Session: Big Data and Distributed Systems

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

Big Data Aware Virtual Machine Placement in Cloud
Data Centers

Logan Hall, Bryan Harris, Erica Tomes, and Nihat Altiparmak
Department of Computer Engineering and Computer Science
University of Louisville, KY 40292, USA
{logan.hall,bryan.harris.1,erica.tomes,nihat.altiparmak}@louisville.edu

ABSTRACT

While society continues to be transformed by big data, the increas-
ing rate at which this data is gathered is making processing in
private clusters obsolete. A vast amount of big data already re-
sides in the cloud, and cloud infrastructures provide a scalable plat-
form for both the computational and I/O needs of big data process-
ing applications. Virtualization is used as a base technology in the
cloud; however, existing virtual machine placement techniques do
not consider data replication and I/O bottlenecks of the infrastruc-
ture, yielding sub-optimal data retrieval times. This paper targets
efficient big data processing in the cloud and proposes novel vir-
tual machine placement techniques, which minimize data retrieval
time by considering data replication, storage performance, and net-
work bandwidth. We first present an integer-programming based
optimal virtual machine placement algorithm and then propose
two low cost data- and energy-aware virtual machine placement
heuristics. Our proposed heuristics are compared with optimal and
existing algorithms through extensive evaluation. Experimental re-
sults provide strong indications for the superiority of our proposed
solutions in both performance and energy, and clearly outline the
importance of big data aware virtual machine placement for effi-
cient processing of large datasets in the cloud.

KEYWORDS

virtualization; big data; cloud computing; storage systems

1 INTRODUCTION

Massive amounts of data are generated everyday by various sources
including sensors, Internet transactions, social networks, Internet
of Things (IoT) devices, video surveillance systems, and scientific
applications. Many organizations and researchers store such data
to enable breakthrough discoveries in science, engineering, and
commerce. Today’s most critical applications, including genome
analysis, climate simulations, drug discovery, space observation &
imaging, and numerical simulations in computational chemistry
and high energy physics, are examples of data intensive applica-
tions dealing with large datasets commonly referred to as big data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
BDCAT’17, December 5-8, 2017, Austin, TX, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.

ACM ISBN 978-1-4503-5549-0/17/12...$15.00
https://doi.org/10.1145/3148055.3148057

209

Big data is generally stored in clusters of computers using dis-
tributed file systems [1, 2]. First, the dataset is divided into equal
size disjoint chunks (~128 MB), chunks are replicated (~3 repli-
cas), and distributed across nodes of the cluster to ensure scala-
bility, availability, and reliability. Since the data to be processed
is very large, an initial approach in efficient big data processing
was to send the computation to the data and to retrieve data lo-
cally. However, existing high speed networking interconnects can
provide transfer bandwidth higher than the storage throughput of
even new generation NVMe devices, and can make the storage sub-
system the cause of the bottleneck [3, 4]. The completion time of
distributed big data processing applications is highly affected by
the data retrieval times of individual nodes, and the data access
bottleneck can lie both in storage and networking subsystems.

Cloud computing offers scalable big data storage and processing
opportunities for academia and industry [5, 6]. Various scientific
applications dealing with big data have already been deployed in
the cloud recently [7]. For increased computer resource utilization,
efficiency, and scalability, virtualization is used as a base technol-
ogy by the cloud providers, and the data chunks of big data appli-
cations running in the cloud are retrieved and processed by virtual
machines. An important scheduling decision in virtualized cloud
data centers involves efficient mapping of the virtual machines
(VM) having computer resource requirements to the physical ma-
chines (PM) with available resources. Various VM placement algo-
rithms with different objectives were previously proposed, such
as energy consumption minimization, network transfer minimiza-
tion, economic cost minimization, performance maximization, and
resource utilization maximization [8]. However, none of these tech-
niques were designed considering applications processing big data,
where data chunks are large, replicated, and both storage device
and the network bandwidth can be the cause of the bottleneck in
data retrieval. In order to perform efficient big data processing in
the cloud, VM placement should be carefully performed by consid-
ering the data retrieval times of the virtual machines.

This paper deals with efficient big data processing in the cloud
and proposes big data aware VM placement. Given a set of vir-
tual machines with computer resource and data requirements, our
aim is to determine the VM placement by minimizing the maxi-
mum data retrieval time of the VMs. Our proposed VM placement
scheme considers data replication of the distributed file system,
performance of the storage devices, and the network bandwidth.

2 PRELIMINARIES AND RELATED WORK

Big data aware virtual machine placement is closely related to two
sub-problems: Replicated Data Retrieval Problem (RDRP) and Vir-
tual Machine Placement Problem (VMPP).

Session: Big Data and Distributed Systems

2.1 Replicated Data Retrieval Problem (RDRP)

In a distributed system composed of N physical machines PMy,
PMay,...,PMy, a virtual machine VM residing in one of the physi-
cal machines requests Q data chunks D;, D, . .. ,Dgp tobe retrieved.
Each data chunk is previously replicated r times and distributed
across the physical machines using a distributed file system, such
as Hadoop Distributed File System (HDFES) [2]. In the replicated
data retrieval problem (RDRP), the aim is to decide which physical
machine (replica) should serve each data chunk. The solution is
called performance-optimal if the specified retrieval decision re-
sults in the minimum total retrieval time. In order to minimize
the total retrieval time of all chunks, the maximum retrieval time
for each physical machine used in retrieval should be minimized
since the retrieval operation is performed in parallel. Performance-
optimal RDRP can be expressed in linear form as follows:

Minimize: R

Subject to: Z Bij=1; i=1,...
JEP;
R-Rj>0; j=1,..,N

.Q

Bij is a binary variable which is set to 1 if chunk i is retrieved
from physical machine PM;, and set to 0 otherwise. Therefore, B;;
represents the final retrieval schedule (replica selection). The first
constraint (Zj e, Bij = 1) ensures that every chunk i is retrieved
from a single physical machine j, where P; denotes the set of PMs
holding a replica of chunk i. R; in the second constraint represents
the cost of retrieval from PM; and it can be calculated as R; = S;-Lj,
where S; denotes the single chunk retrieval cost from PM; and L; =

Zinl Bij holds the number of chunks retrieved from PM;. Finally,
minimizing R guarantees that the maximum of R; is minimized due
to our second constraint (R — Rj > 0).

2.2 Virtual Machine Placement Problem (VMPP)

In virtualized cloud data centers, virtual machines (VM) with re-
source requirements such as CPU and memory are mapped to phys-
ical machines (PM) with available resources by satisfying single
or multiple objectives. According to a recent survey [8], the most
popular objective function aims to minimize the energy consump-
tion of the data center, where 50% of the surveyed work focused
on energy consumption minimization. A popular way to reduce
energy consumption in virtualized cloud data centers is by power-
ing down idle physical machines that are not holding any virtual
machines. Therefore, we present the Virtual Machine Placement
Problem (VMPP) with the objective of minimizing the number of
physical machines used in the placement as follows.

Given a set of virtual machines VM1, VMo, ..., VM with re-
source demands (CPU cores, memory, etc.) and a set of physical ma-
chines PM1,PM3,...,PMN with resource capacities, VMPP aims
to map VMs to PMs by satisfying the resource demands of the VMs,
by respecting the resource constraints of the PMs, and by minimiz-
ing the number of PMs used in the mapping. By respecting the
resource constraints, a single PM can hold multiple VMs. Based on
this definition, VMPP can be formulated in linear form as:

210

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

N
Minimize: Z I;
Jj=1

N

Subject to: inj:l? i=1,....M
Jj=1
UijCjk; j=1,...,N; k=

1,...,T

Xij is a binary variable which is set to 1 if the VM; is mapped
to the physical machine PM;, and set to 0 otherwise. Therefore,
Xij represents the final mapping. The first constraint (Zjl\i 1 Xij =
1) ensures that every virtual machine is only mapped to a sin-
gle physical machine. Cj represents the capacity of PM; for the
resource type k, and Uj, represents the resource usage of PM;
for the resource type k. Ujr can simply be calculated as Uy, =
Zf‘il (Xij - Djg), where D;j indicates the resource demand of the
VM, for the resource type k. Therefore, our second constraint (U <
Cj) guarantees that for each physical machine and resource type,
resource usage does not exceed the resource capacity. Finally, our
objective function makes sure that the number of physical ma-
chines used in the placement is minimized. This is guaranteed us-
ing a binary indicator variable I;, which is set to 0 if Z?il Xij =0,
and set to 1 if Z{Z 1 Xij > 0. Therefore, I; indicates whether PM;
is used in the placement or not, and ij\i 1 I; calculates the number
of physical machines used in the placement. The mapping repre-
sented by the X;; values is guaranteed to use the minimum number
of physical machines satisfying the specified resource constraints.

THEOREM 2.1. VMPP is NP-hard.

Proor. VMPP is equivalent to the d-dimensional Vector Bin Pack-
ing problem [9, 10], where VMs represent objects, PMs represent
bins, and resources represent dimensions. Since d-dimensional VBM
is NP-hard, so is VMPP. O

2.3 Related Work

In this section, we first provide the related work on replicated data
retrieval and virtual machine placement problems, and then present
the existing literature on data-aware virtual machine placement.

2.3.1 Replicated Data Retrieval. Replicated Data Retrieval Prob-
lem (RDRP) was first formulated in the work of Chen et al. [11]
as a flow network optimization and solved in polynomial time us-
ing max-flow techniques [12]. This initial work assumed that the
storage devices and the physical machine loads are homogeneous.
Next, the problem was generalized to consider storage system het-
erogeneity (SSD/HDD), network delay, and physical machine loads,
where a polynomial time max-flow solution was proposed for the
generalized version [13]. This solution was further improved using
parallelization and adaptive retrieval techniques [14-16].

In addition to the optimal solution, various heuristic based replica
selection techniques were also proposed in literature and imple-
mented in real settings without guaranteeing the optimal retrieval
time. For example, static replica selection always retrieves chunks
from a predefined replica [17]. HDES [2] employs a network-aware

Session: Big Data and Distributed Systems

heuristic retrieving the chunks from the nearest replica based on
the network topology. MongoDB [18] provides both options, where
a static replica selection is employed by default, but an optional
network-aware heuristic that uses the round-trip network delay is
also provided. Finally, load-aware heuristics such as the shortest-
queue-first algorithm [19] were commonly implemented in multi-
media servers [20, 21]. These heuristics are generally used in ho-
mogeneous, centralized, or low-latency network settings where de-
vice queue lengths are compared and the device with the shortest
queue length (fewest number of requests in its queue) is selected
for data retrieval.

2.3.2 VM Placement. Virtualization is a proven resource shar-
ing technology utilized in cloud data centers, and virtual machine
placement is the heart of virtualization for the effective allocation
of cloud resources. Therefore, various virtual machine placement
techniques were proposed in recent literature [22-32]. Among these,
energy efficiency is the most heavily investigated objective func-
tion for virtualized data centers [22-25]. In addition to energy con-
sumption minimization, network traffic minimization [26-28], eco-
nomical cost optimization [29], resource utilization maximization
[30], performance maximization [31], and availability maximiza-
tion [32] techniques were other popular objective functions stud-
ied for efficient virtual machine placement. Readers are directed to
the literature review by Pires et al. [8] for an in-depth comparison
and analysis of these virtual machine placement techniques.

2.3.3 Data-aware VM Placement. For efficient big data process-
ing in the cloud, virtual machine placement should be carefully de-
signed to consider the data retrieval times of the virtual machines.
To the best of our knowledge, only a few works so far have dealt
with data-aware virtual machine placement [33-36]. Among these,
Piao et al. [33] and Zamanifar et el. [34] focused on minimizing
data access latencies of the virtual machines and proposed heuris-
tics that place them on the physical machines with better network
bandwidth to the data. Alicherry et al. [35] also focused on data
processing in the cloud and provided the optimal formulation for
minimum data access using linear programming techniques; how-
ever, in order to simplify their formulation, they discarded resource
requirements (CPU, memory, etc.) of the virtual machines and re-
source capacities of the physical machines. They reduced this sim-
plified formulation to the linear assignment problem and solved
it using the Hungarian algorithm [37]. In addition, they further
added inter-VM distance constraints to their formulation, and pro-
vided heuristics for the resulting NP-hard problem. Kuo et al. [36]
further improved their heuristic by providing a 2-approximation
heuristic bounding the maximum access latency assuming that ac-
cess latencies between the nodes satisfy the triangle inequality.

We note that none of these works consider data replication. They
all assume that either a single replica exists for each data chunk or
that replica selection is performed before or after virtual machine
placement, affecting the optimality of the data transfer. In addi-
tion, Alicherry et al. [35] and Kuo et al. [36] simplify the problem
further by discarding virtual machine resource requirements and
physical machine resource capacities, which makes the entire vir-
tual machine placement problem unrealistic. Finally, these works
assume small data chunks and calculate data transfer cost by only
considering the available network bandwidth or latency between

211

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

the nodes, without considering the capabilities of the storage sub-
system. Big data transfer cost is highly dependent on bottlenecks
in the infrastructure, which can lie in the storage subsystem as well
as in network bandwidth. Our proposed VM placement techniques
consider VM resource requirements and PM resource capacities,
data replication of the distributed file system, performance of the
storage subsystem, and the available network bandwidth between
the PMs.

3 BIG DATA AWARE VM PLACEMENT

The Replicated Data Retrieval Problem (RDRP) performs replica se-
lection for only a single VM given the pre-placement of this VM
on a specific PM, therefore it does not deal with the VM place-
ment issue. On the other hand, Virtual Machine Placement Prob-
lem (VMPP) performs the VM placement without considering the
data retrieval costs of the VMs and thus does not decide a retrieval
schedule (replica selection). In order to perform efficient big data
processing in the cloud, where virtual machines retrieve and pro-
cess very large datasets, the VM placement should be aware of data
retrieval costs. This paper proposes big data aware VM placement,
which performs both VM placement and replica selection by con-
sidering data replica locations, storage retrieval performance, and
network transfer performance to minimize data retrieval time.

3.1 Problem Formulation

We are given a set of virtual machines VM1, VMa,. .., VM with
resource demands (CPU cores, memory, etc.) and a set of physi-
cal machines PM1,PMy,...,PM with resource capacities. In ad-
dition, every virtual machine j requires a set of data chunk D1, D,
...»Dg; to be retrieved from the physical machines, where every
chunk is replicated on r physical machines.

In the Big Data aware virtual machine Placement (BDP) prob-
lem, our aim is to place the virtual machines into the physical ma-
chines by minimizing the retrieval time of all data chunks of all vir-
tual machines. The solution should also specify the retrieval sched-
ule for each data chunk of every virtual machine by specifying the
physical machine (replica) to be used, and it should also respect the
resource constraints of physical machines since a single physical
machine can contain multiple virtual machines.

In order to minimize the retrieval time of all chunks, we need
to minimize the maximum retrieval time of the physical machine
used in retrieval (as in RDRP) since the physical machines perform
retrieval in parallel. Using the notation described in Table 1, BDP
can be formulated as follows:

Minimize: R

N
Subjectto: » > By =1; i=1,...,0;5 j=1....M

keP;; I=1

Qj

D Bk =0Qi Ly j=1,...,M; I=1,...,N
i=1 kePy;

U; <Cp; I=1,...,N; t=1,...,T

R-R>0; k=1,...,N

Session: Big Data and Distributed Systems

Table 1: Notation
Not. | Description |

M Number of virtual machines: VMq, VMo, . . ., VM
N Number of physical machines: PM;, PMy, . . ., PMN
T Number of resource types
Bijjki| 1if chunk i of VM; is transfered from PM to PMy,
0 otherwise
Qj Number of chunks required by VM;: {D1, Dy, . . ., DQJ. }
(0] Total data requirement (in chunks) for all VMs; Q = Z}‘il Onm
r Replication factor for the chunks
P;j | Set of PMs holding a replica for chunk i of VM;; |P;;| =r
I 1 when VM; is placed in PM;, 0 otherwise;
Zi’l Zkepij Bijk1 = Qj - Ijn
Dj; | Resource demand of the virtual machine j for the resource
type ¢
Cy; | Capacity of the physical machine I for the resource type ¢
U;; | Usage of the physical machine [for the resource type ¢;
Uy = Zj\il (Djt 'Ij)
Sk1 | Single chunk transfer time from PMy to PM;
Ly | Number of chunks (load) transfered from PMy to PMy;
Ly =3 Z?:jl Bijki
Ry | Time to transfer all chunks from PMy; Ry = Zfil Ski1 - Lri
R Optimal retrieval time of all data chunks of all VMs

Bjji is a binary variable which is set to 1 if chunk i of VM;
is transfered from PM} to PMj, and set to 0 otherwise. Therefore,
Bjjki represents the final retrieval schedule (replica selection). The

first constraint (%, _p Zﬁl Bjjk1 = 1) ensures that every chunk i
ij =

of every VM is only transfered from a single PM to a single PM,
where P;; denotes the set of PMs holding a replica for chunk i of
VM;. The second constraint (Zlell ZkePij Bjjk1 = Qj - Ij;) makes
sure that all the chunks of a VM; are transferred to a single PM;,
where [;; is a binary variable which is set to 1 if VM; is placed
on PM;, and set to 0 otherwise. As in VMPP, C;; represents the
capacity of PM; for resource type t, and Uj; represents the re-
source usage of PM; for resource type t. Uj; can simply be cal-
culated as Uj; = Zj‘il (Dje -
demand of VM; for resource type t. Therefore, our third constraint
(U;y < Cy;) guarantees that for each physical machine and re-
source type, resource usage does not exceed the resource capacity.
Ry in the last constraint holds the time to transfer all requested
chunks from PM}. and it can be calculated as R = Zfil Sk1 Lkl

where Si; denotes the single chunk transfer time from PMy. to PM;
Zﬁl ZiQ=il Bjjk1 denotes the total number of chunks
(load) retrieved from PMy to PM;. Finally, minimizing R guaran-
tees that the maximum of all Ry values are minimized due to our
last constraint (R — Ry > 0).

This formulation uses NQr Bk variables, NM I variables,
and an R variable. All variables except R are binary and the total
number of unique variables is NQr + NM + 1. In addition, it uses
a total of Q + N(M + T + 1) constraints. This is a mixed integer
programming formulation, which is classified as NP-hard [38].

I;;), where Dj; indicates the resource

and Ly =

4 LOW-COST HEURISTICS FOR BDP

In addition to the optimal solution, we also propose low-cost heuris-
tics bdp and ff-data, which do not guarantee the optimality of the

212

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

result, but are expected to achieve a solution close to optimal by
performing greedy replica selection and greedy VM placement.

Algorithm 1 Best-Data VM Placement (bdp)

In: N, M, T,Q[], P[1[1, S[][], availability[][], demand[][], load[]
Out: placement[], retrieval[][], R

1: retrieval_time « 0
2: sorted_vms < VMs sorted (asc.) by number of chunks required
3: for all vm in sorted_vms do
4 best_cost < oo
5: best_pm « nil
6 for pm « 1to N do
7 if IsCoMPATIBLE(vm, pm, availability, demand, T)
8 max_cost < retrieval_time
9 for k — 1to N do
10: | this_load[k] « load[k]
11: for ¢ — 1to Q[um] do
12: selected_pm < GR(P[c][vm], pm, S, this_load)
13: this_load[selected_pm] += S[selected_pm][pm]
14: this_retrieval[c] « selected_pm
15: if this_load[selected_pm] > max_cost
16: | max_cost « this_load[selected_pm)
17: if max_cost < best_cost
18: best_cost < max_cost
19: best_pm «— pm
20: for k — 1to N do
21: | best_load[k] « this_load[K]
22: for ¢ — 1to Q[um] do
23: | best_retrieval[c] « this_retrieval[c]
24: if best _cost > retrieval time
25: | retrieval_time < best_cost
26: placement[vm] « best_pm
27: for resource < 1to T do
28: | availability[best_pm][resource] —= demand[vm][resource]
29: for ¢ — 1to Q[um] do
30: | retrieval[vm][c] < best_retrieval[c]
31 for k — 1to N do
32: | load[K] < best_load[k]

Function 1 IsCoMPATIBLE()

In: vm, pm, availability[][], demand[][], T
1: for resource < 1to T do
2: | if availability[pm][resource] < demand[vm][resource]
3: | | return false
4: return true

4.1 Best-Data VM Placement (bdp)

The proposed Best-Data VM Placement (bdp) heuristic is shown
in Algorithm 1, which aims to place VMs on the PMs in a greedy
fashion depending on which PM yields the best retrieval time con-
sidering the previously placed VMs and their requests, as well as
network and storage bottlenecks. Algorithm 1 first sorts the VMs
(line 2) in ascending order of the number of chunks required by
the VM. Ascending order allows the heuristic to balance the load
of data retrieval across the PMs. Otherwise, if a VM with a large
number of chunks were to be placed first, then a VM with a smaller

Session: Big Data and Distributed Systems

number of chunks would have more opportunity to be placed in an
unbalanced way in terms of storage and networking performance.
We also observed this behavior experimentally. The motivation be-
hind this choice is to achieve a better retrieval performance; how-
ever, as every other VM placement technique, bdp might not be
able to place all VMs due to resource contention, and sorting by
the number of chunks does not help it much. If bdp cannot place all
VMs, then the algorithm can be executed one more time by sorting
by VM resource requirements in decreasing order. Such sorting is
expected to achieve a tighter fitness (as performed in Algorithm 2);
however, it is also expected to increase the chance of uneven load
and network/storage bottlenecks on tightly fitted PMs.

For every VM in line 3, the heuristic iterates through every PM
in line 6 and checks its compatibility based on VM resource re-
quirements in line 7 through Function 1. If the PM is compatible, it
hypothetically places the VM on that PM in lines 8-16, and also se-
lects replicas using a greedy retrieval technique, as shown in Func-
tion 2. The idea is to consider a data retrieval cost (R) as in the LP
formulation, but to update the PM loads (L) in a greedy manner.
Lines 17-23 maintain the minimum maximum retrieval time and
its associated VM placement and replica selection. Lines 24-25 up-
date the retrieval time of the entire data set. The hypothetical place-
ment that yields the minimum data retrieval cost is then selected
for placement (line 26) and PM resource availability is updated
(lines 27-28). The associated replica selection is used in lines 29-30.
After each placement, the loads of the PMs are updated (lines 31—
32) so that they can influence the next VM placement. The worst-
case time complexity of bdp is O(N?MT + NTQr + MlogM).

4.2 First Fit Data (ff-data)

Algorithm 2 presents the First Fit Data (ff-data) heuristic. The moti-
vation behind proposing ff-data is to achieve a better fitness in VM
placement that reduces the total number of PMs used, thus yielding
a reduced energy consumption. In addition, our aim is to propose
an alternative heuristic to bdp and evaluate their performance in
both energy consumption and data retrieval.

As with bdp, ff-data also starts by sorting VMs in line 1; how-
ever, the sorting is performed here in decreasing order by resource
requirements of the VMs. In order to convert multi-dimensional
resource requirements of the VMs to a scalar, it uses the FFDAvg-
Sum technique proposed by Panigrahy et al. [39], which calcu-
lates the VM weights using w(j) = Zthl arDj; for a VM; where
ar = ﬁ Zj‘il Dj; represents the average demand for resource
type t. The sorting is performed in decreasing order so that the
VMs with the largest resource requirements are placed first, as
there may be a limited number of compatible PMs. In bin packing
theory, FFD-based algorithms are known to be effective in practice,
and guarantee to find an allocation with at most %OPT + 1 bins
in the one dimensional case [40].

For every VM in line 2, the first compatible PM (always starting
with PM ID 1) is determined in lines 3-4. The placement is per-
formed in line 5 and the resources are updated in lines 6-7. Once the
placement is performed for a particular VM, replicas are selected
in lines 9-11 using the greedy retrieval technique (Function 2). Fi-
nally, line 12 updates the PM loads so that they can influence the
next VM placement. The worst-case time complexity of ff-data is
O(NMT +Qr+MlogM). Clearly, this is an improvement over bdp’s

213

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

time complexity of O(N2MT + NTQr +MlogM) with a possible loss
in data retrieval performance.

Algorithm 2 First Fit Data (ff-data)

In: N, M, T,Q[], P[1[1, S[][], availability[][], demand[][], load[]
Out: placement[], retrieval[][]

1: sorted_vms < VMs sorted (desc.) by resource requirements

2: for all vm in sorted_vms do

3 for pm « 1to N do

4 if IsSCOMPATIBLE(vm, pm, availability, demand, T)

5: | placement{vm] « pm

6 | for resource < 1to T do

7 | | availability[pm][resource] —= demand[vm][resource]
8 | break

9 for ¢ « 1 to Q[vm] do

10: selected_pm «— GR(P[c][vm], placement[vm], S, load)
11: retrieval[vm][c] « selected_pm
12: load[selected_pm] += S[selected_pm][host_pm]

Function 2 GR() — Greedy Retrieval

In: replica_pms, host_pm, S[][], load[]

Out: selected_pm

1 min_cost <~ oo

: selected_pm « nil

: for all candidate_pm in replica_pms do

: | cost « load[candidate_pm] + S[candidate_pm][host_pm]
| if cost < min_cost

| | selected_pm « candidate_pm
: return selected_pm

min_cost < cost

[B Y

5 BOTTLENECK ANALYSIS FOR RETRIEVAL

A critical component of our proposed algorithms is being able to
estimate the Sy; values representing the single chunk transfer time
from PMj to PM;. Assuming a well engineered network and large
data chunks (64 MB to 256 MB), as commonly used in big data
analysis platforms, Sg; values are expected to be governed by the
bottleneck of two important properties of the distributed system:
(i) local storage system throughput for PMy, and (ii) network band-
width between PM}. and PM;. Existing techniques generally disre-
gard the storage system capabilities and only focus on the network,
which is susceptible to yield incorrect results in big data analysis
platforms especially with today’s high speed networking intercon-
nects and heterogeneous storage architectures composed of flash
and spinning disks. In order to validate the importance of bottle-
neck analysis in the estimation of Si; values, we performed a set of
experiments with various storage and networking configurations.
Our experiments ran on Linux physical machines (Ubuntu 16.04
LTS, kernel version 4.4.0) with four different storage architectures:

Single HDD (Toshiba MGO3ACA100 1 TB SATA 3)

Single SSD (Intel S3510 800 GB SATA 3)

4 HDDs (4 X Toshiba MG03ACA100 1 TB SATA 3) as an
mdadm [41] software RAID-10 array

4 SSDs (4 X Intel S3510 800 GB SATA 3) as an mdadm software
RAID-10 array

Session: Big Data and Distributed Systems

Using these storage configurations, we calculated the transfer
times of 1, 2, 4, and 8 chunks of 128 MB each, in three different
scenarios: (i) local read, (ii) remote read via 1Gbps network, and (iii)
remote read via 100Mbps network. For the local read experiments,
chunks were read from the storage system using dd [42] once the
page cache, directory entries, and the inodes were cleared from the
memory using sync && echo 3 > /proc/sys/vm/drop_caches.
For the remote read experiments, nc (netcat) [43] was utilized first
to set up a TCP connection and next dd was used to pipe data to nc
after clearing the memory cache as shown above. Table 2 displays
the average results over 10 runs.

Table 2: Local/Remote Chunk (128 MB) Retrieval Times

Storage System Local Read Times
1chunk | 2chunks | 4 chunks | 8 chunks
4 SSDs, RAID-10 155ms 287ms 566ms 1.13s
4 HDDs, RAID-10 431ms 848ms 1.68s 3.27s
1SSD 394ms 779ms 1.54s 3.09s
1 HDD 825ms 1.62s 3.24s 6.41s
Storage System Remote Read Times via 1 Gbps Network
1 chunk | 2 chunks | 4 chunks | 8 chunks
4 SSDs, RAID-10 1.37s 2.61s 5.20s 10.2s
4 HDDs, RAID-10 1.35s 2.63s 5.42s 10.2s
1SSD 1.37s 2.60s 5.15s 10.2s
1 HDD 1.35s 2.61s 5.16s 10.2s
Storage System Remote Read Times via 100 Mbps Network
1chunk | 2chunks | 4 chunks | 8 chunks
4 SSDs, RAID-10 11.5s 22.9s 46.1s 91.3s
4 HDDs, RAID-10 11.5s 22.9s 46.1s 91.3s
1SSD 11.5s 22.9s 46.1s 91.3s
1 HDD 11.5s 22.9s 46.1s 91.3s

As expected, retrieval times are directly proportional with the
number of chunks to be transfered in all scenarios, for both SSD
and HDD based storage systems since the chunk sizes are large
(128 MB). In local reads, the SSD array achieves the fastest retrieval
time by providing around 1 GB/s throughput, and the single HDD
achieves the slowest retrieval time by providing around 165 MB/s.
However, in both remote read scenarios, network transfer becomes
the bottleneck since the 1 Gbps network can only provide 128 MB/s
transfer rate and the 100 Mbps network can only provide 12.8 MB/s
transfer rate. If the network bandwidth is the bottleneck, then the
storage throughput does not affect transfer time as it can be seen
from these remote read experiments since all four storage config-
urations provide a faster throughput. However, since high speed
networking interconnects providing 10/40/100 Gbps are common
in today’s clusters, even SSD arrays that provide a few GB/s trans-
fer rate can end up being the cause of the bottleneck.

In summary, these experiments emphasize the importance of
bottleneck analysis in big data transfer, where both storage through-
put and network bandwidth play an important role. We also mea-
sured the effect of switch delay and found that an extra switch
adds ~12 ms per 128 MB chunk, which seems to be insignificant
compared to the total transfer time of large chunks. We use these
experimental results in our evaluation to estimate the S values
representing the single chunk transfer time from PM;. to PM;.

6 EVALUATION

In this section, we evaluate the performance of the proposed heuris-
tics by comparing their data retrieval and energy-efficiency with
the existing techniques and the optimal retrieval values.

214

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

6.1 Experimental Setup

We performed simulations supported by real world transfer time
calculations as discussed in Section 5. An in-house simulator, vm-
sim, was designed to aid in this endeavor. Realistic workloads vary
widely across organizations, making it difficult to generalize from
any given set of real workloads. Following the works of Alicherry
etal. [35] and Kuo et al. [36], we ran our algorithms on synthetic in-
stances with a variety of different configurations to examine the be-
havior of our heuristics. Except the cases where heuristics are com-
pared with the optimal performance values obtained using IBM’s
CPLEX LP solver [44], we repeated each of our experiments 100
times and averaged the results. Due to space limitations, we only
share our experimental results for a selected subset of VM (M) and
PM (N) values (M = N = 32,128, and 512), and the remaining cases
were observed to be consistent with the presented arguments.

6.1.1 Network and Storage Configuration. In our evaluation, we
used a similar set of storage and network configurations presented
in Table 2 and discussed in Section 5. In order to observe situations
in which storage is always the bottleneck, we replaced the 100
Mbps network configuration with a 10 Gbps network configura-
tion since 1 Gbps and 100 Mbps cases were both bottlenecked at the
network, generating similar scenarios. In addition, we eliminated
the 4-HDD setup since it provided a comparable performance with
the 1-SSD case. Finally, we also introduced heterogeneous storage
and network configurations to further challenge the evaluated al-
gorithms. As a result, we used three different network configura-
tions: (i) 1 Gbps homogeneous, (ii) 10 Gbps homogeneous, and (iii)
1/10 Gbps heterogeneous (mixed). In homogeneous networks, all
links have the same transfer rate, but in heterogeneous networks,
the link rates are randomly selected between 1 Gbps and 10 Gbps.
In addition, we used four storage configurations: (i) 1-HDD homo-
geneous, (ii) 1-SSD homogeneous, (iii) 4-SSDs homogeneous, and
(iv) heterogeneous (mixed). In the homogeneous storage scenarios,
all PMs have the same storage system; however in the heteroge-
neous scenario, storage systems of the PMs are randomly selected
from the 1-HDD, 1-SSD, and 4-SSDs cases.

The bottleneck experiments performed in Section 5 allowed us
to use real data transfer times in our experiments. In our simula-
tor, we recorded the Si; values between every PM} to every PM;
in a matrix, which can easily be used and updated periodically in
real settings based on observed transfer rates and the exponential
averaging techniques. As in Section 5, we assumed a chunk size
of 128 MB and simulated different network topologies by adding
a random number of switches between nodes (1 to 5 switches) us-
ing the observed switch delay of 12 ms. For the 10 Gbps network
configuration, we determined the transfer time between two PMs
based on the storage throughput of the source PM and the addi-
tional switch delay observed during the data transfer, since all our
storage configurations are slower than the 10 Gbps network. We
ran our experiments on the cross product of our network and stor-
age configurations. For comparison with the optimal data retrieval
values, we ran our LP formulation for a limited subset of our ex-
periments (M = N = 16 and 32, 10 Gbps network) due to its long
execution time.

6.1.2 Data Placement, Replication, and VM Data Requirements.
Similar to relational databases, we used a two-dimensional grid to

Session: Big Data and Distributed Systems

represent the data placement scheme. Each cell in the grid repre-
sented a 128 MB chunk; and the value in a cell denoted the physical
machine a chunk is stored in. The number of rows and columns in
the grid was set to be equal to the number of physical machines.
We used a replication factor of three in our experiments, and there-
fore needed three separate grids to represent every replica for each
chunk. Data placement was accomplished using a periodic data al-
location technique [45] similar to RAID-0 striping in two dimen-
sions. Once the first replica of a chunk is placed on the physical
machine, the second and third replicas are placed by shifting the lo-
cation of the first replica, where a shift value of one is chosen in our
experiments. For example, if chunk 0 is placed on physical machine
0, chunks 1 and 2 are placed on machines 1 and 2, respectively.
We also experimented with random allocation in which replicas
were randomly allocated to physical machines. Since the two allo-
cation schemes yielded similar behaviors across experiments, we
only share our experimental results for the periodic allocation and
shifted periodic replication scheme due to space limitations.
Representing data placement as a grid was useful for determin-
ing virtual machine data requirements based on commonly used
relational database query types. We used range queries due to their
popularity. The size of the grid and the number of chunks required
by each VM were varied based on the number of physical machines

used in the system. The expected number of chunks to be pro-
3N

cessed by the VMs were set to %3, where N is equal to the total
number of physical machines used in the experiment [13].

6.1.3 VM Resource Requirements and PM Capacities. Physical
machines possess a limited number of computer resources, and vir-
tual machines require a portion of these resources. We used two re-
source types in our evaluation, CPU cores and memory, and used
the following Amazon EC2 instances [46] to determine our VM
resource requirements: (i) t2.small (1 CPU Core, 2 GB Memory),
(ii) t2.medium (2 CPU Cores, 4 GB Memory), (iii) t2.large (2 CPU
Cores, 8 GB Memory), and (iv) t2.xlarge (4 CPU Cores, 16 GB Mem-
ory). Virtual machines were randomly selected from this pool of
instances. Since physical machine resource capacities vary depend-
ing on the virtual machines that they host at any snapshot of the
system, we randomly selected the PM capacities from 1 to 8 cores
and 1 to 32 GB of memory. This random selection in every run and
averaging the results over 100 runs allowed us to simulate physical
machines with various pre-existing loads.

6.1.4 Algorithms. We implemented the following algorithms:

e random places VMs on randomly selected PMs. Local replicas
are selected if available; otherwise, replicas are also selected
randomly. The worst-case time complexity is O(NMT).

o ff-net uses a first-fit decreasing strategy to place VMs on PMs
[39], and it follows an HDFS-like network-aware replica selec-
tion strategy [2], where if a local replica exists, the data is re-
trieved locally; otherwise, it selects a replica from the physical
machine with the smallest network transfer time to the host
machine. If a tie occurs for the nearest replica, then the tie is
broken randomly. The worst-case time complexity of ff-net is
O(NMT + Qr + MlogM).

o ff-data also uses a first-fit decreasing strategy to place VMs
on PMs as shown in Algorithm 2; however, it uses a greedy
replica selection that considers the retrieval cost of selecting

215

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

the replica from each source PM as in Function 2. The source
chosen is the one with the lowest retrieval cost considering the
machine load and transfer time. The worst-case time complex-
ity of ff~data is O(NMT + Qr + MlogM).

o bdp uses a greedy strategy for placing VMs on PMs as shown
in Algorithm 1. All PMs that satisfy VM requirements are con-
sidered for placement. Greedy replica selection is performed
for each PM candidate and the PM placement that leads to
the minimum total data retrieval time out of all PMs is chosen.
The worst-case time complexity of bdp is O(N?MT + NTQr +
MlogM).

e optimalimplements the LP formulation from Section 3.1 using
IBM CPLEX [44]. CPLEX’s MIP engine uses the branch and
bound technique, which is classified as NP-hard [38].

6.2 Experimental Results

6.2.1 Data Retrieval Performance. Figures 1, 2, and 3 present
the data retrieval performance of the algorithms for various homo-
geneous and heterogeneous network and storage configurations
for 32, 128, and 512 machines, respectively, where the x-axis repre-
sents the storage type and the y-axis represents the data retrieval
time in seconds. In the homogeneous 1 Gbps network configura-
tion case shown in Figures 1(a), 2(a), and 3(a), since network band-
width (being slower than the throughput of all storage configura-
tions) is the cause of the bottleneck, ff-net yields the worst per-
formance and requires over 140 seconds more than the random
algorithm to retrieve the same dataset for 512 machines. The rea-
son for this lies in the tight fitness of the VMs over the PMs and
poor replica selection performed by the ff-net algorithm, which
prefers nearest replicas and generates bottlenecks in the PMs hold-
ing these replicas. random consistently performs better than ff-net
since it yields a more uniform distribution over the PMs for both
VM placement and replica selection. Both bdp and ff-data consis-
tently perform better than the others since they balance the load
on the PMs better. We also observed that bdp performs better than
[ff~data by up to 9 seconds.

For the 10 Gbps homogeneous network configuration case as
shown in Figures 1(b), 2(b), and 3(b), network is not the cause of
the bottleneck but all storage systems generate lower data through-
put than the available network bandwidth and become the cause
of the bottleneck in data transfers. Therefore, the gap between ran-
dom and ff-net narrows in this case; nevertheless, random still per-
forms better due to the same reason as in the 1 Gbps case. It is
possible to observe the storage bottleneck that ff-net experiences
by paying attention to the performance improvement of ff-net as
the storage system gets faster, especially for the 4-SSD case. For the
faster storage system, the performance gap between random and
[ff~net is the smallest. The proposed ff-data and bdp heuristics again
outperform the others since they are aware of storage bottlenecks
in this case and they are able to retrieve replicas accordingly.

For the 1/10 Gbps heterogeneous network, shown in Figures
1(c), 2(c), and 3(c), ff-net passes random in performance, especially
when the storage is faster since ff-net is network-aware and able to
select better network links in retrieval compared to random. The
proposed ff-data and bdp heuristics still outperform both random
and ff-net, and the performance difference between bdp and ff-data
becomes even larger (up to 36 sec.) in this heterogeneous case.

Session: Big Data and Distributed Systems

1Gbps Network, PM=VM=32

10Gbps Network, PM=VM=32

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

1/10Gbps-Mixed Network, PM=VM=32

140 140
g 120 4 S 120
2 2 2
g 100 “E) “E) 100
E 80 £ E s
T 60 s —q ® 60
2 2 2
£ 40 £ N £ 40 2
5]] 5 J
20 < . 20 §
0 A 5 0 2\
1-HDD 1-SSD 4-SSDs Mixed 1-HDD 1-SSD 4-SSDs Mixed 1-HDD 1-SSD 4-SSDs Mixed
Storage Type Storage Type Storage Type
random EXX3 " data random Exx= ff-data v=ZZz2 random ExXxxX ff-data
3 ff-net BRRRZA ff-net xR bd ff-net B bd
(a) 1 Gbps Homogeneous Network (b) 10 Gbps Homogeneous Network (c) 1/10 Gbps Heterogeneous Network

Figure 1:

1Gbps Network, PM=VM=128

500

10Gbps Network, PM=VM=128

Data Retrieval Performance, M = N = 32

1/10Gbps-Mixed Network, PM=VM=128

500

g S 400 S 400
2 < <
o ° °
£ s E E
e [> F =
] % % =
> £ > >
2 > 2 2
3 K 3 £
o« I i i
e
X A9 K
1-HDD 1-SSD 4-SSDs Mixed 1-HDD 1-8SD 4-SSDs Mixed 4-SSDs Mixed
Storage Type Storage Type Storage Type

ZZZ2 random KXXX If dala
B ff-net

(a) 1 Gbps Homogeneous Network

Figure 2: Data Retrieval Performance, M =N =

1Gbps Network, PM=VM=512
1400

1400

EZZ2A random KXXZ fidata
S ff-net

(b) 10 Gbps Homogeneous Network

10Gbps Network, PM=VM=512

ZZZ2A random KXXZ fidata
Enw ff-net
(c) 1/10 Gbps Heterogeneous Network
128

1/10Gbps-Mixed Network, PM=VM=512

1200 1200

1400

1000 1000

1200

800

1000

600
400
200 b
0 t : \
4-SSDs
Storage Type

Retrieval Time (sec.)
Retrieval Time (sec.)

Mixed 1-SSD

Storage Type

Retrieval Time (sec.)

4-SSDs Mixed

1-SSD
Storage Type

4-SSDs Mixed

FZZ2 random EXXX ﬂ dala
W ff-net el

(a) 1 Gbps Homogeneous Network

EZZ2A random EXXX tf data
W ff-net BRRRRRIA

(b) 10 Gbps Homogeneous Network

EZZ2A random EXXX tf data
W ff-net BRRRRRIA

(c) 1/10 Gbps Heterogeneous Network

Figure 3: Data Retrieval Performance, M = N = 512

These results show that performing the VM placement together
with a storage and network-aware replica selection technique clearly
yields better data retrieval times, reaching up to 371 seconds better
than the existing ff~net heuristic, and 429 seconds better than the
random heuristic. This performance improvement is mainly due to
accurate bottleneck estimation and load balancing of the proposed
heuristics on the PMs.

6.2.2 Energy Efficiency. We also evaluate the energy efficiency
of the proposed algorithms by comparing the number of PMs used
in the placement in Figures 4, 5, and 6 for 32, 128, and 512 machines,
respectively, where the x-axis represents the storage type again but
the y-axis represents the number of PMs used in the placement in
this case. In terms of energy efficiency, random achieves the worst
performance by using the most number of PMs in the placement in
all cases. This is not surprising since random is expected to achieve
a uniform distribution of VMs over PMs. First-fit based VM place-
ment heuristics ff-net and ff-data both achieve the same energy

216

efficiency as expected since they use the same VM placement strat-
egy, and their energy-efficiency performance is slightly better than
bdp for the 1 Gbps homogeneous network and 1/10 Gbps hetero-
geneous network cases as shown in Figures 4(a), 5(a), 6(a), and Fig-
ures 4(c), 5(c), 6(c), respectively. However, bdp achieves the best
energy efficiency in the 10 Gbps homogeneous network case, as
shown in Figures 4(b), 5(b), and 6(b), where the storage system is
the cause of the bottleneck. This is mainly due to the fact that bdp
places VMs over PMs that are closest to each other and therefore
achieves a tight fit.

As also discussed by Ananthanarayanan et al. [3], with the avail-
ability of 40 and 100 Gbps network bandwidths in today’s clusters,
the storage system becomes the main source of the bottleneck in
data transfers and even new generation NVMe solutions provid-
ing a few GB/sec storage throughput [4] cannot keep up with the
available network bandwidth. Therefore, being aware of the stor-
age subsystem bottlenecks and performing VM placement accord-
ingly becomes crucial for efficient big data processing in private

Session: Big Data and Distributed Systems

1Gbps Network, PM=VM=32

10Gbps Network, PM=VM=32

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

1/10Gbps-Mixed Network, PM=VM=32

30 30 30
° o o
& & &
=) =} =}
@ @ @
= = =
'S o o
S k] k]
2]]
£ E E
5 E E
z z z
¢ VA
1-HDD 1-SSD 4-SSDs Mixed 1-HDD 1-SSD 4-SSDs Mixed 1-HDD 1-SSD 4-SSDs Mixed
Storage Type Storage Type Storage Type
v=ZZz2 random ExXxX ff-data vZZz2 random ExXx3 ff-data vZZ2 random ExXx3 ff-data
B ff-net B2 bd o ff-pet Bz b S ff-net BZZZA_bd
(a) 1 Gbps Homogeneous Network (b) 10 Gbps Homogeneous Network (c) 1/10 Gbps Heterogeneous Network
Figure 4: Energy Efficiency Performance, M = N = 32
1Gbps Network, PM=VM=128 10Gbps Network, PM=VM=128 1/10Gbps-Mixed Network, PM=VM=128
120
3 B B
= 3 & 100
2 2 2 sof .
o o a
5 5 5 60 f o3 .
2 5 2 wh I:: o
g £ : £
z z ' z 20
K <F 0 < 4
1-HDD 1-SSD 4-SSDs Mixed 1-HDD 1-8SD 4-SSDs Mixed 1-HDD 1-8SD 4-SSDs Mixed
Storage Type Storage Type Storage Type
FZZ2 random ExXxA ff-data £ZZ2 random EXXX ff-data £ZZ2 random EXXX ff-data
£ ff-net B b W ff-net B b s ff-net B b
(a) 1 Gbps Homogeneous Network (b) 10 Gbps Homogeneous Network (c) 1/10 Gbps Heterogeneous Network
Figure 5: Energy Efficiency Performance, M = N = 128
1Gbps Network, PM=VM=512 10Gbps Network, PM=VM=512 1/10Gbps-Mixed Network, PM=VM=512
500 500 500
° o o
& & &
=) =} =}
o o o %
5 5 5 95
] 5] I 2
3 3 4 3 93
£ £ ¢ € 1%
5 E 4 E £
z z 4 z RS
¢ %
1-SSD

1-SSD
Storage Type

4-SSDs Mixed

4-SSDs
Storage Type

Mixed 4-SSDs

Storage Type

Mixed

vZZ2 random ExXx3 ff-data
ff-net e lele]
(a) 1 Gbps Homogeneous Network
Figure 6:

clusters and the cloud. Our 10 Gbps network configuration is a
good representation of this case, where all storage types provide
a lower throughput than the available network bandwidth. In this
case, the proposed bdp algorithm consistently achieves the best
performance in both data retrieval and energy efficiency, as can be
observed from Figures 1(b), 2(b), 3(b), and Figures 4(b), 5(b), 6(b)

for retrieval time and energy efficiency, respectively.

6.2.3 Optimal Retrieval Performance. Finally, we compare the
data retrieval performance of the heuristics with the optimal al-
gorithm that guarantees the minimum data retrieval time. Figure 7
shows this comparison for the 10 Gbps homogeneous network case,
with 16 (Figure 7(a)) and 32 (Figure 7(b)) physical machines. In
three storage configurations (1-HDD, 1-SSD, and 4-SSDs) out of
eight, the proposed heuristics achieved the optimal data retrieval
value, and in the other five storage configurations, their perfor-
mance was within 5% of optimal. These results, being close to op-
timal values, clearly indicate the superior quality of the data re-
trieval schedules determined by the proposed heuristics.

v=ZZz2 random ExXxxX ff-data
ff-net xR bd

(b) 10 Gbps Homogeneous Network

217

v=ZZz2 random ExXxxX ff-data
ff-net B bd

(c) 1/10 Gbps Heterogeneous Network

Energy Efficiency Performance, M = N = 512

10Gbps Network, PM=VM=16 10Gbps Network, PM=VM=32

Retrieval Time (sec.)
Retrieval Time (sec.)

AN

1-HDD 1-8SD 4-SSDs Mixed 1-HDD 1-8SD 4-SSDs Mixed
Storage Type Storage Type
PZZ2A random EXXX fl-data Emmsm optimal ‘ FZZ2A random EXXX fl-data E=msm optimal ‘
oo finet Emm bdp oo finet Emm bdp
() M=N-=16 (b) M=N =32

Figure 7: Retrieval Performance Compared with Optimal

7 CONCLUSION

In this paper, we formally defined and formulated Big Data aware
virtual machine Placement (BDP) problem and solved it using lin-
ear programming techniques. In addition, two low-cost heuristics
were proposed for efficient big data processing in the cloud that
consider both the data retrieval time of large datasets and energy

Session: Big Data and Distributed Systems

consumption of the cloud infrastructures. In our evaluation, the
proposed heuristics achieved a data retrieval performance within
5% of the optimal value. Furthermore, the energy efficiency of the
proposed heuristics also outperformed popular energy-aware VM
placement heuristics in the cases where the storage subsystem was
the cause of the bottleneck in data transfer. As high-speed net-
working interconnects of 10/40/100 Gbps become more common
in private clusters and cloud infrastructures, even new high per-
formance NVMe storage solutions cannot keep up with the avail-
able network bandwidth. Therefore, we believe that the proposed
heuristics can provide a tremendous value for big data processing
in the cloud by reducing both data analysis times and energy con-
sumption.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Science
Foundation (NSF) under grant CNS-1657296.

REFERENCES

[1] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file sys-
tem. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, SOSP 03, pages 29-43, New York, NY, USA, 2003. ACM.

K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. The hadoop distributed
file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1-10, May 2010.

Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Disk-
locality in datacenter computing considered irrelevant. In Proceedings of the
13th USENIX Conference on Hot Topics in Operating Systems, HotOS’11, pages
12-12, Berkeley, CA, USA, 2011. USENIX Association.

White Paper. NVMe SSD 960 PRO/EVO, December 2016.

Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah
Mokhtar, Abdullah Gani, and Samee Ullah Khan. The rise of "big data" on cloud
computing. Inf. Syst., 47(C):98-115, January 2015.

Domenico Talia. Clouds for scalable big data analytics. Computer, 46(5):98-101,
May 2013.

Suraj Pandey and Surya Nepal. Cloud computing and scientific applications 4AAT
big data, scalable analytics, and beyond. Future Generation Computer Systems,
29(7):1774 - 1776, 2013.

Fabio Lopez Pires and Benjamin Baran. Virtual machine placement literature
review. CoRR, abs/1506.01509, 2015.

Chetan S. Rao, Jeffrey John Geevarghese, and Karthik Rajan. Improved approxi-
mation bounds for vector bin packing. CoRR, abs/1007.1345, 2010.

Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for
vector bin packing. January 2011.

L. T. Chen and D. Rotem. Optimal response time retrieval of replicated data.
In ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 36-44, 1994.

L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network. Canadian
Journal of Mathematics, 8:399-404, 1956.

Nihat Altiparmak and A. S. Tosun. Generalized optimal response time retrieval
of replicated data from storage arrays. ACM Transactions on Storage, 9(2):5:1-
5:36, July 2013.

Nihat Altiparmak and A. S. Tosun. Integrated maximum flow algorithm for op-
timal response time retrieval of replicated data. In 41st International Conference
on Parallel Processing (ICPP 2012), Pittsburgh, Pennsylvania, September 2012.
Nihat Altiparmak and Ali Saman Tosun. Continuous retrieval of replicated
data from heterogeneous storage arrays. In 22nd IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS 2014), Paris, France, September 2014.

Nihat Altiparmak and Ali Saman Tosun. Multithreaded maximum flow based op-
timal replica selection algorithm for heterogeneous storage architectures. IEEE
Transactions on Computers, PP(99):1-1, 2015.

S. W. Son, Samuel Lang, R. Latham, Robert B. Ross, and Rajeev Thakur. Reliable
mpi-io through layout-aware replication. In Proc. 7th IEEE Int’l Workshop on
Storage Network Architecture and Parallel I/O (SNAPI 2011), Denver, CO, 05/2011
2011.

Kristina Chodorow and Michael Dirolf. MongoDB: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2010.

William H. Tetzlaff and Robert Flynn. Block allocation in video servers for avail-
ability and throughput. IBM US Research Centers, 1996.

(2]

[10]

(1]

[12]

[13]

[14]

[15

[16

(17]

(18]

[19]

218

BDCAT’17, December 5-8, 2017, Austin, Texas, USA

[20] Jose Renato Santos, Richard R. Muntz, and Berthier Ribeiro-Neto. Comparing
random data allocation and data striping in multimedia servers. SIGMETRICS
’00, pages 44-55, New York, NY, USA, 2000. ACM.

Richard Muntz, Jose Renato Santos, and Steven Berson. A parallel disk storage
system for realtime multimedia applications. International Journal of Intelligent
Systems, 13:1137-1174, 1998.

Zhibo Cao and Shoubin Dong. An energy-aware heuristic framework for virtual
machine consolidation in cloud computing. J. Supercomput., 69(1):429-451, July
2014.

D. Dong and J. Herbert. Energy efficient v placement supported by data ana-
lytic service. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing, pages 648-655, May 2013.

[24] J. Dong, X. Jin, H. Wang, Y. Li, P. Zhang, and S. Cheng. Energy-saving virtual
machine placement in cloud data centers. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, pages 618-624, May 2013.
Daochao Huang, Dong Yang, Hongke Zhang, and Lei Wu. Energy-aware vir-
tual machine placement in data centers. In 2012 IEEE Global Communications
Conference (GLOBECOM), pages 3243-3249, Dec 2012.

Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In Proceedings of
the 29th Conference on Information Communications, INFOCOM’10, pages 1154—
1162, Piscataway, NJ, USA, 2010. IEEE Press.

[27] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang. Joint vm placement and
routing for data center traffic engineering. In 2012 Proceedings IEEE INFOCOM,
pages 2876-2880, March 2012.

Stefanos Georgiou, Konstantinos Tsakalozos, and Alex Delis. Exploiting
network-topology awareness for vin placement in iaas clouds. In Proceedings
of the 2013 International Conference on Cloud and Green Computing, CGC ’13,
pages 151-158, Washington, DC, USA, 2013. IEEE Computer Society.

Weiming Shi and Bo Hong. Towards profitable virtual machine placement in
the data center. In Proceedings of the 2011 Fourth IEEE International Conference
on Utility and Cloud Computing, UCC ’11, pages 138—145, Washington, DC, USA,
2011. IEEE Computer Society.

Wubin Li, Johan Tordsson, and Erik Elmroth. Virtual machine placement for pre-
dictable and time-constrained peak loads. In Proceedings of the 8th International
Conference on Economics of Grids, Clouds, Systems, and Services, GECON’11,
pages 120-134, Berlin, Heidelberg, 2012. Springer-Verlag.

A. Gupta, L. V. KalAl, D. Milojicic, P. Faraboschi, and S. M. Balle. Hpc-aware
vm placement in infrastructure clouds. In 2013 IEEE International Conference on
Cloud Engineering (IC2E), pages 11-20, March 2013.

E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and D. H. Lorenz.
Guaranteeing high availability goals for virtual machine placement. In 31st In-
ternational Conference on Distributed Computing Systems, pages 700-709, June
2011.

[33] J. T.Piao and J. Yan. A network-aware virtual machine placement and migration
approach in cloud computing. In 2010 Ninth International Conference on Grid and
Cloud Computing, pages 87-92, Nov 2010.

K. Zamanifar, N. Nasri, and M. H. Nadimi-Shahraki. Data-aware virtual machine
placement and rate allocation in cloud environment. In 2012 Second International
Conference on Advanced Computing Communication Technologies, pages 357-360,
Jan 2012.

M. Alicherry and T. V. Lakshman. Optimizing data access latencies in cloud
systems by intelligent virtual machine placement. In 2013 Proceedings IEEE IN-
FOCOM, pages 647-655, April 2013.

[36] J.J.Kuo, H. H. Yang, and M. J. Tsai. Optimal approximation algorithm of virtual
machine placement for data latency minimization in cloud systems. In IEEE
INFOCOM 2014 - IEEE Conference on Computer Communications, pages 1303—
1311, April 2014.

Rainer E. Burkard and Eranda Cela. Linear Assignment Problems and Extensions,
pages 75-149. Springer US, Boston, MA, 1999.

R M Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, 40(4):85-103, 1972.

Rina Panigrahy, Kunal Talwar, Lincoln Uyeda, and Udi Wieder. Heuristics for
vector bin packing. January 2011.

V Vazirani. Approximation algorithms springer-verlag. New York, 2001.

Linux man pages. mdadm - manage MD devices aka Linux Software RAID. https://
linux.die.net/man/8/mdadm.

Linux man pages. dd - convert and copy a file. https://linux.die.net/man/1/dd.
Linux man pages. nc - arbitrary TCP and UDP connections and listens. https://
linux.die.net/man/1/nc.

IBM ILOG CPLEX. Optimization studio for academics: High-
performance software for mathematical programming and optimization.
http://www.ilog.com/products/cplex/.

Nihat Altiparmak and A. S. Tosun. Equivalent disk allocations. IEEE Transactions
on Parallel and Distributed Systems, 23(3):538-546, March 2012.

Amazon. Amazon EC2 VM Instance Types, 2017. https://aws.amazon.com/ec2/
instance-types/.

[21

[22]

(23]

[25]

[26

[28]

[29]

[30

(31]

(32]

[34]

(35]

[37]
[38]

[39]

(41

[42]
[43]

[44]

[45

[46]

	Abstract
	Introduction
	Preliminaries and Related Work
	Replicated Data Retrieval Problem (RDRP)
	Virtual Machine Placement Problem (VMPP)
	Related Work

	Big Data Aware VM Placement
	Problem Formulation

	Low-Cost Heuristics for BDP
	Best-Data VM Placement (bdp)
	First Fit Data (ff-data)

	Bottleneck Analysis for Retrieval
	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion
	Acknowledgments
	References

