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Several known results, by Rivin, Calegari-Maher and Sisto, show that an element ¢,, €
Out(F), obtained after n steps of a simple random walk on Out(F;), is fully irreducible
with probability tending to 1 as n — oo. In this paper we construct a natural “train
track directed” random walk W on Out(F,) (where r > 3). We show that, for the
element ¢, € Out(F;), obtained after n steps of this random walk, with asymptotically
positive probability the element ¢, has the following properties: ¢, is ageometric fully
irreducible, which admits a train track representative with no periodic Nielsen paths and
exactly one nondegenerate illegal turn, that ¢, has “rotationless index” % — 7 (so that

the geometric index of the attracting tree Ty, of ¢p is 2r — 3), has index list {% —r}
and the ideal Whitehead graph being the complete graph on 2r — 1 vertices, and that
the axis bundle of ¢, in the Outer space CV, consists of a single axis.

Mathematics Subject Classification 2010: Primary 20F65, Secondary 57M

1. Introduction

For an integer r > 2, an element ¢ € Out(F,) is called fully irreducible (sometimes
also referred to as irreducible with irreducible powers) if there is no k > 1 such that
" preserves the conjugacy class of a proper free factor of F,.. A fully irreducible
€ Out(F;) is called geometric if there exists a compact connected surface ¥ with
one boundary component such that 71(X) = F,. and such that ¢ is induced by
a pseudo-Anosov homeomorphism of X; fully irreducibles that are not geometric
are called nongeometric. Bestvina and Handel proved [8] that a fully irreducible
© € Out(F;,) is nongeometric if and only if ¢ is atoroidal, that is, no positive power
of ¢ preserves the conjugacy class of a nontrivial element of F).. It was later shown,
as a consequence of the Bestvina-Feighn Combination Theorem [1], that a fully
irreducible ¢ € Out(F)) is nongeometric if and only if the mapping torus group
F, 1, Z is word-hyperbolic. For this reason nongeometric fully irreducibles are also
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called hyperbolic. See Section 2.8 below for more details.

Fully irreducible elements of Out(F,.) provide a free group analog of pseudo-
Anosov elements of the mapping class group Mod(X) of a closed hyperbolic surface
3. Fully irreducibles play a key role in the study of algebraic, geometric, and dy-
namical properties of Out(F,.). In particular, every fully irreducible ¢ € Out(F;)
admits a train track representative (see Section 2.5 below for precise definitions),
and this fact was, in a sense, the starting point in the development of train track and
relative train track theory for free group automorphisms. In the structure theory
of subgroups of Out(F;), subgroups containing fully irreducible elements provide
basic building blocks of the theory. For example, the Tits Alternative for Out(F;.),
established in full generality in [6,7], was first proved in [5] for subgroups of Out(F}.)
containing a fully irreducible element. A result of Handel and Mosher [22], with a re-
cent different proof by Horbez [25], shows that if H < Out(F}.) is a finitely generated
subgroup, then either H contains a fully irreducible element or H contains a sub-
group H, of finite index in H such that H; preserves the conjugacy class of a proper
free factor of F.. Also, fully irreducible elements are known to have particularly nice
properties for the natural actions of Out(F,.) on various spaces. In particular, a fully
irreducible element ¢ € Out(F,) acts with “North-South” dynamics on the com-
pactified Outer space C'V,. (see [32]) and with generalized “North-South” dynamics
on the projectivized space of geodesic currents PCurr(F,.), [36,48,49]. For r > 2, the
“free factor complex” FF,, endowed with a natural Out(F;) action by isometries,
is a free group analog of the curve complex of a finite type surface. It is known that
FF, is Gromov-hyperbolic, and that ¢ € Out(F,.) acts as a loxodromic isometry of
FF, if and only if ¢ is fully irreducible [4].

There are several known results showing that “random” or “generic” elements
of Out(F,) are fully irreducible. The first of these results is due to Rivin [43]. He
showed that if @ = Q! is a finite generating set of Out(F,.) (where r > 3), then for
the simple random walk ¢1, g2, ... on Out(F;.) with respect to @ (where ¢; € Q), the
probability that ¢, = q1 ...¢, € Out(F,) is fully irreducible goes to 1 as n — oo.
Rivin later improved this result to show [44] that, with probability tending to 1 as
n — oo, the element ¢, is in fact a nongeometric fully irreducible. Rivin’s approach
was homological: he studied the properties of the matrices in GL(r, Z) coming from
the action of ¢,, on the abelianization Z" of F,.. From the algebraic properties of the
characteristic polynomials of these matrices, Rivin was able to derive conclusions
about ¢, being a nongeometric fully irreducible with probability tending to 1 as
n — oo. Rivin applied the same method to show [43] that “random” (in the same
sense) elements of mapping class groups are pseudo-Anosov.

A different, geometric, approach was then explored by Maher [34] in the context
of mapping class groups (using the action of the mapping class group on the Teich-
muller space), and later by Calegari and Maher [9] in the context of group actions
of Gromov-hyperbolic spaces. Calegari and Maher considered the following general
situation. Let G be a finitely generated group acting isometrically on a Gromov-
hyperbolic space X and let i be a probability measure on G with finite support such
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that this support generates a non-elementary subgroup of Isom(X). Then Calegari
and Maher proved that, for the random walk on G determined by u, the probability
that, for a random trajectory ¢, gs, ... of this walk, the element g, =¢1...q, € G
acts as a loxodromic isometry of X tends to 1 exponentially fast as n — oo. They
established this fact by showing that there exists an L > 0 such that, in the above
situation, with probability tending to 1 exponentially fast as n — oo, the transla-
tion length of g, on X is > Ln. This result applies to many natural situations, such
as the action of the mapping class group (or of its “large” subgroup) on the curve
complex, and the action of Out(F,.) (or of suitably “large” subgroups of Out(F;.))
on the free factor complex FF,. Since an element of Out(F,) acts loxodromically
on FF, if and only if this element is fully irreducible, the result of Calegari and
Maher implies the result of Rivin if we take Q = Q™! to be a finite generating
set of Out(F;) and take p to be the uniform probability measure on . Recently
Mann constructed [35] a new Gromov-hyperbolic space P, (quasi-isometric to the
main connected component of the “intersection graph” I, defined in [29]), obtained
as a quotient of FF, and endowed with a natural isometric action of Out(F,) by
isometries. Mann showed [35] that ¢ € Out(F,) acts as a loxodromic isometry of
P, if and only if ¢ is a nongeometric fully irreducible. The result of Calegari-Maher
applies to the action of Out(F;,.) on P, and thus implies that, for a finitely supported
measure pu on Out(F,.) generating a subgroup containing at least two independent
nongeometric fully irreducibles, an element ¢,, € Out(F,.), obtained by a random
walk of length n defined by p, is nongeometric fully irreducible with probability
tending to 1 exponentially fast, as n — oo. Finally, Sisto [46], using a different
geometric approach, introduced the notion of a “weakly contracting element” in
a group G, and showed that weakly contracting elements of Out(F,.) are exactly
the fully irreducibles. He showed that for any simple random walk on Out(F}.), the
element ¢,, € Out(F,.) obtained after n steps is weakly contracting (and hence fully
irreducible) with probability tending to 1 exponentially fast as n — oo.

None of the above results yield more precise structural information about “ran-
dom” elements of Out(F,.), other than the fact that these elements are (nongeomet-
ric) fully irreducibles.

There is a considerably more detailed stratification of the set of nongeometric
fully irreducibles in terms of their index, their index list, and their ideal Whitehead
graph, which we discuss below. The goal of this paper is to derive such detailed
structural information for “random” elements of Out(F,) obtained by a certain
natural random walk on Out(F,).

The index theory for elements of Out(F;.) is motivated by surface theory. If
v € Mod(X) is a pseudo-Anosov element (where ¥ is a closed oriented hyperbolic
surface), let F be the stable measured foliation for ¢. Then F has singularities
D1, --,Pm, Where p; is a k;-prong singularity with k; > 3. In this case it is known

ki

that the “index sum” > (1 — %) equals exactly x(3). Thus the index sum is a

constant independent of ¢, but the “index list” {1 — %, R %ﬂ} is a nontrivial
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invariant of the conjugacy class of ¢ in Mod(S).

The original notion of an index for an element ¢ of Out(F,), introduced in [16],
was formulated in terms of the dynamics of the action on the hyperbolic boundary of
F.. This notion of index, in general, is not invariant under replacing ¢ by its positive
power. Subsequently, more invariant notions of index were developed using R-tree
technology. We discuss the various notions of index for free group automorphisms
in Section 2.9 below.

If ¢ € Out(F;) (where r > 2) is fully irreducible, there is a naturally associated
“attracting R-tree,” endowed with a natural isometric action of F,. (this tree is
similar in spirit to the “dual tree” obtained by lifting the stable measured foliation
of a pseudo-Anosov element of Mod(X) to the universal cover 3 and then collapsing
the leaves). See Section 2.9 for the explanation of the construction of T, from a
train track representative of ¢. If ¢ is a nongeometric fully irreducible, the action
of F, on Ty, is free but highly non-discrete (in fact, every F,-orbit is dense in Tj,).
However, it is known that every branch point in T, has finite degree, and that
there are only finitely many F,.-orbits of branch points in T;,. Thus one can still
informally view the quotient T,,/F, as a “graph” and, using a formula for what the
Euler characteristic of this graph should be, define the notion of a “geometric index”
indgeom (755) = > (pj(deg(P?) —2) of Ty, where the summation is taken over F-orbits
[P] of branch-points in T,,; see Definition 2.28 below. If ¢ € Out(F}) is a geometric
fully irreducible, the action of F). on T, is not free, but there is a natural definition
of indgeom(7T,) in this case too. Unlike in the surface case, indgeom(7,) is not a
constant in terms of r and does depend on the choice of a fully irreducible . For a
fully irreducible ¢ € Out(F}), the attracting tree T, depends only on the conjugacy
class of ¢ in Out(F,), and in fact T,,» = T, for all k > 1. Hence indgeom (T},) is an
invariant of the conjugacy class of ¢ in Out(F;), which is also preserved by taking
positive powers of . As a consequence of more general results, it is known that, for
a fully irreducible ¢ € Out(F;), one has 1 < indgeom(73,) < 27 — 2 and that, for a
geometric fully irreducible ¢ € Out(F}), one has indgeom (7},) = 2r —2. Surprisingly,
it turns out that for » > 3 there exist nongeometric fully irreducibles ¢ € Out(F}.)
with indgeom(Ty) = 2r — 2 [2,3,16,20,21,26]; such ¢ are called parageometric. A
nongeometric fully irreducible ¢ € Out(F;.) with indgeom (735) < 27 — 2 is said to be
ageometric.

As we have seen, for a nongeometric fully irreducible ¢ € Out(F,.), the geometric
index indgeom(Ty,) arises from an “index sum” over representatives of F,.-orbits of
branch points in 7,. The terms of this sum provide an “index list,” which is also
an invariant of the conjugacy class of ¢, preserved by taking positive powers. In
[23], Handel and Mosher formalized this fact by introducing the notion of an index
list and of rotationless index i(p) (the latter is called “index sum” in [23]) for
a nongeometric fully irreducible ¢. The most invariant definition of these notions
involves looking at the structure of branch-points of T, which also shows that
i(p) = —iindgeom(T,) for every non geometric fully irreducible ¢. Handel and
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Mosher also gave an equivalent description of the index list and rotationless index in
terms of a train track representative of ¢. We give this description in Definition 2.33
below.

For a nongeometric fully irreducible ¢, Handel and Mosher also introduced an-
other combinatorial object, called the ideal Whitehead graph IW(yp) of ¢, which
encodes further, more detailed, information than the index list in a single finite
graph. They also provided an equivalent description of ZW(y) in terms of a train
track representative of ¢; see Definition 2.32 below. For a pseudo-Anosov, the com-
ponent of the ideal Whitehead graph coming from a foliation singularity is a polygon
with edges corresponding to the lamination leaf lifts bounding a principal region in
the universal cover [38]. Since the number of vertices of each polygonal ideal White-
head graph component is determined by the number of prongs of the singularity,
the index list and the ideal Whitehead graph record the same data. In the Out(F})
setting, not only is the ideal Whitehead graph ZW(y) a finer invariant (c.f. [40,41]),
but it provides further information about the behavior of lamination leaves at a sin-
gularity. It is again an invariant of the conjugacy class of ¢, also invariant under
taking positive powers of . Moreover, while ZW(p) is a more detailed structural
invariant than i(y) or the index list of ¢, both of these invariants can be “read-off”
from ZW(yp).

We will now describe the main result of the present paper. Let 7 > 3 and let the
free group F,. = F(ay,...,a,) be equipped with a fixed free basis A = {ay,...,a,}.
We denote by R, the r-rose, which is a wedge of r directed loop-edges, wedged
at a single vertex v and labelled a1, ..., a,. Thus we have a natural identification
F.=F(ay,...,a;) = m(Ry,v).

An elementary Nielsen automorphism of F,. is an element 6§ € Aut(F,) such
that there exist x,y € AT, y # 2™ with the property that 6(z) = yz, §(z~1) =
r7ly~! and 6(z) = z for each z € A*! — {x,2~!}. We denote such 6 by 6 = [z
yz]. We say that an ordered pair (6 = [z — yz],0' = [2' — y'2']) is admissible
Lory = x and 2’ # y~!. A sequence 6,...,0,
(where n > 1) of standard Nielsen automorphisms of F,. is called admissible if, for

if either 2’ = z and y' # y~

each 1 < i < n, the pair (6;,0,11) is admissible. A sequence 61, ...,0,, of standard
Nielsen automorphisms of F). is called cyclically admissible if it is admissible and if
the pair (6, 61) is also admissible. We denote by S the set of all elementary Nielsen
automorphisms of F,. (so that S is a finite set with exactly 4r(r — 1) elements, see
Section 5); we also verify in Lemma 5.1 that for every 6 € S there are exactly 4r —6
elements 6’ € S such that the pair (0,6’) is admissible. It is well-known that S
generates a subgroup of finite index in Out(F}).

We define a finite-state Markov chain with the state set S as follows. For 6, 6" we
set the transition probability P(6'|6) from 6 to 6’ to be 1/(4r — 6) if the pair (6,0")
is admissible and 0 otherwise. We show in Lemma 5.3 that this is an irreducible
aperiodic finite state Markov chain and that the uniform distribution u, on S is
stationary for this chain. We then consider a random process W defined by this
chain starting with the uniform distribution p, on S. Thus W can be viewed as a
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random walk, where we first choose an element ¢; € S uniformly at random and
then, if at step » > 1 we have chosen 6,, € S, we choose 6,11 € S according to
the distribution P(—|6,,) defined above. The sample space of W is the set SN of all
sequences 61,05, ... of elements of S and the random walk W defines a probability
measure jyy on SN whose support consists of all infinite admissible sequences of
S. To each trajectory w = 01,60s,... of W we associate a sequence ¢,, € Out(F,.),
where ¢, =0, 0---00;.

The random walk W can be viewed as an Out(F}.) version of the simple non-
backtracking random walk on the free group itself. The reason is the following crucial
property of admissible sequences: if 61, ...,#6, is an admissible sequence of elements
of S, then, for every letter a € A*', computing the image (6, o --- o 6;)(a) by
performing letter-wise substitutions produces a freely reduced word in A*!. This
fact, established in Lemma 3.10 below, implies that for any cyclically admissible
sequence 01, ...,0,, the element ¢, = 0,, 0---06; € Out(F,) admits a train track
representative g, : R, — R, on the rose R,, and, moreover, this train track map
has exactly one nondegenerate illegal turn; see Theorem 3.11. That is why we also
think of W as a “train track directed” random walk on Out(F}).

In addition, we show in Theorem 6.5 that for each train track map ¢g: R, — R,
with exactly one nondegenerate illegal turn with gz = ¢ € Out(F,), for some
positive power gP of g there exists a cyclically admissible sequence 61, ...,#8, such
that @P =6, 0--- 06, and so that our walk W reaches ¢P (and, moreover, p only
depends on r).

Definition 1.1 (Property (G)). Letr > 3 be an integer. We say that o € Out(F}.)
has property (G) if all of the following hold:

(1) The outer automorphism ¢ is ageometric fully irreducible;

(2) We have i(p) = 3 —r (so that indgeom (T},) = 2r —3), and ¢ has single-element
index list {3 —r}.

(3) There exists a train track representative f : R. — R, of ¢ such that f has no
pINPs and such that f has exactly one nondegenerate illegal turn.

(4) The ideal Whitehead graph TW(p) of ¢ is the complete graph on 2r —1 vertices.

(5) The axis bundle for ¢ in CV, consists of a single axis.

(The terms appearing in this definition that have not yet been defined are ex-
plained later in the paper).
Our main result (c.f. Theorem 5.7 below) is:

Theorem A. Let r > 3. For n > 1 let E, be the event that for a trajectory
w=01,02,... of W the sequence 01, ...,0, is cyclically admissible. Also, forn >1
let B, be the event that for a trajectory w = 01,05, ... of W the outer automorphism
n =0p0---06y € Out(F,) has property (G).

Then the following hold:
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(1) For the conditional probability Pr(B,|E,) we have
lim Pr(B,|E,) = 1.
n—oo

(2) We have Pr(E,) —n— oo % and liminf,,_ o Pr(B,) > s22=3_ > 0.

2r(r—1)
(8) For pw-a.e. trajectory w = 01,0s,... of W, there exists an n, > 1 such that
for every n > ny, such thatt, = 01,...,0, is cyclically admissible, we have that

the outer automorphism @, = 6, o---08; € Out(F,) has property (G).

We then project the random walk W to a random walk on SL(r,Z) by sending
each 6 € S to its transition matrix in SL(r,Z), when 0 is viewed as a graph map
R, — R,. We analyze the spectral properties of this projected walk and show that
it has positive first Lyapunov exponent, see Proposition 5.13. We then conclude
that for pyy-a.e. trajectory 61,60, ...,, the stretch factor A(6, o --- o 60;1) grows ex-
ponentially in n for any increasing sequence of indices n such that 61,0s,...,60, is
cyclically admissible. See Theorem 5.15 below for the precise statement, and see
Section 2.6 for the definition and properties of stretch factor for an element of
Out(F,).

As a consequence, we show that our random walk W has positive linear rate
of escape with respect to the word metric defined by any finite generating set of
Out(F,) (c.f. Theorem 5.17):

Theorem B. Let r > 3 and let Q be a finite generating set of Out(F,) such that
Q = Q'. Then there exists a constant ¢ > 0 such that, for pw-a.e. trajectory
w:91,027... OfW,

n—oo

1
lim =10,,...01|lp =c.
im n| ilg=c¢

Here for ¢ € Out(F}), |¢|g denotes the distance from 1 to ¢ in Out(F,) with
respect to the word metric on Out(F;) corresponding to Q.

Note that our random walk W is a “left” random walk on Out(F;.), since with
a random trajectory 61,60, ... of VW we associate the sequence ¢, =6, 0---060; €
Out(F,,) (rather than 6; 0---06,). We explain in Remark 5.8 how one can convert
our random walk into a more traditional “right” random walk on Out(F;.), although
after such a conversion the statements of our main results become less natural.

The proof of Theorem A is based on completely different methods from all the
previous results about the properties of “random” elements of Out(F;) (see above
the discussion of the work of Rivin, Calegari-Maher, and Sisto). Instead of using
the action of Out(F),) on the free factor complex or on the abelianization of F),
we analyze the properties of train track representatives of elements ¢, € Out(F;)
obtained by our walk WW. The main payoff is that, apart from concluding that ¢,
is fully irreducible, we obtain a great deal of extra detailed structural information
about the properties of ¢,,, where such information does not seem to be obtainable
by prior methods. A key tool in establishing that ¢,, is fully irreducible is the train
track criterion of full irreducibility obtained in [40] (see Proposition 2.27 below);
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we also discuss a related criterion obtained in [27] (see Proposition 2.26 below). We
substantially rely on ideas and results of [39,40,41], although the exposition given
in the present paper is almost completely self-contained.

Finally, we pose several open problems naturally arising from our work:

Question 1.2. In the context of our Theorem A, for a uyy-a.e. trajectory 61,6, ...
and n >> 1 such that 64,...,6, is cyclically admissible, what can be said about
the rotationless index, index list, and Ideal Whitehead graph of (6,, 0 ---06;)71?

In [26], Jaeger and Lustig, for each r > 3, constructed a positive automorphism
o such that ¢ is ageometric fully irreducible with i(p) = % — r and such that
i(p~!) =1 —r, so that p~! is parageometric. In their construction ¢ arises as a
rather special composition of positive elementary Nielsen automorphisms, where this
composition is cyclically admissible in our sense. However, experimental evidence
appears to indicate that for ¢ € Out(F;.) produced by our walk W for long “random”
cyclically admissible compositions, the absolute value of i(¢ 1) is much smaller than

the maximum value of » — 1 achieved by parageometrics.

Question 1.3. Again in the context of Theorem A, is it true that for uyy-a.e.
trajectory 61,02,... of W, projecting this trajectory to the free factor complex
FF,as0;...0,p, where p is a vertex of FF, (or perhaps as 67" ...0; 'p), gives a
sequence that converges to a point of the hyperbolic boundary F F,.?

Note that by the recent work of Horbez [24] on describing the Poisson boundary
of Out(F,), the answer to the similar question for a simple random walk on Out(F})
is positive. In several personal conversations, Camille Horbez indicated to the second
author a plausible approach for getting a positive answer to Question 1.3.

Question 1.4. Let 7 > 3 and let Q = Q! be a finite generating set of Out(F}.).
If g1,q2,... is a random trajectory of the simple random walk on Out(F}.), what
can be said about the properties of ¢, = ¢q1...¢, € Out(F,), apart from the
fact that, with probability tending to 1 as n — oo, the automorphism ¢, is a
nongeometric fully irreducible? In particular, is ¢, ageometric? What can be said
about i(¢,) = —3indgeom (T}, ), and about the index list and the Ideal Whitehead
graph of ,,?

Question 1.5. Let ¥ be a closed oriented hyperbolic surface. What can be said
about the index/singularity list for the stable foliation of a “random” element ,, €
Mod(S) obtained by a simple random walk of length n on Mod(S)? (Note that by
the results of Rivin, Maher, and Calegari-Maher, discussed above, we do know that
©n is pseudo-Anosov with probability tending to 1 as n — o00).

It would also be interesting to understand the index properties of generic au-
tomorphisms ¢, € Out(F,) (where r > 3) produced by a simple random walk on
Out(F,) with respect to some finite generating set of Out(F;). As noted above, it
is already known that in this situation ¢,, is atoroidal and fully irreducible with
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probability tending to 1 as n — co. Computer experiments, conducted by us using
Thierry Coulbois’ computer package for free group automorphisms® appear to indi-
cate that generically both ¢,, and ¢, ! are ageometric fully irreducible, with a very
small value of |i(¢,)| (in contrast with an almost maximal value |i(¢,)| =r — 2 in
Theorem A). These experiments also appear to indicate that several possible index
lists for ¢, occur with asymptotically positive probability each, with the single-entry
list {—1} occurring with the highest probability. However, the maximal values of
the length n of a simple random walk on Out(F,) (with r = 3,4,5,6), that our
experiments were able to handle, were around n = 80 — 85, and longer experiments
are needed to get more conclusive empirical data.

A plausible conjecture here would be that all singularities of the stable foliation
of a random ¢,, are 3-prong singularities. Note that a result of Eskin, Mirzakhani,
and Rafi [14] shows that for “most” (in a different sense) closed geodesics in the
moduli space of X, the pseudo-Anosov element of Mod(X) corresponding to such a

closed geodesic has all singularities of its stable foliation being 3-prong.

2. Preliminaries

2.1. Graphs, paths and graph maps

Definition 2.1 (Graphs). A graph T' is a I-dimensional cell-complex. We call
the 0-cells of I vertices and denote the set of all vertices of I by VI'. We refer to
open 1-cells of ' as topological edges of I' and denote the set of all topological edges
of I' by Eyopl.

Each topological edge T' is homeomorphic to the open interval (0,1) and thus,
when viewed as a 1-manifold, admits two possible orientations. An oriented edge
of T' is a topological edge with a choice of an orientation on it. We denote by ET
the set of all oriented edges of I'. If e € ET is an oriented edge, we denote by € the
same underlying edge with the opposite orientation. Note that for each e € ET we
have € = e and € # ¢; thus — : ET' — ET is a fized-point-free involution.

Since ' is a cell-complex, every oriented edge e of I' comes equipped with the
orientation-preserving attaching map je : [0,1] — T such that j. maps (0,1)
homeomorphically to e and such that j.(0),j.(1) € VI'. By convention we choose
the attaching maps so that, for each e € ET and each s € (0,1), we have
(jz' o je)(s) = 1 —s. For e € ET we call j.(0) the initial vertex of e, denoted
o(e), and we call j.(1) the terminal vertex of e, denoted t(e). Thus, by definition,
o(e) =t(e) and t(e) = o(e).

If T is a graph and v € VT', a direction at v in I" is an edge e € ET such that
o(e) = v. We denote the set of all directions at v in T' by LkI'(v) and call it the link
of v in I'. Then the degree of v in T', denoted deg(v) or degp(v), is the cardinality
of the set LkT'(v).

aThe package is available at http://www.cmi.univ-mrs.fr/~coulbois/train-track/
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An orientation on a graph I is a partition ET = E,T' U E_T such that for an
edge e € ET" we have e € E, T if and only ife € E_T.

Note that both topological edges and oriented edges are, by definition, open
subsets of I and they don’t contain their endpoints.

Definition 2.2 (Combinatorial and topological paths). A combinatorial
edge-path v of length n > 1 is a sequence v = ey,...,e, such that e; € ET for
i=1,...,n and such that t(e;) = o(ejy1) for all 1 < i < n. We put o(y) := o(e1),
t(y) :==tlen), and v~ :=&,,...,e1. Thus y~1 is again a combinatorial edge-path
of length n. For v € VI we also view v = v as a combinatorial edge-path of length 0O
with o(y) = t(y) = v and v~! = . For a combinatorial edge-path ~y of length n > 0
we denote |7y| = n.

A combinatorial edge-path v is reduced or tight if v does not contain subpaths
of the form e, e, where e € ET.

A topological edge-path in ' is a continuous map f: [a,b] = T such that either
a="band f(a) = f(b) € VT or a < b and there exists a subdivision a = ap < a1 <
<o < ap = b and a combinatorial edge-path v =eq,...,e, in ' such that:

(1) We have f(a;) € VT fori=0,...,n.

(2) We have f(a;) = o(e;) fori = 0,...,n— 1 and f(a;) = t(e;—1) fori =

1,...,n.
(3) fllai_1,a;) 5 an orientation-preserving homeomorphism mapping (a;—1,a;)
onto e;.

Sometimes we drop the commas and just write vy = ey ...e,.

Note that, for a topological edge-path f : [a,b] — T', where a < b, the combina-
torial edge-path v = ey, ..., e, with the above properties is unique; we say that v is
the combinatorial edge-path associated to f; we also calla =ayg < --- < a,, = b the
associated subdivision for f. If a = b and f(a) = f(b) = v € VT, we say the path
v =wv s associated to f.

Let f : [a,b] — T be a topological edge-path (where a < b), let v = e1,...,en
be the associated combinatorial edge-path, and let a = ag < a1 < --- < a, = b be
the corresponding subdivision. We say that a topological edge-path f is tame if for
every i = 1,...,n the map 3;1 of : (aj—1,a;) = (0,1) is a (necessarily unique)
orientation-preserving affine homeomorphism. By convention, if f : [a,b] = T is a
topological edge-path with a = b, we also consider f to be tame.

A topological path f:[a,b] = ' (where a < b) is defined similarly to as in the
definition of a topological edge-path above, except that we no longer require f(a) =
o(e1) and f(b) = t(en), but instead allow f(a) € e; Uo(er) and f(b) € ey, Ut(ey).
For i =1 and i = n, condition (3) in the above definition is relazed accordingly.
For a = b we view any map [ : {a} — T as a topological path in T'.

For a topological path f : [a,b] — T with a < b there is still a canonically
associated combinatorial edge-path v = ey, ..., e, and a canonically associated sub-
division a = ag < a1 < --- < a, = b.

We define what it means for a topological path f : [a,b] — T to be tame, simi-
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larly to the notion of a tame topological edge-path above, by requiring all the maps
Gt o fliais,a) to be injective affine orientation-preserving maps from (a;—1,a;) to
subintervals of (0,1). For1 < i < n it is still the case that j_ o f ((a;—1,a;)) = (0, 1).
However, we now allow for the possibility that j;' o f ((ag,a1)) = (s,1) with s >0
(in the case where f(a) € ey rather than f(a) = o(e1)) and that jZ of ((an—1,an)) =
(0,s) with s < 1 (in the case where f(a) € e, rather than f(a) = t(e,)). Also, if
a = b, we consider any map f :{a} = T to be a tame path in T.

Note that if f : [a,b] — I is a topological path (respectively, tame topological
path), then for any a < o’ < b < b the restriction f|/ 4 : [@/,0] = T is again a
topological path (respectively, tame topological path) in T'.

Also notice that, if n > 1 and v = ey, ..., e, is a combinatorial edge-path and
a € R, then there exists a unique tame topological edge-path f : [a,a + n] —
I" with associated combinatorial path v and associated subdivision a; = a + ¢,
i =20,...,n. By contrast, given v = eq,...,e, and a € R, there exist uncountably
many topological edge-paths f : [a, b] — T with associated combinatorial path v and
associated subdivision a; = a + 1, ¢ = 0,...,n. The distinction between topological
edge-paths and tame topological edge-paths is often ignored in the literature, but
this distinction is important when considering fixed points and dynamics of graph
maps, as we will see later.

Definition 2.3 (Paths). Let T’ be a graph. By a path in T' we will mean a tame
topological path f : [a,b] = T'. A path f : [a,b] — T is trivial if a = b and nontrivial
if a < b. A path f is tight or reduced if the map f : [a,b] — T is locally injective.
Thus a trivial path is always tight, and a nontrivial path is tight if and only if the
combinatorial edge-path associated to f is reduced.

2.2. Graph maps

Definition 2.4 (Graph maps). Let T’ and A be graphs. A topological graph map
f:T — A s a continuous map such that f(VT') C VA and such that the restriction
of f to each edge of T is a topological edge-path in A. More precisely, this means
that for each e € ET the map f o j. : [0,1] = A is a topological edge-path in A.

A graph map is a topological graph map f : T' — A such that the restriction of
f to each edge of T is a path in T (in the sense of Definition 2.3), that is, such that
for every e € ET the map f o j. :[0,1] = A is a tame topological edge-path in A.

Convention 2.5. By convention, if f : [a,b] — I' is a tame topological edge-path with
the associated combinatorial edge-path v = ey, ..., e,, we will usually suppress the
distinction between f and ~. In particular, if f : ' — A is a graph map and
e € ET, we will usually suppress the distinction between the tame topological
path foj.:[0,1] — A and the associated combinatorial edge-path v =e1,... e,
in A. Moreover, in this situation we will often write f(e) = e1,...,e, or even

fle)=e1...e,.
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Note that our definition implies that if f : I' — A is a topological graph map,
then for each edge ¢ € ET we have f(e) = ey,...,e, with n > 1. It is sometimes
useful to allow a topological graph map to send an edge to a vertex (rather than
to an edge-path of positive combinatorial length), but we will not need this level of
generality in the present paper.

A topological graph-map f : I' — A is said to be expanding if for each edge
e € ET, we have |f™(e)| = oo as n — oc.

Remark 2.6. The distinction between the notions of a graph map and of a topo-
logical graph map is important when considering the fixed points and the dynam-
ics of a (topological) graph map f : I' — T. Indeed, suppose that f : ' — T
is a topological graph map such that for some edge e € EI' the combinatorial
edge-path associated with f o j, : [0,1] — T is ey,..., ey, such that n > 3, and
such that for some 2 < 49 < n — 1 we have e;, = e. Then there exists a sub-
division 0 = a9 < a3 < --+ < ay such that f o j; maps (a;—1,a;) homeomor-
phically and preserving orientation to e;, for i = 1,...,n. Denote xz; = jc.(a;)
and denote by (x;_1,7;) the open segment in e between x;_1 and x;; so that
(i—1,2;) = Je((@i—1,a;)). Thus, for ¢ = 1,...,n, f maps the open segment
(zi—1, z;) homeomorphically and preserving orientation to e;. Our assumption that
ei, = e with 1 < ig < n implies that the map h := j_ ! o f o j. maps the subsegment
[@io—1,ai,] of [0,1] by an orientation preserving homeomorphism to the interval
[0, 1]. The intermediate value theorem then implies that there exists a;,—1 < s < a;
such that the point x = j.(s) € (x4,—1, i, ) is fixed by f, that it satisfies f(z) = «.
However, the orientation-preserving homeomorphism h : [a;,—1,a;,] — [0,1] can,
in principle, have uncountably many fixed points; e.g. h could coincide with the
identity map on some nondegenerate subsegment of [a;,—1, a;,]. Thus, f may have
uncountably many fixed points in the interval (x;,—1,z;,) of e. On the other hand,
if in the above situation f is a graph map (so that the path foj. :[0,1] — ' is
tame), then h := j_ ! o f oj. maps the subinterval [a;,_1, a;,] of [0, 1] to the interval
[0, 1] by an orientation preserving affine homeomorphism. It then follows that there
exists a unique z € (;,-1,;,) such that f(z) = z.

Thus, if I is a finite graph and f : ' — I' is an expanding (in the combinatorial
sense defined above) topological graph-map, then f may have uncountably many
fixed points in I'. By contrast, if I' is finite and f : I' — I' is an expanding graph-
map, then f has only finitely many fixed points and only countably many periodic
points in T'.

Allowing f : ' — T" to be a topological graph map, rather than a graph map, may
result in some additional pathologies of the dynamics of f under iterations; e.g. an
expanding topological graph-map f : ' = I may turn out to act as a “contraction”
on a nondegenerate subsegment of an edge of I'. Restricting our consideration to
graph maps in this paper rules out these kinds of pathologies.

For a square matrix M with real coefficients we denote by A(M) the spectral
radius of the matrix M, that is, the maximum of |)\;| where \; € C varies over all
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eigenvalues of M.

Definition 2.7 (Transition matrix of a graph map). Let T be a finite graph
with m = #(Ey,,I') > 1 topological edges. Choose an orientation ET = E.TUE_T
and an ordering E.T' = {e1,...,en}. Let f : T — T be a graph map. The transition
matrix M(f) of f is an m X m matriz with nonnegative integer entries, where, for
1 <i,7 < m, the entry m;; in the position ij in M is equal to the number of times
e; and & appear in the combinatorial edge-path f(e;).

We denote A(f) := AM(M(f)), the spectral radius of the matriz M(f).

It is not hard to see for the above definition that if f,g: ' — I' are graph-maps,
then M(go f) = M(g)M(f). In particular, we have M(f*) = [M(f)]¥ for each
integer k > 1.

Lemma 2.8. Let I' be a finite connected graph and let f,g : I' — T be such that
M(f)>0and g:T — T is surjective. Then M(go f) > 0.

Proof. Let e € ET be arbitrary. Since M(f) > 0, the path f(e) passes through
every topological edge of I'. Since g: I' — T' is surjective, it follows that the path
g(f(e)) also passes through every topological edge of . Hence M(go f) > 0, as
required. O

Definition 2.9 (Regular map). A graph map f: ' — A is regular if for each
e € ET' the combinatorial edge-path f(e) = e1,...,e, is reduced. Note that f is
reduced if and only if the path f o j.: [0,1] = A is locally injective.

Note that, if f: I' — T' is a graph map, then for each & > 1, we have that
f¥: T = I'is also a graph map. However, if f: I' — I' is a regular graph map, then,
in general, the map f*: I' = I' may fail to be regular for some k > 1.

2.3. Perron-Frobenius theory

We say that a d x d matrix M with real coefficients is nonnegative, denoted M > 0,
if all coeflicients of M are > 0. Recall that a nonnegative d x d matrix M is called
irreducible if for each 1 < 4,7 < d there exists a k& > 1 such that (Mk)w > 0.
It is not hard to check that, in the context of Definition 2.7, the matrix M (f) is
irreducible if and only if for each e, e’ € ET there exists a k > 1 such that the path
f*(e) contains an occurrence of either e’ or of e’.

For a d x d matrix M = (mij)g’fj:l we write M > 0if m;; > 0forall 1 <4,5 <d.
Note that if M > 0, then M is irreducible.

Recall that for a square matrix M with real coefficients we denote by A(M) the
spectral radius of the matrix M.

A key basic result of Perron-Frobenius theory says that if M > 0isa d x d
irreducible matrix then A(M) > 0 and, moreover, A(M) is an eigenvalue for M,
called the Perron-Frobenius (PF) eigenvalue. Moreover, in this case there exists an
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eigenvector v € R? with Mv = A\(M)v such that all coefficients of v are > 0. See
[45] for background on Perron-Frobenius theory.

2.4. Train track maps

Definition 2.10 (Train track map). Let I' be a finite connected graph without
degree-1 or degree-2 vertices.
A graph-map f: T — I is called a train track map if the following hold:

(1) f is a homotopy equivalence and
(2) for each k > 1 the graph-map f*: T — T is reqular (that, is, for every k > 1
and every e € ET the edge-path f*(e) is reduced).

The definition above implies that if f: I' — I' is a train track map, then for each
n>1f":T — T is also a train track map.

A train track map f: T' — T is said to be irreducible if its transition matrix
M(f) is irreducible. A train track map f: T' — T is said to be expanding if for
every edge e € ET we have |f"(e)|] — oo as n — oco. Thus a train track map f is
expanding if and only if for each e € ET there exist n > 1 such that |f"(e)| > 2.

Definition 2.11 (Derivative map). Let f: T' = T be a graph map. The deriva-
tive map Df : ET' — ET is defined as follows. For an edge e € ET with
fle) =e1,...,en we have Df(e) := e;.

Note that the derivative map Df is well-defined, even without the assumption
that the graph-map f be regular. Note also that if f,g: I' — I" are graph-maps, then
D(f og) = Df o Dg. In particular, for each k > 1, we have that D(f*) = (Df)".

An edge e € ET is called f-periodic if for some k > 1 we have (Df)*(e) = e,
that is, if for some k > 1 the edge-path f*(e) starts with e. A vertex v € VT is
f-periodic if for some k > 1 we have f*(v) = v.

Definition 2.12 (Turns). Let I' be a graph. For a vertex v € VI' a turn in T
at v is an unordered pair e, e’ of (not necessarily distinct) oriented edges of T' such
that o(e) = o(e’) = v. A turn e, e’ is called degenerate if e = ¢’ and is called non-
degenerate if e # €. For a graph T’ we denote by T (I') the set of all turns in T’ and
denote by T« (I') the set of all non-degenerate turns in T

For an edge-path v = e1,...,e, in I' we say that a turn e,e’ occurs in v if
there exists an i such that {e,e'} = {e;',eir1}. We denote the set of all turns
that occur in v by T(v). Note that, by definition, T(v) = T(y~1). Similarly, if
a 18 a non-degenerate path in I' with associated combinatorial edge-path v, we set
T(a):=T(y). If a is a degenerate path in T, we set T(a) := 0.

Note that if f: T — T is a graph-map, then the derivative map Df: ET —
ET naturally extends to the map Df: T(I') — T(T') defined as D({e,e'}) :=
{Df(e),Df(e)}, where {e,e'} € T(T).

Definition 2.13 (Taken and legal turns). Let f : ' — I' be a graph-map.
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We denote T(f) := UeerrT (f(€)) and Too(f) = U1 T (f*). We refer to ele-
ments of T(f) as turns immediately taken by f and to elements of Too(f) as turns
eventually taken by f.

We also say that a non-degenerate turn {e,e’} is f-legal if the turn
{Df*(e), Df%(e")} is non-degenerate for each k > 1. A turn {e,e'} is f-illegal
if it is not illegal. In particular, degenerate turns are always illegal.

We collect some basic elementary facts regarding turns and train track maps in
the following proposition, whose proof is left to the reader:

Proposition 2.14. Let T" be a finite connected graph without degree-1 and degree-2
vertices and let f: T'— T' be a graph-map which is a homotopy equivalence.
Then:

(1) We have Df (Too(f)) = Too(f)-
(2) If f is a train track map, then every eventually taken turn by f is legal.
(8) The map f is a train track map if and only if [ is regular and every turn in

T(f) is legal.

Recall that if v € T, we denote by Lkr(v) the set of all e € ET with o(e) = v
and refer to elements of Lkr(v) as directions at v in T

Definition 2.15 (Local and limited Whitehead graphs). Let f : ' — T be
a graph-map. For a vertexr v € VI' we define the limited Whitehead graph of f
at v, denoted Whr(f,v), to be a graph with vertex set Lkr(v) and with the set of
topological edges defined as follows. To every turn {e,e'} € T(f) such that e, e’ €
Lkr(v), we associate a topological edge in Why(f,v) with endpoints e,e’ € Lk(v).
For a vertex v € VT, define the local Whitehead graph of f at v (also some-
times called the Whitehead graph of f at v), denoted Wh(f,v), to be a graph with
vertex set Lkr(v) and with a topological edge with endpoints e,e’ € Lkr(v) whenever

{e,e’} € Too ().

Thus, by definition, Whr(f,v) is a subgraph of Wh(f,v) and these graphs have
the same vertex set, namely Lkr(v).

Note that if f: I" — T is a regular graph-map, then 7 (f) contains no degenerate
turns and hence Whp(f,v) has no loop-edges. In particular, if f: T' — T is a train
track map, then Wh(f,v) has no loop-edges.

Definition 2.16 (Legal paths). Let f: ' = T be a train track map. A combina-
torial edge-path ~y in I is legal if every turn in T () is legal. Similarly, a path « in
T is legal if every turn in T («) is legal.

2.5. Topological representatives

For an integer r > 2 we fix a free basis A = {a1,...,a,} of F,.. Let R, be the r-rose,
that is, a graph with a single vertex v and r topological loop-edges at v. We choose
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an orientation on R, and an ordering F{ R, = {e1,...,e.} of ELR,. We identify
F. = F(ay,...,a,) with m(R,,v) by sending a; € F, to the loop e; € m1 (R, v).

Definition 2.17 (Marking). Let r > 2 be an integer. A marking for F,. is a
graph map h: R, — T, such that T is a finite connected graph without degree-one
and degree-two vertices, and such that h: R, — " is a homotopy equivalence.

Note that if h: R, — T is a marking, then h naturally determines an isomor-
phism h,: m1(R,,v) — w1 (T, h(v)), which we can use to identify F, = m1(R;,v)
with 71 (T, h(v)).

Definition 2.18 (Topological representative). Let ¢ € Out(F,), where r > 2.
A topological representative of ¢ is a marking h: R, — T' together with a graph-
map f : T — T such that f is a homotopy equivalence and such that the outer
automorphism of w1 (T'), induced by f, is equal to ¢, modulo the identification of
F. = m(R;) and m(T') via h.. More precisely, denote vg = h(v) € VT and choose
a path a in T from vy to f(vg). Define fio: w1 (T, v9) — w1 (T, v0) by sending (the
homotopy class of)) a closed path v at vy to the (homotopy class of ) the closed path
af(y)a~t at vg. The fact that f: T — T is a homotopy equivalence implies that
fo: m(T,v9) — m1(T,vg) is an isomorphism. Changing the choice of « results in
modifying f. by a composition with an inner automorphism of w1 (T, vg), so that fy is
well-defined as an outer automorphism of w1 (T, vo). Saying that the automorphism
of m1 (1), induced by f, is equal to ¢ modulo the identification of F, = 71 (R,) and
71(T) wvia hye means that h;! o f. 0 hy: (R, v) — w1 (R, v) is an automorphism
whose outer automorphism class is .

Although in the above definition a topological representative of ¢ € Out(F,)
consists of a marking h: R, — I' and a graph-map f: ' — I', we usually will
suppress the mention of the marking when talking about topological representatives
and will refer to f: I' — I" as a topological representative of ¢. In the applications
considered in this paper we will always work with the markings h: R, — I' where
I'= R, and h = Idg,, which makes explicitly mentioning the marking particularly
redundant. If f: I" — T is a topological representative of some ¢ € Out(F;.), then for
any ® € Aut(F,) whose outer automorphism class is ¢ we also say that f: I' - T’
is a topological representative of ®.

For ¢ € Out(F;) a train track representative of ¢ is a topological representative
f:T'—= I such that f is a train track map.

Definition 2.19 (Standard representative). Let ® € Aui(F,.) and ®(a;) =
Ti1...Tin, be a freely reduced word over A! of length n; > 1, fori=1,...,r.
The standard representative ge of ® is then defined as follows: Use I' = R,
and h = Idg_ as the marking, so that g : R, = R,. For each i =1,...,r, at the
combinatorial edge-path level, we have f(e;) = ei1...€;in,, where e;, € ER, is the
edge corresponding to x; i, € A*Y under the identification F(ay, ..., a,) = 11 (R, v).
The subdivision of [0,1] corresponding to the path f o j., : [0,1] = R, is chosen so
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that each subdivision interval of [0,1] mapping to the edge e; 1, k = 1,...,n;, has
length 1/n,;.

Note that if &, ¥ € Aut(F,) are arbitrary, then gy o go: R, — R, satisfies
all the requirements of being a topological representative of ¥ o ® except that the
map gy © g may, in general, fail to be regular, since for an edge e € R,. the path
gw(ga(e)) may fail to be reduced.

If for every e € ER, the path gy¢(gs(e)) is reduced (that is, if the graph map
gv © go: R, — R, is regular), then gy o go: R, — R, is indeed a topological
representative of W o ®. Moreover, in this case gy o go and gyo¢ are isotopic rel
VR, = {v}.

2.6. Stretch factors

Let A be a free basis of F,., where r > 2. For w € F, we denote by ||w||4 the
cyclically reduced length of w with respect to A.

Definition 2.20 (Stretch factors). For ¢ € Out(F,.) and w € F, put
Aa(p,w) = limsup V/||¢™(w)]|a.
n—oo

It is known that the actual limit in the above formula always exists, and it is also
known that Aa(p,w) depends only on ¢ and w, but not on the choice of a free basis
A of F,.. For this reason we denote A(p,w) := Aa(p,w) where A is any free basis
of Frr. Now put A(p) = sup,,¢cp,\ (1} A(p, w). We call X(p) the stretch factor or the
growth rate of .

Tt is known that for every ¢ € Out(F,.) there exists w € F, with A(¢) = A(p, w),
and moreover, that A(¢) can be “read-off” from a relative train track representative
of ¢. See [31] for details. We will need only the simplest case of this fact here:

Proposition 2.21. [8,31] Let r > 2 and let ¢ € Out(F,) be such that ¢ can be
represented by an expanding train track map f: T'— T with M (f) irreducible. Then

Alp) = MM(f)) > 1.

2.7. Nielsen paths

Definition 2.22 (Nielsen paths). Let f : I' = T" be a train track representative
of some ¢ € Out(F;).

A Nielsen path for f is a nondegenerate tight path v in I' with endpoints x,y € T
(where x,y are not required to be vertices) such that f(z) =z, f(y) =y, and f(7)
is homotopic to ~y rel endpoints. A periodic Nielsen path for f is a nondegenerate
path v in T’ such that for some n > 1 the path v is Nielsen for f™.

An indivisible Nielsen path for f, abbreviated as INP, is a Nielsen path ~ for
f such that v cannot be written as a concatenation v = v'v", where 7' and ' are
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Nielsen paths for f. Similarly, an indivisible periodic Nielsen path for f, abbreviated
as pINP, is a periodic Nielsen path ~ for f such that v cannot be written as a
concatenation v = v'y", where v' and ' are periodic Nielsen paths for f.

It is known that pINPs have a specific structure, see [8] Lemma 3.4:

Proposition 2.23. Let f : T' — T" be an expanding irreducible train track map.
Then every pINP n in T has the formn = pflpg, where p1 and p2 are nondegenerate
legal paths with o(p1) = o(p2) = v € VT and such that the turn at v between p; and
p2 is an illegal nondegenerate turn for f.

Note that in the context of Proposition 2.23, there exist k& > 1 such that f* fixes
the points ¢(p1), t(p2). Note also that the points ¢(p1), t(p2) need not be vertices of
I.

2.8. Fully irreducible outer automorphisms

If G is a group and w € G is a group element, we denote by [w] the conjugacy class
of w in G. Similarly, if H < G is a subgroup of G, we denote by [H]| the conjugacy
class of H in G.

Definition 2.24. Let ¢ € Out(F,) where r > 3. The element ¢ of Oul(F;) is
said to be fully irreducible if there does not exist an integer k > 1 and a nontrivial
proper free factor B of F,., such that ©*([B]) = [B].

Recall also that an element ¢ € Out(F,) is called atoroidal if there does not
exist 1 # w € F, and an integer k > 1 such that ¢*([w]) = [w]. For ¢ € Out(F,),
a conjugacy class [w], where w € F,,w # 1, is called y-periodic if there exists a
k > 1 such that ¢*([w]) = [w]. Thus ¢ € Out(F,) is atoroidal if and only if ¢ has
no periodic conjugacy classes.

A special case of an important general result of Bestvina and Handel [8] shows
that if ¢ € Out(F,.) (where r > 2) is fully irreducible, then there exists an expanding
irreducible train track representative f: I' — I' of ¢.

Another key result of Bestvina and Handel [8] provides a complete characteri-
zation of non-atoroidal fully irreducible elements of Out(F,):

Proposition 2.25. [8] Let ¢ € Out(F,), where r > 2 and suppose that ¢ is non-
atoroidal. Then ¢ is fully irreducible if and only if there exists a compact connected
surface ¥ with a single boundary component such that by (X) = r (so that the fun-
damental group of ¥ is free of rank r), an identification 71 (X) = F,, and a pseudo-
Anosov homeomorphism g : ¥ — X such that the outer automorphism of w1 (X)
induced by g is equal to .

In view of the above result of Bestvina-Handel, fully irreducible elements of
Out(F,) are divided into two main classes: non-atoroidal fully irreducible elements
of Out(F,) are said to be geometric and atoroidal fully irreducible elements of
Out(F,) are said to be nongeometric.
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It is well-known that Out(F3) contains no atoroidal elements. Therefore, if ¢ €
Out(F}) is a nongeometric (i.e. atoroidal) fully irreducible, then r > 3.

A recent result of Kapovich [27] (see also [13]), building on the work of Pfaff [40],
gives a train track characterization of nongeometric fully irreducibles. For complete-
ness, and to give context, we state the result in the form it is stated in in [27]:

Proposition 2.26. [27] Let r > 3 and let ¢ € Out(F,) be an arbitrary atoroidal
element.
Then the following are equivalent:

(1) The automorphism ¢ is fully irreducible.

(2) There exists a train track representative f: I' — I' of ¢ such that the matriz
M(f) is irreducible and such that for each v € VI the local Whitehead graph
Wh(f,v) is connected.

(8) There exists a train track representative f: T — T of ¢ such that for some
k> 1, M(f*) > 0 and such that for each v € VT, the local Whitehead graph
Wh(f,v) is connected.

(4) For each train track representative f: T' — T of ¢ there exists a k > 1 such
that M(f*) > 0 and the local Whitehead graph Wh(f,v) is connected for each
ve VI

However, the form we in fact use it in is that of [40]:

Proposition 2.27. [40] Let g : T — T be a train track representative of an outer
automorphism ¢ € Out(F,) such that

(I) g has no periodic Nielsen paths,
(II) the transition matriz for g is Perron-Frobenius, and
(II1) all local Whitehead graphs Wh(g,v) (where v varies over the vertices of T') for
g are connected.

Then ¢ is fully irreducible. Moreover, Proposition 2.31 implies that o is ageometric
(see the definition of ageometric fully irreducibles in Section 2.9 below).

2.9. Index and geometric index

The notion of an indez ind(y) of an element of ¢ € Out(F,) was originally in-
troduced in [16] and formulated in terms of the dynamics of the action of repre-
sentatives ® € Aut(F,) of ¢ on the hyperbolic boundary 9F;,. of F.. Since we are
not going to work with the ind(p) directly, we omit the precise definition here and
refer the reader to [16,10] for details. Note, however, that the index ind(¢p) is not,
in general, invariant under taking positive powers of . There is a natural notion
(again see [16,10]) of a rotationless element ¢ € Out(F}), also defined in terms of
the action on OF,. It is known that every element of Out(F;) has a positive rota-
tionless power and that if ¢ € Out(F,) is rotationless, then ind(yp) = ind(¢") for
all k > 1.
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Recall that the unprojectivized Culler-Vogtmann QOuter space cv, consists of all
minimal free discrete isometric actions on F;. on R-trees, considered up to an Fj.-
equivariant isometry. Points of cv,. can also be described in terms of “marked metric
graph structures” on F,.. There is a natural action of Ryg on cv, by multiplying
the metric on T € cv, by a positive scalar. The quotient space cv,/R~g is called
the projectivized Culler-Vogmtann Outer space and denoted CV,. The space CV,
can also be canonically identified with the set of all T" € cv, such that the quotient
metric graph T'/F,. has volume 1.

It is known [2,12,19] that the closure ¢v, of cv,, with respect to equivariant
Gromov-Hausdorff convergence topology, consists of all “very small” isometric ac-
tions of F, on R-trees, again considered up to an F,.-equivariant isometry. The
projectivization CV,. := ¢v,. /R~ of v, is compact and provides the standard com-
pactification of C'V..

For an R-tree T and a point P € T, we denote by deg;(P) the number of
connected components of T'— {P}. A point P € T is called a branch point if
degr(P) > 3.

In [17], Gaboriau and Levitt introduced the notion of a “geometric index” or
“branching index” for any T € ¢u,. In the same paper they proved that for any
free F.-tree T' € ¢v, the number of Fj.-orbits of branch-points of T is finite and is
bounded above by 2r — 2. For a point P € T we will denote by [P] the F,.-orbit
of P. For simplicity, we will only define the geometric index for free F,-trees (as
noted below, for every nongeometric fully irreducible ¢ € Out(F}.), the action of F,
on the “attracting tree” T, is free). See [17,10] for the definition in the case of an
arbitrary T' € cv,..

Definition 2.28 (Geometric index). Let T € ¢, be a free F,.-tree. Define the
geometric index ndgeom (1) as

indgeom (T) 1= Y [degp(P) — 2.
[P]:deg(P)>3

In particular, Gaboriau and Levitt proved in [17] that for any T € v, we have
indgeom (17) < 2r — 2.

For every fully irreducible ¢ € F. there is an associated attracting tree T, € T,
which is unique up to projectivization, that is up to multiplying the metric on T,
by a positive scalar. We recall an explicit construction of T, in terms of train tracks;
see [16] for details. Let ¢ € Out(F).) be fully irreducible and let f : I" — I be a train
track representative of ¢. Let A := A(f) > 1 be the Perron-Frobenius eigenvalue
of M(f). We consider the universal cover I' of T' with the simplicial metric (where
every edge has length 1) and with the free discrete isometric action of F,. by covering
transformations. Choose a lift f :T =T of f. For any points =,y € r put

i @, (D" @)

n— oo AT

d00<x7y) =

(it is know that this limit exists). Then d. is a pseudo-metric on I and we put
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Ty := f‘/ ~, where for z,y € ' we have z ~ y whenever do(z,y) = 0. The pseudo-
metric do, descends to a metric, still denoted d, on T,,. Equipped with the metric
dwo, the set T, is an R-tree, which also inherits a natural action of F,. by isometries
(coming from the action of F,. on f) The R-tree T,
F,., is called the attracting tree of . It is known that for every fully irreducible
¢ € Out(F,) we have T, € ¢v,, and, moreover, that in this case the action of F,
on Ty, is free if and only if ¢ is nongeometric. Also, it is easy to see that T, = T .,
for each k > 1. In fact, it is known [32] that for any fully irreducible ¢ € Out(F}.)
the projective class [T;,] is the unique attracting fixed point for the action of ¢
on the projectivization C'V, of ev,, that [T,,-1] is the unique repelling fixed point
for the action of ¢ on CV,., and that ¢ acts on CV, with “uniform North-South”
dynamics.

endowed with this action of

The following proposition summarizes key known facts about the relationship
between the index of a fully irreducible ¢ € Out(F,) and the geometric index
of the tree T,,. Most of these facts are originally proved in earlier work by various
authors [16,17,2,20,21], and others. All parts of Proposition 2.29 are explicitly stated
in [10], and we refer the reader to [10] for more detailed background information
and references.

Proposition 2.29. Let ¢ € Out(F,.) be fully irreducible. Then:

(1) We have indgeom (T,) < 2r — 2.

(2) We have indgeom(T,) = indgeom (Tp-1) = 21 — 2 if and only if ¢ is geometric.

(3) If o~ is rotationless, then 2ind(p) = indgeom (T},)-

(4) The tree T, is “geometric” in the sense of [2,33] if and only if indgeom (Tp) =
2r — 2.

Definition 2.30 (Parageometric and ageometric fully irreducibles). Let
© € Out(F,) be a nongeometric fully irreducible. We say that ¢ is parageometric
if indgeom (Typ) = 2r — 2 (which by Proposition 2.29 implies that indgeom (Typ-1) <
2r —2). We say that ¢ is ageometric if indgeom (Tp) < 21 — 2.

[2, Theorem 3.2] shows that for a fully irreducible ¢ € Out(F,) the tree T,
is geometric (again in the sense of [2,33]) if and only if the “stable” train track
representative of ¢ contains a pINP. Since a train track with no pINPs is stable,
this implies the following well-known fact:

Proposition 2.31. Let ¢ € Out(F,) be fully irreducible and such that ¢ admits a
train track representative f: T' — I with no pINPs. Then ¢ is ageometric.

There is a more recent notion of an index, namely “OQ-index” indg(7") defined
for a tree T' € ¢v, with dense F,-orbits (such as the attracting tree T, of a fully
irreducible ¢ € Out(F,), see [10,11] for details). In particular, it is known [10,
Theorem 5.1] that for every fully irreducible ¢ € Out(F,) one has indo(T,) =

indgeom (Tg,— 1 ) .
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2.10. Ideal Whitehead graphs and the rotationless index

Note that the index ind(y) of a fully irreducible ¢ € Out(F;), discussed above,
in general is not invariant under taking positive powers of ¢. The geometric in-
dex indgeom(Ty,) is invariant under taking positive powers, but the definition of
indgeom (T',) in terms of branch points in T, makes it unclear how to actually com-
pute indgeom (1,).

In [23] Handel and Mosher introduced the notion of a rotationless index (there
just called the index sum) i(¢) of a fully irreducible ¢ € Out(F,), which coincides
with —%indgeom(TV,). The rotationless index is defined in terms of train track repre-
sentatives of , which makes it easy to compute in practice. Proposition 2.29 thus
implies that for a fully irreducible ¢ € Out(F)) the rotationless index i(y) satisfies
the inequality 0 > i(p) > 1 —r.

To define the rotationless index, we first need to define the ideal Whitehead
graph (introduced by Handel and Mosher in [23]) for a nongeometric fully irre-
ducible.

Definition 2.32 (Ideal Whitehead graph). Let g: T' — T be a train track
representative of a nongeometric fully irreducible ¢ € Out(F,). A point v € T is
called a singularity if v is either the endpoint of a periodic Nielsen path or has at
least three gates. The local stable Whitehead graph SW(g;v) for g at a singularity
v has:

(1) a vertex for each periodic direction d € D(v) and

(2) edges connecting vertices for dy,ds € D(v) when some g*(e), with e € £(T),
traverses {dy,ds}.

For a pINP-free g, the ideal Whitehead graph TW(p) of ¢ is defined as

|_| SW(g;v).
singularities vel
In general, one needs to make the following additional identifications. For each pINP
p for g, one needs to identify the vertex for the initial direction of p with the vertex
for the initial direction of p.

Definition 2.33 (Rotationless index and index list). Let ¢ € Out(F),) be a
nongeometric fully irreducible outer automorphism and let C1,...,Cy be the con-
nected components of the ideal Whitehead graph ZW(yp). For each j, let k; denote
the number of vertices of C;. The index list for ¢ is

. . . ka k; Ky
{zl,...,zj,...,zl}:{1—?,...,1—5],...,1—5 i (2.1)
1
The rotationless index is then the sum i(p) = > ;.
i=1

From this definition one observes that it is possible to obtain the index list (hence
index sum) directly from any pINP-free train track representative g: I' — I". The
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k; in Equation 2.1 are replaced by the number of gates k; at the singular vertices
v; € T'. The rotationless index is then computed as follows (where singularities here
will precisely mean vertices with at least three gates):

= Y - rEesy, (2
singularities v

If there are pINPs, the situation is somewhat more complicated. However, [42]
provides a method for computing the index list directly from any train track repre-
sentative g: I' — I' of a nongeometric fully irreducible. Let v1, ..., vi be the periodic
vertices for g and, for each 1 < i < k, let n; denote the number of gates at the vertex
v;. We define an equivalence relation on the set of all periodic points by z; ~ x;
when there exists a pINP with endpoints z; and z; and call an equivalence class a
Nielsen class. Given a Nielsen class N; = {z1,...,2,}, we let g; denote the number

of gates at ;. Then, letting
n; = (3. gi) — #{iPNPs p such that both endpoints of p are in N;},

the index list becomes
Ty

1——,...,1——
{ 27 9 2}7

where we only include nonzero entries. The rotationless index is thus the sum i(¢) =
t
n,
> 1-F.
j=1

Remark 2.34. An explanation of why there are only finitely many nonzero entries
and how this computation is finite can be found in [42]

The following key fact relates the rotationless index with the other notions of
index described above (while the conclusion of Proposition 2.35 does not appear to
have been stated by Handel and Mosher in [23] explicitly, it follows directly from
the definitions of indgeom and i(y) and from Lemma 3.4 in [23], which provides an
identification between F,.-orbits of branch points in T}, and components of the ideal
Whitehead graph of ¢):

Proposition 2.35. [23] Let ¢ € Out(F),) be a nongeometric fully irreducible. Then
Z(SD) = 7%indgcom(T§0)'

Moreover, Handel and Mosher (again see [23, Lemma 3.4]) also show that the
index list of a nongeometric fully irreducible ¢ can be interpreted directly in terms
of the tree T,,. Therefore, the index list (and not just the index sum ¢) depends
only on ¢ and not on the choice of a train track representative of ¢.

In view of Proposition 2.35, we immediately obtain:

Corollary 2.36. Let ¢ € Out(F,) be a nongeometric fully irreducible. Then:

(1) ¢ is parageometric if and only if i(p) =1 —r.
(2) ¢ is ageometric if and only if 0 > i(p) > 1 —r.
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2.11. The axis bundle for a fully irreducible

We call a point I' € CV,. in Outer space a train track graph for ¢ if there exists
an affine train track representative g: I' — I', i.e. a train track representative on I
such that each open interval in the interior of each edge is stretched by a constant
factor equal to the dilitation A(p) of ¢.

In [23], Handel and Mosher define the axis bundle for a nongeometric fully
irreducible to answer the question posed by Vogtmann as to whether the set of
train tracks for an irreducible automorphism contractible. The axis bundle A, is a
closed subset of C'V,., proper homotopy equivalent to a line, invariant under ¢, and
such that the two ends limit on the repeller and attractor of the source-sink action
of ¢ on CV,.

[23] gives three equivalent definitions of the axis bundle, one of which we include
here:

Definition 2.37 (Axis bundle A,). For a nongeometric fully irreducible ¢ €
Out(F,), the axis bundle A, for ¢ is defined as A, = U2  TT (%), where TT (")
is the set of all train track graphs for ©*, where k > 1.

If ¢ € Out(F;) is a nongeometric fully irreducible and f: T' — T is a train track
representative of ¢, we can equip I' with a volume-1 “eigenmetric” (see [13] for
a detailed explanation), so that, viewed as a marked metric graph, I" becomes a
train track graph for ¢ in the above sense. Then taking an “isometric” folding path,
determined by f, from I" to I' - ¢ in C'V,., and translating this path by all integer
powers of ¢, gives a p-invariant bi-infinite folding line Ay C CV,.. This line A; is
contained in the axis bundle A, for ¢ and is called an azis for ¢. Moreover, the line
Ay is a geodesic in C'V,. with respect to the asymmetric Lipschtz metric on CV,,
see [15].

While the axis bundle generally contains more than a single axis, Mosher and
Pfaff prove in [37]:

Theorem 2.38. The azis bundle of an ageometric, fully irreducible outer automor-
phism ¢ € Out(F,.) is a unique axis precisely if both of the following two conditions
hold:

(1) the index sum satisfies i(p) = 3 —r and

(2) no component of the ideal Whitehead graph ITW(yp) has a cut vertex.

It can be noted that A, and Ay, differ by a translation by an element of OQut(F;)
on CV, if and only if there exist integers k,! > 1 such that ¢* and 1! are conjugate
in Out(F,). Also, [37] provides a method for computing the axis bundle in the case
of Theorem 2.38. Thus, identifying when two fully irreducible outer automorphisms
satisfy the conditions of Theorem 2.38, allows one to identify if they fall into a
setting where one can “by hand” compute whether they have conjugate powers.
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3. Admissible compositions of Nielsen automorphisms

Convention 3.1. Recall that, for » > 2, for the free group F;. we have chosen a
distinguished free basis A = {aj,...,a,} for F.. The r-rose R, was defined in
Section 2.5 using as a wedge of r loop-edges e1, ..., e, corresponding to ai,...,a,
at a single vertex v, giving an identification F,. = F(ay,...,a,) = m1(Ry,v). Thus,
ER, = {e1,...,er,€1,...,67}, with the identification F(ay,...,a,) = 71 (R, v)
sending a; to e; and, correspondingly, sending a;l to €.

Note that in this case (the case where I' = R, and v is the vertex of I'), for the
set of directions Lk(v) at v, we have Lk(v) = ER,. By convention, using the above
identification ER, = A*!, we will sometimes use the identification ER, = Lk(v) =
A% and view elements of A*! as directions at v in R,. In particular, we will use
this convention when working with local Whitehead graphs and limited Whitehead
graphs of graph-maps R, — R, and with turns taken by such maps.

Also, since R, has a single vertex v, when dealing with local Whitehead graphs
and limited Whitehead graphs of graph-maps g: R, — R,., we will usually use the
abbreviated notations Wh(g) := Wh(g,v) and Why(g) := Whr(g,v).

3.1. Standard Nielsen automorphisms and admissible sequences.

Definition 3.2 (Standard Nielsen automorphism). Let r > 2. By a standard
Nielsen automorphism, we will mean an automorphism 6 of F,. such that there exist
7,y € AT with 0(z) = yx and 0(z) = z for each z € AT! with z # a1, In this case
we say that the ordered pair (x,y) is the characteristic pair for 6 and we specify
such 0 using notation 0 = [z — yx].

Note that if = [z — yz], then the fact that 6 is an automorphism of F,. implies
that y # z*1.

The following notion is based on the work of Pfaff [39,40], although the termi-
nology that we use here is slightly different.

Definition 3.3 (Admissible compositions).

Let 0 = [x — yx] and 0 = [z’ — y'2’] be standard Nielsen automorphisms of
F,.. The ordered pair (0,0') is called admissible if either ' = x and y' # y=! or
y =z and 2’ #y L.

A sequence 01,...,0, (where n > 1) of standard Nielsen automorphisms of F,
is called admissible if for each 1 < i < n the pair (0;,60;+1) is admissible. In this
case we also say that the composition 6, o --- o 6 is admissible.

A sequence 01,...,0, of standard Nielsen automorphisms of F,. is called cycli-
cally admissible if it is admissible and if the pair (0,,,01) is also admissible (that is,
if 01000100, is also admissible). In this case we also say that the corresponding
composition 6, o --- 06 is cyclically admissible.

Ift=0q,...,0, is a sequence of standard Nielsen automorphisms of F,, and if
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k > 1 is an integer, we denote by t* the sequence
Or,...,00,01,....0,,...,01,...,0,.

k copies of t

Note that if t is cyclically admissible then for every k > 1 the sequence t* is also
cyclically admissible (and, in particular, admissible).

Recall that in Definition 2.19 to every ® € Aut(F,) we have associated its
standard topological representative g¢ : R, — R,. Given ® € Aut(F,), denote by
T(®) := T(ga) the set of all turns in R, that occur in gg(e;), where i = 1,...,r
(see Definition 2.13).

The following basic lemma is a direct corollary of the definitions:

Lemma 3.4. Let 6 = [x — yzx| be a standard Nielsen automorphism of F,. and let

go : R — R, be its topological representative.
Then:

(1) The set T (gg) consists of a single turn {y~! x}.

(2) go : R — R, is a train track map with exactly one nondegenerate illegal turn
in R,., namely the turn {xz,y}.

(3) We have Dgg(z) = Dge(y) = vy, and we have Dgg(a) = a for every a € AT,
a#x.

(4) We have Dgg(A*!) = AT — {z}.

Because of part (3) of Lemma 3.4 we refer to x as the unachieved direction for
0 =[x — yz].

Let t=04,...,0, be asequence of standard Nielsen automorphisms of F;., where
9o, : R — R, is the standard representative of 6; (see Definition 2.19.) In this case
we denote g¢ := gp, 0 - -0gp, : R, — R,. Note that the map ¢, may, in general, fail to
be a regular graph-map, since for some edge e, € ER, the path gg, o- - -0gp, (ex) may
fail to be reduced. However, if g¢ is regular, then g; is a topological representative
of ® =0,0---06; € Aut(F,) and in this case g is isotopic to ge rel VR, = {v}.
We will see below that if the sequence t = 01, ..., 0, is admissible, then indeed g is
regular and, moreover, g; is a train track representative of ® with some additional
nice properties.

Convention 3.5. Unless specified otherwise, for the remainder of Section 3 we fix an
admissible sequence

t=20,...,0, )

of standard Nielsen automorphisms 6; = [z; — y;x;] of F, (where n > 1 and

i =1,...,n) and fix the corresponding composition automorphism ® = 6,,0---06; €
Aut(F,).

For 1 <k <m < n we denote tx m = Ok,...,0m, 9mi = G4, = 96,, ©***0©

9o, Br — Ry and @, = 0, 0--- 00, € Aut(F,). Also, for 1 < m < n denote
Im = gm,1 and &, := &, 1. Thus & = &, = &, ; and g¢ = g, = gn,1-
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Note that since t, = 64,...,0, is an admissible sequence, for every 1 < k <
m < n the sequence tj , = 0, ..., 0, is also admissible.

3.2. Properties of admissible sequences
Lemma 3.6. For1 <k <m <n we have

T(gms) S{D(gmje1){y; Hxi}) 5=k, ...,m},

where in the case k = m we interpret gm m+1 as the identity map Id: R, — R,.

Proof. We argue by induction on m — k.

If m—k=0and m =k then g = 0m = [Tm — YmTm] and the statement
of the lemma holds. Suppose now that m — k > 1 and that the conclusion of the
lemma has been established for all smaller values of m — k.

Let {a,b} (where a,b € A*!) be a turn in T (gm x). Then the turn {a,b} occurs
in gy, 1(c) for some ¢ € AL,

Suppose first that ¢ # wfl. Then 0 (c) = ¢ and

9m.k(¢) = go,, ©- 0 go,(c) = go,, ©- -0 gp,., () = Gm kt1(c).

By the inductive hypothesis applied to gy, k+1 we have
T(gm,kJrl) c {D(gm,j+1)({y;17$j})|j =k+1,...,m}

and hence {a, b} € {D(gm,jﬂ)({y;l, zi}) | j=k,...,m}.
Suppose now that ¢ = zi'. Since T(gm.x(c)) = T(gmr(c™")), without loss of

generality we may assume that ¢ = x. Then 0y(c) = ygzi and hence g, kx(c) =

Im k41 Yk ) gm k1 ()
Since the turn {a,b} occurs in g, (c), then one of the following happens:

(1) the turn {a,b} occurs in gm, k+1(Yk);
(2) the turn {a,b} occurs in gn, k+1(xk);
(3) {a7 b} = ng,k+1({y];17 xk})

If (3) happens, then by using j = k we see that

{a,b} € {D(gmj+)({y; 2D} okr1 S D (gmg+1){yy i)} s

as required. If (1) or (2) happens, we have {a,b} € T (gm k+1) and by the inductive
hypothesis applied to g,, ;41 it follows that

{a,0} € T(gmk+1) € {D(Gmi+1){y; 2D prs S {D(Gmg) Ly 2 1) Y

Thus in all cases we have {a,b} € {D(gm7j+1)({yj_1,xj}) T - Since {a,b} €
T (gm,k) was arbitrary, it follows that

T(gmsr1) S {D(gm i) {y; xi}) 5=k, ...,m}.

This completes the proof of the inductive step. O
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One can also show that the inclusion in the statement of Lemma 3.6 is actually
an equality, but we will not need this fact here.

Lemma 3.7. For any 1 < m <n we have
T(gm) =T (Om) U DOp (T (gm-1)),

where for m =1 we interpret g,,—1 = go as the identity map of R,..

Proof.

We argue by induction on m. For m = 1 we have g1 = gy, and T (go) = 0. The
conclusion of the lemma clearly holds in this case.

Suppose now that m > 2 and that the statement of the lemma has been proved
for gm_1.

If e is an edge of R, and gm-1(e) = ei1...eq then T(gm-1) =
{{ex eabs . {eaTseql} and ginle) = go,, (gm-1(€)) = g, (€1) - - o, (e0).

Therefore every turn in 7 (g,,) arises either as a turn contained in the image of
an edge under gp,, (so that it belongs to 7 (6,,)) or as the image under D6,,, = Dgy,,
of a turn in 7(gm—1). The map g,,—1 : R — R, is a homotopy equivalence and
hence is surjective. Thus every element of 7 (6,,) will in fact occur in T (gp,).

Therefore T (gm) = T (0m) U DOy (T (gm—1)), as claimed. O

Recall that the limited Whitehead graph (see Definition 2.15) of a graph-map
f: R, — R, is a graph Why(f) with the vertex set Lk(v) = A*! and a topological
edge joining vertices d and d’ whenever {d,d'} € T(f). In particular, if the map f
is regular, then Why (f) has no loop-edges.

Notation 3.8. Denote by A, the graph with the vertex set A*! where for every
unordered pair a,b of (possibly equal) elements of A*! there is a topological edge
with endpoints a,b. Thus A, is the complete graph on the vertex set A*! together
with a loop-edge at each vertex.

If § = [z — yz] is an standard Nielsen automorphism, we can extend D@ to
a graph-map DO : A, — A, defined as follows. For each vertex a of A, put
ﬁ@(a) := D6(a). For an edge e of A, joining vertices a,b the map D6 sends e to
the edge joining the vertices Df(a) and DE(b) in A,.

For r > 3 denote by T, the complete graph on 2r — 1 vertices together with an
edge joining a vertex of that graph to one new vertex. (So that Y, is a connected
graph with 2r vertices and no loop-edges).

Also, for 7 > 3 and z,y € A*!' such that x # y*', denote by Y,[z,y] the
complete graph on vertices A*!\ {z} together with a single edge joining 2 with the
vertex yil.

Thus T, [z,y] is a connected graph with 27 vertices and with no loop-edges, and
Y,[z,y] is a subgraph of A,.

Corollary 3.9. The following hold:
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(1) For any?2 < m < n, the edge-set of the graph Whr,(g.) consists of the edge join-
ing the vertices y,,t and ., and of the edges of the graph Dé,, (Whr(gm—1,v)).

(2) For 2 < m < n, if the graph Whr(gm—1) is connected, then the graph
Whi(gm,v) is also connected.

(8) If for some 1 <i <n the graph Whr(g;) is isomorphic to T, as an unlabelled
graph, then Whyr(g:;) = Yr[zi,yi]. (Recall that 0; = [x; — y;x;]).

(4) For 2 < m < n, if the graph Whr,(gm-1) is equal to Lr[Tm—1,Ym—1], then the
graph Whi,(gm,v) is equal to V[T, Ym)]-

Proof.

Part (1) follows directly from the definitions and Lemma 3.7.

For (2), assume that the graph Why,(gm—1) is connected. Then every one of the
2r elements of AT! occurs as as endpoint of an edge of Whr (g,_1). Since the image
of the set of directions A*! under D6, is A*! —{z,,}, it follows that the connected
graph DO,,,(Why(gm_1)) has as its vertex set the set A¥! — {z,,}. By (1), we have
that the edge-set of Why(gm) consists of the edges of Dby, (Why (gm—1)) and of
the edge é joining y,,,! and z,,. Since y,,} # 2,,, it follows that y,! is a vertex of
the connected graph ﬁ@m(WhL (gm—1)). Thus the edge € joins the vertex x,, to a
vertex of the connected graph DOy, (Why (gm—1)) whose vertex set is AX! — {a,,}.
Therefore the graph Whr(g.,) is connected, as claimed. Thus (2) is verified.

For part (3), by Lemma 3.7 we have

T(gi) = T(0:;) U DO(T(gi—1))-

Note that we have i > 2 since Whr,(g1) = Why(61) is not graph-isomorphic to .
The direction x; does not belong to the image of the map D6;. Therefore, from the
above formula for T(¢;) and since 7(6;) = {{y; ', 2;}}, the only edge incident to
vertex x; in Whr,(g;) is the edge joining z; and y; . The assumption that Why(g;)
is isomorphic to T, as an unlabelled graph now implies that Why(g;) = Tr[zi, vi]-
Thus, part (3) is verified.

The proof of part (4) is similar to the proof of part (2), although it requires
slightly more detailed analysis. Since the pair (6,1 = [Tm—1 " Ym—-1Tm—1],0m =
[T > YmTm]) is admissible, we have either @, = Tm_1, Ym # Y,q, Or else
Ym = Tm—1,Tm 7 yr:z£1

We assume that y,, = 1, Tm # y;lil, as the other case is similar. Note that
T # Tm—1 since otherwise 6, would not be an automorphism of F;..

By part (1) we know that Why (g,,) consists of the edge joining the vertices v,
and xz,, and of the edges of the graph ﬁ@mWhL (gm—1)- Thus we need to show that
DO, Whi(gm—1) is the complete graph on the vertex set AL\ {a,,}.

Since D@,,(z) = z for every x € AT 2 # x,,, the map ﬁ@m fixes all vertices of
Whi(gm-1) different from z,,, and it fixes all edges of Whp,(g,n,—1) that are incident
to neither ,,—1 = Y, nor to x,,. Every edge of Whp(gm—1) joining z,, to some
r € AM\{x,,_1,7,,} is mapped by ﬁ@m to an edge joining ¥y, = =,,—1 to x. Since
Whr(gm—1) is equal to Yr [y —1, Ym—1], it follows that EGmWhL (gm—1 contains all
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the edges between distinct elements of A*!\ {z,,}. By Lemma 3.7 it follows that
WhL (gmv 'U) = T'r‘ [’Imv y'm]7 as required. O

3.3. Admissible sequences and train track maps

Lemma 3.10. Let 1 <m <n. Then:

(1) We have Dg,,(A*!) = ATt — {z,,}.
(2) The map g, : R, — R, is a regular graph-map (that is, the image of every edge
is a reduced edge-path).

Proof.

Recall that 0; = [z; — y;z4].

We establish (1) by induction on m. For m = 1, (1) follows from Lemma 3.4.
Thus assume that 2 < m < n and that (1) has been established for g,,_1.

Since Dg,,(A*!) is contained in D@,,(A*') = A*' — {z,,} and since the set
A*! — {z,.} has cardinality 27 — 1, to establish (1) it suffices to show that the set
Dg,,(A*") has cardinality 2r — 1.

By the inductive hypothesis we have Dg,, 1(A*!) = A*' — {z,, 1}.

By Lemma 3.4, the restriction of D@, to A*' —{x,, _1x,,} is the identity. Recall
that since (0,,—1,0m,) is an admissible pair, either z,,—1 = Ym OF Tym_1 = Tpm.
If o1 = Ym, then y,, ¢ A — {,,_1,2,,}, and specifically y,, is not in the
image of Dg,,_1. So D#,, acts as a bijection of the image A*' — {z,,,_1} of Dgp,_1
onto A*! — {z,,} by sending x,, to x,,—1 = ym and fixing all other directions.
If ,,_1 = @, then DO, acts as the identity on A*' — {z,,_1}. So D#,, acts as
the identity on the image of Dg,,_1. Thus, in either case, the image of Dg,, also
has precisely 2r — 1 directions in its image. Hence Dg,,(A*!) = AT! — {z,,}, as
required. This completes the inductive step, so that (1) is verified.

We prove (2) also by induction on m. For m = 1 the statement is obvious. Thus
we assume that 2 < m < n and that (2) has been established for all admissible
compositions of < m — 1 standard Nielsen automorphisms.

To show that g, is regular we need to verify that 7 (g.,) contains no degenerate
turns. Let {a’,b'} be a turn in T (g,,), where a’,b’ € A*!. By Lemma 3.7 we have

T(gm) = T(0m) U DOw (T (gm—1))-

The map gy, is regular by definition so that 7 (6,,) contains no degenerate turns.
Thus, if {a’,0'} € T(0,,) then {a’,b'} is a nondegenerate turn, as required.

Suppose now that {a’,b’'} € D0, (T (gm-1)), so that {a’,'} = D6,,({a,b})
for some turn {a,b} € T(gm—1). By the inductive hypothesis applied to g,—1,
the map ¢,,—1 is regular and hence the turn {a,b} is nondegenerate. The only
nondegenerate illegal turn for gg, is {Zp, ym }. Thus, to conclude that D6,,({a,b})
is a nondegenerate turn, it suffices to establish:

Claim. We have {a,b} # {Zm, Ym}-
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By Lemma 3.6 we have

{CL, b} € T(gm—l) - {D(gm—l,j-‘rl)({yj_laxj})}?:l'

Hence

{a,b} = D(gm—15+1)({y; ' 25}) (%)

for some 1 < j<m—1.

Consider first the case that (x) happens for j = m — 1. Thus {a,b} =
D(gmym,l)({y;ll,l,xmfl}). Recall that by convention gmm-1 = Idg, and hence
{a,b} = {y' |, 2m_1}. Assume for the sake of contradiction that {a, b} = {2y, ym}-
Then {a,b} = {Tm,Ym} = {¥;, "1, Tm_1}. Since the pair (6, _1,6,) is admissible,
we have either x,, 1 = z,, and y,, # y;{l, Or Typ—1 = Ym and x,, # 31;11717 each
of which yields a contradiction.

If 2,1 = z,, and y,, # y;ll_l then {xm,l,y;l_l} # {Zm,ym}, yielding a
contradiction. If z,,_1 = vy, and z,, # y;ll_l then {xm,l,y;ll_l} # {Ym, Tm |,
again yielding a contradiction. Thus, for j = m — 1 we get {a,b} # {Zm,ym}, as
required.

Consider now the case where () happens for 1 <j <m—2. Then j+1 <m—1
and gm—1j+1 = Gm—10° O gj+1. SINC Gmm—1j+1 = gm—1© *** © gj+1, the image
of the set of directions A*! under D(gj+1,m—1) is contained in Dgp_1(ATY) =
Ail - {.Tm_l}.

Therefore, neither of a nor b is equal to x,,—1. Since the pair (6,,_1,60,,) is
admissible, we have either z,, 1 = x,, and y,, # y;f_l Or Ty—1 = Ym and x,, #
yr_nl—l'

Suppose, for the sake of contradiction, that in fact {a,b} = {zm,ym}, so that
either a = z,,, and b = y,,, or a = y,,, and b = x,,. Assume that a = z,,, and b = y,,,
as the other case is symmetric. If x,,_1 = x,, then a = z,,, = z,,,—1, contradicting
the fact that neither a nor b equals x,,_1.

If xp,—1 = Ym, then b = y,, = x,,—_1, again contradicting the fact that neither a
nor b equals x,,_1.

Thus {a,b} # {Tm, ym}, and the Claim is verified.

As noted above, this implies that the turn {a’,b'} = D#6,,({a,b}) is nondegen-
erate.

We have shown that every turn in 7 (g,,) is nondegenerate, and hence g, is a
regular graph map. This completes the inductive step, so that (2) is established. O

Lemma 3.10 has the following important consequence:

Theorem 3.11. Letn > 1 andlett = 04,...,0, be a cyclically admissible sequence
of standard Nielsen automorphisms 0; = [x; — y;x;] of F.. Then g¢ = gp, 004y, :
R, — R, is a train track map with exactly one nondegenerate illegal turn, namely
the turn {x1,y1}.
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Proof. Since 6,0...---06; is a cyclically admissible composition, it follows that, for
each k > 1, the composition (#,,0...---06;)¥ is admissible. Hence, by Lemma 3.10
applied to (6, 0...---061)*, it follows that for each k > 1 the map ¢~ : R, — R,

is regular. Thus for every edge e € ER, the path gF(e) is reduced. Hence, g; is a
train track map, as required.

We have Dgy = Dgg, oo Dy, . Since Dgg, (1) = Dgo, (y1) = v, it follows
that Dg¢(x1) = Dgi(y1). Hence the turn {x1,y,} is illegal for g;.

Suppose that g¢ had > 2 nondegenerate illegal turns. It would follow that for
some k > 1 the image of the set of directions A*! under DgF has < 2r — 2 elements.
However, by part (1) of Lemma 3.10 applied to gF we know that the set Dgf(A*1!)
has exactly 2r — 1 elements, yielding a contradiction. Thus, the train track map
g : R, — R, has exactly one illegal turn, namely {z1,y1}. ]

Lemma 3.12. Let n > 1 and let t = 601,...,0, be a cyclically admissible sequence
of standard Nielsen automorphisms 6; = [x; — y;x;] of F,.. Suppose that Whr,(g¢)
1s isomorphic, as an unlabelled graph, to Y,.. Then:

(1) We have Whi(g¢) = Wh(gy) = Y|xn, yn]-
(2) For every integer p > 1 we have Why(g¥) = Wh(gl) = Y[zn, yn)-

Proof. The fact that Whp(gi) = Y[zn,yn] follows from part (4) of Lemma 3.9.
There exists some k > 1 such that Wh(g,) = Whr(gF). We have gf = gu, and
t* is a cyclically admissible sequence ending in 6,,. Iteratively applying part (4)
of Lemma 3.9, we see that Whr(gg) = Y[xn,yn]. Thus Whi(g) = Whig) =
Y[Zn,Yn], as claimed, and part (1) is verified.

If p > 1 is an integer, then t? is a cyclically admissible sequence with initial
segment t, ending with 6,, and having Whr(g¢) = Y[rn,yn]. Hence, by part (4)
of Lemma 3.9, we get Why(g?) = Y[z, yn]. Now part (1) of the present lemma
implies that Why(gf) = Wh(g?) = Y|xn, yn)- O

4. Periodic Nielsen path prevention

Recall that r > 2 and that F,, = F(A) where A = {aq,...,a,} is a fixed free basis
of F;.

Definition 4.1. Let r > 3. A periodic indivisible Nielsen path prevention sequence
or pINP prevention sequence is an admissible sequence p = 01,...,0; of standard
Nielsen automorphisms of F,. such that, whenever we have a cyclically admissible
sequence t = 01,...,0) such that n > k and 6; = 0} for each 1 < i < k and such

that g¢ = gg;, 0+ -0gg; : R — Ry is a n expanding irreducible train track map, then
gt has no pINP’s.

Lemma 4.2. Let r > 4 and let {z,w,y,z} C AT be a subset of four distinct
elements mo two of which are inverses of each other. Let p = 01,...,0q, where
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01 = [z — xz2],02 = [w — 2w],03 = [y — yw],04 = [y — yT],05 = [y — yw],0s =
[y — yZ]. Then p is a pINP prevention sequence.

Proof. Let t be a cyclically admissible sequence starting with p = 64,..., 6.

We need to show that g; has no pINPs. This conclusion follows from [39, Lemma
5.5]. The only difference between the terminology used here and that used in [39],
is that in the terminology of [39] a pINP prevention sequence is only required
to prevent pINPs when an admissible sequence starting with a pINP prevention
sequence composes to give a rotationless expanding irreducible train track map.
Lemma 5.5 of [39] shows that p = 6y,...,0¢ is a pINP prevention sequence in this
sense.

However, if t is a cyclically admissible sequence beginning with p = 64,..., 0,
then every power of t is an admissible sequence and there exist k£ > 1 such that g
is rotationless. Since t¥ starts with p, Lemma 5.5 of [39] applies to t* and implies
that g = (g¢)* has no pINPs. However, by definition, a path in R, is a pINP for
g¢ if and only if this path is a pINP for (g;)¥. Hence g¢ has no pINPs as required ]

Remark 4.3. The idea of the proof of [39, Lemma 5.5] is as follows. Suppose that
t=404,...,0, is a cyclically admissible sequence starting with p = 6y,...,0¢ (where
p is as in the statement of Lemma 4.2) such that g; is a rotationless expanding train
track map. By replacing t by its power, we may assume that, if any pINPs exist for
gt, then they have period 1, and so they are in fact INPs. We then need to show
that g¢ does not in fact have any INPs. Suppose, on the contrary, that g, has an
INP. Then, by Proposition 2.23, this INP has the form o = pflpg, where pq, p2 are
legal paths with the common initial vertex such that the turn between p, p2 is a
nondegenerate illegal turn for g¢. By Theorem 3.11 we know that g; has only one
illegal turn, namely the turn {z,z} (since t starts with 6, = [z — 2z]). Thus p;
starts with an initial segment of 2 and py starts with an initial segment of z (or the
other way around). Note that t(p1),t(p2) are fixed points of g; but they need not
be vertices. The fact that a = p7 1py is an INP for g¢ means that for every p > 1
the path ¢”(p7)gP (p2) reduces to py ' ps. For this reason, for each 0 < k < n, the
tightened path gy 1 () cannot be taken by g, k+1(@) to a legal path for gi.

Roughly speaking, the proof of Lemma 5.5 in [39] proceeds by showing, using
admissibility of t and the specific combinatorics of p, that, in fact, for some k > 1,
the path gg, .. g, () reduces to a nondegenerate path that is taken by g, r+1 to a
legal path for g;. This contradicts the fact that o = pl_1 p2 is an INP for g¢. This
argument is illustrated in more detail in Lemma 4.4 below.

In [40], the case of rank 3 is handled separately. While [40] does produce a pINP
prevention sequence for r = 3, this fact is not stated there explicitly and therefore
we provide a sketch of the proof here, following the procedure of [40, Section 5].

Lemma 4.4. Letr > 3 and let {a,b,c} C A% be a subset of three distinct elements,
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no two of which are inverses of each other. Let

0, = [a + cal,0s = [b > abl, 05 = [b — cb], 04 = [a — ba],

05 = [a — cal, 0 = [a — ba], b7 = [a — ca],f3 = [a > ca].

Then p = 61,...,0s is a pINP prevention sequence.

Sketch of proof. The complete verification process is rather long, and so we just
show the longer of the two cases. The other case is similar and also proceeds as in
[40, Section 5].

Note that a pINP for g, where t is a cyclically admissible sequence beginning
with p, is an INP for for g¢m = (g¢)™ for some m > 1.

Thus it suffices to show that if tis a cyclically admissible sequence beginning with
p such that g is an expanding irreducible train track map, then g; has no INPs.
Suppose, on the contrary, that t = 67,...,0/ is a cyclically admissible sequence
beginning with p such that g¢ is an expanding irreducible train track map and such
that g¢ possesses an INP p.

Then p would have to contain the illegal turn {a,c} for g¢ and (possibly after
reversing its orientation) could be written as p = pflpg where py1, ps are nondegen-
erate legal paths, with the initial direction of p; being ¢ and the initial direction of
p2 being a. Note that the terminal points of one or both of p;1, p2 may be contained
in the interiors of edges of the 3-rose R3. However, there exist legal edge-paths pf, p)
such that p} begins with p1, and p, begins with py. Thus pf =¢... and p} =a...
are gi-legal edge-paths, and g¢((p})~1ph) tightens to a path (p})~1p4, where pi, pa
are legal edge-paths, with p{ starting with a and pf starting with c.

In working with g; we will use the notations gy ,, introduced in Convention 3.5.

We now make the following crucial observation.

Claim. Suppose that for some 1 < k < n the tightened form of the path
gr1((p1)71ph) is @™ 'B where « is a terminal segment of gx1(p}) and where 3 is
a terminal segment of gj 1(p5). Then both o and S are nontrivial (i.e. containing
at least one edge each) edge-paths and the turn 7 between them satisfies 7 =
{Tr+1, Yrs1 -

First note that if one of «, 3 is trivial, then g, x+1(a™'3) is contained in either
gt ((p’l)*l) or gi(py), and hence is a g¢-legal path, contrary to the assumption that
the tightened form of g¢((p})~'p%) is the path (p})~!p} containing a g-illegal turn
{a,c}. Thus o and f3 are nontrivial edge-paths. Since, by definition, the path a=13
is tight, the turn 7 between « and S is nondegenerate.

Suppose that 7 # {Tkt1, Yr+1}- We know, by Lemma 3.10, that Dg, ;41 iden-
tifies the directions w1, yrr1 and that Dgn,kH(Ail) = A\ {z,}. Thus, if 7 #
{Zk+1,Yr+1} then the Dg, jy1-images of the directions comprising 7 are distinct,
so that Dgy, k+1(7) is a nondegenerate turn. Moreover, since z,, & Dgn’kJrl(Ail)7
and since the pair (6,,61) is admissible (so that z; = z, or y; = x,), the turn
Dgy +1(7) is not equal to {x1,y1}. This means that g, x+1(a"13) is a tight path
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which is legal for g¢. This contradicts the fact that g, r41(a~13) must reduce to
(p)~Lply. Thus, the claim is verified.

Now, gg,(c) = ¢ and g, (a) = ca. So p} has to be of the form p} = ces... for
some additional edge es. Also, since the illegal turn for gy, is {a,b} and a is not in
the image of Dgy,, we have that Dgg, (e2) = b. So ez = b.

Since g2.1(ch) = cab and ga1(a) = ca, we know that p} has to be of the form
ph = aely for some additional edge e with Dgs 1(ey) = ¢ (since {b,¢} is the illegal
turn for gg, and b is not in the image of Dgs ). The only option is e, = ¢. Since
g3.1(a€) = cac and g3 1(cb) = cach, we must have p) = aehel.. for an additional edge
el satisfying that Dgs 1(es) = a (since the illegal turn for gg, is {a, b} and b is not
in the image of Dgs1). The only option is ef = b.

Since g4,1(a617)) = cbacbach and g4,1(cB) = chacb, we must have p] = ceses... for
an additional edge es satisfying Dga 1(e3) = ¢ (since the illegal turn for gy, is {a, c}
and a is not in the image of Dgy4,1). So either e3 = a or e3 = ¢. We analyze here the
case where e3 = ¢ and leave the case of e3 = a to the reader.

Since gs1(ach) = cbeacbcach and g5 1(cbe) = cbcacbe, we must have p; =
cegegey... for an additional edge ey satisfying that Dgs1(es) = b (since the ille-
gal turn for g, is {a,b} and a is not in the image of Dgs1). So eq4 = b.

We have gg.1(acb) = cbcbacbcbach and ge 1 (cbeb) = cbebacbebeabeb. After cancel-
lation, we are left with the turn {a, ¢}, which is illegal for gg, and so we can proceed
by applying gg,. B B B B ~ B

Since g7,1(acb) = cbebeacbebeach and g7 1 (cbeb) = cbebeacbebeacheb, cancellation
ends with the turn {a,a}. This is not the illegal turn for gg,. Therefore, by the
claim above, we could not have p; = cbeb. .. and p2 = ach . . ..

The remaining case, where e3 = a, yields a similar situation, and we conclude
that p is a pINP prevention sequence. O

Note that, by definition, any admissible sequence that starts with a pINP pre-
vention sequence is also itself a pINP prevention sequence.

We will need the following important fact which is essentially a restatement of
the main result of Pfaff [40] (it can be noted that a power should have been taken
of the map constructed for the main theorem of Pfaff [40], but that the result is
otherwise correct):

Proposition 4.5. Let r > 3. Then there exists a cyclically admissible sequence

/ /
s=401,...,0

q

of standard Nielsen automorphisms of Fy. such that for ¥ =0, o--- 067 € Aut(F,)
and for gs = go, 00 gp, : Rr — Ry the following hold:

(1) The map gs : R, — R, is an expanding irreducible train track map with no
pINPs.
(2) We have M(gs) > 0.
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(3) We have Wh(gs) = Whi(gs) = Yrlry,y.], where 0, = [z — yyx,] (and in
particular Whr(gs) is connected).

(4) The sequence s starts with a pINP prevention sequence p, provided by
Lemma 4.2 in the case v > 4 and provided by Lemma 4.4 in the case r = 3. In
particular, s is a pINP prevention sequence.

(5) The element of Out(F,) represented by gs : R, — R, is ageometric fully irre-
ducible (and in particular, it is hyperbolic).

In fact, the cyclically admissible sequence s constructed in [39] satisfies (1), (3),
(4), (5) above, has M(gs) irreducible, and has Wh(gs) graph-isomorphic to Y,.
We have Wh(gs) = Wh(gk) for every k > 1, and there is some k > 1 such that
Wh(gs) = Wh(gF) = Why(gF). Since s* is a cyclically reduced admissible sequence,
Lemma 3.12 implies that Why (k) = Y[z}, yy]- Thus by replacing this 5 with sk
we obtain a cyclically admissible sequence satistying (1)-(5) above (the power is for
(2).

We can now prove the main technical result of this paper:

Theorem 4.6. Letr > 3 and let s be provided by Proposition 4.5. Let t = 601, ...,0,
be a cyclically admissible sequence of standard Nielsen automorphisms 0; = [x; —
yiz;] of F,., such that s is an initial segment of t. Then for g. : R, — R, and for
the element ¢ € Out(F)) represented by gy : R, — R, the following hold:

(1) The map g : R, — R, is a train track map with exactly one nondegenerate
illegal turn in R,..

(2) We have M(g¢) > 0 (and hence M(gy) is irreducible).

(3) We have Whr(gi) = Wh(gy) = Tr[zn, yn] (and, in particular, Wh(g) is con-
nected).

(4) The map g¢ : R, — R, has no pINP’s.

(5) The element ¢ € Out(F,) is ageometric fully irreducible.

(6) The ideal Whitehead graph TW(y) is the complete graph on 2r —1 vertices. The
element ¢ € Out(F,) has i(¢) = 3 —r and index list {3 —r}.

(7) The azxis bundle for ¢ in CV, consists of a single axis.

Proof. Part (1) follows from Theorem 3.11. Part (2) follows from Proposition 4.5
and Lemma 2.8. Part (3) follows from Proposition 4.5 and Corollary 3.9. Part (4)
holds since s is a pINP prevention sequence. Part (5) follows from Proposition 4.5 .

For (6), note that since g; has exactly one nondegenerate illegal turn (namely the
turn {z1,y1}), there are exactly 2r — 1 gates at the vertex v of R,.: the gate {z1,y1}
and the gates {z}, where z varies over A*! — {x,,}. Since every gate contains
exactly one periodic direction, it follows that there are exactly 2r — 1 periodic
directions at v. Corollary 3.9 and Lemma 3.12 imply that Wh(g¢,v) = Why(g¢,v) =
Y|zn, yn] (recall that the definition of Y[z, y] is given in Notation 3.8).

Since the direction z,, does not belong to the image of the derivative map D6,,,
it follows that the direction z, is not in the image of Dg; and hence not in the
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image of Dgy for any k > 1. Thus z,, is not a periodic direction for g;. Each of the
gates at v contains exactly one periodic direction for g;. Thus exactly one direction
in the gate {z1,y1} is periodic.

Since t is cyclically admissible, the pair (6,,61) is admissible. Thus either z; =
Ty Or Y1 = Tn. If 21 = x,, then, since z, is not a periodic direction, it follows
that y; is a periodic direction. Since 31 € A*! — {z,,} and Wh(ge,v) = Y, [2n, Y],
Definition 2.32 implies that SW(g,v) is a complete graph on the 2r — 1 vertices
A*Y — fg,}. If y; = x,, then again, since x,, is not a periodic direction, it follows
that z; is a periodic direction. Since z1 € A*' — {z,,} and Wh(ge,v) = Y, [Tn, ynl,
it again follows that SW(g,v) is a complete graph on the 2r —1 vertices A*! —{z,,}.
Thus we see that in either case SW(g,v) is a complete graph on the 2r — 1 vertices.
Since by (4) we know that g¢ has no pINPs, by Definition 2.32 it follows that
IW(p) = SW(g,v) is a complete graph on 2r — 1 vertices (and in particular is
connected). Therefore, by Definition 2.33, we have i(¢) = 1— 22 = 3 —r and the
index list for ¢ is {2 — r}. Thus (6) is verified.

Finally, (7) follows from parts (1)-(6) by Theorem 2.38. |

Remark 4.7. Let t be any cyclically admissible sequence that contains s as a sub-
block (rather than necessarily starts with s). Then some cyclic permutation t’ of t
is a cyclically admissible sequence which begins with s. Thus Theorem 4.6 applies
to t'. The outer automorphism ¢’ € Out(F,.) represented by g¢ is conjugate to ¢ in
Out(F;.), and since, by Theorem 4.6, parts (5),(6),(7) hold for ¢’, they also hold for
. Moreover, g¢ can be used as a topological representative for ¢, except that we
need to change the marking on R, from the identity map to the map corresponding
to the initial segment of t that moved to the end to obtain t’ as a cyclic permutation
of t. Thus gy, with a modified marking, is a topological representative of ¢, and
conclusions (1)-(4) hold for gy.

Regarding t itself, in this case we do know, by Theorem 3.11 and Lemma 2.8,
that g¢ is a train track map with exactly one nondegenerate illegal turn and with
M (g¢) > 0. Moreover, we also know, by Lemma 3.1 of [39] that g; has no pINPs. The
fact that g is a topological representative of a fully irreducible atoroidal element
implies, by Proposition 2.26, that Wh(g:) is connected. However it is not clear if
one can claim that Wh(gy) is graph-isomorphic to 1.

5. Train track directed random walk

Recall that we set for the free group F, = F(A) = F(ay,...,a,) (where r > 2) a
distinguished free basis A = {a1,...,a,}. Let S be the set of all standard Nielsen
automorphisms of F,. (with respect to the basis A).

Recall that each 6 € S has the form 6 = [z + yx] where 2,y € A*! are arbitrary
elements such that y # o%!. Hence, #(S) = 2r(2r — 2) = 4r(r — 1).

For 6 € S,let S;(0) be the set of all &’ € S such that the pair (8, 6’) is admissible.
Similarly, for 8 € S, let S_(6) be the set of all # € S such that the pair (¢’,6) is
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admissible.

Lemma 5.1. Let r > 2. Then for each 6 € S we have #(S1+(0)) = #(5_-(0)) =
4r — 6.

Proof. Let § = [z — yx] € S. We will show that #(S,(0)) = 4r — 6. The argument
that #(S_(0)) = 4r — 6 is similar.

By definition, 6’ = [z’ — 3’2’| belongs to S1(0) if and only if the pair (0, 6’) is
admissible, that is, if and only if either z = 2’ and 3y # y~!, orx = 3 and 2’ # y~ L.

We first count the number ny of ¢/ = [/ — y/z'] € S such that z = 2/ and
y' # y~'. The choice of 2’ = x is uniquely determined by the condition z = 2’. We
can choose 3/’ to be any element of the set A*! — {z*! y~1}. Thus there are 2r — 3
choices of ¢, and so n; = 2r — 3.

We next count the number ny of 8 = [/ — y'2’] € S such that x = ¢’ and
x’ # y~1. The choice of 3 is uniquely determined by the condition 3’ = 2. We can
then choose 2’ to be an arbitrary element of A*! —{z*! y~!}. Thus there are 2r —3
choices for x’, so that ny = 2r — 3.

Since y # !, the case where = z’,4' # y~' and the case where x = ¢/, 2’ #

1

y~ ' are mutually disjoint. Hence, #(51(0)) = n1 + ng = 4r — 6, as claimed. O

1

5.1. A train track directed Markov chain

Definition 5.2. Let r > 3. Consider the finite state Markov chain Y defined as
follows. The state set of Y is S,.. For any states 0,0’ € S,., the transition probability
Py (0')0) from 0 to 0 is

1 . . / . . .
Py(0']0) = T  If the pair (0,0") is admissible
0 otherwise.

Lemma 5.3. Let r > 2. Then:

(1) The finite state Markov chain Y is irreducible and aperiodic.
(2) The uniform distribution p, on S (where . (0) = 1/#(S) = m for every
0 € S) is the unique stationary distribution for ).

Proof.

It is not hard to see from the definitions that for any 6,6’ € S there exists a
finite admissible sequence 64, ...,#6,, such that §; = 6 and #,, = 6’ and that n > 2.
Hence, for any 0,0’ € S there exists n > 1 such that the transition probability of
Y to start at 6 and to end at 6’ after n steps is positive. This means that the finite
state Markov chain ) is indeed irreducible, as claimed. Similarly, it is not hard to
verify directly that for any 6 € S there exist admissible sequences 61, ...,60, and
01,...,00, with 6, =6, = 0] =0/, =0 such that m,n > 2 and that ged(m,n) = 1.
E.g. we can take n = 2,m = 3, §; = 03 = 0 and 6] = 6}, = 6 = 6. This means that
Y is aperiodic. Thus (1) is verified.
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The fact that ) is irreducible and aperidoc implies (see [45, Theorem 4.1]) that
there exists a unique Y-stationary probability distribution on S. A direct compu-
tation shows that the uniform distribution w, on S is Y-stationary. Indeed, let v
be the distribution on S obtained from u, by applying a single step of ). Then for
any 0’ € S we have

1 1
v0) =S mOP @0 = S mOP@e = S —— L
dr(r—1)4r —6
9es 0eS_(6") 0eS_(6")

) 1 1 1 1 1 )

_ — 4 — = = .
- e ym—s - W Y%= we-p ~?

Thus p, is indeed Y-stationary, as claimed, and (2) is verified. O

Definition 5.4. Let r > 3. Denote by W the random process given by the Markov
chain Y corresponding to the initial distribution p, on S. Thus W is a sequence of

random variables W = Wy,..., W, ..., where each W; is a random variable with
values in S, where Wy has distribution u, and where for any 0,0’ € S and any
n>1

Pr(Wyi1 = 0'|W,, = 0) = Py(0|) := {416 if the pair (6,0) is admissible

0 otherwise.
The sample space Qyy for W is the product space Qp = S xS x ... = SV
p P w 1% P w
N copies

The space S is endowed with the discrete topology, and the space 2yy is given the
product topology, so that it becomes a compact Hausdorff topological space.

The random process W determines a probability measure )y on Q. The sup-
port supp(pw) of py consists of all the sequences w = 01,65, -+ € Qyy such that
for every m > 1 the pair (6,,60,,+1) is admissible.

Lemma 5.5. Let r > 2. For a random trajectory 01,02, ... of W we have
2r —3

lim Pr(6y,...,0, is a cyclically admissible sequence) = e

n—00 2r(r —1)

Proof. Since Y is an irreducible aperiodic finite state Markov chain, the fact that
Wy is Y-stationary implies (see, for example Theorem 4.2 on p. 119 in [45]) that
the distribution of W,, on S converges to u, almost surely as n — oco. This means
that for every 6 € S we have lim, ., Pr(W, = 0) = u.(0) = m. Since for
each 0 € S we have #(S_(0)) = 4r — 6, it now follows that for a random trajectory
w==01,0s,...,0,... of W we have

nh_)n;<> Pr((0,,61) is an admissible pair) = 4;1(7; 761) = 23(7; 731)

and therefore, in view of the definition of W, we have

2r — 3
lim Pr(6y,...,0, is a cyclically admissible sequence) = 7“77
n—00 2r(r—1)
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as required. 0

Definition 5.6 (Property (G)). Letr > 3 be an integer. We say that p € Out(F).)
has property (G) if all of the following hold:

(1) The outer automorphism ¢ is ageometric fully irreducible;

(2) We have i(p) = 3 —r (so that indgeom(T},) = 2r —3), and ¢ has single-element
index list {2 —r}.

(3) There exists a train track representative f: R, — R, of ¢ such that f has no
pINPs and such that f has exactly one nondegenerate illegal turn.

(4) The ideal Whitehead graph TW(p) of ¢ is the complete graph on 2r —1 vertices.

(5) The azis bundle for ¢ in CV,. consists of a single axis.

Our main result is the following:

Theorem 5.7. Let r > 3. For n > 1 let E, be the event that for a trajectory
w=01,02,... of W the sequence 01, ...,0, is cyclically admissible. Also, forn > 1
let B, be the event that for a trajectory w = 01,05, ... of W the outer automorphism
n = On ...01 € Out(F,) has property (G).

Then the following hold:

(1) For the conditional probability Pr(B,|E,) we have
lim Pr(B,|E,) =1.
n—oo

(2) We have Pr(E,) —n o0 5o~ and liminf, o, Pr(B,) > 52=3- > 0.

2r(r—1) 2r(r—1)
(3) For pw-a.e. trajectory w = 01,0s,... of W, there exists an n, > 1 such that
for every n > ny, such that t, = 01,...,n, is cyclically admissible, we have that

the outer automorphism @, = 0, o --- 001 € Out(F,) has property (G).

Proof. Fix a sequence 5 = 1,...,0; provided by Proposition 4.5.
We first establish part (1) of the theorem. For n > ¢ let BJ, be the event that for
a trajectory w = 61,6s,... of W t, =61,...,0, is a cyclically admissible sequence

such that for some 1 < ¢ <n—¢g+1 we have 0, = 67,0;41 = 05,...0;14-1 = 9;.
Note that by definition B, C E,,.

Since s is an admissible sequence the probability that for a trajectory 61,6s, ...,
of W thereis 1 < ¢ < n— ¢+ 1, such that 6; = 0],0,11 = 65,...0;14-1 = 6;,

tends to 1 as n — oo. Since lim,,_,o, Pr(E,) = Qf(’;,__?’l) > 0, it follows that for the
conditional probability Pr(B.|E,) we have lim,,_,., Pr(B,|E,) = 1.

Let w = 61,05, € B/, be arbitrary. Then there exists a cyclic permutation
t, of t, = 61,...,0, such that t, starts with s. Since t,, is cyclically admissible,
t, =01,...,0. is also cyclically admissible. Therefore, Theorem 4.6 applies to t,, and

hence the outer automorphism class ¢}, € Out(F,) of &), =0/, 0--- 007 € Aut(F,)
has property (G). Denote by ¢, € Out(F,) the outer automorphism class of the
automorphism ®,, = 0, 0---06; € Aut(F,). The fact that t/, is a cyclic permutation
of t, implies that ¢,, is conjugate to ¢, in Out(F},). Moreover, gy can be used as
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a topological representative for ¢,,, except that we need to change the marking on
R, from the identity map to the map corresponding to the initial segment of t,
that moved to the end to obtain t], as a cyclic permutation of t,. Thus gy , with a
modified marking, is a topological representative of ¢,,. Therefore, by Theorem 4.6,
¢n also has property (G). By definition of B, this means that w € B,. Since
B], C E,, we have B], C B, N E,.

Hence B, < B, N E, and lim,,. Pr(B,|E,) = 1. Therefore
lim;, o0 Pr(Bn|Ey) = 1, as required. Thus part (1) of Theorem 5.7 is verified.

By Lemma 5.5 we have lim,, o, Pr(E,) = 522=3~ > 0. Thus part (1) of Theo-

2r(r—1
rem 5.7 implies that liminf,, ., Pr(B,) > 23{;31() >)0, and part (2) is verified.
The proof of part (3) is similar to that of part (1). Namely, for uy-a.e. trajectory
w = 601,05,... of W the sequence s has infinitely many occurrences in w. Let n, > 1
be such that t, = 64,...,60,, ends in 5. Then for every n > n, such that t, is
cyclically admissible there exists a cyclic permutation t,, of t, = 61, ..., 6, such that

t/, starts with s. Then exactly the same argument as in the proof of (1) above shows
that Theorem 4.6 applies to t,, and hence the conclusion of part (3) of Theorem 5.7
holds for w. O

Remark 5.8. Traditionally, random walks on groups are “right” random walks,
since at each step the current group element gets multiplied by a new generator
on the right. Thus, let G be a finitely generated group and X C G is a finite
generating set for G with X = X!, The simple random walk on G with respect
to X is a sequence of i.i.d. random variables X7, Xo,...,X,,,..., where each X, is
an X-valued random variable corresponding to the uniform distribution on X. To
every trajectory w = x1,%a,...,%n,... (Where x,, € X) of this sequence of random
variables one associates the sequence g, = g1,92,---,9n, - .- of elements of G where
gn =21 ...%pn. Thus g1 = gnTn41 for all n > 1.

By contrast, when viewed in terms of Aut(F,), our random process W is a
“left random walk” on Aut(F,) (or on Out(F,)). Indeed, to a trajectory w =
01,...,0,,... of W we associate a sequence ®1,Ps,...,P,,... of elements of
Aut(F,), where ®,, = 0,,...01, so that ®, 11 = 0,11 D,,.

It is possible to convert W in a “right random walk” on Aut(F,), although the
resulting statement is somewhat awkward. Note that if 0 = [x — yz] is a standard
Nielsen automorphism of F,., then so is 67!, with 67! = [z + y~'z]. We can say
that a pair (6,0’) of elements of S is anti-admissible if the pair (071, (0')71) is
admissible. Similarly, a sequence 61, ..., 0, of elements of S is anti-admissible if for
all 1 <4 < n the pair (;,6;+1) is anti-admissible. We can then define a random
process W™ in a similar way to W: We have W~ = W ,W,",... where each W~
is an S-valued random variable, with W having the uniform distribution on S
and with the transition probability P(W, , = ¢'|W,; = 0) = 1/(4r — 6) if the pair
(6,0') is anti-admissible and P(W,_; = ¢'|W,7 = 6) = 0 otherwise. To a trajectory
w =01,60s,... of W~ we associate a sequence U1, Uy, ... of elements of Aut(F;) as
\I/n = 9192 . Qn ThUS7 \I/n+1 = \I/n6n+1.
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If the sequence w = 61,...,60,,... is anti-admissible then the sequence w’ =
9;1, 9;1, ...,0-% ... is admissible. In this case the process W associates to w’ the
sequence ®, =0 o---00;" € Aut(F,) and &, = V1.

Thus, Theorem 5.7 implies that for a W™ -random trajectory w = 61,60s,...,
conditioning on the event that 61,6, ...6,, is cyclically anti-admissible, the proba-
bility (corresponding to W) that ¥,, = 6165...0,, is an atoroidal fully irreducible

whose inverse ¥, ! is ageometric, tends to 1 as n — oo.

Remark 5.9.

Let TR, be the set of all graph-maps g : R, — R, such that ¢ is a homotopy
equivalence. We can re-interpret Theorem 5.7 in terms of a certain type of a “train
track directed random walk” on the space TR,.. To every sequence w = 61,05, ..., €
Q) we can associate a sequence g, = g1, 92,... of elements of TR, where g, =
go, 0---0gp, forn=1,2,....

The proof of Theorem 5.7 can be interpreted as saying that, for w = 61,605, €
Oy with associated sequence g, = ¢1,92, - € TRTN, conditioning on the event
that the sequence 61, ..., 0, is cyclically admissible, the probability that g, : R, —
R, is a train track map with exactly one nondegenerate illegal turn and no pINPs,
representing an ageometric fully irreducible element of Out(F,), tends to 1 as n —
00.

5.2. Spectral properties of the train track directed random walk

We can also get reasonably precise information about the growth of the PF eigen-
values and of the word length in Out(F,) along random trajectories of our walk.

First we recall the following classic ergodic theoretic fact known as Kingman'’s
Subadditive Ergodic Theorem:

Proposition 5.10. /28] Let (Q,F, 1) be a probability space and let T : Q — Q
be a measurable and measure-preserving transformation (that is, one such that, for
every measurable subset Y C Q, we have u(Y) = u(TY)). Let Z, : @ — Rxq be a
sequence of random variables (where n =0,1,2,... ) such that, for each w € , and
for any m,n > 0, we have Zypim(w) < Zp(w) + Zp (T"w). Then there exists a T'-
invariant random variable £ : Q — R>q, such that p-almost surely and in L*(, p),
we have

In particular, if T is p-ergodic, then £ = const on Q.

Note that if € S is a standard Nielsen automorphism of F}., then the transition
matrix M (gp) is an r X r elementary matrix obtained from the 7 x r identity matrix
by changing a single off-diagonal entry from 0 to 1. Let S’ be the set of all such
r x r elementary matrices. Note that S’ C SL(r,Z) and that #(S") = r? —r.

We note the following basic fact that will be useful in our arguments:



May 5, 2015 5:45 WSPC/INSTRUCTION FILE final-version

A TRAIN TRACK DIRECTED RANDOM WALK ON Out(Fy) 43

Lemma 5.11. Let r > 2. Then:
(1) For every M € S" and every v € R", we have ||Mvl|| > ||v]|.
(2) For any My, ..., M, € S’, we have || M, --- M;|| > 1.

Proof. Part (1) is obvious from the definition of S’.
From part (1), by induction on n, we get that, for any My,..., M, € S’ and any
v € R", we have ||M,, - -- Myv|| > ||v||. Therefore ||M,, --- M;|| > 1, and (2) holdsO

On the sample space Q) of W, we define a shift-map T: Oy — Qyy by
T: 91,92,93... — 92,93,...

for each w = 61,60s,--- € Q.
Then T': Qyy — Qyy is a continuous pyy-measure preserving map. Since ) is a
finite-state irreducible aperiodic Markov chain, it follows that T is p-ergodic.
Consider the following functions X,, : yy — R>¢ (where n > 1):

Xn(01,02,05...) =log||[M(gs,) - -- M(go, )|

for every w = 61,05, -- € Qyy. We also put Xg := 0.
Note that for t, = 01, ...,60, we have g, = gy, ©- -0 gy, and therefore M(gy, ) =

M(go,) - M(go,)-
We have:

Proposition 5.12. Let r > 3. There exists a number £1 > 0, called the top Lya-
punov exponent, such that for py-a.e. trajectory w = 01,0s,... of W we have

o1 .1
Jim —log || M(ge, )|l = lim —log[M(gs,) - M(ge,)ll = 41

where t, =01,...,0, forn=1,2,....

Proof.

Let w = 61,05, -- € Qyy be arbitrary. By Lemma 5.11, for every n > 1 we have
[|M(g0,) - M(ge,)|| > 1 and therefore X,,(w) > 0. Since Xy = 0, we also have
Xo(w) > 0. For m,n > 1 we have X,,,(T"w) = log ||M(gs,_.,.) - M(gs,.,)|| and
Xn(w) =log||M(ge,) - M(ge,)||- Since

1M (g6, 1) - M(ge,)l| < 1M (6,04) - - M(go,0)] - [[M (96,,) - - - M(g0,)]],

we also have

log ||M(9s,,.,.) - - M(ge,)|| < log|[M(gs,..,.) - M(go,..)|[+log|[M(gs,) - - M(ge,)ll,
that is X, 4m(w) < Xy (w)+ X (T"w). Tt is easy to check that X, 1 (w) < X (w)+
X (T"w) also holds if at least one of m,n is equal to 0.

Since T is a pyy-ergodic transformation, Proposition 5.10 (Kingman’s Subaddi-
tive Ergodic Theorem) now implies that there exists a number ¢; > 0 such that for
pw-a.e. trajectory w = 61,0, ... of W we have

. 1
lim —log||M(gs,) - M(ge,)ll = t1. O

n—oo
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Proposition 5.13. Let v > 3 and let {1 be provided by Proposition 5.12. Then
/1 > 0.

Proof. It is possible to derive the fact that ¢; > 0 from a general result of Guiv-
arc’h [18] on the simplicity of the Lyapunov spectrum in the context of the Multi-
plicative Ergodic Theorem for matrix-valued Markov chains satisfying some natural
“irreducibility” and “contractibility” conditions (which are satisfied in our case).

We provide a direct and more elementary argument for ¢; > 0 here.

By Proposition 4.5, there exists a cyclically admissible sequence s such that
M(gs) > 0. By replacing s by its positive power, we can further assume that every
entry of M(gs) is > 2.

For a sequence t = 01, ...,0, denote by (s,t) the number of times s occurs as a
sub-block of t.

By the Law of Large Numbers applied to ), there exists a > 0 such that, for
y-a.e. trajectory w = 01,05, ... of W, we have

tn
lim L’ )

n—oo N

=a>0,

where t, =61,...,6,.

Let w = 641,605,... be a uy-random trajectory of W. Then for n >> 1 there
are na + o(n) occurrences of s in t,. Hence, we can find na/k + (1/k)o(n) dis-
joint occurrences of s in t,, where k is the length of s. Thus, we can subdivide
M(go,) -+ M(gg,) as a product

M(gs,) - M(ga,) = CqB--- C1BC,

where B = M(gs), where ¢ = na/k + (1/k)o(n) > na/(2k) and where each C; is a
product of several consecutive matrices from the product M (gg, ) - - - M(go, ). Recall
that every entry in B is > 2. Thus, for every vector v € R" we have
1M (ge,.) - - - M(ge,)vl| = [[CgBCy1--- CLBCov|| > [|BCq—1 - -- C1 BCoul| =
2/|Cq-1B -+ CLBCou|| 2 -+ 2 29||Covl| = 2Jv]| > 2"/ EB)[o]].

Therefore, [[M(go,) - M(go,)l| > 2"/ and log|[M(go,) - M(ge,)|| >
na/(2k)log 2, so that

1
liminf —log |[M(gs, ) - -- M(gs,)|| = o/ (2k)log 2.
n—oo n
Hence, ¢1 > o/(2k)log2 > 0. O

The growth of the spectral radius of M (gs, )---M(ge,) is more important for
our purposes than the growth of ||[M(gs, )--- M(ge,)||- Luckily, in our situation,
these two quantities grow roughly at the same rate, as follows from the following
general result due to Terence Tao. The proof of this fact was communicated to us
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by Tao on MathOverflow. Since the statement of Proposition 5.14 does not seem to
be available in the literature, we include Tao’s proof here.

Proposition 5.14. Let M = (my;)j;—; be an r X r matriz with real coefficients
such that all mi; > 1. Then A(M) < ||M]| < r(M(M))>.

Proof. Since all entries of M are > 0, the spectral radius A(M) > 0 is the Perron-
Frobenius eigenvalue of M. There exists a nonzero vector u € R” such that Mu =

A(M)u and hence ||Mul||/||u|| = A(M). The inequality A(M) < ||M]| is obvious
[[Mo]|

since [|M|| = max,cgrr\ {0} Tl
Recall that, by the Spectral Theorem, [[A(M)|| = lim,— oo ¥/||M™||. Consider
the “product” partial ordering < on R” where (21,...,2,) < (y1,- .-, yn) Whenever

T, <Y, for ¢ = 1,...,7".

Observe that if v,u € R" are vectors with non-negative coordinates and such
that v < u, then [[v|| < ||u]| and Mv < Mu.

Also notice that Mej Z m;j€; and Mei Z €j. Hence MZej 2 mijMe,; 2 m;j€j,
so that M26j > myje;. lterating this argument we get M?"e; > mj;e; and hence,
by taking the norm of both sides, we get m;; < |[M?me;|| < ||M?"||. By taking the
n-th root and passing to the limit, by the Spectral Theorem we get m;; < A(M )2
forall 1 <4,5 <.

Hence, maxm;; < A(M)?, and therefore ||M|| < rA(M)>2. |

Theorem 5.15. Letr > 3 and let £1 be provided by Proposition 5.12 (so that £; > 0
by Proposition 5.13).
Then, for pyw-a.e. trajectory w = 61,0s,... of W, the following hold:

(1)

1
0 < ¢1/2 <liminf —log A(gy, ) < limsup — log Age,) < 41,
n—oo n n—o0o
where t, = 01,...,0, forn > 1.
(2) For any strictly increasing sequence of indices 1 <ny < ng <ng < ... such
that for each i > 1 t,, =01,...,0,, is cyclically admissible we have

1 1
0 < ¢1/2 < liminf — log A(y,) < limsup — log A(py,) < {41,

100 Ty i—oo T

where @, € Out(F,) is the outer automorphism represented by gy, .

Proof.
Let s be the admissible sequence provided by Proposition 4.5, so that M (gs) > 0.
Then, for uy-a.e. trajectory w = 61,0, ... of W the sequence s has infinitely
many occurrences in w. Let n(w) > 1 be such that t, = 01,...,0,,) ends in s.
Then, for every n > n(w), we have M (g, ) > 0. Then, by Proposition 5.14, for every

n > n(w) we have v/r/||M (g, )| < Agw,) < ||M(g¢,)||- Hence, by Proposition 5.12
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and Proposition 5.13,

0 < ¢1/2 < liminf 1 log A(g¢,) < limsup 1 log A(gt,) < 44,
n—soco n n—ooo M
as required, so that part (1) of the theorem is verified. Note further that in this
situation for every m > n(w) such that t, is cyclically admissible, Theorem 3.11
implies that g¢, is an expanding irreducible train track representative of ,, with
M/(gy,) > 0. Therefore, by Proposition 2.21, we have A(gy, ) = A(¢n) for every such
n. Hence part (2) of the theorem holds as well. D

For ® € Aut(F}), denote |®|4 := max,eca |P(a)]a. Let Q = {¢1,...,¢n} be any
finite generating set of Out(F,) such that Q@ = Q~!. For an element ¢ € Out(F,),
denote by |¢|g the geodesic word-length of ¢ with respect to the generating set Q
of Out(F,); that is |¢|g is the smallest n such that ¢ can be written as a product
o =i, ..., where ¥;; € Q.

For each v;, choose an automorphism ¥,; € Aut(F}.) in the outer automorphism
class ;. Finally, put |Q|4 := max}", |¥;|4.

Recall from Definition 2.20 the definition of the stretch factor A(¢) > 1 for a
p € Out(F,.).

Lemma 5.16. Let r > 2 and let Q = Q= be a finite generating set of Out(F,.).
Then the following hold:

(1) For each ¢ € Out(F,) and representative ® € Aut(F,.) in the outer automor-
phism class ¢, we have (@) < |®|4.

(2) If o =y, ..., is a word of length n over @, then A(¢) < (|Q|a)™.

(3) For any ¢ € Out(F,), we have M) < (|Q|a)?!<.

Proof. Note that, for each 1 # w € F, and each n > 1, we have ||[¢"(w)||a <
|2 (w)|a < |w|a|®|% and, by taking n-th roots and passing to the limit, we get
M, w) < |®|4. Therefore, by the definition of the stretch factor of an element of
Out(F.) (Definition 2.20), we have that A(p) = sup,,cp,_13 A(p, w) < [@]a. Thus
(1) is verified.

Part (2) follows from part (1) since, if ¢ = 1);, ...%;, is a word of length n over
Q, then |®|4 < (|Q|a)", where ® =T, ... T, .

Part (2) directly implies part (3). O

We can now prove that the random walk W has a positive linear rate of escape
with respect to the word metric on Out(F,):

Theorem 5.17. Let r > 3 and let Q be a finite generating set of Out(F,) such
that Q = Q~'. Then there exists a constant ¢ > 0 such that, for uy-a.e. trajectory
W = 91,02,... OfW,

.1
lim E\Gn...ﬁl\Q =c

n— oo
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Proof. For n > 1, define Z,,: Oy — R>g as
Z,L(Ol, 92, .. ) = |0n e 01|Q

Also put Zy = 0. Then, for m,n > 1 and any w = 01,02--- € Qyy, we have
Zn(T"w) = |Onsm ... Ont1lg and Zp(w) = [0, ...01]g. Since |Opym .. .01l <

1Ontm - Ontilg + |0n ... 01]q, it follows that Z, 1., (w) < Z,(w) + Zp(T"w). It
is easy to check that Z,, 1 (w) < Zy,(w) + Z,, (T™w) also holds if at least one of m,n
is equal to 0.

Since T is a pyy-ergodic transformation, Proposition 5.10 now implies that there
exists a number ¢ > 0 such that, for py-a.e. trajectory w = 601,60s,... of W, we
have
li 1 0 01]q =
im ﬁ| n---01lg = c.

n—oo
It remains to show that ¢ > 0, that is, to rule out the possibility ¢ = 0. Thus, assume
that ¢ = 0. Then for pyy-a.e. trajectory w = 01,605, ... of W, the word-length |¢,|¢
grows sub-exponentially in n, where ¢,, = 6,,...60; € Out(F,.).

On the other hand, for uy-a.e. trajectory w = 61,6, ..., there exist infinitely
many indices 1 < ny; < ng < ... such that, for each ¢ > 1, we have that 6;,...,0,, is
a cyclically admissible sequence. Theorem 5.15 implies that A(p,,) grows exponen-
tially fast in n;. Then part (3) of Lemma 5.16, applied to ¢,, = 0,, ...601, implies
that |¢n,|o must grow at least linearly fast in n;. This contradicts the fact that
lonlo grows sub-exponentially in n. Thus, the case ¢ = 0 is impossible, and hence
c > 0, as required. O

6. Realizability of powers of train track maps with one illegal turn
by admissible compositions

In this section we show that for each train track map ¢g: R, — R, with exactly
one illegal turn, some positive power gP of g can be represented as the composition
of a cyclically admissible sequence, so that gP is reachable by our walk W; see
Theorem 6.5 below for a precise statement.

We assume some familiarity of the reader with Stallings folds, and only briefly
recall the basics related to folds here; we refer the reader to [47,30] for details.

Definition 6.1 (Stallings folds).

Let g: T — T be a regular graph-map. We say that a nondegenerate turn
7 = {e1,ea} is g-smooth if Dg(7) is a nondegenerate turn in I'. We say that a
nondegenerate turn T = {es, €1} is g-foldable if Dg(7) is a degenerate turn in I".

Suppose that T = {e1,ea} is a g-foldable turn. Then there exist maximal non-
trivial initial segments €/, eb of e1,es accordingly such that g(e}) = g(el) as paths.
Note that this automatically means that g send terminal points of €}, ey to a vertex
of T'.

We consider the equivalence relation on T' generated by identifying €| with €
according to the map g. The quotient object is a graph I'y and the quotient map
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q: T' = Ty is a graph-map called o Stallings fold, or just a fold; then q(e}) = q(e})
is an edge of T'y. There is also a natural graph-map ¢': I'1 — I such that g =
goq:T =T,

The fold q is said to be

(1) a complete fold if ¢] = e, e = eq

(2) a partial fold if €| # e, €5 # es

(3) a proper full fold if either €] = e1,e} # eq or e} # e1, ey = ea (i.e. if, for some
i,7 such that {i,j} = {1,2}, ¢ identifies a proper initial segment of e; with the
entire edge e; ).

Note that a fold ¢ determined by a g-foldable turn {e1,es} as above fails to be
a homotopy equivalence if and only if ¢ is a complete fold and t(e1) = t(e2) in T
The following important result is due to Stallings [47]:

Proposition 6.2. Let T',T" be finite connected graphs without any degree-1 vertices.
Let g: T — I be a reqular graph-map such that g is a homotopy equivalence. Then
there exists a decomposition of g as a composition

r=ro%n%... %1, , ™0, =1
such that g;, with 1 < i <n—1, is a fold and gy, is a graph-isomorphism (and in
particular g, is a homeomorphism). Moreover, for 1 <1i < n the fold q; a homotopy
equivalence.

A Stallings fold decomposition of g: I' — I' in Proposition 6.2 can be obtained as
follows (the maps h; are depicted in Figure 1). Put I'o =T and hg = g: Ty — I, If
g is not a graph-automorphism already, choose a g-foldable turn {ej,e2} in T'g =T
Then take q1: I'g — I'; to be the fold determined by this turn, so that we also get a
homotopy equivalence hq: I'y — I such that hg = hioq;. Apply the same procedure
to the map hq: I'y — IV and, proceeding inductively, construct a sequence of folds
gr: Tx—1 — Ty and maps hy: I'y — IV, for k =1,2,..., such that hy o qr = hy_1.
Each of hg, g is a homotopy equivalence. The process must terminate in a finite
number of steps since, by construction, I'y has fewer edges then I'y_1. If the process
terminates with the map h,: I', — I, then every nondegenerate turn in I',, is
h,-smooth, and the map h,,: I';, — I" is a graph-isomorphism. See the illustration
of this process in Figure 1.

g=ho
h1
ha
Ty T, T, . r,

q1 q2 q3 dn

Fig. 1. Constructing a Stallings folds decomposition
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Lemma 6.3. Let r > 2 and let g: R, — R, be a regular graph map such that g is
a homotopy equivalence and such that there is at most one g-foldable nondegenerate
turn in R,..

Then there exists a decomposition g = qp o ...q1 such that:

(1) For i = 1,...,n we have ¢;: T';_1 — T is a regular graph map, where T'; =
I'i.1=R,.

(2) For 1 <1i<n the map q; is a proper full fold on T';_.

(8) The map qn: T'n_1 — Ty is a graph-isomorphism (and in particular a homeo-
morphism).

Proof. Recall that we have an orientation on R, so that E, R, = {e1,...,e}
consists of exactly r edges. For a regular graph map f: R, — R, we define the
complezity c(f) as c(f) == X cp, g, |f(€)|. Note that c(f) > r, and, assuming that
f is also a homotopy equivalence, we have ¢(f) = r if and only if f is a graph

isomorphism.

We prove the statement of the lemma by induction on ¢(g). If ¢(g) = r, then
g is a graph isomorphism and the conclusion of the lemma holds with n = 1 and
q = g-

Suppose now that ¢(g) > r and that the statement of the lemma has been
established for all smaller values of the complexity. Since ¢(g) > r, there is exactly
one nondegenerate g-foldable turn 7 in R,. Without loss of generality we may
assume that 7 = {e1,ea}. Let

R, =Ty &1, ' R,

where I'; is obtained from I'yg = R,. by applying a fold ¢;, which is the fold corre-
sponding to the g-foldable turn {e;,es}. Thus g = hy o ¢;.

Note that ¢ : R, — I'1 cannot be a complete fold since in that case ¢; would
not be a homotopy equivalence, and I'; would be an (r — 1)-rose. Thus ¢; is either
a proper full fold or a partial fold.

Suppose first that ¢; is a partial fold. Then I'y would be as in Figure 2 and
I"y would not be homeomorphic to R,. On the other hand, by construction, every
nondegenerate turn in I'y would be hy-smooth. Indeed, the turn ef, e§ as in Figure 2
is hy-smooth since the fold ¢; identified maximal initial segments of e;, e; with the
same g-image. The turns €, e/ and €, e} are hi-smooth because by assumption the
paths g(e1) and g(eq) are tight. Every other nondegenerate turn in I'y is already
present in I'g and is g-smooth there, and hence it is hi1-smooth in I'y. Thus there are
no folds applicable to I'y, and yet the map hq: I'y — I',, is not a graph-isomorphism,
yielding a contradiction.

Hence ¢; is a proper full fold, so that I'y = R,. Let e; = ejef, where €] is a
proper initial segment of ey, and let ¢; completely fold €| around the edge es. Thus
I’y is a rose with loop-edges €Y, ea, ..., e, wedged at a single vertex v;.

Note that by construction any turn formed by any two distinct directions among
eTQ €2,€3,...,¢6r, ¢ is hi-smooth because these turns were already present in I'g and



May 5, 2015 5:45 WSPC/INSTRUCTION FILE final-version

50 ILYA KAPOVICH and CATHERINE PFAFF

Fig. 2. Partial fold on the rose

they were hg-smooth. Since hg(e1) is a tight edge-path and since €/ has been folded
with es, the turn e3,e; is hi-smooth. Thus, the only possibility for a nondegen-
erate hj-foldable turn in Ty is a turn consisting of €] and one of the directions
€o,€3,€3,...,6r, .. There is at most one among the directions es, e3,€3,...,¢€,, ¢
which can form a hi-foldable turn together with e/ since otherwise some two dis-
tinct directions among es, es, €3, ..., €., €. would have formed a g-foldable turn in
Ty, contrary to the assumption that {e;,es} was the only nondegenerate g-foldable
turn in I'y. Thus I’y = R, and there is at most one nondegenerate hi-foldable turn
in T'y. Since ¢(h1) < ¢(g), by the inductive hypothesis applied to hj, there exists a
decomposition of hy as hy =g 0---0¢qs
M2, 2. . Lp, 1, =R,

satisfying the requirements of Lemma 6.3 for hy. Then g = ¢, o --- 0 g9 0 ¢1 is the
required decomposition for g. O

Recall that F,. = F(A) where A = {aq,...,a,} and that R, is equipped with
the marking identifying e; € E R, with a; for ¢ = 1,...,r. We say that ¥ ¢
Aut(F,) is a permutational automorphism if there exists a permutation o € S, and
€1,...6r € {1,—1} such that ¥(a;) = ai"(i) for i = 1,...,r. Recall also that with
every ® € Aut(F,) we have associated its standard representative go: R, — R,
see Definition 2.19.

The following lemma is an immediate corollary of the definitions:

Lemma 6.4. Let r > 2. Then:

(1) A regular graph map g : R, — R, is a graph-isomorphism if and only if g = gu
for some permutational automorphism ¥ of F..

(2) A homotopy equivalence reqular graph map g: R, — R, is a single proper full
fold if and only if g = go (up to isotopy relative to the vertex of R,) for some
elementary Nielsen automorphism 6 = [x — yz| of F.

(3) If ¥ is a permutational automorphism of F,. and = [x — yz| is an elementary
Nielsen automorphism of F., then for 8/ = [¥(z) — U (y)¥(x)], we have ¥l =
0’V in Aut(F,) and, moreover, gy o g9 = go © gw, as maps R, — R,.

Theorem 6.5. Letr > 2 and let g: R, — R, be a train track map with exactly one
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nondegenerate illegal turn representing some @ € Out(F,.). Then there exist p > 1
and a decomposition

g’ =g, 0 0gos,,

where 61, ...,0, is a cyclically admissible sequence of elementary Nielsen automor-
phisms of Fi..

Proof. By Lemma 6.3 and Lemma 6.4, there exist elementary Nielsen automor-
phisms 64, ...,60,, and a permutational automorphism ¥ of F;. such that

g=9gv©°gp, ° 2490,

Let p be the order of ¥ in Aut(F,). Then g5, = Idr,. We have

9" =(gvogs, o - 0gs)o--o(gvogs, o 0gs),

where the term gy o gg,, o -+ o gy, is repeated p times. By applying part (3) of
Lemma 6.4, we can move all the occurrences of gy in the above expression to the
right and obtain a decomposition of gP as

y p __
9" =gey, © 0 9o, © gy = go,, © 0 g,

for some elementary Nielsen automorphisms 61, ...60/ of F,., where 0, = [z} — y.a}].

We claim that the composition 9oy, © -0 gey is admissible. Indeed, g*: R, —
R, is a train track map with exactly one non-degenerate illegal turn. Therefore
DgP(A*!) consists of 2r — 1 distinct directions.

Suppose that the sequence 61, .. ., 0, is not admissible. Let 7 > 1 be the smallest
index such that the pair (0] = [z} — yizi],0i,, = [rj, — Y 17;.]) is not
admissible. Then for g; = gg: o -+~ o gg;, by Lemma 3.10, we have Dg; = A®L
{ai}, with Dg;(#1) = Dg;(y;). The only illegal turn for gg,, is {zi;,¥i41}, and
Dgoy, (xi41) = Dgo;, (yi1). The fact that the pair (6;,6;,,) is not admissible
means that i, # 2} and y;,; # x;, which means that Dgy,  identifies two
distinct directions in A*! — {2/}. Tt follows that DgP(A*!) consists of < 2r — 2
directions, yielding a contradiction.

Since g?P: R, — R, is also a train track map with exactly one nondegenerate
illegal turn, the same argument implies that the composition 90, ©**°9e; © 9oy, ©

-+ 0 ggr is also admissible. Hence the composition g = ge:,, © O IS cyclically
admissible, as required. O

Note that, as the above proof shows, the power p > 1 in the conclusion of
Theorem 6.5 can be chosen independent of the choice of g. In particular, if py is
the least common multiple of the orders of all the elements in the symmetric group
Sy, then p = 2py works for all g as in Theorem 6.5, since for every permutational
U € Aut(F,) we have P = 1 in Aut(F,) and ¢}, = Idg,.
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