVM linear has a very

good result for detecting phishing websites even though it

is not as good at detecting true-negative legitimate sites as

other classifiers. It can predict phishing websites around 91%

, which is an acceptable rate.

Table I: Data Accuracy

Classifier Accuracy
AUC TN TP

TensorFlow Adagrad 0.8973 0.9027 0.8933
TensorFlow Adadelta 0.8970 0.9038 0.8916
TensorFlow GradientDescent 0.8972 0.9028 0.8928
TensorFlow Linear 0.8153 0.7676 0.8692
SVM Guassian 0.8932 0.8952 0.8921
SVM Linear 0.8250 0.7716 0.9177

Table.II shows the fitting and predicting time. True-

Negative (TN) shows the percentage of legitimate websites

which are correctly identified by the classifier while True-

Positive (TP) is the percentage of phishing websites that

have been correctly detected. It is obvious that TensorFlow

consumed much more processing time than SVM for fitting.

The prediction time for all of the classifiers is nominal. For

all of our experiments we fit the classifier 10 times over a

shuffled dataset and calculated the average time to train. For

each of these trained classifiers we calculated the average

prediction time. For this dataset the results show that the

extra training required of neural networks over SVM was

not worth the minuscule gains in accuracy.

V. CONCLUSION AND FUTURE WORKS

Detecting phishing websites is an evolving game of cat

and mouse. Publishers of phishing websites have developed

increasingly sophisticated techniques and authentic looking

sites to fool unsuspecting users. We developed the Fresh-

Phish framework, as there is no open-source framework

which measures features for any given website. Also, we

140140140

Table II: Training Time and Predicting Time

Classifier
Average Time

Fit Time (s) Predict Time (s)
TensorFlow Adagrad 181.01 0.62
TensorFlow Adadelta 186.47 0.63
TensorFlow GradientDescent 178.31 0.52
TensorFlow Linear 139.48 0.13
SVM Guassian 7.13 0.38
SVM Linear 3.75 0.28

created an up-to-date data set which can be used by other

researchers. We took 6000 clean websites and 6000 phishing

websites and created our Fresh-Phish dataset subsequently

we trained our classifier over this dataset.

We also analyzed a TensorFlow-based neural network, a

TensorFlow-based linear classifier, an SVM with a Gaussian

kernel and an SVM with a linear kernel against the Fresh-

Phish data set. We found that the TensorFlow implemen-

tations took significantly longer to train while being only

marginally more accurate than the SVM. We achieved an

accuracy as high as 90% for the Fresh-Phish test data using

a Gaussian kernel SVM.

In our future work we will improve our Fresh-Phish

framework to increase its accuracy by determining features

that distinguish between legitimate and phishing websites.

Instead of relying on others’ definitions for features [5]

we will define our own. Additionally we will not use just

binary values calculated by an arbitrary threshold, but will

include ranges for such features where it makes logical

sense, for example URL Length. Also, we will examine

which features are no longer relevant. For example, the

onMouseOver feature which attempts to mask a phishing

URL in the browser status bar has become largely invalid

as modern browsers no longer allow this to be exploited.

Next we will explore further correlations between phish-

ing sites and hosting and DNS registration companies. We

will also look at additional features that can be leveraged,

such as Content Security Policies, certificate authorities,

and TLS fingerprinting. Additionally, we will implement

other machine learning techniques such as random forest

classifiers for speed and accuracy and compare them to

SVMs, and neural networks.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from NSF

under award number CNS 1650573 and funding from Cable-

Labs, Furuno Electric Company, SecureNok, and Air Force

Research Laboratory.

We would like to thank the WhoisXMLAPI website who

supported us with their XML API to getting information of

DNS records of each websites.

REFERENCES

[1] Wikipedia, “Phishing — Wikipedia, the free encyclopedia,”
2016. [Online; accessed 21-October-2016].

[2] J. A. Chaudhry, S. A. Chaudhry, and R. G. Rittenhouse,
“Phishing attacks and defenses,” International Journal of
Security and Its Applications, vol. 10, no. 1, pp. 247–256,
2016.

[3] Various, “Anti-phishing working group,” 2016. [Online;
accessed 04-April-2017].

[4] Various, “Anti-phishing working group,” 2017. [Online;
accessed 04-April-2017].

[5] R. M. Mohammad, F. Thabtah, and L. McCluskey, “An
assessment of features related to phishing websites using an
automated technique,” in Internet Technology And Secured
Transactions, 2012 International Conference for, pp. 492–
497, IEEE, 2012.

[6] J. Hong, “The state of phishing attacks,” Communications of
the ACM, vol. 55, no. 1, pp. 74–81, 2012.

[7] R. Basnet, S. Mukkamala, and A. H. Sung, “Detection of
phishing attacks: A machine learning approach,” in Soft
Computing Applications in Industry, pp. 373–383, Springer,
2008.

[8] D. Miyamoto, H. Hazeyama, and Y. Kadobayashi, “An
evaluation of machine learning-based methods for detection
of phishing sites,” in International Conference on Neural
Information Processing, pp. 539–546, Springer, 2008.

[9] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-
based approach to detecting phishing web sites,” in Proceed-
ings of the 16th international conference on World Wide Web,
pp. 639–648, ACM, 2007.

[10] Wikipedia, “Mozilla. phishing protection,” 2017. [Online;
accessed 04-April-2017].

[11] R. M. Mohammad, F. Thabtah, and L. McCluskey, “Predicting
phishing websites based on self-structuring neural network,”
Neural Computing and Applications, vol. 25, no. 2, pp. 443–
458, 2014.

[12] Various, “Unified and consistent whois api and whois parser
system,” 2016. [Online: accessed 21-October-2016].

[13] I. R. Hossein Shirazi, Kyle Haefner, “Fresh-phish dataset: a
dataset of phishing and legitimate website,” 2016. [Online;
accessed 05-April-2017].

[14] Various, “Tf-contrib learn library,” 2016. [Online: accessed
21-October-2016].

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[16] I. R. Hossein Shirazi, Kyle Haefner, “Fresh-phish classifier:
classifiers for predicting phishing and legitimate websites,”
2016. [Online; accessed 05-April-2017].

[17] D. J. Hand, “Measuring classifier performance: acoherent al-
ternative to the area under the roc curve,” Machine Learning,
vol. 77, no. 1, pp. 103–123, 2009.

141141141

APPENDIX

A. URL Based

1) Having IP Address: If an IP address is used as

an alternative of the domain name in the URL, such as

"http://125.98.3.123/fake.html", users can be sure that some-

one is trying to steal their personal information. In a Python

script, we checked that if the website URL is in the form of

an IP, we will assume it as a phishing website otherwise it

is a legitimate.

2) URL Length: To ensure accuracy of our study, we

calculated the length of URLs in the data set and produced

an average URL length. The results showed that if the length

of the URL is greater than or equal 54 characters then the

URL classified as phishing. By reviewing our dataset we

were able to find 1220 URLs lengths equals to 54 or more

which constitute 48.8 of the total dataset size.

3) Shortening Service: URL shortening is a method

on the âĂIJWorld Wide Web" in which a URL may be

made considerably smaller in length and still lead to the

required webpage. This is accomplished by means of an

"HTTP Redirect" on a domain name that is short, which

links to the webpage that has a long URL. For exam-

ple, the URL "http://portal.hud.ac.uk/" can be shortened to

"bit.ly/19DXSk4". If it used TinyURL, we will assume it as

a phishing, otherwise, it is a legitimate website.

4) Having At Symbol: A URL that contains a "@" symbol

is not trusted as the browser generally ignores everything

proceeding the "@". If the URL contains the "@" sign we

marked it as phishy.

5) Double Slash Redirecting: URLs that contain "//" are

marked as phishy as the double slash is used to redirect users

to another site. Phishing URLs emply this method to hide

their real URL. An example is

http://www.colostate.edu//http://www.phishing.com.

6) Prefix Suffix: The dash symbol is rarely used in

legitimate URLs. Phishers tend to add prefixes or suffixes

separated by (-) to the domain name so that users feel that

they are dealing with a legitimate webpage. For example

http://www.Confirme-paypal.com/

In our framework, we checked that website use a "-" in

the name of URL or not. If it is used, we assume it as a

phishing website.

7) Having SubDomain: Let us assume we have the fol-

lowing link: http://www.hud.ac.uk/students/. A domain name

might include the country-code top-level domains (ccTLD),

which in our example is "uk". The "ac" part is shorthand for

"academic", the combined "ac.uk" is called a second-level

domain (SLD) and "hud" is the actual name of the domain.

To produce a rule for extracting this feature, we firstly have

to omit the (www.) from the URL which is in fact a sub

domain in itself. Then, we have to remove the (ccTLD) if it

exists. Finally, we count the remaining dots. If the number

of dots is greater than one, then the URL is classified as

"Suspicious" since it has one sub domain. However, if the

dots are greater than two, it is classified as "Phishing" since

it will have multiple sub domains. Otherwise, if the URL has

no sub domains, we will assign "Legitimate" to the feature.

We calculated number of dots in a URL. If it is more

that 2 dots found, that will be phishing otherwise it is a

legitimate website.

8) sslFinalState: This feature was not defined by Moham-

mad et al, nor did we get a response from them in email.

We did not implement this feature and marked it as neutral

on all examples.

9) port: Most legitimate website use ports 80 for unen-

crypted traffic and port 443 for encrypted traffic. Sites that

use other ports are marked as phishy.

10) abnormalURL: This features used Whois data. If the

Identity field in Whois does not match the domain in the

URL this is marked as phishy.

B. DNS Based

1) domainRegistrationLength: This feature uses data

from Whois. If the field "updatedDate" phishy domains are

typically not registered and paid for for multiple years. If the

updated date is less than half of a year the site is marked as

phishy.

2) httpsToken: Phishing URLs will often try to make it

look like the URL uses HTTPS. They will include HTTPS

has part of the URL, for example, http://https-colostate.edu.

These URLs are marked as phishy.

3) ageOfDomain: This feature can be extracted from

WHOIS database. Most phishing websites live for a short

period of time. By reviewing our dataset, we find that the

minimum age of the legitimate domain is 6 months. Rule:

IF

FeatureV alue =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Legitimate,

Age of Domain >Two Years.

Suspicious,

Age of Domain >One Year

AND

Age of Domain <Two Years.

Phishing,

Otherwise.

(1)

We implemented a Phython script which retrieves DNS

information from www.whoisxmlapi.com and then we cal-

culated the value of ageOfDomain.

4) dnsRecord: This feature can be extracted from Whois

database [11]. For phishing sites, either the claimed identity

in not recognized by Whois database or the record of the

host-name is not founded. If the DNS record is empty or not

142142142

found then the website is classified as "phishing", otherwise

it is s classified as legitimate.

With implementing a python script which get DNS in-

formation from www.whoisxmlapi.com, we check is that

domain record is empty or not.

C. External Statistics

1) pageRank: This feature looks at if the site is ranked

in the Alexa database. If the site is not ranked or has no

traffic then the site is marked as phishy.

2) googleIndex: This feature examines whether a website

is in Google’s index or not. When a site is indexed by

Google, it is displayed on search results. Usually, phishing

web pages are merely accessible for a short period and as

a result, many phishing web pages may not be found on

the Google index. To finding Google Index of each site, we

send a request to Google website then search website inside

the result. If a website is indexed by Google, we mark it as

legitimate, otherwise, we mark it as phishy.

3) statisticalReport: This feature uses data from other

Phishing site trackers such as Phishtank.com. We did not

implement this feature and set it to neutral.

D. HTML Based

1) favicon: A favicon is a graphic image (icon) associated

with a specific webpage. Many existing user agents such as

graphical browsers and newsreaders show favicon as a visual

reminder of the website identity in the address bar. If the

favicon is loaded from a domain other than that shown in

the address bar, then the webpage is likely to be considered

a Phishing attempt.

For this attribute, we checked HTML code of each website

and found where Favicon is loading from. If it is loaded from

a foreign domain, we assumed that website as a phishing.

2) requestURL: Request URL examines whether the ex-

ternal objects contained within a webpage such as images,

videos and sounds are loaded from another domain. In

legitimate webpages, the webpage address and most of

objects embedded within the webpage are sharing the same

domain. We implemented a Python script which look at all of

address and mark them as domain-inside or domain-outside.

If more than half of addresses are domain-outside, we will

mark the site as phishing otherwise it is a legitimate one.

3) urlOfAnchor: This feature looks at the links in the

website. If the links in the website point a a domain different

from the domain of the website more that 50% of the time,

then the site is marked as phishy.

4) linksInTags: This feature looks at the domain in the

tags of the header such as <SCRIPT>, <META>, and

<LINK> tags. If more than 50% of these tags point to a

domain different from that of the site, the site is marked as

phishy.

5) Submit Form Handler: This feature examines the

action of the submit form on the page. If the action is,

"None", "blank", or "about:blank", then the site is marked

as phishy. Legitimate sites will point to a URL.

6) redirect: If the site uses the HTML 301 redirect in the

header, then the site is marked as phishy.

7) iFrame: HTML used the <IFRAME> tag to display

another page inside of the current page. This feature looks

at if there is an <IFRAME> tag in the page and its border is

set to transparent. If these two things are present mark the

website as phishy.

8) linksPointingToPage: This feature looks at how many

links from other websites are pointing the the target site.

If there are no links to the target page, then it is marked

as phishy. We did not implement this and defaulted it to

neutral.

E. Javascript Based

1) submittingToEmail: This feature looks for a "mailto:"

action in the submit form. If it exists then mark the site as

phishy.

2) onMouseOver: This method looks for the on mouse

over re-writing of links in the status bar. This type of ruse

has become less effective as browsers usually ignore this. We

used the python library Dryscrape to run a headless instance

of webkit. This allows us to run and evaluate Javascript

linked or embedded in the page. If the window.status

Javascript call exists in congunction with onMouseOver then

this site is marked as phishy.

3) rightClick: This feature looks for Javascript code that

disables the right click action on a web page. This is meant

to deter users from looking at the HTML source code for

the site. It looks specifically for "event.button==2" in the

Javascript. If that is present the site is marked as phishy.

4) popUpWindow: This method uses dryscrape

which imlements webkit and can scrape a web page

for Javascript has well as HTML. Javascript has

alert,confirm,prompt,window.open methods if any of

these are found then the site is marked as phishy.

143143143

