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Generating a realistic representation of a fractured rock mass is a first step in many different analyses.
Field observations need to be translated into a 3-D model that will serve as the input for these analyses.
The block systems can contain hundreds of thousands to millions of blocks of varying sizes and shapes;
generating these large models is very computationally expensive and requires significant computing
resources.
By taking advantage of the advances made in big data analytics and Cloud Computing, we have a devel-

oped an open-source program—SparkRocks—that generates block systems in parallel. The application
runs on Apache Spark which enables it to run locally, on a compute cluster or the Cloud. The block gen-
eration is based on a subdivision and linear programming optimization as introduced by Boon et al.
(2015). SparkRocks automatically maintains load balance among parallel processes and can be scaled
up on the Cloud without having to make any changes to the underlying implementation, enabling it to
generate real-world scale block systems containing millions of blocks in minutes.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Generating a realistic three dimensional model of a fractured
rock mass is the first step in many analyses. Discrete block based
methods such as discontinuous deformation analysis (DDA) [1]
and the distinct element method (DEM) [2] require a full geometric
description of the particles in their initial configuration as a start-
ing point for the computations. Identifying removable blocks in a
larger rock mass also requires a complete representation of the ori-
entation of the blocks and discontinuities within the rock mass—as
blocks are removed, the stability of newly exposed blocks must
also be considered. Similarly, analysis of seepage through fractured
rock relies on a complete description of the fractures and how they
are connected within the rock.

Fundamentally, this is not a new topic and many researchers
have developed algorithms to address this problem. Warburton
[3,4] presents a methodology for generating a blocky rock mass
based on sequential introduction of discontinuities and stores the
generated blocks using a three-level data structure (vertices, edges
and faces). Heliot [5] proposes a scheme for generating a blocky
rock mass that additionally deals with non-convex blocks by repre-
senting a rock block as an assemblage of convex blocks. In Heliot’s
approach, the blocks are stored using a two-level data structure
(vertices and faces). Ikegawa and Hudson [6] developed the so-
called directed body concept in which all the discontinuities are
introduced simultaneously. The blocky mass is then systematically
extracted from the vertices, edges and faces. Additionally, several
researchers [7,8] have developed algorithms based on principles
from combinational topology. These techniques are able to deal
with complex geometry, but require a significant amount of ‘‘book-
keeping” when implemented. Recently, Boon et al. [9] presented a
block cutting algorithm that is based entirely on linear program-
ming. Instead of explicitly calculating the vertices where the dis-
continuities intersect, the problem is cast as a linear
programming optimization. This makes it possible to represent
the rock blocks by a single-level data structure since only informa-
tion about the faces is needed. The simplicity and the efficiency of
the method makes it an attractive candidate for large-scale compu-
tations. The algorithm itself is entirely decoupled—once a block has
been subdivided into two new blocks, the further subdivision of
these new blocks can proceed independently. Consequently, this
algorithm is naturally parallel and multiple cuts can be made
simultaneously without the need to share information among
processes.
2. Apache Spark

The subdivision of the rock mass is an iterative process on the
same set of data, making the parallel, open-source framework
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Apache Spark [10] an ideal platform for a blocky rock mass gener-
ator using a subdivision-type approach. Spark can run on any plat-
form ranging from laptops and personal workstations with
multicore processors to Cloud based computing platforms, such
as Amazon Elastic Cloud Compute (EC2). This scalability in the
power of the computing environment without having to make
any changes to the application code allows for the analysis of
extremely large problems requiring large amounts of memory
and computing power.

The fundamental abstraction in Spark is Resilient Distributed
Datasets (RDDs) [10] that allow it to keep large data sets in mem-
ory and perform computations in a fault tolerant manner. By keep-
ing the dataset in memory, Spark is able to do iterative
transformations on the data extremely quickly since it avoids writ-
ing to disk. Fault tolerance is achieved by tracking the lineage of
RDDs—all operations applied to the RDD are represented through
a lineage graph. When a new operation is applied to the RDD, a
new link is added to the graph. Additionally, RDDs are evaluated
‘‘lazily”: only when a result is requested does Spark execute the
transformations described by the lineage graph to actually materi-
alize the current RDD. In this way, if a process unexpectedly fails
the current state can be quickly reconstructed from the lineage
contained in the graph.

For large scale problems, Spark clusters can be deployed on EC2
using Amazon’s Elastic MapReduce (EMR) framework, which auto-
matically allocates and configures a cluster of EC2 instances to exe-
cute Spark tasks submitted by the user. Amazon EC2 falls under the
greater umbrella of Cloud Computing—applications delivered as
services over the Internet and the associated software and hard-
ware that provide those services [11]. Running large scale compu-
tations on the Cloud offers users several advantages. First,
resources can be scaled on demand to meet the computing require-
ments of the problem at hand. Second, it is no longer necessary to
invest large amounts of capital in computational hardware and the
associated management and maintenance. Lastly, usage can be
scaled up or down as needed so users only pay for what they use
and only use what they need. This makes it possible for anyone
to run large scale computations since it is no longer necessary to
physically own a computer cluster. Hence, Cloud Computing essen-
tially opens the door to High Performance Computing (HPC) for
anyone willing to step through it.
2.1. SparkRocks

By taking advantage of Spark’s ability to run on any computer
system and the scalability of Cloud Computing, we developed a
parallel block cutting program, SparkRocks1, that is capable of
generating large numbers of blocks very quickly. The code is open
source and the necessary inputs to generate a fractured rock mass
are based on parameters that are obtained from field observations,
allowing users to quickly translate field measurements into a
three-dimensional model.

The program was tested on different systems—a laptop, desktop
workstation, and Amazon EC2—to illustrate its ability run on differ-
ent platforms and to verify its scalability. Results show that we can
generate approximately 8 million blocks in roughly 9 minutes.
3. Block cutting algorithm

The block cutting algorithm uses a sequential subdivision
approach based on linear programming optimization introduced
by Boon et al. [9]. Each discontinuity is introduced individually
and checked for intersection. If it intersects the block, two new
1 Available at https://github.com/cb-geo/spark-rocks.
blocks are generated. The process continues sequentially until all
discontinuities have been introduced, yielding a representation of
the fractured rock mass. Many block cutting algorithms require a
significant amount of bookkeeping in terms of vertices, edges, faces
and how all of these elements are connected. From an implemen-
tation perspective, this can be extremely tedious and may not be as
robust in terms of floating point error. The linear programming
optimization approach introduced by Boon et al. greatly simplifies
how block cutting is implemented and how each block is repre-
sented in terms of data structure. We give only a brief overview
of this rock cutting algorithm since the details are presented in [9].

The orientations of joints in a fractured rock mass are described
by strike and dip, as shown in Fig. 1. The block cutting algorithm
uses the normal vector of the plane containing the joint and the
distance of that plane to some origin. The strike and dip define
the normal vector of the joint. The distance of the joint plane from
the origin is determined by projecting a vector connecting the ori-
gin to a point in the joint plane onto the normal vector. The global
+x, +y and +z axes are oriented North, West and upward.

Using only the joint normal and distance, it is possible to com-
pletely describe a polyhedral block, as shown in Fig. 2. A block
bounded by N planes is described by the following equation:

aixþ biyþ ciz 6 di; i ¼ 1; . . . ;N ð1Þ
The coefficients ðai; bi; ciÞ represent the normal vector to the ith

plane bounding the block and di is the distance of that plane from
some local origin. In vector notation this becomes:

aT
i x� di 6 0; i ¼ 1; . . . ;N ð2Þ
In order to subdivide a block, it is necessary to establish

whether the block is intersected by the discontinuity being consid-
ered. The novelty in the algorithm presented in [9] is recasting this
problem as a linear program:

minimize s

aT
i x� di 6 s; i ¼ 1; . . . ;N

aT
newx� dnew ¼ 0

ð3Þ

Here N represents the number of planes that define the block
and the discontinuity being considered is represented by the
equality. If s < 0, there is an intersection and the parent block is
split into two child blocks. The child blocks inherit all the parent
block’s planes as well as the intersecting discontinuity with oppo-
site signs for the discontinuity normal vector for each child block.

As the subdivision continues, some of the discontinuities may
become geometrically redundant. It is not necessary to remove
these redundancies after each intersection check; instead they
can be removed at a later time as discussed in Section 4.2.3. Again,
this can be done by solving a linear program:

maximize cTx

aT
i x 6 di; i ¼ 1; . . . ;N

ð4Þ

Here, c is the normal vector specific to the discontinuity being
checked for redundancy and with associated distance d. If
j cTx� d j< e the discontinuity is not redundant, where e repre-
sents a numerical tolerance close to zero.

Additionally, we take advantage of two major optimizations to
the block cutting process that are presented in [9]. The first opti-
mization draws on an idea common to contact detection in particle
methods (for example, see [12]): the complex geometry of the
polyhedral blocks is enclosed in a simpler shape, in this case a
bounding sphere. This enables a simple and fast check for intersec-
tion to determine if a more thorough but computationally expen-
sive check is necessary. The second optimization is to control the
size and aspect ratio of the blocks that are generated during the

http://https://github.com/cb-geo/spark-rocks
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slicing process. Unrealistically small or thin blocks can contami-
nate the generated blocks, leading to undesirable side effects in
the subsequent analyses that use the fractured rock mass as an
input. Both of these optimizations involve the construction and
solution of linear programs, the details of which are fully described
in [9].
4. Implementation on Spark

4.1. Translation into a parallel problem

As already stated, the serial approach to cutting blocks can
readily be modified to run in parallel. Once two child blocks are
cut from their parent by a particular joint, they can be treated inde-
pendently for the remainder of the block cutting process. In other
words, one child’s intersection with subsequently introduced
joints and future subdivisions into further child blocks has no
effect on the subdivision matters of its sibling. This gives rise to
a tree structure of relationships between blocks, depicted in
Fig. 3. Therefore, while processing each joint in a rock mass, the
joint’s intersection with each block cut so far can be computed
independently. We take advantage of this property to construct
and solve the linear programs described in the previous section
in parallel and independently on each processor. It is important
to note that the tree structure described is not unique to [9], and
any other block cutting algorithm with this property would lend
itself to parallelization.

In practice, it is necessary to effectively distribute work to the
multiple central processing unit (CPU) cores and nodes that are
available. By expressing the current set of blocks cut from a rock
mass as an RDD in the Spark context, it is possible to seamlessly
perform parallel operations on these blocks and scale the associ-
ated computation to different quantities of CPU cores and nodes
without changing any of the underlying rock slicing logic. To split
up responsibilities for all of the required rock slicing, we select a
small subset of joints to break the overall rock volume into a group
of initial blocks of roughly equal volume. Each block, and all of that
block’s descendants, are then processed independently as illus-
trated from a high level in Fig. 4.

4.2. Implementation

A straightforward translation of the method described in [9]
into code does not lead to an efficient parallel rock slicing imple-
mentation. This section describes important features and refine-
ments necessary to achieve good performance when dealing with
problems at a large scale.

4.2.1. Load balance
In terms of performance, maintaining load balance among par-

allel processes as well as minimizing communication between
them is of primary concern. A solution that achieves good load bal-
ance may not necessarily feature a reasonable level of communica-
tion overhead, while another solution may have low
communication overhead but poor balancing of work among paral-
lel processes. It is therefore necessary to find a strategy that
achieves a balance between these two demands by taking into
account the characteristics of the underlying framework on which
computations are done.

In our case, the initial thought was to focus on load balance.
Artificial joints are introduced to divide the rock volume into equal
pieces so that near-perfect load balance is achieved between paral-
lel processes. However, in order to remove the artificial joints at
the end of the slicing process, all blocks sharing an artificial joint
must be recombined in order to remove that artificial joint from
the final rock mass. This involves an exchange of blocks over the
network among all nodes, which induces a high amount of com-
munication overhead that slows down the overall rock slicing pro-
cess and offsets the gains achieved through load balancing. Spark
does not have the necessary communication primitives to directly
manage communication which, in this case, leads to excessive
communication to the point that the majority of the computation
time is spent on the removal of artificial joints rather than the
introduction of real joints.

Given these constraints, we sacrifice some of the load balance in
order to minimize communication. Since the block cutting process
is entirely decoupled and can be done independently, once each
node receives a portion of the initial rock volume it can complete
the cutting process without communicating with other nodes.
We exploit this by selecting joints from the input joint sets that
divide the initial rock volume into approximately equal volumes.
The blocks generated by cutting the initial rock volume with the
selected joints are used to seed the initial RDD. This idea is illus-
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trated in Fig. 5. The different colors represent which portions of the
rock mass were processed by which node. In this example four
nodes were used. Each node processed one portion of approxi-
mately equal volume and the last, much smaller volume was pro-
cessed by the node that completed its subdivision first.

Since the joints used to generate the seed blocks are real joints
taken from the input joint sets, it is not possible to achieve perfect
load balance. In some instances it may not be possible to find ade-
quate seed blocks from a single joint set, so it becomes necessary to
select joints from multiple joint sets. This complicates finding the
exact same number of seed blocks as the number of nodes in the
analysis. In most cases, more seed blocks are generated than what
is requested. This is especially the case when selecting joints from
multiple joint sets. Since Spark performs dynamic load balancing
internally, having more seed blocks provides flexibility in manag-
ing and maintaining load balance.

4.2.2. Lineage
Spark internally tracks the transformations applied to each RDD

in a lineage graph. This allows it to defer the materialization of an
RDD until its contents are actually needed by traversing a path
from a previously materialized RDD to the required RDD, applying
the necessary transformations along the way. However, Spark fails
when lineage chains in this graph grow too long. Specifically, this
occurred in the initial version of the rock slicing code depicted in
Fig. 6a, which iterated through each joint in the rock mass, checked
for intersections with any members of the current block RDD, and
produced a new RDD in which any blocks intersecting the joint



Fig. 5. Example of load balance. Here, at least 4 partitions were requested. The different colors represent which pieces were processed by which node. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this article.)
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were cut into two child blocks. Thus, a new RDD was created for
each joint, and a lineage chain formed with a length proportional
to the total number joints, which becomes unwieldy when the
number of joint is large.

We resolved this issue by taking advantage of Spark’s fold

primitive, as shown in Fig. 6b. This operation individually exami-
nes each joint and creates an intermediate collection of blocks that
are the cumulative result of processing all joints seen so far. The
operation repeats until all joints have been processed, and only
the final result is retained. In more detail, fold starts with an ini-
tial element (the seed blocks used for load balancing), and element
i is produced by applying an operation to element i� 1 and the
next joint, which in this case is an intersection check and the nec-
essary slicing of parent blocks into child blocks. Spark treats a fold
as a single transformation and therefore a single link in the lineage
chain. This replaces the original lineage chain, with a length pro-
portional to the number of joints, with a lineage chain of length
one.

4.2.3. Redundant faces
Two child blocks that are cut from a parent inherit all of the par-

ent’s faces as well as a face along the discontinuity that separates
the blocks from each other. Many of these faces are geometrically
redundant and can removed without compromising the integrity
of the block. Boon et al. [9] advocate deferring the removal of geo-
metrically redundant faces until all blocks have been cut. However,
retaining a large number of redundant faces in blocks during the
slicing process increases the size of the linear programs that must



Table 1
Amazon EC2 instance types used in testing.

c3.xlarge c3.4xlarge c3.8xlarge

vCPU 4 16 32
Memory (GB) 7.5 30 60

SSD Storage (GB) 2 � 40 2 � 160 2 � 320
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be solved when checking for intersection between blocks and
joints. The increase in linear program size leads to degraded perfor-
mance as more child blocks are cut from the initial rock volume.

To avoid this deterioration in performance, we periodically
remove redundant faces during the block cutting process. The fre-
quency at which this removal is performed represents a tradeoff.
Removing redundant faces is somewhat expensive because it
involves solving a linear program for each face of a block, so it can-
not be done too often. We found that eliminating redundant faces
for every 200 joints processed keeps the linear programs reason-
ably sized without adding excessive overhead from geometric
redundancy checking.

An important consideration in this scheme is the fact that many,
if not most, blocks will not change when additional joints are intro-
duced. Therefore, examining these blocks is unnecessary work and
a source of significant inefficiency. To address this problem, we
index all joints by the order in which they are processed, i.e. the
first joint checked for intersection against all blocks is assigned
index 1, the second joint checked is assigned index 2, and so on.
Each block is augmented to track its generation – the index of the
joint that cut the block from its parent, and blocks that were not
cut from their parents by any of the 200 most recently introduced
joints are skipped.
5. Performance

Performance evaluation was done on Amazon EC2 with Amazon
Elastic MapReduce (EMR). EMR can seamlessly configure a Spark
cluster on EC2, which makes deploying applications written for
Spark easy to run. All testing was done on compute-optimized
instance types, which are specifically designed for compute-
intensive HPC applications. An instance in the context of EC2 is a
single node. For example, a four node cluster comprises four
instances. The different instance types give the user a choice in
the hardware configuration of the nodes. Testing was done with
c3.xlarge, c3.4xlarge and c3.8xlarge instances. These three
instance types span a range of computational power and hardware
configurations, shown in Table 1.

In order to maintain control over the exact number of blocks
that are generated, the input rock volume consists of a rectangular
prism and input joints are defined such that they divide the rock
volume into a specific number of cubes. This allows us to easily
interpret how well SparkRocks scales.
5.1. Partitioning

Load balance among the different nodes is maintained by parti-
tioning the initial rock mass into approximately equal volumes, as
described in Section 4.2.1. The number of partitions—seed blocks—
used in block cutting has a significant impact on the efficiency.
Figs. 7 and 8 show the total elapsed times for the three different
instance types with 4,000 blocks and 32,000 blocks per node,
respectively. Instances with 64,000 blocks per node showed similar
trends. The most important result is that efficiency is highly sensi-
tive to the number of initial partitions used to seed the RDD. Seed-
ing the RDD with more partitions gives Spark more freedom in
managing parallel execution, as indicated earlier. This trend is
observed independent of the number of nodes. Each node can exe-
cute computations in parallel locally; however, if it receives only a
single partition, computations will be serial as demonstrated by
the runs executed on a single node.

When more than one node is used with too few partitions,
Spark cannot effectively share the computational load across all
members of the cluster, and some nodes end up doing much more
work than others. By seeding the RDD with more partitions
initially, each node will receive many seed blocks. This allows
Spark to locally exploit parallelism and greatly increase efficiency.
This is seen more clearly for tests with more blocks, such as shown
in Fig. 8 where execution times for large node counts are slower
than smaller node counts for the same number of partitions.

However, when the input data set is too small, larger clusters
perform poorer regardless of the number of partitions. For exam-
ple, when each node only has 4,000 blocks, as shown in Fig. 7,
the data set is too small to benefit from the greater computational
power of larger clusters. The communication overhead required to
manage more nodes dominates total execution time.

Interestingly, in some instances, there is a slight increase in exe-
cution time for larger partition counts. Apparently, with too many
partitions the cost of communication among the nodes begins to
outweigh the load balancing benefits, leading to higher execution
times. However, as can be seen, great speedup is attainable even
if the most optimal partition count is not selected.
5.2. Instance type

Fig. 9 shows the total execution time of the rock slicing process
on a four-node cluster for the three EC2 instance types and for
three different problem sizes (4,000 blocks per node, 32,000 blocks
per node, and 64,000 blocks per node). Clusters of two, eight, and
sixteen nodes exhibited similar results. The least powerful
instance, c3.xlarge, is affected by small initial partition counts
far more than the other types. A low partition count prevents all
nodes in the cluster from fully participating, which accentuates
the disparity in computational power between the c3.xlarge

and the other instance types. As the partition count increases,
the different instance types begin to yield more comparable perfor-
mance, although c3.xlarge clusters still remain noticeably worse
than the alternatives. Interestingly, the c3.4xlarge and
c3.8xlarge demonstrate very similar performance characteris-
tics, not just at high partition counts but for all partition counts.
This implies that there are diminishing returns to running a well-
tuned deployment on more powerful EC2 nodes, and this has
important consequences for users seeking to perform rock slicing
at large scale on the Cloud. While Amazon’s price for a c3.8xlarge
instance is double that of a c3.4xlarge instance, one can use the
latter without suffering a compromise in performance.
5.3. Weak scaling

The weak scaling of a parallel program is its ability to maintain a
constant level of efficiency while increasing the number of nodes
involved in its computations. The problem size per node is kept
constant, so each node performs the same amount of work as
new nodes are added. In the ideal case, the execution time should
remain constant as the number of nodes increases. To test the
weak scaling capabilities of SparkRocks, we performed rock slic-
ing on clusters of increasing size while proportionally increasing
the total number of blocks that are sliced, e.g. a cluster with twice
as many nodes slices twice as many blocks. The relevant results are
included in Fig. 10, presented both in terms of total execution time
and scaling efficiency. When processing 4,000 blocks per node,
SparkRocks demonstrates good weak scaling behavior, although



Fig. 7. Execution time vs. Number of initial partitions in the rock volume – 4000 blocks per node.
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it can be argued that there are not enough blocks in these experi-
ments to seriously challenge the system’s scaling abilities. Total
execution time slowly increases as cluster size increases, probably
due to the additional communication costs that are introduced by
adding more nodes. Again, c3.4xlarge clusters achieve perfor-
mance that is comparable to that of c3.8xlarge clusters.

When processing 32,000 and 64,000 blocks per node, the results
become more complicated. As with 4,000 blocks per node, there is
only a small performance difference between c3.8xlarge clusters
and c3.4xlarge clusters, particularly at larger cluster sizes. More-
over, the performance gap between these two instance types and
the c3.xlarge clusters also decreases as clusters become larger.
Larger cluster sizes are therefore able to mask some of the differ-
ences in the capabilities of the underlying hardware. Diminishing
scaling returns begin to appear at the larger cluster sizes, where
execution time either decreases very slightly or increases. This is
probably because communication costs start to become the domi-
nant factor in scaling behavior, as is typical for parallel computing
applications.

Fig. 10 also illustrates a pattern in which execution time
decreases in certain places as cluster size increases, e.g. when mov-
ing from two to four nodes. In some sense, this is better than ‘‘per-
fect” scaling where execution time remains constant as the
number of nodes increases. This behavior is particularly difficult
to analyze because Spark gives the user little control over how
their jobs are executed on the underlying cluster of machines.
Spark divides a job into a group of tasks, each of which is com-
pleted by an executor – an abstraction for an independent unit of
processing. On Amazon’s Elastic MapReduce platform, Spark by
default dynamically assigns tasks to executors and increases or
decreases the number of executors devoted to a job based on inter-
nal heuristics. The improved performance when increasing cluster
size is likely due to the fact that with more machines, and therefore
with more blocks to partition among these machines, Spark has
more freedom to balance load across the cluster and is conse-
quently able to achieve better execution times.
5.4. Strong scaling

Strong scaling is measure of the speedup efficiency when
increasing the number of nodes for a fixed problem size—using
more nodes should yield shorter execution times. Based on the
above mentioned results, strong scaling tests were only performed
using c3.4xlarge and c3.8xlarge. These instance types clearly
outperformed c3.xlarge and would be reasonable to use when
attempting larger analyses. Fig. 11 shows the results of these tests,
both in terms of execution time and scaling efficiency. When com-
paring the execution times, it is clear that both instances perform
equally well with more nodes. The largest difference in execution
times is seen when using 1 and 2 nodes. This makes sense since
the problem size is getting sufficiently large to accentuate the dif-
ference in computational power between c3.4xlarge and
c3.8xlarge instances. Using fewer nodes limits parallelism and
the more powerful instance wins out. However, considering the
difference in cost and the fact that performance is very similar
when using 4 nodes or more, c3.4xlarge seems to be a better
starting choice in terms of instance type.



Fig. 8. Execution time vs. Number of initial partitions in the rock volume – 32,000 blocks per node.
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In terms of efficiency, both instance types exhibit similar trends
though c3.4xlarge is somewhat more efficient. If SparkRocks

had perfect strong scaling, the speedup would be equal to the num-
ber of nodes used. Most likely, the increase in communication
overhead required to manage the cluster offsets much of the gain
in additional resources. Also, the strong scaling tests were per-
formed with the same number of initial partitions, regardless of
the cluster size. More in-depth optimization would most likely
reveal better strong scaling with respect to varied initial
partitioning.

5.5. Practical implications

From a practical perspective, the results in Fig. 11 reveal that,
for most cases, using the less expensive c3.4xlarge instance type
will yield very comparable speedup at a lesser price—even for as
many as 8 million blocks. For greater problem sizes, where more
memory and computational power are necessary, c3.8xlarge is
available.

In this context, we compare the results presented here with the
computational speed of a single core of a 3.1 GHz Intel Core-2-Duo
CPU presented in Boon et al. [9] and SparkRocks on both a laptop
with an Intel Core i7-4720HQ (2.6 GHz) CPU with 10 GB of memory
and a workstation with two Intel Xeon E5-2630 v2 (2.3 GHz) CPUs
with 20 GB of memory. Spark was run with 4 cores on the laptop
and 12 cores on the workstation. The performance data for EC2 is
from an eight-node cluster of c3.4xlarge instances, using the
best partition count for each problem size. This cluster therefore
features a total of 240 GB of memory and 128 vCPUs.
Fig. 12 is a plot of execution time against problem size. It shows
that the parallel implementation offers orders of magnitude
speedup compared to the serial implementation featured in [9]
as the number of available cores and memory increases. In partic-
ular, we observe that when we move the execution of SparkRocks
from a single desktop to an EC2 cluster, running times decrease by
about an order of magnitude for problems of the same size, while
the cluster can also accommodate much larger problems than the
lone server. Running times on the EC2 cluster do not begin to sig-
nificantly increase until the problem size becomes quite large. If
even larger problem sizes were tested, running time on EC2 should
scale similarly to the running times seen on the laptop and desktop
deployments. Overall, performance on EC2 conforms to our expec-
tations, as the cluster represents about an order of magnitude
increase in CPU and memory resources compared to the desktop,
and we generally observed that the execution of SparkRocks is
CPU-bound. While the parallel processes running on different
machines within the cluster now have to communicate over the
network, our rock slicing algorithm minimizes this communica-
tion, keeping overhead small and allowing SparkRocks to take
nearly full advantage of the additional resources.

Overall, the parallel implementation in SparkRocks is capable
of generating 8,192,000 blocks in roughly 9 minutes on EC2, while
a serial analysis running on a desktop CPU is able to slice only
60,000 blocks in roughly ten minutes [9]. This speed and scalability
is made possible by the use of Spark and the abstractions it pro-
vides. Expressing the rock slicing process as a series of transforma-
tions on a resilient distributed dataset of blocks allows us to spread
work and to scale to all of the nodes and CPU cores available. All of



Fig. 9. Execution time vs. Number of initial partitions in the rock volume on a four-node cluster.

Fig. 10. Execution time and scaling efficiency as cluster size increases. All experiments shown here used 64 partitions for all cluster sizes.
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Fig. 11. Execution time and scaling efficiency as cluster size increases – 134 partitions.

Fig. 12. Execution time vs. Problem size for SparkRocks and Boon et. al. (2015) [9]. Note: x-axis is in log scale.
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this can be done without changing any of the actual rock slicing
code. For the problem sizes typically seen in practice, the Spark-

Rocks parallel implementation can generate full block systems in
a matter of minutes. Historically, access to the kinds of computing
clusters that can provide this level of performance has been pro-
hibitively expensive for many. However, with the relatively recent
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advent of Cloud Computing, users can forego provisioning their
own clusters and access cloud resources instead; paying only for
what they actually use. Thus, the computational resources are no
longer a limitation and real-world scale problems are within reach
during routine analysis.

6. Conclusion

We developed a parallel, scalable open source application,
SparkRocks, which runs on Apache Spark [10] to allow fast, par-
allel block generation. Testing on different systems, ranging from
multiprocessor workstations to Amazon EC2, shows that the paral-
lel implementation offers orders of magnitude speed up for the
solution of large problems. Moreover, the ability to take advantage
of Cloud Computing greatly increases the scale of analyses that can
be attempted. Real-world, large-scale block systems comprising
millions of blocks can be generated in a matter of minutes. Cloud
Computing makes this scale of analysis available to any user since
Cloud resources can be rented as-needed, negating the need to
maintain a local computing cluster. Users only pay for what they
use and only use what they need.

The parallel implementation of the block cutting algorithm in
the current version of SparkRocks generates a fractured rock
mass with persistent joints; however, non-persistent joints are a
common occurrence in natural rock. Future work should include
a stochastic joint generator that can capture the variation in strike,
dip, spacing and persistence of joint sets. While the intersection
code currently implemented in SparkRocks is able to account
for the non-persistence of joints, the code that generates the joint
sets can be expanded to produce stochastic realizations such that
natural variability in the rock mass can be considered.

With this in mind, SparkRocks is entirely open-source and
modular. The code can be added to and modified as needed to
address the needs of various types of analyses and applications.
Though Apache Spark currently does not have the communication
primitives necessary to assess the stability and displacement of the
generated fractured rock mass over time, the output format can
readily be modified to match the required inputs for other software
packages with this capability. As more functionality is added to
Apache Spark, it may become possible to incorporate the displace-
ment and stability analyses into SparkRocks.
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