
Attribute Based Access Control for Healthcare Resources

Subhojeet Mukherjee
Dept. of Computer Science,
Colorado State University

Fort Collins, CO
subhomuk@colostate.edu

Indrakshi Ray
Dept. of Computer Science,
Colorado State University

Fort Collins, CO
iray@cs.colostate.edu

Indrajit Ray
Dept. of Computer Science,
Colorado State University

Fort Collins, CO
indrajit@cs.colostate.edu

Hossein Shirazi
Dept. of Computer Science,
Colorado State University

Fort Collins, CO
shirazi@gmail.com

Toan Ong
Anschutz Medical Campus

University of Colorado
Denver, CO

toan.ong@ucdenver.edu

Michael G. Kahn
Anschutz Medical Campus

University of Colorado
Denver, CO

michael.kahn@ucdenver.edu

ABSTRACT
Fast Health Interoperability Services (FHIR) is the most re-
cent in the line of standards for healthcare resources. FHIR
represents different types of medical artifacts as resources
and also provides recommendations for their authorized dis-
closure using web-based protocols including O-Auth and
OpenId Connect and also defines security labels. In most
cases, Role Based Access Control (RBAC) is used to secure
access to FHIR resources. We provide an alternative ap-
proach based on Attribute Based Access Control (ABAC)
that allows attributes of subjects and objects to take part
in authorization decision. Our system allows various stake-
holders to define policies governing the release of healthcare
data. It also authenticates the end user requesting access.
Our system acts as a middle-layer between the end-user and
the FHIR server. Our system provides efficient release of in-
dividual and batch resources both during normal operations
and also during emergencies. We also provide an implemen-
tation that demonstrates the feasibility of our approach.

Keywords
FHIR, ABAC, Authorization, Access Control, REST

1. INTRODUCTION AND MOTIVATION
Medical institutions generate massive amounts of clinical

data. Such data must be shared with various stakehold-
ers including healthcare providers and researchers for the
purpose of providing better care and making medical break-
throughs. Consequently, this necessitates efficient storage
and retrieval of medical data. Moreover, since the data is
used for different purposes and often retrieved by various
entities, the data needs to adhere to some standards.

Fast Healthcare Interoperability Resources (FHIR) [22]
specifies such a standard for fast and efficient storage/retrie-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ABAC’17, March 24 2017, Scottsdale, AZ, USA
c⃝ 2017 ACM. ISBN 978-1-4503-4910-9/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3041048.3041055

val of health data. Units of health data in FHIR are referred
to as “Resources”. FHIR defines multiple such resources,
such as Patient, AllergyIntolerance, where each resource can
be linked to multiple other resources. Resources in FHIR
can be queried using RESTful API calls. Multiple medical
and software organizations [21] have adopted FHIR as their
primary choice of storing and disseminating health data.

Inadvertent or malicious disclosure of data that contains
Personally Identifiable Information (PII) to unauthorized
individuals or organizations may have catastrophic conse-
quences. Thus, medical institutions must comply with fed-
eral and state policies when they release sensitive medical
data [9, 20]. The institutions are responsible for interpret-
ing these rules and developing their own data release pro-
cedures. In addition, the institutions often have their own
operational protocols and may provide additional security
policies. Patients may be unwilling to disclose their health
information to others for reasons of security and privacy.
Consequently, patients should determine what data may be
released to data requesters, the purpose for which such data
will be used, and the period for which such data must be
retained.

FHIR suggests basic features to ensure security, privacy,
and authenticity of health data [25]. Some of the features
suggested by FHIR are geared towards providing commu-
nication security, user authentication, and authorization.
Communication security is ensured by the usage of secure
Hypertext Transfer Protocol (HTTPS). User authentication
and authorization is ensured by using O-Auth 2.0 [8] and
FHIR defined security labels [26]. Moreover, FHIR also
provides recommendations and guidelines [3] for ensuring
authorized access to FHIR resources.

O-Auth is a popular web-based protocol used primarily
for authentication and authorization. The general protocol
flow of O-Auth 2.0 [8] requires the owner of the data to grant
permissions explicitly to different parties who want to make
use of their data. In the medical domain, the doctor will
need the permission from the owner before viewing or edit-
ing some health data. The consequences can be catastrophic
if the doctor is unable to get access to health data during an
emergency. Moreover, if a researcher needs to get access to
multiple patient data resources, she needs to obtain permis-
sions from each resource owner. Also, O-Auth only succeeds
if the data has already been created and O-Auth does not
authenticate resource creators. FHIR does allow break-the-

29

glass scenarios [26], where an individual can access FHIR
resources in cases of emergency. However, such break-the-
glass scenarios are provided only to authorized users. Due to
lack of available implementations, it is unclear how to grant
such allowances in a fine-grained manner. The deficiencies
in O-Auth can be somewhat overcome by using FHIR se-
curity labels that provide access control. However, the set
of security labels is finite and creating custom labels may
result in cost enhancements, as indicated in [26].

Previous works which have been related to FHIR stan-
dards [1, 4, 15, 19] have made use of Role-Based Access
Control (RBAC) or its derivatives to grant secure access to
the resources. However, RBAC is not granular enough to
provide decisions on the basis of attributes of the requester,
such as age, hippa-compatibility, and name etc. Moreover,
RBAC fails to take into account other factors like resource
attributes and purpose of data release, while making ac-
cess decisions [23]. The work that is most closely related to
our work is User-Managed Access (UMA) [17]. UMA sug-
gests using user grants and user-defined policies which decide
whether a requesting party is granted access to perform cer-
tain actions on the data owned by a user. However, the focus
of UMA lies primarily on resource owners trying to protect
individual resources. UMA does not specify how policies
should be defined to govern batch release of resources by
making use of specific resource attributes, e.g. “Release all
patient data to researcher A where patient-age > 40”.

In this paper, we propose a system which acts as a mid-
dle layer between the client application and FHIR server,
providing fine grained access to FHIR resources. Specifi-
cally, we make use of Attribute Based Access Control [11]
(ABAC) to make decisions which govern access to FHIR
resources. We present an approach that allows both incre-
mental and batch release of FHIR resources to any request-
ing party, based on the policies defined by resource-owners.
Our approach is owner-centric, where an owner is anyone
who creates a FHIR resource [28] and can grant permissions
to any requester any time after the creation of a resource.
The major contributions of this work include authenticating
users before allowing them access to FHIR resources and
policies, demonstrating how access control policies and re-
quests can be generated in coherence with RESTful API and
FHIR standards, and releasing resources at the finest granu-
larity and finally authorizing users to perform actions which
abide by user-defined rules.

The rest of the paper is organized as follows. Section 2
provides a brief overview of FHIR and related efforts in se-
curing access to resources stored on a FHIR server. Section 3
describes our system architecture and implementation. Sec-
tion 4 describe the administrative operations in our system.
Section 5 introduces customized XACML attributes needed
for fine-grained access. Section 6 presents our adversary
model and then performs an informal security evaluation.
Section 7 concludes the paper by highlighting the contribu-
tions of this work and discuss possible future enhancements
to our system.

2. BACKGROUND AND RELATED WORK

2.1 FHIR
HL7 Fast Healthcare Interoperability Resources (FHIR

[22]) is the next generation standard for storing and dissem-
inating health data. The units of data exchange in FHIR

are Resources. Currently, FHIR defines 93 such resources
such as Patient, Practitioner, Medication, and Observation.
FHIR resources are standardized and can be referred to by
their unique ids. When creating a resource, the FHIR server
generates a unique id for that resource. FHIR resources can
be accessed using RESTful API calls and returned units of
data can be retrieved in XML or JSON format. A typ-
ical FHIR Rest call can be codified as “[http-verb] [base-
uri]/[resource]/<optional id>?< optional parameters>”. A
FHIR query to read resource“Patient”with id“1234” should
be “GET https://some-server/Patient/
1234”. FHIR codifies HTTP verbs to perform the following
operations:

• GET: Used generally to retrieve and search resources.

• POST: Used generally to create resources. Also used
to update batch data, referred to as a Bundle (collec-
tion of resources) in FHIR terminologies.

• PUT: Update unique resources identified by their ids.

• DELETE: Delete FHIR resources.

2.2 Related Efforts in Securing Access to FHIR
Resources

While much attention has been devoted to securing per-
sonal health records (PHR) systems [7, 16, 28], few have
focused on FHIR as the back-end standard for medical re-
sources. FHIR differs from traditional PHR systems by in-
troducing a RESTful querying interface, and its own data
modeling standards. This implies that an Access Control
System running on top of FHIR must adhere to REST and
the FHIR resource standards. Thus, a system that restricts
access to FHIR resources, needs to incorporate the philoso-
phies and standards behind FHIR resources and RESTful
web services. Keeping this in view, we present a brief overview
of the literature and industry adopted protocols that have
been proposed to secure access to FHIR resources.

O-Auth 2.0 [8] and OpenId Connect 1.0 [6] are popu-
lar web-based authentication/authorization protocols. Both
these protocols can be used to secure access to FHIR re-
sources [18]. O-Auth [8] is widely used for authentication
and authorization purposes. O-Auth 2.0 requires the owner
of the data to grant explicit permissions to other request-
ing parties (human or computer applications) who want to
access their data. In medical terms, this can be a patient
granting access to a doctor to view or edit her health data.
Section 1, highlights the general drawbacks of O-Auth 2.0.
Additionally, O-Auth provides access control using scopes.
Although this works seamlessly when an individual grants
permissions to another individual, if a data owner wants
to grant permissions on a set of resources to a requester, O-
Auth 2.0 becomes efficient and impractical. OpenId connect
is an authentication protocol which works on top of O-Auth
2.0 to verify the identity of a user. However, since OpenId is
strictly integrated with O-Auth 2.0, it suffers from the same
drawbacks as O-Auth.

The issues with O-Auth 2.0 and OpenId Connect can be
mitigated using access control systems (ACS). However, till
date, only a handful of works have focused on integrating
FHIR with access control systems. Namli et al. [19] use stan-
dard hierarchical RBAC to restrict access to FHIR resources.
The roles in this hierarchy define the functional relationships

30

between the patient and the data requester. Lamprinakos
et al. [15] propose four different access control mechanisms
for four different use cases. For short term access scenarios
like a visit to a doctor, they propose sharing of QR codes
which represent the patient’s credentials. For long term ac-
cess, they suggest using access control lists. Moreover, the
authors in [15] provide an RBAC framework with a static
set of permissions granted to each role. They also provide
a break-the-glass scenario for emergency access to patient
FHIR resources. Anwar et al. [1] develop an RBAC ontol-
ogy by extending the traditional RBAC classes like subject,
action, resource, role, session. They then use the Semantic
Web Rule language (SWRL) to specify HIPPA compliant
access control policies. Finally, they deploy an access deci-
sion engine which performs reasoning based on the access
policies and the RBAC ontology. Dong et al. [4] leverage
the concepts of RBAC by assigning roles which correspond
to a Circle-of-Care (CoC) around the patient. CoC refers
to the network of healthcare practitioners who are provid-
ing care to a patient at a given instance of time. The CoC
is thus temporal in nature and can change as the patient’s
preferences change.

The works described above make use of RBAC as the pri-
mary model of choice for access control. However, RBAC
suffers from its own deficiencies. Firstly, RBAC is not ex-
pressive enough to accommodate fine-grained access control
that depends on factors such as the requester’s age, hippa-
compatibility, name etc. Secondly, RBAC grants similar
access to people having the same roles. In spite of its ad-
vantages in scalability and management, RBAC is not con-
sidered quite suitable for the medical domain [23].

ABAC [11] model provides a more dynamic and granu-
lar approach to access control. Users are allowed to define
access control policies using attributes of different entities
like subjects, actions, resources and environments. Although
ABAC has been used to secure access to RESTful web ser-
vices [12, 13], to the best of our knowledge, it has not been
used in context of securing FHIR resources. User-Managed
Access (UMA) [17] does specify protocol standards for user
centric access management of stored resources but, as men-
tioned in section 1, it does not cater to batch release of
resources. Neither does it address the essential implementa-
tion details of an ABAC based security system on a FHIR
server.

3. ARCHITECTURE AND IMPLEMENTA-
TION

In this section, we describe the architecture and the im-
plementation of our system. Figure 1 acts as a middle layer
between the client application and the FHIR server. Specif-
ically, it provides authentication and access control for fine-
grained access to FHIR resources. Note that, this is done in
conformance with FHIR specifications for deploying security
systems [25].

Our architecture shown in Fig. 1 consists of four major
components namely, the Validation Server, the ABAC En-
gine, the PEP/Front-End and the Policy Admin. All these
components interact with each other to provide fine-grained
access to resources stored at the FHIR server. The At-
tribute database stores attributes of registered users of the
FHIR server. The Owner database stores the relationship
that maps a FHIR resource to its owner. We now describe

Figure 1: Solution Architecture

Figure 2: Validation Server Front-End Form

the components of our architecture and the platform used
to design such components.

3.1 Validation Server
The Validation Server is responsible for validating creden-

tials of a user who wishes to register herself. Registration
refers to the process of a new or returning user entering her
attributes in a front-end form shown in Figure 2. The at-
tributes are populated from the Attribute Database (refer to
Fig. 1) schema. The Attribute Database schema includes
two default attributes namely, id and role. The Attribute
Database is altered and other attributes are added dynami-
cally as new policies are added. The create policy bullet
in section 4.3 describes this process in details. Once the user
has entered all the attributes, they are validated by the Vali-
dation Server, either by using pre-defined predicates or vali-
dating with the Institutional Review Board (IRB) in special
cases. After validation, if the user did not enter her id at the
time of registration (a new user), a unique token/id 1 is gen-
erated for the user. Following this, the entered attributes,
along with the generated id, are transported (securely) back
to the Attribute Database. The Attribute Database stores the
attributes of the registered user, referenced by the unique id.
In the case of a returning user, if the user id is not present in
the Attribute Database, the corresponding attributes are not
updated and a negative response is sent to the user. Other-

1Note that throughout this work we will be using these two
terms, token and id, interchangeably

31

wise, if all of the above mentioned processes are carried out
successfully, the user is provided with her unique token.

The Validation Server is implemented as a Java Servlet
running on a Tomcat 7 server. The front-end pages are
implemented as JavaServer Pages (JSP) and the Attribute
Database is implemented as a back-end MYSQL table. All
communications to and from the Validation Server are per-
formed securely over HTTPS.

3.2 ABAC Engine
The ABAC Engine is responsible for validating the re-

quests against existing policies and returning back the de-
cision. The workflow of the ABAC Engine is similar to the
one described in literature [11]. However, for the purpose
of this work we customized the logic for the PEP and PIP.
While the PEP is described as a separate component in the
next section, the PIP was designed to fetch missing user
attributes from the Attribute Database (refer to Fig. 1).

The PAP and PDP are the major components of the
ABAC Engine and were obtained as parts of the WSO2
Identity Server [27]. The PIP was coded in Java and archived
as a jar file, which was then integrated into the WSO2 Iden-
tity Server by making some configuration changes.

3.3 PEP
The PEP in our case is also the web service front-end

for receiving all REST queries from a client application as
shown in Figure 1. The PEP intercepts all calls to the FHIR
resources, forwards the queries to the FHIR server layer,
retrieves the requested data and creates XACML requests
[5] from the incoming queries and the each retrieved FHIR
resource.

The XACML requests are created by the Context Handler
which is an independent component of the PEP. Context
Handler generates a XACML request with the following at-
tribute set: {user-id, action, resource-name, resource-owner,
{x|x ∈ resource-elements}}. The user−id is sent along
with the request, the action can be either of“GET”,“POST”,
“PUT” or “DELETE” and the resource−name is supplied as
a part of the query or as the root element of the request
body. In cases where the request body is a Bundle (refer
to section 2.1) each resource in the bundle is treated sep-
arately. The rest of the attributes are individual elements
of the resource(s) to be created. Fig. 3 shows an exam-
ple XACML request from a user with “id” 1234 to retrieve
(“GET”) a “Patient” resource having elements “patient-id”,
“patient-given-name” etc. The first three attributes of the
XACML request are in coherence with the XACML request
standards. The resource-owner attribute bears significant
security implications. Each added policy to the ABAC En-
gine is also appended with a resource-owner attribute. This
allows XACML requests for resources, owned by a particular
user, to be evaluated against policies created by that user
only. This eliminates the chances of requests being evalu-
ated against global policies. For example, if the resource
owner having id “c123” creates a policy which allows all re-
searchers to view all patient resources, this policy would not
be effective globally across the entire system. Therefore, a
researcher requesting all patient data would only get access
to patient data POSTed by owner “c123” and not the other
owners since they do not explicitly allow this researcher to
view resources owned by them. Finally the attribute set
(resource-elements) is added to ensure the request is cor-

<Request>
/* :Attribute-Category :Attribute ID :Attribute Value */
:action :action-id :GET
:access-subject :id :1234
:resource :resource-id :Patient
:Patient :patient-id :abcd
:Patient :patient-given-name :John
..........
</Request>

Figure 3: Sample XACML Request

(a) Policy Admin Login (b) Policy Admin Options

Figure 4: Policy Admin Front-End

rectly evaluated against policies which include resource spe-
cific information like “patient-id”, “patient-given-name” etc.

Each XACML request is then sent to the PDP component
of the ABAC engine for evaluation and if the decision if
“permit”, the resource is sent out to the requesting user.
The role of the PEP is described further in sections 4.1 and
4.2.

The PEP is coded as a Java Jersey Class [14] and built
using Maven dependencies. The PEP interacts with the
ABAC Engine by making calls to web services exposed by
the WSO2 Identity Server using the Apache Axis 2 Client
[2].

3.4 Policy Admin
The Policy Admin acts as gateway to the PAP component

of the ABAC Engine. In order to manage policies the user
needs to enter the unique token, provided by the Validation
Server, on the“Welcome”page (Fig. 4a). A XACML request
is then created using this token and validated by the PDP. If
the user is allowed to manage policies, he/she is shown the
“Options” page (Fig. 4b) which allows the user to create,
view and delete policies which have been created by this
user.

The Policy Admin is implemented as a Java Servlet run-
ning on a Tomcat 7 server. The front-end pages are im-
plemented as JavaServer Pages (JSP). All communications
to and from the Policy Admin are performed securely over
HTTPS.

4. ADMINISTRATIVE OPERATIONS
Our system can be completely described in terms of three

use cases namely, create/update resources, retrieve/delete
resources and manage policies. The first and second use
cases encompass the HTTP verbs PUT, POST, and GET,
DELETE respectively. The third use case is introduced to
allow the regular users manage their own policies.

It is to be noted that before performing any action the
client needs to validate her attributes with the Validation

Figure 5: Create and Update Use Case

Server (refer to section 3.1) and obtain a unique id. A re-
turning client (one who has been validated during a previ-
ous access attempt) can be redirected back to the Valida-
tion Server if she has null-valued attributes in the Attribute
Database. This is because, as it will be observed later, when
a new policy is added to our system, the Attribute Database
schema is altered to accommodate previously absent but
newly introduced attribute name fields. Initial values for
these fields are kept null to indicate that they have not been
updated by the corresponding clients. When the client re-
turns, she is asked to complete her user profile by updating
the null valued attributes. At this point, the user can choose
to keep this value empty, in which case the field values are
updated with white-space characters.

4.1 Creating and Updating Resources
FHIR allows creation and update of resources, using POST

and PUT verbs (refer to section 2.1). Fig. 5 delineates the
use case for creating and updating resources. The use case
in Fig. 5 can be described using the following steps:

1. The client application sends a POST or PUT request
to PEP. Along with the request, it also sends the re-
source as the body and the unique id obtained after
successfully registering at the Validation Server as a
custom HTTP header. If the user wishes to create new
resources he/she must enter a specific role (termed as
“Poster”) in the “role” field of the Validation Server
front-end form.

2. PEP makes a call to an internal Context Handler and
generates a XACML request (refer to section 3.3) using
the following attributes:

• user-id: as received from the requester as an
HTTP header.

• action: “POST” or “PUT”

• resource-name: resource to be created or up-
dated. If its a Bundle, individual resource names
are obtained from the request body.

• resource-owner “admin”

• resource-elements elements of the resource as
supplied in the request body.

3. The XACML request is evaluated against the poli-
cies stored at the PAP of the ABAC Engine. The

<Policy PolicyId = "DEF-POST"
rule-combining-algorithm="deny-overrides">

<Target>
/* :Attribute-Category :Attribute ID :Attribute Value */
AnyOf:

AllOf:
:access-subject :Role :Poster
:resource :xacml:resource-id :.*
:action :xacml:action-id :POST
:admin :resource-owner :admin

</Target>
<Rule RuleId = "P" Effect="Permit">
</Rule>

</Policy>

Figure 6: Default XACML POST Policy

PAP stores a default policy for POST actions which
is shown in Fig. 6. This policy allows any individual
having the role of “Poster” to “POST” (create) any re-
source. The default policy does not support a “PUT”
operation, since updating resources created by a differ-
ent owner requires explicit permission from that owner.
By FHIR guidelines, the HTTP verb POST can also
be used to update resources. As a result, if the user
attempts to POST on an existing resource created by
some other owner, it is further verified whether the
owner of that resource has explicitly allowed the user
to POST on the resource he owns. This is done by
creating a XACML request similar to the one shown
in Fig. 6, except by changing the resource-owner to
the owner of the resource which the requesting user
attempts of the modify. This information is fetched
from the Owner Database.

A critical observation from the XACML request is that
it does not contain the role of the requester. Because
the role is a missing attribute, it is fetched by the
PIP (refer to section 3.2) from the Attribute Database
which is updated by the Validation Server at the time
of user registration.

4. The XACML response is sent back to the PEP.

5. If the response is a “permit”, the PEP instructs the
FHIR Server to perform the required action.

6. The FHIR server returns the created/updated resource
back after performing the required action. The re-
turned resource is then scanned to obtain the unique
id assigned to it by the FHIR server or provided by its
owner.

7. The PEP then requests the Policy Admin to keep a
record of the resource that this owner has created in
the Owner Database. When requests to update (PUT)
certain resources are made, the id of the owner of that
resource is retrieved from this table. A XACML re-
quest is then created to verify whether this requester
is allowed to update the requested resource. This pro-
cess is similar to the one described in bullet 3.

8. Finally the user is notified of the successful resource
creation/modification.

4.2 Retrieving and Deleting Resources
FHIR allows retrieving and deleting resources using GET

and DELETE verbs (refer to section 2.1). Fig. 7 delineates

33

Figure 7: Retrieve and Delete Use Case

the use case for retrieving and deleting resources. The use
case in Fig. 7 can be described using the following steps.

1. The client application sends a GET or DELETE re-
quest to PEP. Along with the request, it also sends
the unique id, obtained after successfully registering
at the Validation Server, as a custom HTTP header.

2. PEP forwards the request to the FHIR server. If the
requested operation is a DELETE then the forwarded
request is modified to a GET operation, in order to
obtain the resource to be deleted.

3. The FHIR server returns the requested resource(s) ei-
ther as a single resource or as a Bundle depending on
the request query.

4. For each returned resource, the PEP makes a call to
an internal Context Handler and generates a XACML
request (refer to section 3.3) using the following at-
tributes:

• user-id: as received from the requester via an
HTTP header.

• action: “GET” or “DELETE”.

• resource-name: resource to be retrieved or deleted.

• resource-owner owner of the resource as ob-
tained from the Owner Database.

• resource-elements elements of the resource as
obtained from the FHIR server.

5. The XACML request is evaluated against the set of
policies stored at the PAP of the ABAC Engine.

6. The XACML response is sent back to the PEP.

7. If the response is a “permit”, the PEP buffers the re-
source as a future output.

8. Finally all permitted resources are returned back to
the requester.

4.3 Policy Management
Fig. 8 delineates the use case for creating/updating, view-

ing and deleting policies at the Policy Admin. The use case
in Fig. 8 can be described using the following steps.

Figure 8: Policy Administration

<Policy PolicyId = "DEF-MANAGE-POLICY"
rule-combining-algorithm="deny-overrides">

<Target>
/* :Attribute-Category :Attribute ID :Attribute Value */
AnyOf:

AllOf:
:access-subject :Role :Poster
:resource :xacml:resource-id :Policy
:action :xacml:action-id :MANAGE
:admin :resource-owner :admin

</Target>
<Rule RuleId = "P" Effect="Permit">
</Rule>

</Policy>

Figure 9: Default XACML MANAGE Policy

1. The client provides her id at the Policy Admin front-
end.

2. PEP makes a call to an internal Context Handler and
generates a XACML request (refer to section 3.3) using
the following attributes:

• user-id: as received from the requester as an
HTTP header.

• action: “MANAGE”

• resource-name: “Policy”

• resource-owner admin

• resource-elements Empty

3. The XACML request is evaluated against the set of
policies stored at the PAP of the ABAC Engine. The
PAP stores a default policy (shown in Fig. 9) for man-
aging policies. This policy allows any individual hav-
ing the role of “Poster” to“MANAGE”(create/update,
view or delete) “POLICY”s.

34

4. The XACML response is sent back to the PEP.

5. If the response is a“permit”, the Policy Admin presents
the following options to the user.

6. create policy

(a) Once the user enters a new policy, the supplied
policy id is appended with the user’s unique id as
received from the Policy Admin front-end. This
makes the policy unique to the user who creates
it.

(b) The AllOf node under the Target of the supplied
policy is then appended with the resource-owner
attribute and the value for that attribute is set to
the user’s unique id as received from the Policy
Admin front-end. This allows XACML requests
for resources, created by this user, to be evalu-
ated against policies created by this user. If the
initially supplied policy contains a resource-owner
the user is prompted to resupply the policy with-
out the resource-owner attribute.

(c) The policy is then scanned for new attributes
(missing in theAttributes Database schema) which
describe requesting users.

(d) The Attributes Database table schema is then al-
tered to reflect the newly found attributes.

(e) A request is made to Validation Server to add
the newly found attributes to its front-end form.
In this way information entered by new regis-
tering users are kept in-sync with the Attributes
Database and the Validation Server.

(f) Finally the newly entered policy is stored at the
ABAC Engine and the user is notified. In case of
any failure, the user is asked to notify the system
administrator of back-end issues.

7. view policies

(a) Policy Admin retrieves all policies stored at the
PAP of the ABAC Engine. It compares if the
retrieved policy ids end with the requesting user’s
id and buffers the policy as final output if it does.

(b) It then displays all valid policies owned by the
requesting user.

8. delete policies

(a) Policy Admin expects the user to enter the policy
id which the user intends to delete.

(b) The id of the requesting user is then appended
with the policy id and the resulting policy is at-
tempted to be deleted.

(c) The result of the delete operation is notified to
the user.

5. XACML CUSTOM ATTRIBUTE SPECI-
FICATION

XACML requests generated by our system leverage stan-
dards exposed by both RESTful APIs and FHIR specifica-
tions. This implies that the XACML policies against which
the XACML requests are evaluated, should also confirm to

<Policy PolicyId = "POLICY-1"
rule-combining-algorithm="deny-overrides">

<Target>
/* :Attribute-Category :Attribute ID :Attribute Value */
AnyOf:

AllOf:
:access-subject :subject.role.none :Researcher
:resource :xacml:resource-id :Patient
:action :xacml:action-id :GET
:admin :resource-owner :1234

</Target>
<Rule RuleId = "P" Effect="Permit">
<Condition>

Function: string-equal
/* :Attribute-Category :Attribute ID :Attribute Value */

:access-subject :subject.address.city :Denver
:Patient :Patient.gender.none :Female

</Condition>
</Rule>

</Policy>

Figure 10: Sample XACML Policy

RESTful APIs and FHIR standards. Traditionally, XACML
allows policies to be written in terms of four specific at-
tribute types namely, resource, action, subject and environ-
ment. Our system supports writing policies that include all
four. Additionally, we use custom attributes to write finer
grained policies that relate to the details of the requesting
user and FHIR resource standards. This allows to specify
details about the requesting users and the resources they tar-
get in their queries. For example, the policy shown in Fig.
10 allows a “Researcher” from “Denver” to “GET” resources
belonging to “Female”“Patient”s only.

We introduce three types of custom attributes, each aimed
at uniquely identifying specific details about three entities:
the subject/user/clients performing operations on a FHIR
server, FHIR resources, and owners/creators of resources
on the FHIR server. XACML standardized attributes are
shown in Fig 10 using a “xacml” prefix. Examples include
“xacml:resource-id” and “xacml:action-id”.

5.1 Subject Custom Attributes
Subject Custom Attributes are categorized under the XA-

CML standard“access-subject”category. Custom attributes
referring to subjects requesting access to the FHIR server are
represented using 3-layered period-delimited attribute-ids.
Attributes“subject.address.city”and“subject.role.none”, from
Fig. 10 are examples of Subject Custom Attributes. We re-
quire the first layer of this attribute to be the “subject”.
The second layer can be any specific attribute that the pol-
icy writer aims to refer to, for example, “address” or “role”.
The third layer represents a subclass of the second layer at-
tribute, e.g., “city” is to “address”. However, in cases where
the third layer is not required it can be stated as “none”.
Further, although we specify a three layered format for Sub-
ject Custom Attributes it is left open to the choice of the
system administrator if they wish to extend it to any num-
ber of layers beyond that.

5.2 Resource Custom Attributes
The XACML custom attributes referring to FHIR resources

are also represented using a 3-layered period-delimited for-
mat. Attribute “Patient.gender.none” from Fig. 10 is an
example of Resource Custom Attributess. Resource Custom
Attributes are categorized under the resource name. For ex-
ample, an attribute referring to a Patient resource should

35

belong to the category “Patient”. It is obligatory to keep
the first layer of this attribute as the name of the resource,
e.g. “Patient”, “AllergyIntolerance” etc. The second layer
can be any attribute of the FHIR resource as standardized
by FHIR [22], e.g., “gender”. The third layer represents a
subclass of the second layer attribute, e.g., “city” is to “ad-
dress” for a “Patient” resource. However, in cases where the
third layer is not required it can be stated as “none”. More-
over, although we specify a three layered format for Resource
Custom Attributes it is left open to the choice of the system
administrator if they wish to extend it to any number of
layers beyond that.

5.3 Resource Owner Custom Attributes
The XACML custom attributes referring to the owner

of a resource are represented using the attribute-id “reso-
urce-owner” and categorized as an “admin” attribute. The
“resource-owner” is added automatically by the Policy Ad-
min after the user enters a valid policy conforming to XA-
CML 3.0 standards. The user supplying the policy is dis-
couraged to provide this attribute in the policy. If it is
provided, our policy manager prompts the user to resubmit
the policy without the “resource-owner” attribute.

6. SECURITY DISCUSSION

6.1 Adversary Model
As a precursor to analyzing the security features provided

by our system, we aim to model our adversary in this sub-
section. In particular, we wish to clearly delineate the ca-
pabilities of the adversary based on the assumptions and
available security services offered by some previously estab-
lished protocols used in our approach.

One of the primary observations from our framework is
that communication between all endpoints is carried out se-
curely using the HTTP over TLS (HTTPS) protocol [24].
Moreover, client identity verification services offered by HTT-
PS are used when communicating within all (except the
resource requester) participating entities in the protocol.
For example, when the PEP communicates with the FHIR
server or the Policy Admin it presents them with its certifi-
cate. Although certificates used for this work are self signed
(we manually updated the trustStores at each end-point),
this can easily be extended to include certificates signed by
well known signing authorities.

In its ideal form2 TLS provides adequate communication
security and prevents any attempted man-in-the middle at-
tacks. This means, the only way for an adversary to deceive
our system is to impersonate the end user. The attacker can
do this in any of the two following ways:

1. Create a falsified identity at the time of registration.

2. Get access to or guess the id of any valid registered
user.

Using either of the above techniques the attacker can at-
tempt to subvert the security our protocols and thereby lead
to the following misuse cases:

• Create false resources.

2Although, attacks of TLS have been documented previ-
ously [10], we assume the usage of an all-patched version of
TLS.

• Update existing resources created by others.

• Retrieve or delete resources.

• Create crafted policies, which might in turn allow the
attacker further access into the system.

• View policies created by other users or the admin.

• Delete policies created by other users or the admin.

6.2 Assumptions
While doing our security analysis we make the following

assumptions:

1. Endpoints are never compromised. This means two
things:

(a) Data in storage is secure from any unauthorized
viewing or modification.

(b) Participants are infallible and perform their du-
ties honestly devoid of any malicious intents.

2. End users secrecy is maintained; they do not leak or
loose unique ids provided by the registration server.

3. User supplied policies are correct and clearly express
the intent of the policy provider.

6.3 Security Analysis
We first analyze the security of our system under the as-

sumption that the attacker successfully impersonates a valid
user (possess a valid user id) using either of the two ways
mentioned in section 6.1. We then show that our framework
allows custom enhancements which can significantly con-
strict the capabilities of any adversary to impersonate as a
valid/registered user. Finally, we prove that our framework
is successful in blocking adversaries who cannot impersonate
a valid/registered user. For the first and the final analysis,
we discuss the possibilities of the adversary to successfully
accomplish the misuse cases enumerated in subsection 6.1.

6.3.1 Adversary Possessing a Valid User ID

• Create false resources: If the adversary possesses
a valid user id listed as a ”Poster” in the Attribute
Database, the default POST policy (shown in Fig. 6)
allows the adversary to create false resources.

• Update existing resources created by others:
An adversary in possession of a valid user credential
cannot modify resources owned by other users unless
the owner explicitly allows the user to do so. Up-
date operations can be carried out using HTTP verbs
PUT and POST (refer to section 2.1). Our frame-
work does not allow users, with valid credentials, to
PUT resources owned by a different user unless ex-
plicitly allowed by that user. In the case of POST
operations, we first validate if the user is attempting
to update an existing resource by checking the Owner
Database. If so, we create a XACML request with the
resource-owner attribute set to the id of the actual
owner. Since requests are first evaluated against the
target section of a XACML policy (which also con-
tains the resource-owner attribute (section 5.3)) this
request will be rejected if no valid owner policy has
allowed this user to update their resource.

36

• Retrieve or Delete resources which he does not
have permissions to: An adversary with valid cre-
dentials can view or delete resources if permitted by
an appropriate policy.

• Create (update) crafted policies, which might
in turn allow the attacker further access into
the system: An adversary in possession of a valid
id can create policies but since policies are appended
with the resource-owner ’s id, these policies only affect
the release of resources owned by the user whose cre-
dential (id) has been compromised. This means, our
system does not allow an attacker, in possession of a
single registered user id, to affect any and every stored
resource.

• View policies created by other users or the ad-
min: It is often desirable for a system to prevent
unauthorized disclosure of system policies. Because
stored policy ids are appended with ids of those who
create them, our system filters policies on the basis of
these ids the displays them to the users. This allows a
user to view only those policies created by him/her.

• Delete policies created by other users or the ad-
min: Similar to unauthorized disclosure of policies,
unauthorized deletion of policies are also prevented by
appending the user id with the policy id. When the
adversary attempts to delete a random policy, the pol-
icy id provided by the adversary is appended with her
user id. If this resultant id not is found in the system
that policy is not deleted.

By the above made observations we can thus claim that
in most cases an adversary possessing a valid user creden-
tial (id) can at the worst affect resources owned by the user
whose credentials have been compromised. It should be how-
ever noted that when it comes to aggregate queries the ad-
versary can corrupt eventual result by creating or updating
false resources.

6.3.2 Impersonating a Valid/Registered User
As mentioned previously, attackers can impersonate valid

users by either registering with the Validation Server or
guessing/obtaining the ids. Our framework allows the two
enhancements to limit the capabilities of an impersonating
adversary. Firstly, we allow system developers to create
strong user credential verification logics on the Validation
Server. In addition, we allow coordination with external ver-
ification agencies like the Institutional Review Board (IRB).
Secondly, TLS allows us to securely transport the randomly
generated id to the registering user. Thus, following As-
sumption 2 from section 6.2, the only way an adversary can
get unauthorized access to our system is by brute-forcing
the randomly generated id. In other words, an adversary,
incapable of registering as a valid user, is bounded by the
computational complexity of brute-forcing the random ids.
Increasing the length of the identifier, therefore, increases
the security offered by our system.

6.3.3 Adversary Lacking a Valid User ID

• Create false resources: If the adversary does not
possess a registered user id, the Attribute Database
does not list this user as a “Poster” and hence does
not allow creation of false resources.

• Update existing resources created by others: It
was previously observed in section 6.3.1 that an adver-
sary in possession of a valid user credential can only
update resources owned by the user whose id he/she
possesses. If the adversary does not possess any regis-
tered id, the Attribute Database does not have an entry
for this user. As a result, the PIP does not obtain any
user attributes related to this user and the hence the
adversary is not allowed to update any resources stored
at the FHIR server.

• Retrieve or Delete resources which he does not
have permissions to: Similar to the update sce-
nario, since the Attribute Database does not have an
entry for this user, none of the stored policies allow
this user to view or update any policies.

• Create (update), view or delete policies: In or-
der to get access to the policy database the adversary
needs to have an entry in the Attribute Database list-
ing her id having the role of a “Poster”. However, as
seen earlier, if not permitted by the Validation Server,
an entry is not created for this user in the Attribute
Database. As a result, this user is not listed as a
“Poster” in the Attribute Database and hence does not
get access to administer any policies. In this context,
it is to be noted that we do not allow users to ad-
minister policies without having the allowance to cre-
ate data items. This is because we believe the user
should only be able to administer policies pertaining
to her resources in order to avoid conflicting policies
from multiple users on same resources.

6.4 Motivating Scenario
Having analyzed the security of our system, we aim to

present the effectivity of our system in dealing with real
world security situations. For this, we make use of simple
hypothetical access scenario pictured below.

Doctor A is a general physician and doctor B is
a specialist. Doctor A treats patient C. Inciden-
tally doctor B is also a patient of doctor A. Thus
doctor A also treats patient B. Doctor A cre-
ates resources for patient A and patient B on the
FHIR server. Doctor A allows patient B to view
her resource. Doctor A refers patient C to doctor
B. Doctor A allows doctor B to view and update
patient C’s resources. Doctor A allows any re-
searcher from organization X to view resources
of all patient who hail from the city “Mounds”.

With respect to the above mentioned scenario, we will
evaluate the security of our system by subjecting it to both
benign and malicious access attempts from different individ-
uals in the set of all actors from the motivating scenario. An
overview of the access scenarios in tabulated in table 1.

6.4.1 Scenario 1
In the first scenario doctor A attempts to create patient re-

sources without being validated by the Validation Server. In
this case, doctor A has not yet obtained a unique token from
the Validation Server and if doctor A tries to forge a token,
the Attribute Database would be missing the forged token
and hence doctor A would not be identified as a “Poster”.

37

Scenario Index Actor Operation State Type Response

1 Doctor A Create patient resources Not Validated Malicious Deny
2 Doctor A Create patient resources Validated Regular Allow
3 Doctor A View patient resources Policy not in

place
Malicious Deny All

4 Doctor A View patient resources Policy in
place

Regular Allow self cre-
ated resource
only

5 Patient B View self patient resource Policy not in
place

Malicious Deny

6 Patient B View self patient resource Policy in
place

Regular Allow

7 Doctor B View self patient resource Policy allows
patient B to
view not Doc-
tor B

Malicious Deny

8 Patient B Edit patient C resource Policy not in
place

Malicious Deny

9 Doctor B Edit patient C resource Policy in
place

Regular Allow

10 Researcher
from city
“kolhn”

View all patient resources Policy in
place

Malicious Deny all

11 Researcher
from city
“Mounds”

View all patient resources Policy in
place

Regular Release pa-
tient (B and
C) created by
Doctor A

Table 1: Security Scenarios

6.4.2 Scenario 2
In scenario 2 doctor A validates with the Validation Server

and obtains a unique token. He is thus identified as a
“Poster” and our system allows him to POST new resources.

6.4.3 Scenario 3
In this scenario doctor A attempts to view the all patient

resources. However, he is denied access to any Patient re-
source. This is because he requires to provide a policy which
allows himself to view patient records.

6.4.4 Scenario 4
Doctor A provides a security policy as follows:

<Policy PolicyId = "POLICY-A"
rule-combining-algorithm="deny-overrides">

<Target>
/* :Attribute-Category :Attribute ID :Attribute Value */
AnyOf:
AllOf:
:access-subject :xacml:subject-id :A
:resource :xacml:resource-id :Patient
:action :xacml:action-id :GET
:admin :resource-owner :A

</Target>
<Rule RuleId = "P" Effect="Permit">
</Rule>

</Policy>

The policy implies that doctor A will be able to view
Patient resources which are created by him. The “resource-
owner” attribute guarantees that even if doctor A queries
all Patient resources only those Patient resources (B and
C) created by him are evaluated against this policy and re-
turned back to him by the PEP. Another noticeable factor
in the above mentioned policy is that the “PolicyId” is ap-
pended with doctor A’s id which is “A”. This ensures that
when performing policy administration doctor A would only
be able to view/modify/delete this policy and not any other
policy with the id “POLICY”.

6.4.5 Scenario 5
If patient B attempts to access her records he would not

be allowed access since doctor A, the creator of her resource
has not supplied a policy allowing patient B to view her
resource.

6.4.6 Scenario 6
Doctor A creates a policy on the Policy Admin as follows:

<Policy PolicyId = "POLICY-PATIENTB-A"
rule-combining-algorithm="deny-overrides">

<Target>
/* :Attribute-Category :Attribute ID :Attribute Value */
AnyOf:

AllOf:
:access-subject :xacml:subject-id :B
:resource :xacml:resource-id :Patient
:action :xacml:action-id :GET
:admin :resource-owner :A

</Target>
<Rule RuleId = "PB" Effect="Permit">
<Condition>

Function: string-equal
/* :Attribute-Category :Attribute ID :Attribute Value */

:Patient :Patient.id.none :B
:access-subject :Subject.role.none :Patient

</Condition>
</Rule>

</Policy>

This policy allows patient B to view only Patient resources
corresponding to her id.

6.4.7 Scenario 7
Doctor B, as mentioned previously, is also a patient of

doctor A. However, according to the policy defined in the
previous scenario an individual with id“B”and role“Patient”
can view the resource of patient B. As a result doctor B is
not allowed access to her Patient resource when he tries to
access it as a “Doctor”.

6.4.8 Scenario 8
Since patient C is also treated by doctor B, doctor A al-

lows doctor B to edit/view patient C’s resources by supply-
ing the following policy:

<Policy PolicyId = "POLICY-PATIENTC-DOCTORB-A"
rule-combining-algorithm="deny-overrides">

<Target>
/* :Attribute-Category :Attribute ID :Attribute Value */
AnyOf:

AllOf:
:access-subject :xacml:subject-id :B
:resource :xacml:resource-id :Patient

AnyOf:
:action :xacml:action-id :GET
:action :xacml:action-id :PUT
:action :xacml:action-id :POST

:admin :resource-owner :A
</Target>
<Rule RuleId = "PB" Effect="Permit">
<Condition>

Function: string-equal
/* :Attribute-Category :Attribute ID :Attribute Value */

:Patient :Patient.id.none :C
:access-subject :Subject.role.none :Doctor

</Condition>
</Rule>

</Policy>

However, the above supplied policy does not allow doctor
B, assuming the role of a patient, to perform any action on
the resource.

6.4.9 Scenario 9
The policy shown in the previous section allows doctor B

to modify or view the resource belonging the patient C.

6.4.10 Scenario 10
Doctor A approves the request made by an organization

from “Mounds”, and allows any researcher from that city to
view all resources POSTed by him by supplying the following
policy:

38

<Policy PolicyId = "POLICY-PATIENTC-RESEARCHER-A"
rule-combining-algorithm="deny-overrides">

<Target>
/* :Attribute-Category :Attribute ID :Attribute Value */
AnyOf:
AllOf:
:access-subject :Subject.role.none :Researcher
:resource :xacml:resource-id :Patient
:action :xacml:action-id :GET
:admin :resource-owner :A

</Target>
<Rule RuleId = "PB" Effect="Permit">
<Condition>

Function: string-equal
/* :Attribute-Category :Attribute ID :Attribute Value */

:access-subject :Subject.address.city :Mounds
</Condition>
</Rule>

</Policy>

According to the policy an individual with the role of a
“Researcher”would be allowed to access all Patient resources
POSTed by doctor A if and only if he is a native of the city
“Mounds”. Thus a researcher from the city “Kolhn”does not
get access to Patient resources created by doctor A.

6.4.11 Scenario 11
According to the policy from the previous scenario an indi-

vidual with the role of “Researcher” from the city “Mounds”
gets access to the Patient resources posted by doctor A.

7. CONCLUSION AND FUTURE WORKS
We presented a framework for allowing fine grained au-

thorization and access to FHIR resources. Each user is au-
thenticated through the validation server which may consult
other identity providers for this purpose. In addition, the
validation server allows a user to modify her attributes that
will permit/deny future access. It also allows resource cre-
ators to provide fine-grained policies controlling access to
those resources. In future, we plan to improve the process
of authentication by integrating the logic of the Validation
Server with protocols like OpenId Connect [6]. Future work
also includes developing an interactive easy to use framework
that helps users in specifying syntactically and semantically
correct policies.

Acknowledgement
The work was funded in part by NIST under Contract Num-
ber 60NANB16D250.

8. REFERENCES
[1] Anwar, M., and Imran, A. Access Control for

Multi-Tenancy in Cloud-Based Health Information
Systems. In Proceedings of the 2nd IEEE International
Conference on Cyber Security and Cloud Computing
(New York, USA, Nov 2015).

[2] Apache Axis2 - Apache Axis2 User’s Guide-
Introducing Axis2. https://axis.apache.org/axis2/
java/core/docs/userguide.html, Oct 2016. [Online;
Accessed 24-January-2017].

[3] Caumanns, Jörg and Kuhlisch, Raik and Pfaff,
Oliver and Rode, Olaf. IHE IT-Infrastructure
White Paper: Access Control. Tech. rep., IHE
International, Sept 2009.

[4] Dong, X., Samavi, R., and Topaloglou, T. COC:
An Ontology for Capturing Semantics of Circle of
Care. Procedia Computer Science 63 (2015), 589–594.

[5] eXtensible Access Control Markup Language
(XACML) Version 3.0. http://docs.oasis-open.org/
xacml/3.0/xacml-3.0-core-spec-os-en.html, Jan 2013.
[Online; Accessed 24-January-2017].

[6] Final: OpenID Connect Core 1.0. http://openid.net/
specs/openid-connect-core-1 0-final.html. [Online;
Accessed 24-January-2017].

[7] Grunwell, D., Gajanayake, R., and Sahama, T.
The Security and Privacy of Usage Policies and
Provenance Logs in an Information Accountability
Framework. In Proceedings of the 8th Australasian
Workshop on Health Informatics and Knowledge
Management (HIKM 2015) (Sydney, Australia, 2015).

[8] Hardt, D. The OAuth 2.0 Authorization Framework.
Request for Comments 6749, Internet Engineering
Task Force, Oct 2012.

[9] Herdman, R., and Moses, H. Effect of the HIPAA
Privacy Rule on Health Research. In Proceedings of a
Workshop Presented to the National Cancer Policy
Forum (2006).

[10] Holz, R., Sheffer, Y., and Saint-Andre, P.
Summarizing Known Attacks on Transport Layer
Security (TLS) and Datagram TLS (DTLS). Request
for Comments 7457, Internet Engineering Task Force,
Feb 2015.

[11] Hu, V. C., Ferraiolo, D., Kuhn, R., Friedman,
A. R., Lang, A. J., Cogdell, M. M., Schnitzer,
A., Sandlin, K., Miller, R., Scarfone, K., et al.
Guide to Attribute Based Access Control (ABAC)
Definition and Considerations. NIST Special
Publication 800-162, National Institute of Standards
and Technology, January 2014.

[12] Hüffmeyer, M., and Schreier, U. Efficient
Attribute Based Access Control for RESTful Services.
In Proceedings of the 7th Central European Workshop
on Services and their Composition (Jena, Germany,
February 2015).

[13] Hüffmeyer, M., and Schreier, U. RestACL: An
Access Control Language for RESTful Services. In
Proceedings of the 2016 ACM International Workshop
on Attribute Based Access Control (New Orleans, LA,
2016).

[14] Jersey. https://jersey.java.net/, Jan 2017. [Online;
Accessed 24-January-2017].

[15] Lamprinakos, G. C., Mousas, A. S., Kapsalis,
A. P., Kaklamani, D. I., Venieris, I. S., Boufis,
A. D., Karmiris, P. D., and Mantzouratos, S. G.
Using FHIR to Develop a Healthcare Mobile
Application. In Proceedings of the 4th International
Conference on Wireless Mobile Communication and
Healthcare - Transforming Healthcare Through
Innovations in Mobile and Wireless Technologies
(Athens, Greece, Nov 2014).

[16] Li, M., Yu, S., Ren, K., and Lou, W. Securing
Personal Health Records in Cloud Computing:
Patient-Centric and Fine-Grained Data Access
Control in Multi-owner Settings. In Proceedings of the
6th Iternational ICST Conference on Security and
Privacy in Communication Networks (Singapore,
September 2010).

[17] Machulak, M. P., Maler, E. L., Catalano, D.,
and van Moorsel, A. User-managed Access to Web

39

Resources. In Proceedings of the 6th ACM Workshop
on Digital Identity Management (New York, NY,
USA, Oct 2010).

[18] Mandel, J. C., Kreda, D. A., Mandl, K. D.,
Kohane, I. S., and Ramoni, R. B. SMART on
FHIR: a Standards-Based, Interoperable Apps
Platform for Electronic Health Records. Journal of the
American Medical Informatics Association 23, 5 (Feb
2016), 899–908.

[19] Namli, T., Postaci, S., Gençtürk, M., Dogaç,
A., Yalçinkaya, A., and Taskin, C. Addressing the
Adoptability Challenges of the PHR Systems:
SharingCare. In Proceedings of eChallenges e-2013
Conference (Dublin, Ireland, October 2013).

[20] Ness, R. B., Committee, J. P., and
of Epidemiology f, S. Influence of the Hipaa
Privacy Rule on Health Research. Journal of the
American Medical Association 298, 18 (Nov 2007),
2164–2170.

[21] Organizations Interested in FHIR - HL7Wiki.
http://wiki.hl7.org/index.php?title=Organizations
interested in FHIR#List of Organizations .28in
Alphabetical Order.29, Nov 2016. [Online; Accessed
24-January-2017].

[22] Fast Healthcare Interoperability Resources Overview -
FHIR v1.0.2.

https://www.hl7.org/fhir/overview.html, Oct 2015.
[Online; Accessed 24-January-2017].

[23] Ray, I., Ong, T. C., Ray, I., and Kahn, M. G.
Applying Attribute Based Access Control for Privacy
Preserving Health Data Disclosure. In Proceedings of
the 2016 IEEE-EMBS International Conference on
Biomedical and Health Informatics (BHI) (Las Vegas,
NV, February 2016).

[24] Rescorla, E. HTTP Over TLS. Request for
Comments 2818, Internet Engineering Task Force,
May 2000.

[25] Security - FHIR v1.0.2.
https://www.hl7.org/fhir/security.html, Oct 2015.
[Online; Accessed 24-January-2017].

[26] Security-labels - FHIR v1.0.2.
https://www.hl7.org/fhir/security-labels.html, Oct
2015. [Online; Accessed 24-January-2017].

[27] WSO2 Identity Server: WSO2 Identity & Access
Management | WSO2 Inc.
http://wso2.com/products/identity-server/. [Online;
Accessed 24-January-2017].

[28] Zhang, R., and Liu, L. Security Models and
Requirements for Healthcare Application Clouds. In
Proceedings of the 3rd IEEE International Conference
on Cloud Computing (Miami, FL, 2010).

40

