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Several known results, by Rivin, Calegari-Maher and Sisto, show that an element ϕn ∈
Out(Fr), obtained after n steps of a simple random walk on Out(Fr), is fully irreducible

with probability tending to 1 as n → ∞. In this paper we construct a natural “train

track directed” random walk W on Out(Fr) (where r ≥ 3). We show that, for the
element ϕn ∈ Out(Fr), obtained after n steps of this random walk, with asymptotically

positive probability the element ϕn has the following properties: ϕn is ageometric fully

irreducible, which admits a train track representative with no periodic Nielsen paths and
exactly one nondegenerate illegal turn, that ϕn has “rotationless index” 3

2
− r (so that

the geometric index of the attracting tree Tϕn of ϕn is 2r − 3), has index list { 3
2
− r}

and the ideal Whitehead graph being the complete graph on 2r − 1 vertices, and that

the axis bundle of ϕn in the Outer space CVr consists of a single axis.

Mathematics Subject Classification 2010: Primary 20F65, Secondary 57M

1. Introduction

For an integer r ≥ 2, an element ϕ ∈ Out(Fr) is called fully irreducible (sometimes

also referred to as irreducible with irreducible powers) if there is no k ≥ 1 such that

ϕk preserves the conjugacy class of a proper free factor of Fr. A fully irreducible

ϕ ∈ Out(Fr) is called geometric if there exists a compact connected surface Σ with

one boundary component such that π1(Σ) ∼= Fr and such that ϕ is induced by

a pseudo-Anosov homeomorphism of Σ; fully irreducibles that are not geometric

are called nongeometric. Bestvina and Handel proved [8] that a fully irreducible

ϕ ∈ Out(Fr) is nongeometric if and only if ϕ is atoroidal, that is, no positive power

of ϕ preserves the conjugacy class of a nontrivial element of Fr. It was later shown,

as a consequence of the Bestvina-Feighn Combination Theorem [1], that a fully

irreducible ϕ ∈ Out(Fr) is nongeometric if and only if the mapping torus group

Froϕ Z is word-hyperbolic. For this reason nongeometric fully irreducibles are also
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called hyperbolic. See Section 2.8 below for more details.

Fully irreducible elements of Out(Fr) provide a free group analog of pseudo-

Anosov elements of the mapping class group Mod(Σ) of a closed hyperbolic surface

Σ. Fully irreducibles play a key role in the study of algebraic, geometric, and dy-

namical properties of Out(Fr). In particular, every fully irreducible ϕ ∈ Out(Fr)

admits a train track representative (see Section 2.5 below for precise definitions),

and this fact was, in a sense, the starting point in the development of train track and

relative train track theory for free group automorphisms. In the structure theory

of subgroups of Out(Fr), subgroups containing fully irreducible elements provide

basic building blocks of the theory. For example, the Tits Alternative for Out(Fr),

established in full generality in [6,7], was first proved in [5] for subgroups of Out(Fr)

containing a fully irreducible element. A result of Handel and Mosher [22], with a re-

cent different proof by Horbez [25], shows that if H ≤ Out(Fr) is a finitely generated

subgroup, then either H contains a fully irreducible element or H contains a sub-

group H1 of finite index in H such that H1 preserves the conjugacy class of a proper

free factor of Fr. Also, fully irreducible elements are known to have particularly nice

properties for the natural actions of Out(Fr) on various spaces. In particular, a fully

irreducible element ϕ ∈ Out(Fr) acts with “North-South” dynamics on the com-

pactified Outer space CV r (see [32]) and with generalized “North-South” dynamics

on the projectivized space of geodesic currents PCurr(Fr), [36,48,49]. For r ≥ 2, the

“free factor complex” FFr, endowed with a natural Out(Fr) action by isometries,

is a free group analog of the curve complex of a finite type surface. It is known that

FFr is Gromov-hyperbolic, and that ϕ ∈ Out(Fr) acts as a loxodromic isometry of

FFr if and only if ϕ is fully irreducible [4].

There are several known results showing that “random” or “generic” elements

of Out(Fr) are fully irreducible. The first of these results is due to Rivin [43]. He

showed that if Q = Q−1 is a finite generating set of Out(Fr) (where r ≥ 3), then for

the simple random walk q1, q2, . . . on Out(Fr) with respect to Q (where qi ∈ Q), the

probability that ϕn = q1 . . . qn ∈ Out(Fn) is fully irreducible goes to 1 as n → ∞.

Rivin later improved this result to show [44] that, with probability tending to 1 as

n→∞, the element ϕn is in fact a nongeometric fully irreducible. Rivin’s approach

was homological: he studied the properties of the matrices in GL(r,Z) coming from

the action of ϕn on the abelianization Zr of Fr. From the algebraic properties of the

characteristic polynomials of these matrices, Rivin was able to derive conclusions

about ϕn being a nongeometric fully irreducible with probability tending to 1 as

n → ∞. Rivin applied the same method to show [43] that “random” (in the same

sense) elements of mapping class groups are pseudo-Anosov.

A different, geometric, approach was then explored by Maher [34] in the context

of mapping class groups (using the action of the mapping class group on the Teich-

muller space), and later by Calegari and Maher [9] in the context of group actions

of Gromov-hyperbolic spaces. Calegari and Maher considered the following general

situation. Let G be a finitely generated group acting isometrically on a Gromov-

hyperbolic space X and let µ be a probability measure on G with finite support such



May 5, 2015 5:45 WSPC/INSTRUCTION FILE final-version

A TRAIN TRACK DIRECTED RANDOM WALK ON Out(Fr) 3

that this support generates a non-elementary subgroup of Isom(X). Then Calegari

and Maher proved that, for the random walk on G determined by µ, the probability

that, for a random trajectory q1, q2, . . . of this walk, the element gn = q1 . . . qn ∈ G
acts as a loxodromic isometry of X tends to 1 exponentially fast as n → ∞. They

established this fact by showing that there exists an L > 0 such that, in the above

situation, with probability tending to 1 exponentially fast as n → ∞, the transla-

tion length of gn on X is ≥ Ln. This result applies to many natural situations, such

as the action of the mapping class group (or of its “large” subgroup) on the curve

complex, and the action of Out(Fr) (or of suitably “large” subgroups of Out(Fr))

on the free factor complex FFr. Since an element of Out(Fr) acts loxodromically

on FFr if and only if this element is fully irreducible, the result of Calegari and

Maher implies the result of Rivin if we take Q = Q−1 to be a finite generating

set of Out(Fr) and take µ to be the uniform probability measure on Q. Recently

Mann constructed [35] a new Gromov-hyperbolic space Pr (quasi-isometric to the

main connected component of the “intersection graph” Ir defined in [29]), obtained

as a quotient of FFr and endowed with a natural isometric action of Out(Fr) by

isometries. Mann showed [35] that ϕ ∈ Out(Fr) acts as a loxodromic isometry of

Pr if and only if ϕ is a nongeometric fully irreducible. The result of Calegari-Maher

applies to the action of Out(Fr) on Pr and thus implies that, for a finitely supported

measure µ on Out(Fr) generating a subgroup containing at least two independent

nongeometric fully irreducibles, an element ϕn ∈ Out(Fr), obtained by a random

walk of length n defined by µ, is nongeometric fully irreducible with probability

tending to 1 exponentially fast, as n → ∞. Finally, Sisto [46], using a different

geometric approach, introduced the notion of a “weakly contracting element” in

a group G, and showed that weakly contracting elements of Out(Fr) are exactly

the fully irreducibles. He showed that for any simple random walk on Out(Fr), the

element ϕn ∈ Out(Fr) obtained after n steps is weakly contracting (and hence fully

irreducible) with probability tending to 1 exponentially fast as n→∞.

None of the above results yield more precise structural information about “ran-

dom” elements of Out(Fr), other than the fact that these elements are (nongeomet-

ric) fully irreducibles.

There is a considerably more detailed stratification of the set of nongeometric

fully irreducibles in terms of their index, their index list, and their ideal Whitehead

graph, which we discuss below. The goal of this paper is to derive such detailed

structural information for “random” elements of Out(Fr) obtained by a certain

natural random walk on Out(Fr).

The index theory for elements of Out(Fr) is motivated by surface theory. If

ϕ ∈ Mod(Σ) is a pseudo-Anosov element (where Σ is a closed oriented hyperbolic

surface), let F be the stable measured foliation for ϕ. Then F has singularities

p1, . . . , pm, where pi is a ki-prong singularity with ki ≥ 3. In this case it is known

that the “index sum”
∑m
i=1(1 − ki

2 ) equals exactly χ(Σ). Thus the index sum is a

constant independent of ϕ, but the “index list” {1− k1
2 , . . . , 1−

km
2 } is a nontrivial
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invariant of the conjugacy class of ϕ in Mod(S).

The original notion of an index for an element ϕ of Out(Fr), introduced in [16],

was formulated in terms of the dynamics of the action on the hyperbolic boundary of

Fr. This notion of index, in general, is not invariant under replacing ϕ by its positive

power. Subsequently, more invariant notions of index were developed using R-tree

technology. We discuss the various notions of index for free group automorphisms

in Section 2.9 below.

If ϕ ∈ Out(Fr) (where r ≥ 2) is fully irreducible, there is a naturally associated

“attracting R-tree,” endowed with a natural isometric action of Fr (this tree is

similar in spirit to the “dual tree” obtained by lifting the stable measured foliation

of a pseudo-Anosov element of Mod(Σ) to the universal cover Σ̃ and then collapsing

the leaves). See Section 2.9 for the explanation of the construction of Tϕ from a

train track representative of ϕ. If ϕ is a nongeometric fully irreducible, the action

of Fr on Tϕ is free but highly non-discrete (in fact, every Fr-orbit is dense in Tϕ).

However, it is known that every branch point in Tϕ has finite degree, and that

there are only finitely many Fr-orbits of branch points in Tϕ. Thus one can still

informally view the quotient Tϕ/Fr as a “graph” and, using a formula for what the

Euler characteristic of this graph should be, define the notion of a “geometric index”

indgeom(Tϕ) =
∑

[P ](deg(P )−2) of Tϕ, where the summation is taken over Fr-orbits

[P ] of branch-points in Tϕ; see Definition 2.28 below. If ϕ ∈ Out(Fr) is a geometric

fully irreducible, the action of Fr on Tϕ is not free, but there is a natural definition

of indgeom(Tϕ) in this case too. Unlike in the surface case, indgeom(Tϕ) is not a

constant in terms of r and does depend on the choice of a fully irreducible ϕ. For a

fully irreducible ϕ ∈ Out(Fr), the attracting tree Tϕ depends only on the conjugacy

class of ϕ in Out(Fr), and in fact Tϕk = Tϕ for all k ≥ 1. Hence indgeom(Tϕ) is an

invariant of the conjugacy class of ϕ in Out(Fr), which is also preserved by taking

positive powers of ϕ. As a consequence of more general results, it is known that, for

a fully irreducible ϕ ∈ Out(Fr), one has 1 ≤ indgeom(Tϕ) ≤ 2r − 2 and that, for a

geometric fully irreducible ϕ ∈ Out(Fr), one has indgeom(Tϕ) = 2r−2. Surprisingly,

it turns out that for r ≥ 3 there exist nongeometric fully irreducibles ϕ ∈ Out(Fr)

with indgeom(Tϕ) = 2r − 2 [2,3,16,20,21,26]; such ϕ are called parageometric. A

nongeometric fully irreducible ϕ ∈ Out(Fr) with indgeom(Tϕ) < 2r− 2 is said to be

ageometric.

As we have seen, for a nongeometric fully irreducible ϕ ∈ Out(Fr), the geometric

index indgeom(Tϕ) arises from an “index sum” over representatives of Fr-orbits of

branch points in Tϕ. The terms of this sum provide an “index list,” which is also

an invariant of the conjugacy class of ϕ, preserved by taking positive powers. In

[23], Handel and Mosher formalized this fact by introducing the notion of an index

list and of rotationless index i(ϕ) (the latter is called “index sum” in [23]) for

a nongeometric fully irreducible ϕ. The most invariant definition of these notions

involves looking at the structure of branch-points of Tϕ, which also shows that

i(ϕ) = − 1
2 indgeom(Tϕ) for every non geometric fully irreducible ϕ. Handel and
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Mosher also gave an equivalent description of the index list and rotationless index in

terms of a train track representative of ϕ. We give this description in Definition 2.33

below.

For a nongeometric fully irreducible ϕ, Handel and Mosher also introduced an-

other combinatorial object, called the ideal Whitehead graph IW(ϕ) of ϕ, which

encodes further, more detailed, information than the index list in a single finite

graph. They also provided an equivalent description of IW(ϕ) in terms of a train

track representative of ϕ; see Definition 2.32 below. For a pseudo-Anosov, the com-

ponent of the ideal Whitehead graph coming from a foliation singularity is a polygon

with edges corresponding to the lamination leaf lifts bounding a principal region in

the universal cover [38]. Since the number of vertices of each polygonal ideal White-

head graph component is determined by the number of prongs of the singularity,

the index list and the ideal Whitehead graph record the same data. In the Out(Fr)

setting, not only is the ideal Whitehead graph IW(ϕ) a finer invariant (c.f. [40,41]),

but it provides further information about the behavior of lamination leaves at a sin-

gularity. It is again an invariant of the conjugacy class of ϕ, also invariant under

taking positive powers of ϕ. Moreover, while IW(ϕ) is a more detailed structural

invariant than i(ϕ) or the index list of ϕ, both of these invariants can be “read-off”

from IW(ϕ).

We will now describe the main result of the present paper. Let r ≥ 3 and let the

free group Fr = F (a1, . . . , ar) be equipped with a fixed free basis A = {a1, . . . , ar}.
We denote by Rr the r-rose, which is a wedge of r directed loop-edges, wedged

at a single vertex v and labelled a1, . . . , ar. Thus we have a natural identification

Fr = F (a1, . . . , ar) = π1(Rr, v).

An elementary Nielsen automorphism of Fr is an element θ ∈ Aut(Fr) such

that there exist x, y ∈ A±1, y 6= x±1, with the property that θ(x) = yx, θ(x−1) =

x−1y−1, and θ(z) = z for each z ∈ A±1 − {x, x−1}. We denote such θ by θ = [x 7→
yx]. We say that an ordered pair (θ = [x 7→ yx], θ′ = [x′ 7→ y′x′]) is admissible

if either x′ = x and y′ 6= y−1 or y′ = x and x′ 6= y−1. A sequence θ1, . . . , θn
(where n ≥ 1) of standard Nielsen automorphisms of Fr is called admissible if, for

each 1 ≤ i < n, the pair (θi, θi+1) is admissible. A sequence θ1, . . . , θn of standard

Nielsen automorphisms of Fr is called cyclically admissible if it is admissible and if

the pair (θn, θ1) is also admissible. We denote by S the set of all elementary Nielsen

automorphisms of Fr (so that S is a finite set with exactly 4r(r − 1) elements, see

Section 5); we also verify in Lemma 5.1 that for every θ ∈ S there are exactly 4r−6

elements θ′ ∈ S such that the pair (θ, θ′) is admissible. It is well-known that S

generates a subgroup of finite index in Out(Fr).

We define a finite-state Markov chain with the state set S as follows. For θ, θ′ we

set the transition probability P (θ′|θ) from θ to θ′ to be 1/(4r− 6) if the pair (θ, θ′)

is admissible and 0 otherwise. We show in Lemma 5.3 that this is an irreducible

aperiodic finite state Markov chain and that the uniform distribution µr on S is

stationary for this chain. We then consider a random process W defined by this

chain starting with the uniform distribution µr on S. Thus W can be viewed as a
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random walk, where we first choose an element θ1 ∈ S uniformly at random and

then, if at step n ≥ 1 we have chosen θn ∈ S, we choose θn+1 ∈ S according to

the distribution P (−|θn) defined above. The sample space of W is the set SN of all

sequences θ1, θ2, . . . of elements of S and the random walk W defines a probability

measure µW on SN whose support consists of all infinite admissible sequences of

S. To each trajectory ω = θ1, θ2, . . . of W we associate a sequence ϕn ∈ Out(Fr),

where ϕn = θn ◦ · · · ◦ θ1.

The random walk W can be viewed as an Out(Fr) version of the simple non-

backtracking random walk on the free group itself. The reason is the following crucial

property of admissible sequences: if θ1, . . . , θn is an admissible sequence of elements

of S, then, for every letter a ∈ A±1, computing the image (θn ◦ · · · ◦ θ1)(a) by

performing letter-wise substitutions produces a freely reduced word in A±1. This

fact, established in Lemma 3.10 below, implies that for any cyclically admissible

sequence θ1, . . . , θn, the element ϕn = θn ◦ · · · ◦ θ1 ∈ Out(Fr) admits a train track

representative gn : Rr → Rr on the rose Rr, and, moreover, this train track map

has exactly one nondegenerate illegal turn; see Theorem 3.11. That is why we also

think of W as a “train track directed” random walk on Out(Fr).

In addition, we show in Theorem 6.5 that for each train track map g : Rr → Rr
with exactly one nondegenerate illegal turn with g# = ϕ ∈ Out(Fr), for some

positive power gp of g there exists a cyclically admissible sequence θ1, . . . , θn such

that ϕp = θn ◦ · · · ◦ θ1, and so that our walk W reaches ϕp (and, moreover, p only

depends on r).

Definition 1.1 (Property (G)). Let r ≥ 3 be an integer. We say that ϕ ∈ Out(Fr)

has property (G) if all of the following hold:

(1) The outer automorphism ϕ is ageometric fully irreducible;

(2) We have i(ϕ) = 3
2 − r (so that indgeom(Tϕ) = 2r− 3), and ϕ has single-element

index list { 3
2 − r}.

(3) There exists a train track representative f : Rr → Rr of ϕ such that f has no

pINPs and such that f has exactly one nondegenerate illegal turn.

(4) The ideal Whitehead graph IW(ϕ) of ϕ is the complete graph on 2r−1 vertices.

(5) The axis bundle for ϕ in CVr consists of a single axis.

(The terms appearing in this definition that have not yet been defined are ex-

plained later in the paper).

Our main result (c.f. Theorem 5.7 below) is:

Theorem A. Let r ≥ 3. For n ≥ 1 let En be the event that for a trajectory

ω = θ1, θ2, . . . of W the sequence θ1, . . . , θn is cyclically admissible. Also, for n ≥ 1

let Bn be the event that for a trajectory ω = θ1, θ2, . . . ofW the outer automorphism

ϕn = θn ◦ · · · ◦ θ1 ∈ Out(Fr) has property (G).

Then the following hold:
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(1) For the conditional probability Pr(Bn|En) we have

lim
n→∞

Pr(Bn|En) = 1.

(2) We have Pr(En)→n→∞
2r−3

2r(r−1) and lim infn→∞ Pr(Bn) ≥ 2r−3
2r(r−1) > 0.

(3) For µW -a.e. trajectory ω = θ1, θ2, . . . of W, there exists an nω ≥ 1 such that

for every n ≥ nω such that tn = θ1, . . . , θn is cyclically admissible, we have that

the outer automorphism ϕn = θn ◦ · · · ◦ θ1 ∈ Out(Fr) has property (G).

We then project the random walk W to a random walk on SL(r,Z) by sending

each θ ∈ S to its transition matrix in SL(r,Z), when θ is viewed as a graph map

Rr → Rr. We analyze the spectral properties of this projected walk and show that

it has positive first Lyapunov exponent, see Proposition 5.13. We then conclude

that for µW -a.e. trajectory θ1, θ2, . . . ,, the stretch factor λ(θn ◦ · · · ◦ θ1) grows ex-

ponentially in n for any increasing sequence of indices n such that θ1, θ2, . . . , θn is

cyclically admissible. See Theorem 5.15 below for the precise statement, and see

Section 2.6 for the definition and properties of stretch factor for an element of

Out(Fr).

As a consequence, we show that our random walk W has positive linear rate

of escape with respect to the word metric defined by any finite generating set of

Out(Fr) (c.f. Theorem 5.17):

Theorem B. Let r ≥ 3 and let Q be a finite generating set of Out(Fr) such that

Q = Q−1. Then there exists a constant c > 0 such that, for µW -a.e. trajectory

ω = θ1, θ2, . . . of W,

lim
n→∞

1

n
|θn . . . θ1|Q = c.

Here for ϕ ∈ Out(Fr), |ϕ|Q denotes the distance from 1 to ϕ in Out(Fr) with

respect to the word metric on Out(Fr) corresponding to Q.

Note that our random walk W is a “left” random walk on Out(Fr), since with

a random trajectory θ1, θ2, . . . of W we associate the sequence ϕn = θn ◦ · · · ◦ θ1 ∈
Out(Fn) (rather than θ1 ◦ · · · ◦ θn). We explain in Remark 5.8 how one can convert

our random walk into a more traditional “right” random walk on Out(Fr), although

after such a conversion the statements of our main results become less natural.

The proof of Theorem A is based on completely different methods from all the

previous results about the properties of “random” elements of Out(Fr) (see above

the discussion of the work of Rivin, Calegari-Maher, and Sisto). Instead of using

the action of Out(Fr) on the free factor complex or on the abelianization of Fr,

we analyze the properties of train track representatives of elements ϕn ∈ Out(Fr)

obtained by our walk W. The main payoff is that, apart from concluding that ϕn
is fully irreducible, we obtain a great deal of extra detailed structural information

about the properties of ϕn, where such information does not seem to be obtainable

by prior methods. A key tool in establishing that ϕn is fully irreducible is the train

track criterion of full irreducibility obtained in [40] (see Proposition 2.27 below);
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we also discuss a related criterion obtained in [27] (see Proposition 2.26 below). We

substantially rely on ideas and results of [39,40,41], although the exposition given

in the present paper is almost completely self-contained.

Finally, we pose several open problems naturally arising from our work:

Question 1.2. In the context of our Theorem A, for a µW -a.e. trajectory θ1, θ2, . . .

and n >> 1 such that θ1, . . . , θn is cyclically admissible, what can be said about

the rotationless index, index list, and Ideal Whitehead graph of (θn ◦ · · · ◦ θ1)−1?

In [26], Jäeger and Lustig, for each r ≥ 3, constructed a positive automorphism

ϕ such that ϕ is ageometric fully irreducible with i(ϕ) = 3
2 − r and such that

i(ϕ−1) = 1 − r, so that ϕ−1 is parageometric. In their construction ϕ arises as a

rather special composition of positive elementary Nielsen automorphisms, where this

composition is cyclically admissible in our sense. However, experimental evidence

appears to indicate that for ϕ ∈ Out(Fr) produced by our walkW for long “random”

cyclically admissible compositions, the absolute value of i(ϕ−1) is much smaller than

the maximum value of r − 1 achieved by parageometrics.

Question 1.3. Again in the context of Theorem A, is it true that for µW -a.e.

trajectory θ1, θ2, . . . of W, projecting this trajectory to the free factor complex

FFr as θ1 . . . θnp, where p is a vertex of FFr (or perhaps as θ−1
1 . . . θ−1

n p), gives a

sequence that converges to a point of the hyperbolic boundary ∂FFr?

Note that by the recent work of Horbez [24] on describing the Poisson boundary

of Out(Fr), the answer to the similar question for a simple random walk on Out(Fr)

is positive. In several personal conversations, Camille Horbez indicated to the second

author a plausible approach for getting a positive answer to Question 1.3.

Question 1.4. Let r ≥ 3 and let Q = Q−1 be a finite generating set of Out(Fr).

If q1, q2, . . . is a random trajectory of the simple random walk on Out(Fr), what

can be said about the properties of ϕn = q1 . . . qn ∈ Out(Fr), apart from the

fact that, with probability tending to 1 as n → ∞, the automorphism ϕn is a

nongeometric fully irreducible? In particular, is ϕn ageometric? What can be said

about i(ϕn) = − 1
2 indgeom(Tϕn), and about the index list and the Ideal Whitehead

graph of ϕn?

Question 1.5. Let Σ be a closed oriented hyperbolic surface. What can be said

about the index/singularity list for the stable foliation of a “random” element ϕn ∈
Mod(S) obtained by a simple random walk of length n on Mod(S)? (Note that by

the results of Rivin, Maher, and Calegari-Maher, discussed above, we do know that

ϕn is pseudo-Anosov with probability tending to 1 as n→∞).

It would also be interesting to understand the index properties of generic au-

tomorphisms ϕn ∈ Out(Fr) (where r ≥ 3) produced by a simple random walk on

Out(Fr) with respect to some finite generating set of Out(Fr). As noted above, it

is already known that in this situation ϕn is atoroidal and fully irreducible with
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probability tending to 1 as n→∞. Computer experiments, conducted by us using

Thierry Coulbois’ computer package for free group automorphismsa appear to indi-

cate that generically both ϕn and ϕ−1
n are ageometric fully irreducible, with a very

small value of |i(ϕn)| (in contrast with an almost maximal value |i(ϕn)| = r− 2
3 in

Theorem A). These experiments also appear to indicate that several possible index

lists for ϕn occur with asymptotically positive probability each, with the single-entry

list {− 1
2} occurring with the highest probability. However, the maximal values of

the length n of a simple random walk on Out(Fr) (with r = 3, 4, 5, 6), that our

experiments were able to handle, were around n ≈ 80− 85, and longer experiments

are needed to get more conclusive empirical data.

A plausible conjecture here would be that all singularities of the stable foliation

of a random ϕn are 3-prong singularities. Note that a result of Eskin, Mirzakhani,

and Rafi [14] shows that for “most” (in a different sense) closed geodesics in the

moduli space of Σ, the pseudo-Anosov element of Mod(Σ) corresponding to such a

closed geodesic has all singularities of its stable foliation being 3-prong.

2. Preliminaries

2.1. Graphs, paths and graph maps

Definition 2.1 (Graphs). A graph Γ is a 1-dimensional cell-complex. We call

the 0-cells of Γ vertices and denote the set of all vertices of Γ by V Γ. We refer to

open 1-cells of Γ as topological edges of Γ and denote the set of all topological edges

of Γ by EtopΓ.

Each topological edge Γ is homeomorphic to the open interval (0, 1) and thus,

when viewed as a 1-manifold, admits two possible orientations. An oriented edge

of Γ is a topological edge with a choice of an orientation on it. We denote by EΓ

the set of all oriented edges of Γ. If e ∈ EΓ is an oriented edge, we denote by e the

same underlying edge with the opposite orientation. Note that for each e ∈ EΓ we

have e = e and e 6= e; thus − : EΓ→ EΓ is a fixed-point-free involution.

Since Γ is a cell-complex, every oriented edge e of Γ comes equipped with the

orientation-preserving attaching map je : [0, 1] → Γ such that je maps (0, 1)

homeomorphically to e and such that je(0), je(1) ∈ V Γ. By convention we choose

the attaching maps so that, for each e ∈ EΓ and each s ∈ (0, 1), we have

(j−1
e ◦ je)(s) = 1 − s. For e ∈ EΓ we call je(0) the initial vertex of e, denoted

o(e), and we call je(1) the terminal vertex of e, denoted t(e). Thus, by definition,

o(e) = t(e) and t(e) = o(e).

If Γ is a graph and v ∈ V Γ, a direction at v in Γ is an edge e ∈ EΓ such that

o(e) = v. We denote the set of all directions at v in Γ by LkΓ(v) and call it the link

of v in Γ. Then the degree of v in Γ, denoted deg(v) or degΓ(v), is the cardinality

of the set LkΓ(v).

aThe package is available at http://www.cmi.univ-mrs.fr/~coulbois/train-track/

http://www.cmi.univ-mrs.fr/~coulbois/train-track/ 
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An orientation on a graph Γ is a partition EΓ = E+Γ t E−Γ such that for an

edge e ∈ EΓ we have e ∈ E+Γ if and only if e ∈ E−Γ.

Note that both topological edges and oriented edges are, by definition, open

subsets of Γ and they don’t contain their endpoints.

Definition 2.2 (Combinatorial and topological paths). A combinatorial

edge-path γ of length n ≥ 1 is a sequence γ = e1, . . . , en such that ei ∈ EΓ for

i = 1, . . . , n and such that t(ei) = o(ei+1) for all 1 ≤ i < n. We put o(γ) := o(e1),

t(γ) := t(en), and γ−1 := en, . . . , e1. Thus γ−1 is again a combinatorial edge-path

of length n. For v ∈ V Γ we also view γ = v as a combinatorial edge-path of length 0

with o(γ) = t(γ) = v and γ−1 = γ. For a combinatorial edge-path γ of length n ≥ 0

we denote |γ| = n.

A combinatorial edge-path γ is reduced or tight if γ does not contain subpaths

of the form e, e, where e ∈ EΓ.

A topological edge-path in Γ is a continuous map f : [a, b]→ Γ such that either

a = b and f(a) = f(b) ∈ V Γ or a < b and there exists a subdivision a = a0 < a1 <

· · · < an = b and a combinatorial edge-path γ = e1, . . . , en in Γ such that:

(1) We have f(ai) ∈ V Γ for i = 0, . . . , n.

(2) We have f(ai) = o(ei) for i = 0, . . . , n − 1 and f(ai) = t(ei−1) for i =

1, . . . , n.

(3) f |(ai−1,ai) is an orientation-preserving homeomorphism mapping (ai−1, ai)

onto ei.

Sometimes we drop the commas and just write γ = e1 . . . en.

Note that, for a topological edge-path f : [a, b] → Γ, where a < b, the combina-

torial edge-path γ = e1, . . . , en with the above properties is unique; we say that γ is

the combinatorial edge-path associated to f ; we also call a = a0 < · · · < an = b the

associated subdivision for f . If a = b and f(a) = f(b) = v ∈ V Γ, we say the path

γ = v is associated to f .

Let f : [a, b] → Γ be a topological edge-path (where a < b), let γ = e1, . . . , en
be the associated combinatorial edge-path, and let a = a0 < a1 < · · · < an = b be

the corresponding subdivision. We say that a topological edge-path f is tame if for

every i = 1, . . . , n the map j−1
ei ◦ f : (ai−1, ai) → (0, 1) is a (necessarily unique)

orientation-preserving affine homeomorphism. By convention, if f : [a, b] → Γ is a

topological edge-path with a = b, we also consider f to be tame.

A topological path f : [a, b]→ Γ (where a < b) is defined similarly to as in the

definition of a topological edge-path above, except that we no longer require f(a) =

o(e1) and f(b) = t(en), but instead allow f(a) ∈ e1 ∪ o(e1) and f(b) ∈ en ∪ t(en).

For i = 1 and i = n, condition (3) in the above definition is relaxed accordingly.

For a = b we view any map f : {a} → Γ as a topological path in Γ.

For a topological path f : [a, b] → Γ with a < b there is still a canonically

associated combinatorial edge-path γ = e1, . . . , en and a canonically associated sub-

division a = a0 < a1 < · · · < an = b.

We define what it means for a topological path f : [a, b] → Γ to be tame, simi-
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larly to the notion of a tame topological edge-path above, by requiring all the maps

j−1
ei ◦f |(ai−1,ai) to be injective affine orientation-preserving maps from (ai−1, ai) to

subintervals of (0, 1). For 1 < i < n it is still the case that j−1
ei ◦f ((ai−1, ai)) = (0, 1).

However, we now allow for the possibility that j−1
e1 ◦ f ((a0, a1)) = (s, 1) with s > 0

(in the case where f(a) ∈ e1 rather than f(a) = o(e1)) and that j−1
en ◦f ((an−1, an)) =

(0, s) with s < 1 (in the case where f(a) ∈ en rather than f(a) = t(en)). Also, if

a = b, we consider any map f : {a} → Γ to be a tame path in Γ.

Note that if f : [a, b] → Γ is a topological path (respectively, tame topological

path), then for any a ≤ a′ ≤ b′ ≤ b the restriction f |[a′,b′] : [a′, b′] → Γ is again a

topological path (respectively, tame topological path) in Γ.

Also notice that, if n ≥ 1 and γ = e1, . . . , en is a combinatorial edge-path and

a ∈ R, then there exists a unique tame topological edge-path f : [a, a + n] →
Γ with associated combinatorial path γ and associated subdivision ai = a + i,

i = 0, . . . , n. By contrast, given γ = e1, . . . , en and a ∈ R, there exist uncountably

many topological edge-paths f : [a, b]→ Γ with associated combinatorial path γ and

associated subdivision ai = a+ i, i = 0, . . . , n. The distinction between topological

edge-paths and tame topological edge-paths is often ignored in the literature, but

this distinction is important when considering fixed points and dynamics of graph

maps, as we will see later.

Definition 2.3 (Paths). Let Γ be a graph. By a path in Γ we will mean a tame

topological path f : [a, b]→ Γ. A path f : [a, b]→ Γ is trivial if a = b and nontrivial

if a < b. A path f is tight or reduced if the map f : [a, b] → Γ is locally injective.

Thus a trivial path is always tight, and a nontrivial path is tight if and only if the

combinatorial edge-path associated to f is reduced.

2.2. Graph maps

Definition 2.4 (Graph maps). Let Γ and ∆ be graphs. A topological graph map

f : Γ→ ∆ is a continuous map such that f(V Γ) ⊆ V∆ and such that the restriction

of f to each edge of Γ is a topological edge-path in ∆. More precisely, this means

that for each e ∈ EΓ the map f ◦ je : [0, 1]→ ∆ is a topological edge-path in ∆.

A graph map is a topological graph map f : Γ → ∆ such that the restriction of

f to each edge of Γ is a path in Γ (in the sense of Definition 2.3), that is, such that

for every e ∈ EΓ the map f ◦ je : [0, 1]→ ∆ is a tame topological edge-path in ∆.

Convention 2.5. By convention, if f : [a, b]→ Γ is a tame topological edge-path with

the associated combinatorial edge-path γ = e1, . . . , en, we will usually suppress the

distinction between f and γ. In particular, if f : Γ → ∆ is a graph map and

e ∈ EΓ, we will usually suppress the distinction between the tame topological

path f ◦ je : [0, 1] → ∆ and the associated combinatorial edge-path γ = e1, . . . , en
in ∆. Moreover, in this situation we will often write f(e) = e1, . . . , en or even

f(e) = e1 . . . en.
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Note that our definition implies that if f : Γ → ∆ is a topological graph map,

then for each edge e ∈ EΓ we have f(e) = e1, . . . , en with n ≥ 1. It is sometimes

useful to allow a topological graph map to send an edge to a vertex (rather than

to an edge-path of positive combinatorial length), but we will not need this level of

generality in the present paper.

A topological graph-map f : Γ → ∆ is said to be expanding if for each edge

e ∈ EΓ, we have |fn(e)| → ∞ as n→∞.

Remark 2.6. The distinction between the notions of a graph map and of a topo-

logical graph map is important when considering the fixed points and the dynam-

ics of a (topological) graph map f : Γ → Γ. Indeed, suppose that f : Γ → Γ

is a topological graph map such that for some edge e ∈ EΓ the combinatorial

edge-path associated with f ◦ je : [0, 1] → Γ is e1, . . . , en, such that n ≥ 3, and

such that for some 2 ≤ i0 ≤ n − 1 we have ei0 = e. Then there exists a sub-

division 0 = a0 < a1 < · · · < an such that f ◦ ji maps (ai−1, ai) homeomor-

phically and preserving orientation to ei, for i = 1, . . . , n. Denote xi = je(ai)

and denote by (xi−1, xi) the open segment in e between xi−1 and xi; so that

(xi−1, xi) = je ((ai−1, ai)). Thus, for i = 1, . . . , n, f maps the open segment

(xi−1, xi) homeomorphically and preserving orientation to ei. Our assumption that

ei0 = e with 1 < i0 < n implies that the map h := j−1
e ◦ f ◦ je maps the subsegment

[ai0−1, ai0 ] of [0, 1] by an orientation preserving homeomorphism to the interval

[0, 1]. The intermediate value theorem then implies that there exists ai0−1 < s < ai
such that the point x = je(s) ∈ (xi0−1, xi0) is fixed by f , that it satisfies f(x) = x.

However, the orientation-preserving homeomorphism h : [ai0−1, ai0 ] → [0, 1] can,

in principle, have uncountably many fixed points; e.g. h could coincide with the

identity map on some nondegenerate subsegment of [ai0−1, ai0 ]. Thus, f may have

uncountably many fixed points in the interval (xi0−1, xi0) of e. On the other hand,

if in the above situation f is a graph map (so that the path f ◦ je : [0, 1] → Γ is

tame), then h := j−1
e ◦f ◦ je maps the subinterval [ai0−1, ai0 ] of [0, 1] to the interval

[0, 1] by an orientation preserving affine homeomorphism. It then follows that there

exists a unique x ∈ (xi0−1, xi0) such that f(x) = x.

Thus, if Γ is a finite graph and f : Γ→ Γ is an expanding (in the combinatorial

sense defined above) topological graph-map, then f may have uncountably many

fixed points in Γ. By contrast, if Γ is finite and f : Γ → Γ is an expanding graph-

map, then f has only finitely many fixed points and only countably many periodic

points in Γ.

Allowing f : Γ→ Γ to be a topological graph map, rather than a graph map, may

result in some additional pathologies of the dynamics of f under iterations; e.g. an

expanding topological graph-map f : Γ→ Γ may turn out to act as a “contraction”

on a nondegenerate subsegment of an edge of Γ. Restricting our consideration to

graph maps in this paper rules out these kinds of pathologies.

For a square matrix M with real coefficients we denote by λ(M) the spectral

radius of the matrix M , that is, the maximum of |λi| where λi ∈ C varies over all
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eigenvalues of M .

Definition 2.7 (Transition matrix of a graph map). Let Γ be a finite graph

with m = #(EtopΓ) ≥ 1 topological edges. Choose an orientation EΓ = E+ΓtE−Γ

and an ordering E+Γ = {e1, . . . , em}. Let f : Γ→ Γ be a graph map. The transition

matrix M(f) of f is an m×m matrix with nonnegative integer entries, where, for

1 ≤ i, j ≤ m, the entry mij in the position ij in M is equal to the number of times

ei and ei appear in the combinatorial edge-path f(ej).

We denote λ(f) := λ(M(f)), the spectral radius of the matrix M(f).

It is not hard to see for the above definition that if f, g : Γ→ Γ are graph-maps,

then M(g ◦ f) = M(g)M(f). In particular, we have M(fk) = [M(f)]k for each

integer k ≥ 1.

Lemma 2.8. Let Γ be a finite connected graph and let f, g : Γ → Γ be such that

M(f) > 0 and g : Γ→ Γ is surjective. Then M(g ◦ f) > 0.

Proof. Let e ∈ EΓ be arbitrary. Since M(f) > 0, the path f(e) passes through

every topological edge of Γ. Since g : Γ → Γ is surjective, it follows that the path

g(f(e)) also passes through every topological edge of Γ. Hence M(g ◦ f) > 0, as

required.

Definition 2.9 (Regular map). A graph map f : Γ → ∆ is regular if for each

e ∈ EΓ the combinatorial edge-path f(e) = e1, . . . , en is reduced. Note that f is

reduced if and only if the path f ◦ je : [0, 1]→ ∆ is locally injective.

Note that, if f : Γ → Γ is a graph map, then for each k ≥ 1, we have that

fk : Γ→ Γ is also a graph map. However, if f : Γ→ Γ is a regular graph map, then,

in general, the map fk : Γ→ Γ may fail to be regular for some k ≥ 1.

2.3. Perron-Frobenius theory

We say that a d×d matrix M with real coefficients is nonnegative, denoted M ≥ 0,

if all coefficients of M are ≥ 0. Recall that a nonnegative d× d matrix M is called

irreducible if for each 1 ≤ i, j ≤ d there exists a k ≥ 1 such that (Mk)ij > 0.

It is not hard to check that, in the context of Definition 2.7, the matrix M(f) is

irreducible if and only if for each e, e′ ∈ EΓ there exists a k ≥ 1 such that the path

fk(e) contains an occurrence of either e′ or of e′.

For a d×d matrix M = (mij)
m
i,j=1 we write M > 0 if mij > 0 for all 1 ≤ i, j ≤ d.

Note that if M > 0, then M is irreducible.

Recall that for a square matrix M with real coefficients we denote by λ(M) the

spectral radius of the matrix M .

A key basic result of Perron-Frobenius theory says that if M ≥ 0 is a d × d

irreducible matrix then λ(M) > 0 and, moreover, λ(M) is an eigenvalue for M ,

called the Perron-Frobenius (PF) eigenvalue. Moreover, in this case there exists an
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eigenvector v ∈ Rd with Mv = λ(M)v such that all coefficients of v are > 0. See

[45] for background on Perron-Frobenius theory.

2.4. Train track maps

Definition 2.10 (Train track map). Let Γ be a finite connected graph without

degree-1 or degree-2 vertices.

A graph-map f : Γ→ Γ is called a train track map if the following hold:

(1) f is a homotopy equivalence and

(2) for each k ≥ 1 the graph-map fk : Γ → Γ is regular (that, is, for every k ≥ 1

and every e ∈ EΓ the edge-path fk(e) is reduced).

The definition above implies that if f : Γ→ Γ is a train track map, then for each

n ≥ 1 fn : Γ→ Γ is also a train track map.

A train track map f : Γ → Γ is said to be irreducible if its transition matrix

M(f) is irreducible. A train track map f : Γ → Γ is said to be expanding if for

every edge e ∈ EΓ we have |fn(e)| → ∞ as n → ∞. Thus a train track map f is

expanding if and only if for each e ∈ EΓ there exist n ≥ 1 such that |fn(e)| ≥ 2.

Definition 2.11 (Derivative map). Let f : Γ→ Γ be a graph map. The deriva-

tive map Df : EΓ → EΓ is defined as follows. For an edge e ∈ EΓ with

f(e) = e1, . . . , en we have Df(e) := e1.

Note that the derivative map Df is well-defined, even without the assumption

that the graph-map f be regular. Note also that if f, g : Γ→ Γ are graph-maps, then

D(f ◦ g) = Df ◦Dg. In particular, for each k ≥ 1, we have that D(fk) = (Df)k.

An edge e ∈ EΓ is called f -periodic if for some k ≥ 1 we have (Df)k(e) = e,

that is, if for some k ≥ 1 the edge-path fk(e) starts with e. A vertex v ∈ V Γ is

f -periodic if for some k ≥ 1 we have fk(v) = v.

Definition 2.12 (Turns). Let Γ be a graph. For a vertex v ∈ V Γ a turn in Γ

at v is an unordered pair e, e′ of (not necessarily distinct) oriented edges of Γ such

that o(e) = o(e′) = v. A turn e, e′ is called degenerate if e = e′ and is called non-

degenerate if e 6= e′. For a graph Γ we denote by T (Γ) the set of all turns in Γ and

denote by T×(Γ) the set of all non-degenerate turns in Γ.

For an edge-path γ = e1, . . . , en in Γ we say that a turn e, e′ occurs in γ if

there exists an i such that {e, e′} = {e−1
i , ei+1}. We denote the set of all turns

that occur in γ by T (γ). Note that, by definition, T (γ) = T (γ−1). Similarly, if

α is a non-degenerate path in Γ with associated combinatorial edge-path γ, we set

T (α) := T (γ). If α is a degenerate path in Γ, we set T (α) := ∅.
Note that if f : Γ → Γ is a graph-map, then the derivative map Df : EΓ →

EΓ naturally extends to the map Df : T (Γ) → T (Γ) defined as D({e, e′}) :=

{Df(e), Df(e′)}, where {e, e′} ∈ T (Γ).

Definition 2.13 (Taken and legal turns). Let f : Γ→ Γ be a graph-map.
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We denote T (f) := ∪e∈EΓT (f(e)) and T∞(f) := ∪k≥1T (fk). We refer to ele-

ments of T (f) as turns immediately taken by f and to elements of T∞(f) as turns

eventually taken by f .

We also say that a non-degenerate turn {e, e′} is f -legal if the turn

{Dfk(e), Dfk(e′)} is non-degenerate for each k ≥ 1. A turn {e, e′} is f -illegal

if it is not illegal. In particular, degenerate turns are always illegal.

We collect some basic elementary facts regarding turns and train track maps in

the following proposition, whose proof is left to the reader:

Proposition 2.14. Let Γ be a finite connected graph without degree-1 and degree-2

vertices and let f : Γ→ Γ be a graph-map which is a homotopy equivalence.

Then:

(1) We have Df (T∞(f)) = T∞(f).

(2) If f is a train track map, then every eventually taken turn by f is legal.

(3) The map f is a train track map if and only if f is regular and every turn in

T (f) is legal.

Recall that if v ∈ Γ, we denote by LkΓ(v) the set of all e ∈ EΓ with o(e) = v

and refer to elements of LkΓ(v) as directions at v in Γ.

Definition 2.15 (Local and limited Whitehead graphs). Let f : Γ → Γ be

a graph-map. For a vertex v ∈ V Γ we define the limited Whitehead graph of f

at v, denoted WhL(f, v), to be a graph with vertex set LkΓ(v) and with the set of

topological edges defined as follows. To every turn {e, e′} ∈ T (f) such that e, e′ ∈
LkΓ(v), we associate a topological edge in WhL(f, v) with endpoints e, e′ ∈ Lk(v).

For a vertex v ∈ V Γ, define the local Whitehead graph of f at v (also some-

times called the Whitehead graph of f at v), denoted Wh(f, v), to be a graph with

vertex set LkΓ(v) and with a topological edge with endpoints e, e′ ∈ LkΓ(v) whenever

{e, e′} ∈ T∞(f).

Thus, by definition, WhL(f, v) is a subgraph of Wh(f, v) and these graphs have

the same vertex set, namely LkΓ(v).

Note that if f : Γ→ Γ is a regular graph-map, then T (f) contains no degenerate

turns and hence WhL(f, v) has no loop-edges. In particular, if f : Γ→ Γ is a train

track map, then Wh(f, v) has no loop-edges.

Definition 2.16 (Legal paths). Let f : Γ→ Γ be a train track map. A combina-

torial edge-path γ in Γ is legal if every turn in T (γ) is legal. Similarly, a path α in

Γ is legal if every turn in T (α) is legal.

2.5. Topological representatives

For an integer r ≥ 2 we fix a free basis A = {a1, . . . , ar} of Fr. Let Rr be the r-rose,

that is, a graph with a single vertex v and r topological loop-edges at v. We choose



May 5, 2015 5:45 WSPC/INSTRUCTION FILE final-version

16 ILYA KAPOVICH and CATHERINE PFAFF

an orientation on Rr and an ordering E+Rr = {e1, . . . , er} of E+Rr. We identify

Fr = F (a1, . . . , ar) with π1(Rr, v) by sending ai ∈ Fr to the loop ei ∈ π1(Rr, v).

Definition 2.17 (Marking). Let r ≥ 2 be an integer. A marking for Fr is a

graph map h : Rr → Γ, such that Γ is a finite connected graph without degree-one

and degree-two vertices, and such that h : Rr → Γ is a homotopy equivalence.

Note that if h : Rr → Γ is a marking, then h naturally determines an isomor-

phism h∗ : π1(Rr, v) → π1(Γ, h(v)), which we can use to identify Fr = π1(Rr, v)

with π1(Γ, h(v)).

Definition 2.18 (Topological representative). Let ϕ ∈ Out(Fr), where r ≥ 2.

A topological representative of ϕ is a marking h : Rr → Γ together with a graph-

map f : Γ → Γ such that f is a homotopy equivalence and such that the outer

automorphism of π1(Γ), induced by f , is equal to ϕ, modulo the identification of

Fr = π1(Rr) and π1(Γ) via h∗. More precisely, denote v0 = h(v) ∈ V Γ and choose

a path α in Γ from v0 to f(v0). Define f∗ : π1(Γ, v0) → π1(Γ, v0) by sending (the

homotopy class of) a closed path γ at v0 to the (homotopy class of) the closed path

αf(γ)α−1 at v0. The fact that f : Γ → Γ is a homotopy equivalence implies that

f∗ : π1(Γ, v0) → π1(Γ, v0) is an isomorphism. Changing the choice of α results in

modifying f∗ by a composition with an inner automorphism of π1(Γ, v0), so that f∗ is

well-defined as an outer automorphism of π1(Γ, v0). Saying that the automorphism

of π1(Γ), induced by f , is equal to ϕ modulo the identification of Fr = π1(Rr) and

π1(Γ) via h∗ means that h−1
∗ ◦ f∗ ◦ h∗ : π1(Rr, v) → π1(Rr, v) is an automorphism

whose outer automorphism class is ϕ.

Although in the above definition a topological representative of ϕ ∈ Out(Fr)

consists of a marking h : Rr → Γ and a graph-map f : Γ → Γ, we usually will

suppress the mention of the marking when talking about topological representatives

and will refer to f : Γ→ Γ as a topological representative of ϕ. In the applications

considered in this paper we will always work with the markings h : Rr → Γ where

Γ = Rr and h = IdRr , which makes explicitly mentioning the marking particularly

redundant. If f : Γ→ Γ is a topological representative of some ϕ ∈ Out(Fr), then for

any Φ ∈ Aut(Fr) whose outer automorphism class is ϕ we also say that f : Γ → Γ

is a topological representative of Φ.

For ϕ ∈ Out(Fr) a train track representative of ϕ is a topological representative

f : Γ→ Γ such that f is a train track map.

Definition 2.19 (Standard representative). Let Φ ∈ Aut(Fr) and Φ(ai) =

xi,1 . . . xi,ni be a freely reduced word over A±1 of length ni ≥ 1, for i = 1, . . . , r.

The standard representative gΦ of Φ is then defined as follows: Use Γ = Rr
and h = IdRr as the marking, so that gΦ : Rr → Rr. For each i = 1, . . . , r, at the

combinatorial edge-path level, we have f(ei) = ei,1 . . . ei,ni , where ei,k ∈ ERr is the

edge corresponding to xi,k ∈ A±1 under the identification F (a1, . . . , ar) = π1(Rr, v).

The subdivision of [0, 1] corresponding to the path f ◦ jei : [0, 1]→ Rr is chosen so
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that each subdivision interval of [0, 1] mapping to the edge ei,k, k = 1, . . . , ni, has

length 1/ni.

Note that if Φ,Ψ ∈ Aut(Fr) are arbitrary, then gΨ ◦ gΦ : Rr → Rr satisfies

all the requirements of being a topological representative of Ψ ◦ Φ except that the

map gΨ ◦ gΦ may, in general, fail to be regular, since for an edge e ∈ Rr the path

gΨ(gΦ(e)) may fail to be reduced.

If for every e ∈ ERr the path gΨ(gΦ(e)) is reduced (that is, if the graph map

gΨ ◦ gΦ : Rr → Rr is regular), then gΨ ◦ gΦ : Rr → Rr is indeed a topological

representative of Ψ ◦ Φ. Moreover, in this case gΨ ◦ gΦ and gΨ◦Φ are isotopic rel

V Rr = {v}.

2.6. Stretch factors

Let A be a free basis of Fr, where r ≥ 2. For w ∈ Fr we denote by ||w||A the

cyclically reduced length of w with respect to A.

Definition 2.20 (Stretch factors). For ϕ ∈ Out(Fr) and w ∈ Fr put

λA(ϕ,w) := lim sup
n→∞

n
√
||ϕn(w)||A.

It is known that the actual limit in the above formula always exists, and it is also

known that λA(ϕ,w) depends only on ϕ and w, but not on the choice of a free basis

A of Fr. For this reason we denote λ(ϕ,w) := λA(ϕ,w) where A is any free basis

of Fr. Now put λ(ϕ) := supw∈Fr\{1} λ(ϕ,w). We call λ(ϕ) the stretch factor or the

growth rate of ϕ.

It is known that for every ϕ ∈ Out(Fr) there exists w ∈ Fr with λ(ϕ) = λ(ϕ,w),

and moreover, that λ(ϕ) can be “read-off” from a relative train track representative

of ϕ. See [31] for details. We will need only the simplest case of this fact here:

Proposition 2.21. [8,31] Let r ≥ 2 and let ϕ ∈ Out(Fr) be such that ϕ can be

represented by an expanding train track map f : Γ→ Γ with M(f) irreducible. Then

λ(ϕ) = λ(M(f)) > 1.

2.7. Nielsen paths

Definition 2.22 (Nielsen paths). Let f : Γ → Γ be a train track representative

of some ϕ ∈ Out(Fr).

A Nielsen path for f is a nondegenerate tight path γ in Γ with endpoints x, y ∈ Γ

(where x, y are not required to be vertices) such that f(x) = x, f(y) = y, and f(γ)

is homotopic to γ rel endpoints. A periodic Nielsen path for f is a nondegenerate

path γ in Γ such that for some n ≥ 1 the path γ is Nielsen for fn.

An indivisible Nielsen path for f , abbreviated as INP, is a Nielsen path γ for

f such that γ cannot be written as a concatenation γ = γ′γ′′, where γ′ and γ′ are
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Nielsen paths for f . Similarly, an indivisible periodic Nielsen path for f , abbreviated

as pINP, is a periodic Nielsen path γ for f such that γ cannot be written as a

concatenation γ = γ′γ′′, where γ′ and γ′ are periodic Nielsen paths for f .

It is known that pINPs have a specific structure, see [8] Lemma 3.4:

Proposition 2.23. Let f : Γ → Γ be an expanding irreducible train track map.

Then every pINP η in Γ has the form η = ρ−1
1 ρ2, where ρ1 and ρ2 are nondegenerate

legal paths with o(ρ1) = o(ρ2) = v ∈ V Γ and such that the turn at v between ρ1 and

ρ2 is an illegal nondegenerate turn for f .

Note that in the context of Proposition 2.23, there exist k ≥ 1 such that fk fixes

the points t(ρ1), t(ρ2). Note also that the points t(ρ1), t(ρ2) need not be vertices of

Γ.

2.8. Fully irreducible outer automorphisms

If G is a group and w ∈ G is a group element, we denote by [w] the conjugacy class

of w in G. Similarly, if H ≤ G is a subgroup of G, we denote by [H] the conjugacy

class of H in G.

Definition 2.24. Let ϕ ∈ Out(Fr) where r ≥ 3. The element ϕ of Out(Fr) is

said to be fully irreducible if there does not exist an integer k ≥ 1 and a nontrivial

proper free factor B of Fr, such that ϕk([B]) = [B].

Recall also that an element ϕ ∈ Out(Fr) is called atoroidal if there does not

exist 1 6= w ∈ Fr and an integer k ≥ 1 such that ϕk([w]) = [w]. For ϕ ∈ Out(Fr),

a conjugacy class [w], where w ∈ Fr, w 6= 1, is called ϕ-periodic if there exists a

k ≥ 1 such that ϕk([w]) = [w]. Thus ϕ ∈ Out(Fr) is atoroidal if and only if ϕ has

no periodic conjugacy classes.

A special case of an important general result of Bestvina and Handel [8] shows

that if ϕ ∈ Out(Fr) (where r ≥ 2) is fully irreducible, then there exists an expanding

irreducible train track representative f : Γ→ Γ of ϕ.

Another key result of Bestvina and Handel [8] provides a complete characteri-

zation of non-atoroidal fully irreducible elements of Out(Fr):

Proposition 2.25. [8] Let ϕ ∈ Out(Fr), where r ≥ 2 and suppose that ϕ is non-

atoroidal. Then ϕ is fully irreducible if and only if there exists a compact connected

surface Σ with a single boundary component such that b1(Σ) = r (so that the fun-

damental group of Σ is free of rank r), an identification π1(Σ) = Fr, and a pseudo-

Anosov homeomorphism g : Σ → Σ such that the outer automorphism of π1(Σ)

induced by g is equal to ϕ.

In view of the above result of Bestvina-Handel, fully irreducible elements of

Out(Fr) are divided into two main classes: non-atoroidal fully irreducible elements

of Out(Fr) are said to be geometric and atoroidal fully irreducible elements of

Out(Fr) are said to be nongeometric.
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It is well-known that Out(F2) contains no atoroidal elements. Therefore, if ϕ ∈
Out(Fr) is a nongeometric (i.e. atoroidal) fully irreducible, then r ≥ 3.

A recent result of Kapovich [27] (see also [13]), building on the work of Pfaff [40],

gives a train track characterization of nongeometric fully irreducibles. For complete-

ness, and to give context, we state the result in the form it is stated in in [27]:

Proposition 2.26. [27] Let r ≥ 3 and let ϕ ∈ Out(Fr) be an arbitrary atoroidal

element.

Then the following are equivalent:

(1) The automorphism ϕ is fully irreducible.

(2) There exists a train track representative f : Γ → Γ of ϕ such that the matrix

M(f) is irreducible and such that for each v ∈ V Γ the local Whitehead graph

Wh(f, v) is connected.

(3) There exists a train track representative f : Γ → Γ of ϕ such that for some

k ≥ 1, M(fk) > 0 and such that for each v ∈ V Γ, the local Whitehead graph

Wh(f, v) is connected.

(4) For each train track representative f : Γ → Γ of ϕ there exists a k ≥ 1 such

that M(fk) > 0 and the local Whitehead graph Wh(f, v) is connected for each

v ∈ V Γ.

However, the form we in fact use it in is that of [40]:

Proposition 2.27. [40] Let g : Γ → Γ be a train track representative of an outer

automorphism ϕ ∈ Out(Fr) such that

(I) g has no periodic Nielsen paths,

(II) the transition matrix for g is Perron-Frobenius, and

(III) all local Whitehead graphs Wh(g, v) (where v varies over the vertices of Γ) for

g are connected.

Then ϕ is fully irreducible. Moreover, Proposition 2.31 implies that ϕ is ageometric

(see the definition of ageometric fully irreducibles in Section 2.9 below).

2.9. Index and geometric index

The notion of an index ind(ϕ) of an element of ϕ ∈ Out(Fr) was originally in-

troduced in [16] and formulated in terms of the dynamics of the action of repre-

sentatives Φ ∈ Aut(Fr) of ϕ on the hyperbolic boundary ∂Fr of Fr. Since we are

not going to work with the ind(ϕ) directly, we omit the precise definition here and

refer the reader to [16,10] for details. Note, however, that the index ind(ϕ) is not,

in general, invariant under taking positive powers of ϕ. There is a natural notion

(again see [16,10]) of a rotationless element ϕ ∈ Out(Fr), also defined in terms of

the action on ∂Fr. It is known that every element of Out(Fr) has a positive rota-

tionless power and that if ϕ ∈ Out(Fr) is rotationless, then ind(ϕ) = ind(ϕk) for

all k ≥ 1.
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Recall that the unprojectivized Culler-Vogtmann Outer space cvr consists of all

minimal free discrete isometric actions on Fr on R-trees, considered up to an Fr-

equivariant isometry. Points of cvr can also be described in terms of “marked metric

graph structures” on Fr. There is a natural action of R>0 on cvr by multiplying

the metric on T ∈ cvr by a positive scalar. The quotient space cvr/R>0 is called

the projectivized Culler-Vogmtann Outer space and denoted CVr. The space CVr
can also be canonically identified with the set of all T ∈ cvr such that the quotient

metric graph T/Fr has volume 1.

It is known [2,12,19] that the closure cvr of cvr, with respect to equivariant

Gromov-Hausdorff convergence topology, consists of all “very small” isometric ac-

tions of Fr on R-trees, again considered up to an Fr-equivariant isometry. The

projectivization CV r := cvr/R>0 of cvr is compact and provides the standard com-

pactification of CVr.

For an R-tree T and a point P ∈ T , we denote by degT (P ) the number of

connected components of T − {P}. A point P ∈ T is called a branch point if

degT (P ) ≥ 3.

In [17], Gaboriau and Levitt introduced the notion of a “geometric index” or

“branching index” for any T ∈ cvr. In the same paper they proved that for any

free Fr-tree T ∈ cvr the number of Fr-orbits of branch-points of T is finite and is

bounded above by 2r − 2. For a point P ∈ T we will denote by [P ] the Fr-orbit

of P . For simplicity, we will only define the geometric index for free Fr-trees (as

noted below, for every nongeometric fully irreducible ϕ ∈ Out(Fr), the action of Fr
on the “attracting tree” Tϕ is free). See [17,10] for the definition in the case of an

arbitrary T ∈ cvr.

Definition 2.28 (Geometric index). Let T ∈ cvr be a free Fr-tree. Define the

geometric index indgeom(T ) as

indgeom(T ) :=
∑

[P ]:deg(P )≥3

[degT (P )− 2].

In particular, Gaboriau and Levitt proved in [17] that for any T ∈ cvr we have

indgeom(T ) ≤ 2r − 2.

For every fully irreducible ϕ ∈ Fr there is an associated attracting tree Tϕ ∈ cvr,
which is unique up to projectivization, that is up to multiplying the metric on Tϕ
by a positive scalar. We recall an explicit construction of Tϕ in terms of train tracks;

see [16] for details. Let ϕ ∈ Out(Fr) be fully irreducible and let f : Γ→ Γ be a train

track representative of ϕ. Let λ := λ(f) > 1 be the Perron-Frobenius eigenvalue

of M(f). We consider the universal cover Γ̃ of Γ with the simplicial metric (where

every edge has length 1) and with the free discrete isometric action of Fr by covering

transformations. Choose a lift f̃ : Γ̃→ Γ̃ of f . For any points x, y ∈ Γ̃ put

d∞(x, y) = lim
n→∞

d((f̃)n(x), (f̃)n(y))

λn

(it is know that this limit exists). Then d∞ is a pseudo-metric on Γ̃ and we put
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Tϕ := Γ̃/ ∼, where for x, y ∈ Γ̃ we have x ∼ y whenever d∞(x, y) = 0. The pseudo-

metric d∞ descends to a metric, still denoted d∞, on Tϕ. Equipped with the metric

d∞, the set Tϕ is an R-tree, which also inherits a natural action of Fr by isometries

(coming from the action of Fr on Γ̃). The R-tree Tϕ, endowed with this action of

Fr, is called the attracting tree of ϕ. It is known that for every fully irreducible

ϕ ∈ Out(Fr) we have Tϕ ∈ cvr, and, moreover, that in this case the action of Fr
on Tϕ is free if and only if ϕ is nongeometric. Also, it is easy to see that Tϕ = Tϕk ,

for each k ≥ 1. In fact, it is known [32] that for any fully irreducible ϕ ∈ Out(Fr)

the projective class [Tϕ] is the unique attracting fixed point for the action of ϕ

on the projectivization CV r of cvr, that [Tϕ−1 ] is the unique repelling fixed point

for the action of ϕ on CV r, and that ϕ acts on CV r with “uniform North-South”

dynamics.

The following proposition summarizes key known facts about the relationship

between the index of a fully irreducible ϕ ∈ Out(Fr) and the geometric index

of the tree Tϕ. Most of these facts are originally proved in earlier work by various

authors [16,17,2,20,21], and others. All parts of Proposition 2.29 are explicitly stated

in [10], and we refer the reader to [10] for more detailed background information

and references.

Proposition 2.29. Let ϕ ∈ Out(Fr) be fully irreducible. Then:

(1) We have indgeom(Tϕ) ≤ 2r − 2.

(2) We have indgeom(Tϕ) = indgeom(Tϕ−1) = 2r − 2 if and only if ϕ is geometric.

(3) If ϕ−1 is rotationless, then 2ind(ϕ) = indgeom(Tϕ).

(4) The tree Tϕ is “geometric” in the sense of [2,33] if and only if indgeom(Tϕ) =

2r − 2.

Definition 2.30 (Parageometric and ageometric fully irreducibles). Let

ϕ ∈ Out(Fr) be a nongeometric fully irreducible. We say that ϕ is parageometric

if indgeom(Tϕ) = 2r − 2 (which by Proposition 2.29 implies that indgeom(Tϕ−1) <

2r − 2). We say that ϕ is ageometric if indgeom(Tϕ) < 2r − 2.

[2, Theorem 3.2] shows that for a fully irreducible ϕ ∈ Out(Fr) the tree Tϕ
is geometric (again in the sense of [2,33]) if and only if the “stable” train track

representative of ϕ contains a pINP. Since a train track with no pINPs is stable,

this implies the following well-known fact:

Proposition 2.31. Let ϕ ∈ Out(Fr) be fully irreducible and such that ϕ admits a

train track representative f : Γ→ Γ with no pINPs. Then ϕ is ageometric.

There is a more recent notion of an index, namely “Q-index” indQ(T ) defined

for a tree T ∈ cvr with dense Fr-orbits (such as the attracting tree Tϕ of a fully

irreducible ϕ ∈ Out(Fr), see [10,11] for details). In particular, it is known [10,

Theorem 5.1] that for every fully irreducible ϕ ∈ Out(Fr) one has indQ(Tϕ) =

indgeom(Tϕ−1).
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2.10. Ideal Whitehead graphs and the rotationless index

Note that the index ind(ϕ) of a fully irreducible ϕ ∈ Out(Fr), discussed above,

in general is not invariant under taking positive powers of ϕ. The geometric in-

dex indgeom(Tϕ) is invariant under taking positive powers, but the definition of

indgeom(Tϕ) in terms of branch points in Tϕ makes it unclear how to actually com-

pute indgeom(Tϕ).

In [23] Handel and Mosher introduced the notion of a rotationless index (there

just called the index sum) i(ϕ) of a fully irreducible ϕ ∈ Out(Fr), which coincides

with − 1
2 indgeom(Tϕ). The rotationless index is defined in terms of train track repre-

sentatives of ϕ, which makes it easy to compute in practice. Proposition 2.29 thus

implies that for a fully irreducible ϕ ∈ Out(Fr) the rotationless index i(ϕ) satisfies

the inequality 0 > i(ϕ) ≥ 1− r.
To define the rotationless index, we first need to define the ideal Whitehead

graph (introduced by Handel and Mosher in [23]) for a nongeometric fully irre-

ducible.

Definition 2.32 (Ideal Whitehead graph). Let g : Γ → Γ be a train track

representative of a nongeometric fully irreducible ϕ ∈ Out(Fr). A point v ∈ Γ is

called a singularity if v is either the endpoint of a periodic Nielsen path or has at

least three gates. The local stable Whitehead graph SW(g; v) for g at a singularity

v has:

(1) a vertex for each periodic direction d ∈ D(v) and

(2) edges connecting vertices for d1, d2 ∈ D(v) when some gk(e), with e ∈ E(Γ),

traverses {d1, d2}.
For a pINP-free g, the ideal Whitehead graph IW(ϕ) of ϕ is defined as⊔

singularities v∈Γ

SW(g; v).

In general, one needs to make the following additional identifications. For each pINP

ρ for g, one needs to identify the vertex for the initial direction of ρ with the vertex

for the initial direction of ρ̄.

Definition 2.33 (Rotationless index and index list). Let ϕ ∈ Out(Fr) be a

nongeometric fully irreducible outer automorphism and let C1, . . . , Cl be the con-

nected components of the ideal Whitehead graph IW(ϕ). For each j, let kj denote

the number of vertices of Cj. The index list for ϕ is

{i1, . . . , ij , . . . , il} = {1− k1

2
, . . . , 1− kj

2
, . . . , 1− kl

2
}. (2.1)

The rotationless index is then the sum i(ϕ) =
l∑

j=1

ij.

From this definition one observes that it is possible to obtain the index list (hence

index sum) directly from any pINP-free train track representative g : Γ → Γ. The
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ki in Equation 2.1 are replaced by the number of gates ki at the singular vertices

vi ∈ Γ. The rotationless index is then computed as follows (where singularities here

will precisely mean vertices with at least three gates):

i(ϕ) =
∑

singularities v

(1− #(gates at v)

2
). (2.2)

If there are pINPs, the situation is somewhat more complicated. However, [42]

provides a method for computing the index list directly from any train track repre-

sentative g : Γ→ Γ of a nongeometric fully irreducible. Let v1, . . . , vk be the periodic

vertices for g and, for each 1 ≤ i ≤ k, let ni denote the number of gates at the vertex

vi. We define an equivalence relation on the set of all periodic points by xi ∼ xj
when there exists a pINP with endpoints xi and xj and call an equivalence class a

Nielsen class. Given a Nielsen class Ni = {x1, . . . , xn}, we let gj denote the number

of gates at xj . Then, letting

ni = (
∑
gi)−#{iPNPs ρ such that both endpoints of ρ are in Ni},

the index list becomes

{1− n1

2
, . . . , 1− nt

2
},

where we only include nonzero entries. The rotationless index is thus the sum i(ϕ) =
t∑

j=1

1− nj
2 .

Remark 2.34. An explanation of why there are only finitely many nonzero entries

and how this computation is finite can be found in [42]

The following key fact relates the rotationless index with the other notions of

index described above (while the conclusion of Proposition 2.35 does not appear to

have been stated by Handel and Mosher in [23] explicitly, it follows directly from

the definitions of indgeom and i(ϕ) and from Lemma 3.4 in [23], which provides an

identification between Fr-orbits of branch points in Tϕ and components of the ideal

Whitehead graph of ϕ):

Proposition 2.35. [23] Let ϕ ∈ Out(Fr) be a nongeometric fully irreducible. Then

i(ϕ) = − 1
2 indgeom(Tϕ).

Moreover, Handel and Mosher (again see [23, Lemma 3.4]) also show that the

index list of a nongeometric fully irreducible ϕ can be interpreted directly in terms

of the tree Tϕ. Therefore, the index list (and not just the index sum ϕ) depends

only on ϕ and not on the choice of a train track representative of ϕ.

In view of Proposition 2.35, we immediately obtain:

Corollary 2.36. Let ϕ ∈ Out(Fr) be a nongeometric fully irreducible. Then:

(1) ϕ is parageometric if and only if i(ϕ) = 1− r.
(2) ϕ is ageometric if and only if 0 > i(ϕ) > 1− r.
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2.11. The axis bundle for a fully irreducible

We call a point Γ ∈ CVr in Outer space a train track graph for ϕ if there exists

an affine train track representative g : Γ→ Γ, i.e. a train track representative on Γ

such that each open interval in the interior of each edge is stretched by a constant

factor equal to the dilitation λ(ϕ) of ϕ.

In [23], Handel and Mosher define the axis bundle for a nongeometric fully

irreducible to answer the question posed by Vogtmann as to whether the set of

train tracks for an irreducible automorphism contractible. The axis bundle Aϕ is a

closed subset of CVr, proper homotopy equivalent to a line, invariant under ϕ, and

such that the two ends limit on the repeller and attractor of the source-sink action

of ϕ on CVr.

[23] gives three equivalent definitions of the axis bundle, one of which we include

here:

Definition 2.37 (Axis bundle Aϕ). For a nongeometric fully irreducible ϕ ∈
Out(Fr), the axis bundle Aϕ for ϕ is defined as Aϕ = ∪∞k=1TT (ϕk), where TT (ϕk)

is the set of all train track graphs for ϕk, where k ≥ 1.

If ϕ ∈ Out(Fr) is a nongeometric fully irreducible and f : Γ→ Γ is a train track

representative of ϕ, we can equip Γ with a volume-1 “eigenmetric” (see [13] for

a detailed explanation), so that, viewed as a marked metric graph, Γ becomes a

train track graph for ϕ in the above sense. Then taking an “isometric” folding path,

determined by f , from Γ to Γ · ϕ in CVr, and translating this path by all integer

powers of ϕ, gives a ϕ-invariant bi-infinite folding line Af ⊆ CVr. This line Af is

contained in the axis bundle Aϕ for ϕ and is called an axis for ϕ. Moreover, the line

Af is a geodesic in CVr with respect to the asymmetric Lipschtz metric on CVr,

see [15].

While the axis bundle generally contains more than a single axis, Mosher and

Pfaff prove in [37]:

Theorem 2.38. The axis bundle of an ageometric, fully irreducible outer automor-

phism ϕ ∈ Out(Fr) is a unique axis precisely if both of the following two conditions

hold:

(1) the index sum satisfies i(ϕ) = 3
2 − r and

(2) no component of the ideal Whitehead graph IW(ϕ) has a cut vertex.

It can be noted that Aϕ and Aψ differ by a translation by an element of Out(Fr)

on CVr if and only if there exist integers k, l ≥ 1 such that ϕk and ψl are conjugate

in Out(Fr). Also, [37] provides a method for computing the axis bundle in the case

of Theorem 2.38. Thus, identifying when two fully irreducible outer automorphisms

satisfy the conditions of Theorem 2.38, allows one to identify if they fall into a

setting where one can “by hand” compute whether they have conjugate powers.
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3. Admissible compositions of Nielsen automorphisms

Convention 3.1. Recall that, for r ≥ 2, for the free group Fr we have chosen a

distinguished free basis A = {a1, . . . , ar} for Fr. The r-rose Rr was defined in

Section 2.5 using as a wedge of r loop-edges e1, . . . , er corresponding to a1, . . . , an
at a single vertex v, giving an identification Fr = F (a1, . . . , ar) = π1(Rr, v). Thus,

ERr = {e1, . . . , er, e1, . . . , er}, with the identification F (a1, . . . , ar) = π1(Rr, v)

sending ai to ei and, correspondingly, sending a−1
i to ei.

Note that in this case (the case where Γ = Rr and v is the vertex of Γ), for the

set of directions Lk(v) at v, we have Lk(v) = ERr. By convention, using the above

identification ERr = A±1, we will sometimes use the identification ERr = Lk(v) =

A±1 and view elements of A±1 as directions at v in Rr. In particular, we will use

this convention when working with local Whitehead graphs and limited Whitehead

graphs of graph-maps Rr → Rr and with turns taken by such maps.

Also, since Rr has a single vertex v, when dealing with local Whitehead graphs

and limited Whitehead graphs of graph-maps g : Rr → Rr, we will usually use the

abbreviated notations Wh(g) := Wh(g, v) and WhL(g) := WhL(g, v).

3.1. Standard Nielsen automorphisms and admissible sequences.

Definition 3.2 (Standard Nielsen automorphism). Let r ≥ 2. By a standard

Nielsen automorphism, we will mean an automorphism θ of Fr such that there exist

x, y ∈ A±1 with θ(x) = yx and θ(z) = z for each z ∈ A±1 with z 6= x±1. In this case

we say that the ordered pair (x, y) is the characteristic pair for θ and we specify

such θ using notation θ = [x 7→ yx].

Note that if θ = [x 7→ yx], then the fact that θ is an automorphism of Fr implies

that y 6= x±1.

The following notion is based on the work of Pfaff [39,40], although the termi-

nology that we use here is slightly different.

Definition 3.3 (Admissible compositions).

Let θ = [x 7→ yx] and θ′ = [x′ 7→ y′x′] be standard Nielsen automorphisms of

Fr. The ordered pair (θ, θ′) is called admissible if either x′ = x and y′ 6= y−1 or

y′ = x and x′ 6= y−1.

A sequence θ1, . . . , θn (where n ≥ 1) of standard Nielsen automorphisms of Fr
is called admissible if for each 1 ≤ i < n the pair (θi, θi+1) is admissible. In this

case we also say that the composition θn ◦ · · · ◦ θ1 is admissible.

A sequence θ1, . . . , θn of standard Nielsen automorphisms of Fr is called cycli-

cally admissible if it is admissible and if the pair (θn, θ1) is also admissible (that is,

if θn−1◦· · ·◦θ1◦θn is also admissible). In this case we also say that the corresponding

composition θn ◦ · · · ◦ θ1 is cyclically admissible.

If t = θ1, . . . , θn is a sequence of standard Nielsen automorphisms of Fr, and if
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k ≥ 1 is an integer, we denote by tk the sequence

θ1, . . . , θn, θ1, . . . , θn, . . . , θ1, . . . , θn︸ ︷︷ ︸
k copies of t

.

Note that if t is cyclically admissible then for every k ≥ 1 the sequence tk is also

cyclically admissible (and, in particular, admissible).

Recall that in Definition 2.19 to every Φ ∈ Aut(Fr) we have associated its

standard topological representative gΦ : Rr → Rr. Given Φ ∈ Aut(Fr), denote by

T (Φ) := T (gΦ) the set of all turns in Rr that occur in gΦ(ei), where i = 1, . . . , r

(see Definition 2.13).

The following basic lemma is a direct corollary of the definitions:

Lemma 3.4. Let θ = [x 7→ yx] be a standard Nielsen automorphism of Fr and let

gθ : Rr → Rr be its topological representative.

Then:

(1) The set T (gθ) consists of a single turn {y−1, x}.
(2) gθ : Rr → Rr is a train track map with exactly one nondegenerate illegal turn

in Rr, namely the turn {x, y}.
(3) We have Dgθ(x) = Dgθ(y) = y, and we have Dgθ(a) = a for every a ∈ A±1,

a 6= x.

(4) We have Dgθ(A
±1) = A±1 − {x}.

Because of part (3) of Lemma 3.4 we refer to x as the unachieved direction for

θ = [x 7→ yx].

Let t = θ1, . . . , θn be a sequence of standard Nielsen automorphisms of Fr, where

gθi : Rr → Rr is the standard representative of θi (see Definition 2.19.) In this case

we denote gt := gθn ◦· · ·◦gθ1 : Rr → Rr. Note that the map gt may, in general, fail to

be a regular graph-map, since for some edge ek ∈ ERr the path gθn◦· · ·◦gθ1(ek) may

fail to be reduced. However, if gt is regular, then gt is a topological representative

of Φ = θn ◦ · · · ◦ θ1 ∈ Aut(Fr) and in this case gt is isotopic to gΦ rel V Rr = {v}.
We will see below that if the sequence t = θ1, . . . , θn is admissible, then indeed gt is

regular and, moreover, gt is a train track representative of Φ with some additional

nice properties.

Convention 3.5. Unless specified otherwise, for the remainder of Section 3 we fix an

admissible sequence

t = θ1, . . . , θn (†)

of standard Nielsen automorphisms θi = [xi 7→ yixi] of Fr (where n ≥ 1 and

i = 1, . . . , n) and fix the corresponding composition automorphism Φ = θn◦· · ·◦θ1 ∈
Aut(Fr).

For 1 ≤ k ≤ m ≤ n we denote tk,m = θk, . . . , θm, gm,k := gtk,m = gθm ◦ · · · ◦
gθk : Rr → Rr and Φm,k = θm ◦ · · · ◦ θk ∈ Aut(Fr). Also, for 1 ≤ m ≤ n denote

gm := gm,1 and Φm := Φm,1. Thus Φ = Φn = Φn,1 and gt = gn = gn,1.
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Note that since tn = θ1, . . . , θn is an admissible sequence, for every 1 ≤ k ≤
m ≤ n the sequence tk,m = θk, . . . , θm is also admissible.

3.2. Properties of admissible sequences

Lemma 3.6. For 1 ≤ k ≤ m ≤ n we have

T (gm,k) ⊆ {D(gm,j+1)({y−1
j , xj}) | j = k, . . . ,m},

where in the case k = m we interpret gm,m+1 as the identity map Id : Rr → Rr.

Proof. We argue by induction on m− k.

If m − k = 0 and m = k then gm,k = θm = [xm → ymxm] and the statement

of the lemma holds. Suppose now that m − k ≥ 1 and that the conclusion of the

lemma has been established for all smaller values of m− k.

Let {a, b} (where a, b ∈ A±1) be a turn in T (gm,k). Then the turn {a, b} occurs

in gm,k(c) for some c ∈ A±1.

Suppose first that c 6= x±1
k . Then θk(c) = c and

gm,k(c) = gθm ◦ · · · ◦ gθk(c) = gθm ◦ · · · ◦ gθk+1
(c) = gm,k+1(c).

By the inductive hypothesis applied to gm,k+1 we have

T (gm,k+1) ⊆ {D(gm,j+1)({y−1
j , xj})|j = k + 1, . . . ,m}

and hence {a, b} ∈ {D(gm,j+1)({y−1
j , xj}) | j = k, . . . ,m}.

Suppose now that c = x±1
k . Since T (gm,k(c)) = T (gm,k(c−1)), without loss of

generality we may assume that c = xk. Then θk(c) = ykxk and hence gm,k(c) =

gm,k+1(yk)gm,k+1(xk).

Since the turn {a, b} occurs in gm,k(c), then one of the following happens:

(1) the turn {a, b} occurs in gm,k+1(yk);

(2) the turn {a, b} occurs in gm,k+1(xk);

(3) {a, b} = Dgm,k+1({y−1
k , xk}).

If (3) happens, then by using j = k we see that

{a, b} ∈ {D(gm,j+1)({y−1
j , xj})}mj=k+1 ⊆ {D(gm,j+1)({y−1

j , xj})}mj=k,

as required. If (1) or (2) happens, we have {a, b} ∈ T (gm,k+1) and by the inductive

hypothesis applied to gm,k+1 it follows that

{a, b} ∈ T (gm,k+1) ⊆ {D(gm,j+1)({y−1
j , xj})}mj=k+1 ⊆ {D(gm,j+1)({y−1

j , xj})}mj=k.

Thus in all cases we have {a, b} ∈ {D(gm,j+1)({y−1
j , xj})}mj=k. Since {a, b} ∈

T (gm,k) was arbitrary, it follows that

T (gm,k+1) ⊆ {D(gm,j+1)({y−1
j , xj}) | j = k, . . . ,m}.

This completes the proof of the inductive step.
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One can also show that the inclusion in the statement of Lemma 3.6 is actually

an equality, but we will not need this fact here.

Lemma 3.7. For any 1 ≤ m ≤ n we have

T (gm) = T (θm) ∪Dθm(T (gm−1)),

where for m = 1 we interpret gm−1 = g0 as the identity map of Rr.

Proof.

We argue by induction on m. For m = 1 we have g1 = gθ1 and T (g0) = ∅. The

conclusion of the lemma clearly holds in this case.

Suppose now that m ≥ 2 and that the statement of the lemma has been proved

for gm−1.

If e is an edge of Rr and gm−1(e) = e1 . . . eq then T (gm−1) =

{{e1, e2}, . . . , {eq−1, eq}} and gm(e) = gθm(gm−1(e)) = gθm(e1) . . . gθm(eq).

Therefore every turn in T (gm) arises either as a turn contained in the image of

an edge under gθm (so that it belongs to T (θm)) or as the image under Dθm = Dgθm
of a turn in T (gm−1). The map gm−1 : Rr → Rr is a homotopy equivalence and

hence is surjective. Thus every element of T (θm) will in fact occur in T (gm).

Therefore T (gm) = T (θm) ∪Dθm(T (gm−1)), as claimed.

Recall that the limited Whitehead graph (see Definition 2.15) of a graph-map

f : Rr → Rr is a graph WhL(f) with the vertex set Lk(v) = A±1 and a topological

edge joining vertices d and d′ whenever {d, d′} ∈ T (f). In particular, if the map f

is regular, then WhL(f) has no loop-edges.

Notation 3.8. Denote by ∆r the graph with the vertex set A±1 where for every

unordered pair a, b of (possibly equal) elements of A±1 there is a topological edge

with endpoints a, b. Thus ∆r is the complete graph on the vertex set A±1 together

with a loop-edge at each vertex.

If θ = [x 7→ yx] is an standard Nielsen automorphism, we can extend Dθ to

a graph-map D̂θ : ∆r → ∆r defined as follows. For each vertex a of ∆r, put

D̂θ(a) := Dθ(a). For an edge e of ∆r joining vertices a, b the map D̂θ sends e to

the edge joining the vertices Dθ(a) and Dθ(b) in ∆r.

For r ≥ 3 denote by Υr the complete graph on 2r − 1 vertices together with an

edge joining a vertex of that graph to one new vertex. (So that Υr is a connected

graph with 2r vertices and no loop-edges).

Also, for r ≥ 3 and x, y ∈ A±1 such that x 6= y±1, denote by Υr[x, y] the

complete graph on vertices A±1 \{x} together with a single edge joining x with the

vertex y−1.

Thus Υr[x, y] is a connected graph with 2r vertices and with no loop-edges, and

Υr[x, y] is a subgraph of ∆r.

Corollary 3.9. The following hold:
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(1) For any 2 ≤ m ≤ n, the edge-set of the graph WhL(gm) consists of the edge join-

ing the vertices y−1
m and xm and of the edges of the graph D̂θm (WhL(gm−1, v)).

(2) For 2 ≤ m ≤ n, if the graph WhL(gm−1) is connected, then the graph

WhL(gm, v) is also connected.

(3) If for some 1 ≤ i ≤ n the graph WhL(gi) is isomorphic to Υr as an unlabelled

graph, then WhL(gi) = Υr[xi, yi]. (Recall that θi = [xi 7→ yixi]).

(4) For 2 ≤ m ≤ n, if the graph WhL(gm−1) is equal to Υr[xm−1, ym−1], then the

graph WhL(gm, v) is equal to Υr[xm, ym].

Proof.

Part (1) follows directly from the definitions and Lemma 3.7.

For (2), assume that the graph WhL(gm−1) is connected. Then every one of the

2r elements of A±1 occurs as as endpoint of an edge of WhL(gm−1). Since the image

of the set of directions A±1 under Dθm is A±1−{xm}, it follows that the connected

graph D̂θm(WhL(gm−1)) has as its vertex set the set A±1−{xm}. By (1), we have

that the edge-set of WhL(gm) consists of the edges of D̂θm(WhL(gm−1)) and of

the edge ẽ joining y−1
m and xm. Since y−1

m 6= xm, it follows that y−1
m is a vertex of

the connected graph D̂θm(WhL(gm−1)). Thus the edge ẽ joins the vertex xm to a

vertex of the connected graph D̂θm(WhL(gm−1)) whose vertex set is A±1 − {xm}.
Therefore the graph WhL(gm) is connected, as claimed. Thus (2) is verified.

For part (3), by Lemma 3.7 we have

T (gi) = T (θi) ∪Dθi(T (gi−1)).

Note that we have i ≥ 2 since WhL(g1) = WhL(θ1) is not graph-isomorphic to Υr.

The direction xi does not belong to the image of the map Dθi. Therefore, from the

above formula for T (θi) and since T (θi) =
{
{y−1
i , xi}

}
, the only edge incident to

vertex xi in WhL(gi) is the edge joining xi and y−1
i . The assumption that WhL(gi)

is isomorphic to Υr as an unlabelled graph now implies that WhL(gi) = Υr[xi, yi].

Thus, part (3) is verified.

The proof of part (4) is similar to the proof of part (2), although it requires

slightly more detailed analysis. Since the pair (θm−1 = [xm−1 7→ ym−1xm−1], θm =

[xm 7→ ymxm]) is admissible, we have either xm = xm−1, ym 6= y−1
m−1, or else

ym = xm−1, xm 6= y−1
m−1.

We assume that ym = xm−1, xm 6= y−1
m−1, as the other case is similar. Note that

xm 6= xm−1 since otherwise θm would not be an automorphism of Fr.

By part (1) we know that WhL(gm) consists of the edge joining the vertices y−1
m

and xm and of the edges of the graph D̂θmWhL(gm−1). Thus we need to show that

D̂θmWhL(gm−1) is the complete graph on the vertex set A±1 \ {xm}.
Since Dθm(x) = x for every x ∈ A±1, x 6= xm, the map D̂θm fixes all vertices of

WhL(gm−1) different from xm and it fixes all edges of WhL(gm−1) that are incident

to neither xm−1 = ym nor to xm. Every edge of WhL(gm−1) joining xm to some

x ∈ A±1 \{xm−1, xm} is mapped by D̂θm to an edge joining ym = xm−1 to x. Since

WhL(gm−1) is equal to Υr[xm−1, ym−1], it follows that D̂θmWhL(gm−1 contains all
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the edges between distinct elements of A±1 \ {xm}. By Lemma 3.7 it follows that

WhL(gm, v) = Υr[xm, ym], as required.

3.3. Admissible sequences and train track maps

Lemma 3.10. Let 1 ≤ m ≤ n. Then:

(1) We have Dgm(A±1) = A±1 − {xm}.
(2) The map gm : Rr → Rr is a regular graph-map (that is, the image of every edge

is a reduced edge-path).

Proof.

Recall that θi = [xi 7→ yixi].

We establish (1) by induction on m. For m = 1, (1) follows from Lemma 3.4.

Thus assume that 2 ≤ m ≤ n and that (1) has been established for gm−1.

Since Dgm(A±1) is contained in Dθm(A±1) = A±1 − {xm} and since the set

A±1 − {xm} has cardinality 2r − 1, to establish (1) it suffices to show that the set

Dgm(A±1) has cardinality 2r − 1.

By the inductive hypothesis we have Dgm−1(A±1) = A±1 − {xm−1}.
By Lemma 3.4, the restriction of Dθm to A±1−{xm−1xm} is the identity. Recall

that since (θm−1, θm) is an admissible pair, either xm−1 = ym or xm−1 = xm.

If xm−1 = ym, then ym /∈ A±1 − {xm−1, xm}, and specifically ym is not in the

image of Dgm−1. So Dθm acts as a bijection of the image A±1−{xm−1} of Dgm−1

onto A±1 − {xm} by sending xm to xm−1 = ym and fixing all other directions.

If xm−1 = xm, then Dθm acts as the identity on A±1 − {xm−1}. So Dθm acts as

the identity on the image of Dgm−1. Thus, in either case, the image of Dgm also

has precisely 2r − 1 directions in its image. Hence Dgm(A±1) = A±1 − {xm}, as

required. This completes the inductive step, so that (1) is verified.

We prove (2) also by induction on m. For m = 1 the statement is obvious. Thus

we assume that 2 ≤ m ≤ n and that (2) has been established for all admissible

compositions of ≤ m− 1 standard Nielsen automorphisms.

To show that gm is regular we need to verify that T (gm) contains no degenerate

turns. Let {a′, b′} be a turn in T (gm), where a′, b′ ∈ A±1. By Lemma 3.7 we have

T (gm) = T (θm) ∪Dθm(T (gm−1)).

The map gθm is regular by definition so that T (θm) contains no degenerate turns.

Thus, if {a′, b′} ∈ T (θm) then {a′, b′} is a nondegenerate turn, as required.

Suppose now that {a′, b′} ∈ Dθm(T (gm−1)), so that {a′, b′} = Dθm({a, b})
for some turn {a, b} ∈ T (gm−1). By the inductive hypothesis applied to gm−1,

the map gm−1 is regular and hence the turn {a, b} is nondegenerate. The only

nondegenerate illegal turn for gθm is {xm, ym}. Thus, to conclude that Dθm({a, b})
is a nondegenerate turn, it suffices to establish:

Claim. We have {a, b} 6= {xm, ym}.
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By Lemma 3.6 we have

{a, b} ∈ T (gm−1) ⊆ {D(gm−1,j+1)({y−1
j , xj})}mj=1.

Hence

{a, b} = D(gm−1,j+1)({y−1
j , xj}) (∗)

for some 1 ≤ j ≤ m− 1.

Consider first the case that (∗) happens for j = m − 1. Thus {a, b} =

D(gm,m−1)({y−1
m−1, xm−1}). Recall that by convention gm,m−1 = IdRr and hence

{a, b} = {y−1
m−1, xm−1}. Assume for the sake of contradiction that {a, b} = {xm, ym}.

Then {a, b} = {xm, ym} = {y−1
m−1, xm−1}. Since the pair (θm−1, θm) is admissible,

we have either xm−1 = xm and ym 6= y−1
m−1, or xm−1 = ym and xm 6= y−1

m−1, each

of which yields a contradiction.

If xm−1 = xm and ym 6= y−1
m−1 then {xm−1, y

−1
m−1} 6= {xm, ym}, yielding a

contradiction. If xm−1 = ym and xm 6= y−1
m−1 then {xm−1, y

−1
m−1} 6= {ym, xm},

again yielding a contradiction. Thus, for j = m − 1 we get {a, b} 6= {xm, ym}, as

required.

Consider now the case where (∗) happens for 1 ≤ j ≤ m−2. Then j+1 ≤ m−1

and gm−1,j+1 = gm−1 ◦ · · · ◦ gj+1. Since gm−1,j+1 = gm−1 ◦ · · · ◦ gj+1, the image

of the set of directions A±1 under D(gj+1,m−1) is contained in Dgm−1(A±1) =

A±1 − {xm−1}.
Therefore, neither of a nor b is equal to xm−1. Since the pair (θm−1, θm) is

admissible, we have either xm−1 = xm and ym 6= y−1
m−1 or xm−1 = ym and xm 6=

y−1
m−1.

Suppose, for the sake of contradiction, that in fact {a, b} = {xm, ym}, so that

either a = xm and b = ym or a = ym and b = xm. Assume that a = xm and b = ym,

as the other case is symmetric. If xm−1 = xm, then a = xm = xm−1, contradicting

the fact that neither a nor b equals xm−1.

If xm−1 = ym, then b = ym = xm−1, again contradicting the fact that neither a

nor b equals xm−1.

Thus {a, b} 6= {xm, ym}, and the Claim is verified.

As noted above, this implies that the turn {a′, b′} = Dθm({a, b}) is nondegen-

erate.

We have shown that every turn in T (gm) is nondegenerate, and hence gm is a

regular graph map. This completes the inductive step, so that (2) is established.

Lemma 3.10 has the following important consequence:

Theorem 3.11. Let n ≥ 1 and let t = θ1, . . . , θn be a cyclically admissible sequence

of standard Nielsen automorphisms θi = [xi 7→ yixi] of Fr. Then gt = gθn ◦· · ·◦gθ1 :

Rr → Rr is a train track map with exactly one nondegenerate illegal turn, namely

the turn {x1, y1}.
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Proof. Since θn◦. . . · · ·◦θ1 is a cyclically admissible composition, it follows that, for

each k ≥ 1, the composition (θn ◦ . . . · · · ◦ θ1)k is admissible. Hence, by Lemma 3.10

applied to (θn ◦ . . . · · · ◦ θ1)k, it follows that for each k ≥ 1 the map gkt : Rr → Rr
is regular. Thus for every edge e ∈ ERr the path gkt (e) is reduced. Hence, gt is a

train track map, as required.

We have Dgt = Dgθn ◦ · · · ◦ Dgθ1
. Since Dgθ1(x1) = Dgθ1(y1) = y1, it follows

that Dgt(x1) = Dgt(y1). Hence the turn {x1, y1} is illegal for gt.

Suppose that gt had ≥ 2 nondegenerate illegal turns. It would follow that for

some k ≥ 1 the image of the set of directions A±1 under Dgkt has ≤ 2r−2 elements.

However, by part (1) of Lemma 3.10 applied to gkt we know that the set Dgkt (A±1)

has exactly 2r − 1 elements, yielding a contradiction. Thus, the train track map

g : Rr → Rr has exactly one illegal turn, namely {x1, y1}.

Lemma 3.12. Let n ≥ 1 and let t = θ1, . . . , θn be a cyclically admissible sequence

of standard Nielsen automorphisms θi = [xi 7→ yixi] of Fr. Suppose that WhL(gt)

is isomorphic, as an unlabelled graph, to Υr. Then:

(1) We have WhL(gt) = Wh(gt) = Υ[xn, yn].

(2) For every integer p ≥ 1 we have WhL(gpt ) = Wh(gpt ) = Υ[xn, yn].

Proof. The fact that WhL(gt) = Υ[xn, yn] follows from part (4) of Lemma 3.9.

There exists some k ≥ 1 such that Wh(gt) = WhL(gkt ). We have gkt = gtk , and

tk is a cyclically admissible sequence ending in θn. Iteratively applying part (4)

of Lemma 3.9, we see that WhL(gtk) = Υ[xn, yn]. Thus WhL(gt) = Wh(gt) =

Υ[xn, yn], as claimed, and part (1) is verified.

If p ≥ 1 is an integer, then tp is a cyclically admissible sequence with initial

segment t, ending with θn and having WhL(gt) = Υ[xn, yn]. Hence, by part (4)

of Lemma 3.9, we get WhL(gpt ) = Υ[xn, yn]. Now part (1) of the present lemma

implies that WhL(gpt ) = Wh(gpt ) = Υ[xn, yn].

4. Periodic Nielsen path prevention

Recall that r ≥ 2 and that Fr = F (A) where A = {a1, . . . , ar} is a fixed free basis

of Fr.

Definition 4.1. Let r ≥ 3. A periodic indivisible Nielsen path prevention sequence

or pINP prevention sequence is an admissible sequence p = θ1, . . . , θk of standard

Nielsen automorphisms of Fr such that, whenever we have a cyclically admissible

sequence t = θ′1, . . . , θ
′
n such that n ≥ k and θi = θ′i for each 1 ≤ i ≤ k and such

that gt = gθ′n ◦ · · · ◦ gθ′1 : Rr → Rr is a n expanding irreducible train track map, then

gt has no pINP’s.

Lemma 4.2. Let r ≥ 4 and let {x,w, y, z} ⊂ A±1 be a subset of four distinct

elements no two of which are inverses of each other. Let p = θ1, . . . , θ6, where
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θ1 = [z 7→ xz], θ2 = [w 7→ zw], θ3 = [y 7→ yw̄], θ4 = [y 7→ yx̄], θ5 = [y 7→ yw̄], θ6 =

[y 7→ yx̄]. Then p is a pINP prevention sequence.

Proof. Let t be a cyclically admissible sequence starting with p = θ1, . . . , θ6.

We need to show that gt has no pINPs. This conclusion follows from [39, Lemma

5.5]. The only difference between the terminology used here and that used in [39],

is that in the terminology of [39] a pINP prevention sequence is only required

to prevent pINPs when an admissible sequence starting with a pINP prevention

sequence composes to give a rotationless expanding irreducible train track map.

Lemma 5.5 of [39] shows that p = θ1, . . . , θ6 is a pINP prevention sequence in this

sense.

However, if t is a cyclically admissible sequence beginning with p = θ1, . . . , θ6,

then every power of t is an admissible sequence and there exist k ≥ 1 such that gtk

is rotationless. Since tk starts with p, Lemma 5.5 of [39] applies to tk and implies

that gtk = (gt)
k has no pINPs. However, by definition, a path in Rr is a pINP for

gt if and only if this path is a pINP for (gt)
k. Hence gt has no pINPs as required.

Remark 4.3. The idea of the proof of [39, Lemma 5.5] is as follows. Suppose that

t = θ1, . . . , θn is a cyclically admissible sequence starting with p = θ1, . . . , θ6 (where

p is as in the statement of Lemma 4.2) such that gt is a rotationless expanding train

track map. By replacing t by its power, we may assume that, if any pINPs exist for

gt, then they have period 1, and so they are in fact INPs. We then need to show

that gt does not in fact have any INPs. Suppose, on the contrary, that gt has an

INP. Then, by Proposition 2.23, this INP has the form α = ρ−1
1 ρ2, where ρ1, ρ2 are

legal paths with the common initial vertex such that the turn between ρ1, ρ2 is a

nondegenerate illegal turn for gt. By Theorem 3.11 we know that gt has only one

illegal turn, namely the turn {x, z} (since t starts with θ1 = [z 7→ xz]). Thus ρ1

starts with an initial segment of x and ρ2 starts with an initial segment of z (or the

other way around). Note that t(ρ1), t(ρ2) are fixed points of gt but they need not

be vertices. The fact that α = ρ−1
1 ρ2 is an INP for gt means that for every p ≥ 1

the path gpt (ρ−1
1 )gpt (ρ2) reduces to ρ−1

1 ρ2. For this reason, for each 0 ≤ k ≤ n, the

tightened path gk,1(α) cannot be taken by gn,k+1(α) to a legal path for gt.

Roughly speaking, the proof of Lemma 5.5 in [39] proceeds by showing, using

admissibility of t and the specific combinatorics of p, that, in fact, for some k ≥ 1,

the path gθ1,...,θk(α) reduces to a nondegenerate path that is taken by gn,k+1 to a

legal path for gt. This contradicts the fact that α = ρ−1
1 ρ2 is an INP for gt. This

argument is illustrated in more detail in Lemma 4.4 below.

In [40], the case of rank 3 is handled separately. While [40] does produce a pINP

prevention sequence for r = 3, this fact is not stated there explicitly and therefore

we provide a sketch of the proof here, following the procedure of [40, Section 5].

Lemma 4.4. Let r ≥ 3 and let {a, b, c} ⊂ A±1 be a subset of three distinct elements,
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no two of which are inverses of each other. Let

θ1 = [a 7→ ca], θ2 = [b̄ 7→ ab̄], θ3 = [b̄ 7→ c̄b̄], θ4 = [a 7→ b̄a],

θ5 = [a 7→ ca], θ6 = [a 7→ ba], θ7 = [a 7→ ca], θ8 = [a 7→ ca].

Then p = θ1, . . . , θ8 is a pINP prevention sequence.

Sketch of proof. The complete verification process is rather long, and so we just

show the longer of the two cases. The other case is similar and also proceeds as in

[40, Section 5].

Note that a pINP for gt, where t is a cyclically admissible sequence beginning

with p, is an INP for for gtm = (gt)
m for some m ≥ 1.

Thus it suffices to show that if t is a cyclically admissible sequence beginning with

p such that gt is an expanding irreducible train track map, then gt has no INPs.

Suppose, on the contrary, that t = θ′1, . . . , θ
′
n is a cyclically admissible sequence

beginning with p such that gt is an expanding irreducible train track map and such

that gt possesses an INP ρ.

Then ρ would have to contain the illegal turn {a, c} for gt and (possibly after

reversing its orientation) could be written as ρ = ρ−1
1 ρ2 where ρ1, ρ2 are nondegen-

erate legal paths, with the initial direction of ρ1 being c and the initial direction of

ρ2 being a. Note that the terminal points of one or both of ρ1, ρ2 may be contained

in the interiors of edges of the 3-rose R3. However, there exist legal edge-paths ρ′1, ρ′2
such that ρ′1 begins with ρ1, and ρ′2 begins with ρ2. Thus ρ′1 = c . . . and ρ′2 = a . . .

are gt-legal edge-paths, and gt((ρ
′
1)−1ρ′2) tightens to a path (ρ′′1)−1ρ′′2 , where ρ1, ρ2

are legal edge-paths, with ρ′′1 starting with a and ρ′′2 starting with c.

In working with gt we will use the notations gk,m introduced in Convention 3.5.

We now make the following crucial observation.

Claim. Suppose that for some 1 ≤ k < n the tightened form of the path

gk,1((ρ′1)−1ρ′2) is α−1β where α is a terminal segment of gk,1(ρ′1) and where β is

a terminal segment of gk,1(ρ′2). Then both α and β are nontrivial (i.e. containing

at least one edge each) edge-paths and the turn τ between them satisfies τ =

{xk+1, yk+1}.
First note that if one of α, β is trivial, then gn,k+1(α−1β) is contained in either

gt
(
(ρ′1)−1

)
or gt(ρ

′
2), and hence is a gt-legal path, contrary to the assumption that

the tightened form of gt((ρ
′
1)−1ρ′2) is the path (ρ′′1)−1ρ′′2 containing a gt-illegal turn

{a, c}. Thus α and β are nontrivial edge-paths. Since, by definition, the path α−1β

is tight, the turn τ between α and β is nondegenerate.

Suppose that τ 6= {xk+1, yk+1}. We know, by Lemma 3.10, that Dgn,k+1 iden-

tifies the directions xk+1, yk+1 and that Dgn,k+1(A±1) = A±1 \ {xn}. Thus, if τ 6=
{xk+1, yk+1} then the Dgn,k+1-images of the directions comprising τ are distinct,

so that Dgn,k+1(τ) is a nondegenerate turn. Moreover, since xn 6∈ Dgn,k+1(A±1),

and since the pair (θn, θ1) is admissible (so that x1 = xn or y1 = xn), the turn

Dgn,k+1(τ) is not equal to {x1, y1}. This means that gn,k+1(α−1β) is a tight path
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which is legal for gt. This contradicts the fact that gn,k+1(α−1β) must reduce to

(ρ′′1)−1ρ′′2 . Thus, the claim is verified.

Now, gθ1(c) = c and gθ1(a) = ca. So ρ′1 has to be of the form ρ′1 = ce2... for

some additional edge e2. Also, since the illegal turn for gθ2 is {a, b̄} and a is not in

the image of Dgθ1 , we have that Dgθ1(e2) = b̄. So e2 = b̄.

Since g2,1(cb̄) = cab̄ and g2,1(a) = ca, we know that ρ′2 has to be of the form

ρ′2 = ae′2 for some additional edge e′2 with Dg2,1(e′2) = c̄ (since {b̄, c̄} is the illegal

turn for gθ3 and b̄ is not in the image of Dg2,1). The only option is e′2 = c̄. Since

g3,1(ac̄) = cac̄ and g3,1(cb̄) = cac̄b̄, we must have ρ′2 = ae′2e
′
3.. for an additional edge

e′3 satisfying that Dg3,1(e′3) = a (since the illegal turn for gθ4 is {a, b̄} and b̄ is not

in the image of Dg3,1). The only option is e′3 = b̄.

Since g4,1(ac̄b̄) = cb̄ac̄b̄ac̄b̄ and g4,1(cb̄) = cb̄ac̄b̄, we must have ρ′1 = ce2e3... for

an additional edge e3 satisfying Dg4,1(e3) = c (since the illegal turn for gθ5 is {a, c}
and a is not in the image of Dg4,1). So either e3 = a or e3 = c. We analyze here the

case where e3 = c and leave the case of e3 = a to the reader.

Since g5,1(ac̄b̄) = cb̄cac̄b̄cac̄b̄ and g5,1(cb̄c) = cb̄cac̄b̄c, we must have ρ′1 =

ce2e3e4... for an additional edge e4 satisfying that Dg5,1(e4) = b (since the ille-

gal turn for gθ6 is {a, b} and a is not in the image of Dg5,1). So e4 = b.

We have g6,1(ac̄b̄) = cb̄cbac̄b̄cbac̄b̄ and g6,1(cb̄cb) = cb̄cbac̄b̄cbcāb̄c̄b. After cancel-

lation, we are left with the turn {a, c}, which is illegal for gθ7 and so we can proceed

by applying gθ7 .

Since g7,1(ac̄b̄) = cb̄cbcac̄b̄cbcac̄b̄ and g7,1(cb̄cb) = cb̄cbcac̄b̄cbcāc̄b̄c̄b, cancellation

ends with the turn {a, ā}. This is not the illegal turn for gθ8 . Therefore, by the

claim above, we could not have ρ1 = cb̄cb . . . and ρ2 = ac̄b̄ . . . .

The remaining case, where e3 = a, yields a similar situation, and we conclude

that p is a pINP prevention sequence.

Note that, by definition, any admissible sequence that starts with a pINP pre-

vention sequence is also itself a pINP prevention sequence.

We will need the following important fact which is essentially a restatement of

the main result of Pfaff [40] (it can be noted that a power should have been taken

of the map constructed for the main theorem of Pfaff [40], but that the result is

otherwise correct):

Proposition 4.5. Let r ≥ 3. Then there exists a cyclically admissible sequence

s = θ′1, . . . , θ
′
q

of standard Nielsen automorphisms of Fr such that for Ψ = θ′q ◦ · · · ◦ θ′1 ∈ Aut(Fr)

and for gs = gθ′q ◦ · · · ◦ g
′
θ1

: Rr → Rr the following hold:

(1) The map gs : Rr → Rr is an expanding irreducible train track map with no

pINPs.

(2) We have M(gs) > 0.
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(3) We have Wh(gs) = WhL(gs) = Υr[x
′
q, y
′
q], where θ′q = [x′q 7→ y′qx

′
q] (and in

particular WhL(gs) is connected).

(4) The sequence s starts with a pINP prevention sequence p, provided by

Lemma 4.2 in the case r ≥ 4 and provided by Lemma 4.4 in the case r = 3. In

particular, s is a pINP prevention sequence.

(5) The element of Out(Fr) represented by gs : Rr → Rr is ageometric fully irre-

ducible (and in particular, it is hyperbolic).

In fact, the cyclically admissible sequence s constructed in [39] satisfies (1), (3),

(4), (5) above, has M(gs) irreducible, and has Wh(gs) graph-isomorphic to Υr.

We have Wh(gs) = Wh(gks ) for every k ≥ 1, and there is some k ≥ 1 such that

Wh(gs) = Wh(gks ) = WhL(gks ). Since sk is a cyclically reduced admissible sequence,

Lemma 3.12 implies that WhL(gks ) = Υr[x
′
q, y
′
q]. Thus by replacing this s with sk

we obtain a cyclically admissible sequence satisfying (1)-(5) above (the power is for

(2)).

We can now prove the main technical result of this paper:

Theorem 4.6. Let r ≥ 3 and let s be provided by Proposition 4.5. Let t = θ1, . . . , θn
be a cyclically admissible sequence of standard Nielsen automorphisms θi = [xi 7→
yixi] of Fr, such that s is an initial segment of t. Then for gt : Rr → Rr and for

the element ϕ ∈ Out(Fr) represented by gt : Rr → Rr the following hold:

(1) The map gt : Rr → Rr is a train track map with exactly one nondegenerate

illegal turn in Rr.

(2) We have M(gt) > 0 (and hence M(gt) is irreducible).

(3) We have WhL(gt) = Wh(gt) = Υr[xn, yn] (and, in particular, Wh(gt) is con-

nected).

(4) The map gt : Rr → Rr has no pINP’s.

(5) The element ϕ ∈ Out(Fr) is ageometric fully irreducible.

(6) The ideal Whitehead graph IW(ϕ) is the complete graph on 2r−1 vertices. The

element ϕ ∈ Out(Fr) has i(ϕ) = 3
2 − r and index list { 3

2 − r}.
(7) The axis bundle for ϕ in CVr consists of a single axis.

Proof. Part (1) follows from Theorem 3.11. Part (2) follows from Proposition 4.5

and Lemma 2.8. Part (3) follows from Proposition 4.5 and Corollary 3.9. Part (4)

holds since s is a pINP prevention sequence. Part (5) follows from Proposition 4.5 .

For (6), note that since gt has exactly one nondegenerate illegal turn (namely the

turn {x1, y1}), there are exactly 2r−1 gates at the vertex v of Rr: the gate {x1, y1}
and the gates {z}, where z varies over A±1 − {x1, y1}. Since every gate contains

exactly one periodic direction, it follows that there are exactly 2r − 1 periodic

directions at v. Corollary 3.9 and Lemma 3.12 imply that Wh(gt, v) = WhL(gt, v) =

Υr[xn, yn] (recall that the definition of Υr[x, y] is given in Notation 3.8).

Since the direction xn does not belong to the image of the derivative map Dθn,

it follows that the direction xn is not in the image of Dgt and hence not in the
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image of Dgtk for any k ≥ 1. Thus xn is not a periodic direction for gt. Each of the

gates at v contains exactly one periodic direction for gt. Thus exactly one direction

in the gate {x1, y1} is periodic.

Since t is cyclically admissible, the pair (θn, θ1) is admissible. Thus either x1 =

xn or y1 = xn. If x1 = xn, then, since xn is not a periodic direction, it follows

that y1 is a periodic direction. Since y1 ∈ A±1 − {xn} and Wh(gt, v) = Υr[xn, yn],

Definition 2.32 implies that SW(g, v) is a complete graph on the 2r − 1 vertices

A±1 − {xn}. If y1 = xn, then again, since xn is not a periodic direction, it follows

that x1 is a periodic direction. Since x1 ∈ A±1 − {xn} and Wh(gt, v) = Υr[xn, yn],

it again follows that SW(g, v) is a complete graph on the 2r−1 vertices A±1−{xn}.
Thus we see that in either case SW(g, v) is a complete graph on the 2r−1 vertices.

Since by (4) we know that gt has no pINPs, by Definition 2.32 it follows that

IW(ϕ) = SW(g, v) is a complete graph on 2r − 1 vertices (and in particular is

connected). Therefore, by Definition 2.33, we have i(ϕ) = 1− 2r−1
2 = 3

2 − r and the

index list for ϕ is { 3
2 − r}. Thus (6) is verified.

Finally, (7) follows from parts (1)-(6) by Theorem 2.38.

Remark 4.7. Let t be any cyclically admissible sequence that contains s as a sub-

block (rather than necessarily starts with s). Then some cyclic permutation t′ of t

is a cyclically admissible sequence which begins with s. Thus Theorem 4.6 applies

to t′. The outer automorphism ϕ′ ∈ Out(Fr) represented by gt′ is conjugate to ϕ in

Out(Fr), and since, by Theorem 4.6, parts (5),(6),(7) hold for ϕ′, they also hold for

ϕ. Moreover, gt′ can be used as a topological representative for ϕ, except that we

need to change the marking on Rr from the identity map to the map corresponding

to the initial segment of t that moved to the end to obtain t′ as a cyclic permutation

of t. Thus gt′ , with a modified marking, is a topological representative of ϕ, and

conclusions (1)-(4) hold for gt′ .

Regarding t itself, in this case we do know, by Theorem 3.11 and Lemma 2.8,

that gt is a train track map with exactly one nondegenerate illegal turn and with

M(gt) > 0. Moreover, we also know, by Lemma 3.1 of [39] that gt has no pINPs. The

fact that gt is a topological representative of a fully irreducible atoroidal element

implies, by Proposition 2.26, that Wh(gt) is connected. However it is not clear if

one can claim that Wh(gt) is graph-isomorphic to Υr.

5. Train track directed random walk

Recall that we set for the free group Fr = F (A) = F (a1, . . . , ar) (where r ≥ 2) a

distinguished free basis A = {a1, . . . , ar}. Let S be the set of all standard Nielsen

automorphisms of Fr (with respect to the basis A).

Recall that each θ ∈ S has the form θ = [x 7→ yx] where x, y ∈ A±1 are arbitrary

elements such that y 6= x±1. Hence, #(S) = 2r(2r − 2) = 4r(r − 1).

For θ ∈ S, let S+(θ) be the set of all θ′ ∈ S such that the pair (θ, θ′) is admissible.

Similarly, for θ ∈ S, let S−(θ) be the set of all θ′ ∈ S such that the pair (θ′, θ) is
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admissible.

Lemma 5.1. Let r ≥ 2. Then for each θ ∈ S we have #(S+(θ)) = #(S−(θ)) =

4r − 6.

Proof. Let θ = [x 7→ yx] ∈ S. We will show that #(S+(θ)) = 4r−6. The argument

that #(S−(θ)) = 4r − 6 is similar.

By definition, θ′ = [x′ 7→ y′x′] belongs to S+(θ) if and only if the pair (θ, θ′) is

admissible, that is, if and only if either x = x′ and y′ 6= y−1, or x = y′ and x′ 6= y−1.

We first count the number n1 of θ′ = [x′ 7→ y′x′] ∈ S such that x = x′ and

y′ 6= y−1. The choice of x′ = x is uniquely determined by the condition x = x′. We

can choose y′ to be any element of the set A±1−{x±1, y−1}. Thus there are 2r− 3

choices of y′, and so n1 = 2r − 3.

We next count the number n2 of θ′ = [x′ 7→ y′x′] ∈ S such that x = y′ and

x′ 6= y−1. The choice of y′ is uniquely determined by the condition y′ = x. We can

then choose x′ to be an arbitrary element of A±1−{x±1, y−1}. Thus there are 2r−3

choices for x′, so that n2 = 2r − 3.

Since y 6= x±1, the case where x = x′, y′ 6= y−1 and the case where x = y′, x′ 6=
y−1 are mutually disjoint. Hence, #(S+(θ)) = n1 + n2 = 4r − 6, as claimed.

5.1. A train track directed Markov chain

Definition 5.2. Let r ≥ 3. Consider the finite state Markov chain Y defined as

follows. The state set of Y is Sr. For any states θ, θ′ ∈ Sr, the transition probability

PY(θ′|θ) from θ to θ′ is

PY(θ′|θ) :=

{
1

4r−6 , if the pair (θ, θ′) is admissible

0 otherwise.

Lemma 5.3. Let r ≥ 2. Then:

(1) The finite state Markov chain Y is irreducible and aperiodic.

(2) The uniform distribution µr on S (where µr(θ) = 1/#(S) = 1
4r(r−1) for every

θ ∈ S) is the unique stationary distribution for Y.

Proof.

It is not hard to see from the definitions that for any θ, θ′ ∈ S there exists a

finite admissible sequence θ1, . . . , θn such that θ1 = θ and θn = θ′ and that n ≥ 2.

Hence, for any θ, θ′ ∈ S there exists n ≥ 1 such that the transition probability of

Y to start at θ and to end at θ′ after n steps is positive. This means that the finite

state Markov chain Y is indeed irreducible, as claimed. Similarly, it is not hard to

verify directly that for any θ ∈ S there exist admissible sequences θ1, . . . , θn and

θ′1, . . . , θ
′
m with θ1 = θn = θ′1 = θ′m = θ such that m,n ≥ 2 and that gcd(m,n) = 1.

E.g. we can take n = 2,m = 3, θ1 = θ2 = θ and θ′1 = θ′2 = θ′3 = θ. This means that

Y is aperiodic. Thus (1) is verified.
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The fact that Y is irreducible and aperidoc implies (see [45, Theorem 4.1]) that

there exists a unique Y-stationary probability distribution on S. A direct compu-

tation shows that the uniform distribution µr on S is Y-stationary. Indeed, let ν

be the distribution on S obtained from µr by applying a single step of Y. Then for

any θ′ ∈ S we have

ν(θ′) =
∑
θ∈S

µr(θ)PY(θ′|θ) =
∑

θ∈S−(θ′)

µr(θ)PY(θ′|θ) =
∑

θ∈S−(θ′)

1

4r(r − 1)

1

4r − 6
=

#(S−(θ′))
1

4r(r − 1)

1

4r − 6
= (4r − 6)

1

4r(r − 1)

1

4r − 6
=

1

4r(r − 1)
= µr(θ

′).

Thus µr is indeed Y-stationary, as claimed, and (2) is verified.

Definition 5.4. Let r ≥ 3. Denote by W the random process given by the Markov

chain Y corresponding to the initial distribution µr on S. Thus W is a sequence of

random variables W = W1, . . . ,Wn, . . . , where each Wi is a random variable with

values in S, where W1 has distribution µr and where for any θ, θ′ ∈ S and any

n ≥ 1

Pr(Wn+1 = θ′|Wn = θ) = PY(θ′|θ) :=

{
1

4r−6 , if the pair (θ, θ′) is admissible

0 otherwise.

The sample space ΩW for W is the product space ΩW = S × S × . . .︸ ︷︷ ︸
N copies

= SN.

The space S is endowed with the discrete topology, and the space ΩW is given the

product topology, so that it becomes a compact Hausdorff topological space.

The random process W determines a probability measure µW on ΩW . The sup-

port supp(µW) of µW consists of all the sequences ω = θ1, θ2, · · · ∈ ΩW such that

for every n ≥ 1 the pair (θn, θn+1) is admissible.

Lemma 5.5. Let r ≥ 2. For a random trajectory θ1, θ2, . . . of W we have

lim
n→∞

Pr(θ1, . . . , θn is a cyclically admissible sequence) =
2r − 3

2r(r − 1)
.

Proof. Since Y is an irreducible aperiodic finite state Markov chain, the fact that

µr is Y-stationary implies (see, for example Theorem 4.2 on p. 119 in [45]) that

the distribution of Wn on S converges to µr almost surely as n → ∞. This means

that for every θ ∈ S we have limn→∞ Pr(Wn = θ) = µr(θ) = 1
4r(r−1) . Since for

each θ ∈ S we have #(S−(θ)) = 4r− 6, it now follows that for a random trajectory

ω = θ1, θ2, . . . , θn . . . of W we have

lim
n→∞

Pr((θn, θ1) is an admissible pair) =
4r − 6

4r(r − 1)
=

2r − 3

2r(r − 1)

and therefore, in view of the definition of W, we have

lim
n→∞

Pr(θ1, . . . , θn is a cyclically admissible sequence) =
2r − 3

2r(r − 1)
,
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as required.

Definition 5.6 (Property (G)). Let r ≥ 3 be an integer. We say that ϕ ∈ Out(Fr)

has property (G) if all of the following hold:

(1) The outer automorphism ϕ is ageometric fully irreducible;

(2) We have i(ϕ) = 3
2 − r (so that indgeom(Tϕ) = 2r− 3), and ϕ has single-element

index list { 3
2 − r}.

(3) There exists a train track representative f : Rr → Rr of ϕ such that f has no

pINPs and such that f has exactly one nondegenerate illegal turn.

(4) The ideal Whitehead graph IW(ϕ) of ϕ is the complete graph on 2r−1 vertices.

(5) The axis bundle for ϕ in CVr consists of a single axis.

Our main result is the following:

Theorem 5.7. Let r ≥ 3. For n ≥ 1 let En be the event that for a trajectory

ω = θ1, θ2, . . . of W the sequence θ1, . . . , θn is cyclically admissible. Also, for n ≥ 1

let Bn be the event that for a trajectory ω = θ1, θ2, . . . ofW the outer automorphism

ϕn = θn . . . θ1 ∈ Out(Fr) has property (G).

Then the following hold:

(1) For the conditional probability Pr(Bn|En) we have

lim
n→∞

Pr(Bn|En) = 1.

(2) We have Pr(En)→n→∞
2r−3

2r(r−1) and lim infn→∞ Pr(Bn) ≥ 2r−3
2r(r−1) > 0.

(3) For µW -a.e. trajectory ω = θ1, θ2, . . . of W, there exists an nω ≥ 1 such that

for every n ≥ nω such that tn = θ1, . . . , nn is cyclically admissible, we have that

the outer automorphism ϕn = θn ◦ · · · ◦ θ1 ∈ Out(Fr) has property (G).

Proof. Fix a sequence s = θ′1, . . . , θ
′
q provided by Proposition 4.5.

We first establish part (1) of the theorem. For n ≥ q let B′n be the event that for

a trajectory ω = θ1, θ2, . . . of W tn = θ1, . . . , θn is a cyclically admissible sequence

such that for some 1 ≤ i ≤ n − q + 1 we have θi = θ′1, θi+1 = θ′2, . . . θi+q−1 = θ′q.

Note that by definition B′n ⊆ En.

Since s is an admissible sequence the probability that for a trajectory θ1, θ2, . . . ,

of W there is 1 ≤ i ≤ n − q + 1, such that θi = θ′1, θi+1 = θ′2, . . . θi+q−1 = θ′q,

tends to 1 as n → ∞. Since limn→∞ Pr(En) = 2r−3
2r(r−1) > 0, it follows that for the

conditional probability Pr(B′n|En) we have limn→∞ Pr(B′n|En) = 1.

Let ω = θ1, θ2, · · · ∈ B′n be arbitrary. Then there exists a cyclic permutation

t′n of tn = θ1, . . . , θn such that t′n starts with s. Since tn is cyclically admissible,

t′n = θ′1, . . . , θ
′
n is also cyclically admissible. Therefore, Theorem 4.6 applies to t′n and

hence the outer automorphism class ϕ′n ∈ Out(Fr) of Φ′n = θ′n ◦ · · · ◦ θ′1 ∈ Aut(Fr)

has property (G). Denote by ϕn ∈ Out(Fr) the outer automorphism class of the

automorphism Φn = θn ◦ · · ·◦θ1 ∈ Aut(Fr). The fact that t′n is a cyclic permutation

of tn implies that ϕn is conjugate to ϕ′n in Out(Fr). Moreover, gt′n can be used as
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a topological representative for ϕn, except that we need to change the marking on

Rr from the identity map to the map corresponding to the initial segment of tn
that moved to the end to obtain t′n as a cyclic permutation of tn. Thus gt′n , with a

modified marking, is a topological representative of ϕn. Therefore, by Theorem 4.6,

ϕn also has property (G). By definition of Bn this means that ω ∈ Bn. Since

B′n ⊆ En, we have B′n ⊆ Bn ∩ En.

Hence B′n ⊆ Bn ∩ En and limn→∞ Pr(B′n|En) = 1. Therefore

limn→∞ Pr(Bn|En) = 1, as required. Thus part (1) of Theorem 5.7 is verified.

By Lemma 5.5 we have limn→∞ Pr(En) = 2r−3
2r(r−1) > 0. Thus part (1) of Theo-

rem 5.7 implies that lim infn→∞ Pr(Bn) ≥ 2r−3
2r(r−1) > 0, and part (2) is verified.

The proof of part (3) is similar to that of part (1). Namely, for µW -a.e. trajectory

ω = θ1, θ2, . . . ofW the sequence s has infinitely many occurrences in ω. Let nω ≥ 1

be such that tω = θ1, . . . , θnω ends in s. Then for every n ≥ nω such that tn is

cyclically admissible there exists a cyclic permutation t′n of tn = θ1, . . . , θn such that

t′n starts with s. Then exactly the same argument as in the proof of (1) above shows

that Theorem 4.6 applies to t′n and hence the conclusion of part (3) of Theorem 5.7

holds for ω.

Remark 5.8. Traditionally, random walks on groups are “right” random walks,

since at each step the current group element gets multiplied by a new generator

on the right. Thus, let G be a finitely generated group and X ⊆ G is a finite

generating set for G with X = X−1. The simple random walk on G with respect

to X is a sequence of i.i.d. random variables X1, X2, . . . , Xn, . . . , where each Xn is

an X-valued random variable corresponding to the uniform distribution on X. To

every trajectory ω = x1, x2, . . . , xn, . . . (where xn ∈ X) of this sequence of random

variables one associates the sequence gω = g1, g2, . . . , gn, . . . of elements of G where

gn = x1 . . . xn. Thus gn+1 = gnxn+1 for all n ≥ 1.

By contrast, when viewed in terms of Aut(Fr), our random process W is a

“left random walk” on Aut(Fr) (or on Out(Fr)). Indeed, to a trajectory ω =

θ1, . . . , θn, . . . of W we associate a sequence Φ1,Φ2, . . . ,Φn, . . . of elements of

Aut(Fr), where Φn = θn . . . θ1, so that Φn+1 = θn+1Φn.

It is possible to convert W in a “right random walk” on Aut(Fr), although the

resulting statement is somewhat awkward. Note that if θ = [x 7→ yx] is a standard

Nielsen automorphism of Fr, then so is θ−1, with θ−1 = [x 7→ y−1x]. We can say

that a pair (θ, θ′) of elements of S is anti-admissible if the pair (θ−1, (θ′)−1) is

admissible. Similarly, a sequence θ1, . . . , θn of elements of S is anti-admissible if for

all 1 ≤ i < n the pair (θi, θi+1) is anti-admissible. We can then define a random

process W− in a similar way to W: We have W− = W−1 ,W
−
2 , . . . where each W−i

is an S-valued random variable, with W−1 having the uniform distribution on S

and with the transition probability P (W−n+1 = θ′|W−n = θ) = 1/(4r − 6) if the pair

(θ, θ′) is anti-admissible and P (W−n+1 = θ′|W−n = θ) = 0 otherwise. To a trajectory

ω = θ1, θ2, . . . of W− we associate a sequence Ψ1,Ψ2, . . . of elements of Aut(Fr) as

Ψn = θ1θ2 . . . θn. Thus, Ψn+1 = Ψnθn+1.
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If the sequence ω = θ1, . . . , θn, . . . is anti-admissible then the sequence ω′ =

θ−1
1 , θ−1

2 , . . . , θ−1
n , . . . is admissible. In this case the process W associates to ω′ the

sequence Φn = θ−1
n ◦ · · · ◦ θ−1

1 ∈ Aut(Fr) and Φn = Ψ−1
n .

Thus, Theorem 5.7 implies that for a W−-random trajectory ω = θ1, θ2, . . . ,

conditioning on the event that θ1, θ2, . . . θn is cyclically anti-admissible, the proba-

bility (corresponding to W−) that Ψn = θ1θ2 . . . θn is an atoroidal fully irreducible

whose inverse Ψ−1
n is ageometric, tends to 1 as n→∞.

Remark 5.9.

Let TRr be the set of all graph-maps g : Rr → Rr such that g is a homotopy

equivalence. We can re-interpret Theorem 5.7 in terms of a certain type of a “train

track directed random walk” on the space TRr. To every sequence ω = θ1, θ2, . . . ,∈
ΩW we can associate a sequence gω = g1, g2, . . . of elements of TRr where gn =

gθn ◦ · · · ◦ gθ1 for n = 1, 2, . . . .

The proof of Theorem 5.7 can be interpreted as saying that, for ω = θ1, θ2, · · · ∈
ΩW with associated sequence gω = g1, g2, · · · ∈ TRr

N, conditioning on the event

that the sequence θ1, . . . , θn is cyclically admissible, the probability that gn : Rr →
Rr is a train track map with exactly one nondegenerate illegal turn and no pINPs,

representing an ageometric fully irreducible element of Out(Fr), tends to 1 as n→
∞.

5.2. Spectral properties of the train track directed random walk

We can also get reasonably precise information about the growth of the PF eigen-

values and of the word length in Out(Fr) along random trajectories of our walk.

First we recall the following classic ergodic theoretic fact known as Kingman’s

Subadditive Ergodic Theorem:

Proposition 5.10. [28] Let (Ω,F , µ) be a probability space and let T : Ω → Ω

be a measurable and measure-preserving transformation (that is, one such that, for

every measurable subset Y ⊆ Ω, we have µ(Y ) = µ(T−1Y )). Let Zn : Ω→ R≥0 be a

sequence of random variables (where n = 0, 1, 2, . . . ) such that, for each ω ∈ Ω, and

for any m,n ≥ 0, we have Zn+m(ω) ≤ Zn(ω) + Zm(Tnω). Then there exists a T -

invariant random variable ` : Ω→ R≥0, such that µ-almost surely and in L1(Ω, µ),

we have

lim
n→∞

Zn
n

= `.

In particular, if T is µ-ergodic, then ` = const on Ω.

Note that if θ ∈ S is a standard Nielsen automorphism of Fr, then the transition

matrix M(gθ) is an r× r elementary matrix obtained from the r× r identity matrix

by changing a single off-diagonal entry from 0 to 1. Let S′ be the set of all such

r × r elementary matrices. Note that S′ ⊆ SL(r,Z) and that #(S′) = r2 − r.
We note the following basic fact that will be useful in our arguments:
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Lemma 5.11. Let r ≥ 2. Then:

(1) For every M ∈ S′ and every v ∈ Rr, we have ||Mv|| ≥ ||v||.
(2) For any M1, . . . ,Mn ∈ S′, we have ||Mn · · ·M1|| ≥ 1.

Proof. Part (1) is obvious from the definition of S′.

From part (1), by induction on n, we get that, for any M1, . . . ,Mn ∈ S′ and any

v ∈ Rr, we have ||Mn · · ·M1v|| ≥ ||v||. Therefore ||Mn · · ·M1|| ≥ 1, and (2) holds.

On the sample space ΩW of W, we define a shift-map T : ΩW → ΩW by

T : θ1, θ2, θ3 . . . 7→ θ2, θ3, . . .

for each ω = θ1, θ2, · · · ∈ ΩW .

Then T : ΩW → ΩW is a continuous µW -measure preserving map. Since Y is a

finite-state irreducible aperiodic Markov chain, it follows that T is µ-ergodic.

Consider the following functions Xn : ΩW → R≥0 (where n ≥ 1):

Xn(θ1, θ2, θ3 . . . ) = log ||M(gθn) · · ·M(gθ1)||

for every ω = θ1, θ2, · · · ∈ ΩW . We also put X0 := 0.

Note that for tn = θ1, . . . , θn we have gtn = gθn ◦· · ·◦gθ1 and therefore M(gtn) =

M(gθn) . . .M(gθn).

We have:

Proposition 5.12. Let r ≥ 3. There exists a number `1 ≥ 0, called the top Lya-

punov exponent, such that for µW -a.e. trajectory ω = θ1, θ2, . . . of W we have

lim
n→∞

1

n
log ||M(gtn)|| = lim

n→∞

1

n
log ||M(gθn) · · ·M(gθ1)|| = `1.

where tn = θ1, . . . , θn for n = 1, 2, . . . .

Proof.

Let ω = θ1, θ2, · · · ∈ ΩW be arbitrary. By Lemma 5.11, for every n ≥ 1 we have

||M(gθn) · · ·M(gθ1)|| ≥ 1 and therefore Xn(ω) ≥ 0. Since X0 = 0, we also have

X0(ω) ≥ 0. For m,n ≥ 1 we have Xm(Tnω) = log ||M(gθn+m) · · ·M(gθn+1)|| and

Xn(ω) = log ||M(gθn) · · ·M(gθ1)||. Since

||M(gθn+m) · · ·M(gθ1)|| ≤ ||M(gθn+m) · · ·M(gθn+1)|| · ||M(gθn) · · ·M(gθ1)||,

we also have

log ||M(gθn+m
) · · ·M(gθ1)|| ≤ log ||M(gθn+m

) · · ·M(gθn+1
)||+log ||M(gθn) · · ·M(gθ1)||,

that is Xn+m(ω) ≤ Xn(ω)+Xm(Tnω). It is easy to check that Xn+m(ω) ≤ Xn(ω)+

Xm(Tnω) also holds if at least one of m,n is equal to 0.

Since T is a µW -ergodic transformation, Proposition 5.10 (Kingman’s Subaddi-

tive Ergodic Theorem) now implies that there exists a number `1 ≥ 0 such that for

µW -a.e. trajectory ω = θ1, θ2, . . . of W we have

lim
n→∞

1

n
log ||M(gθn) · · ·M(gθ1)|| = `1.



May 5, 2015 5:45 WSPC/INSTRUCTION FILE final-version

44 ILYA KAPOVICH and CATHERINE PFAFF

Proposition 5.13. Let r ≥ 3 and let `1 be provided by Proposition 5.12. Then

`1 > 0.

Proof. It is possible to derive the fact that `1 > 0 from a general result of Guiv-

arc’h [18] on the simplicity of the Lyapunov spectrum in the context of the Multi-

plicative Ergodic Theorem for matrix-valued Markov chains satisfying some natural

“irreducibility” and “contractibility” conditions (which are satisfied in our case).

We provide a direct and more elementary argument for `1 > 0 here.

By Proposition 4.5, there exists a cyclically admissible sequence s such that

M(gs) > 0. By replacing s by its positive power, we can further assume that every

entry of M(gs) is ≥ 2.

For a sequence t = θ1, . . . , θn denote by 〈s, t〉 the number of times s occurs as a

sub-block of t.

By the Law of Large Numbers applied to Y, there exists α > 0 such that, for

µW -a.e. trajectory ω = θ1, θ2, . . . of W, we have

lim
n→∞

〈s, tn〉
n

= α > 0,

where tn = θ1, . . . , θn.

Let ω = θ1, θ2, . . . be a µW -random trajectory of W. Then for n >> 1 there

are nα + o(n) occurrences of s in tn. Hence, we can find nα/k + (1/k)o(n) dis-

joint occurrences of s in tn, where k is the length of s. Thus, we can subdivide

M(gθn) · · ·M(gθ1) as a product

M(gθn) · · ·M(gθ1) = CqB · · ·C1BC0,

where B = M(gs), where q = nα/k + (1/k)o(n) ≥ nα/(2k) and where each Ci is a

product of several consecutive matrices from the product M(gθn) · · ·M(gθ1). Recall

that every entry in B is ≥ 2. Thus, for every vector v ∈ Rr we have

||M(gθn) · · ·M(gθ1)v|| = ||CqBCq−1 · · ·C1BC0v|| ≥ ||BCq−1 · · ·C1BC0v|| ≥

2||Cq−1B · · ·C1BC0v|| ≥ · · · ≥ 2q||C0v|| ≥ 2q||v|| ≥ 2nα/(2k)||v||.

Therefore, ||M(gθn) · · ·M(gθ1)|| ≥ 2nα/(2k) and log ||M(gθn) · · ·M(gθ1)|| ≥
nα/(2k) log 2, so that

lim inf
n→∞

1

n
log ||M(gθn) · · ·M(gθ1)|| ≥ α/(2k) log 2.

Hence, `1 ≥ α/(2k) log 2 > 0.

The growth of the spectral radius of M(gθn) · · ·M(gθ1) is more important for

our purposes than the growth of ||M(gθn) · · ·M(gθ1)||. Luckily, in our situation,

these two quantities grow roughly at the same rate, as follows from the following

general result due to Terence Tao. The proof of this fact was communicated to us
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by Tao on MathOverflow. Since the statement of Proposition 5.14 does not seem to

be available in the literature, we include Tao’s proof here.

Proposition 5.14. Let M = (mij)
r
ij=1 be an r × r matrix with real coefficients

such that all mij ≥ 1. Then λ(M) ≤ ||M || ≤ r (λ(M))
2
.

Proof. Since all entries of M are > 0, the spectral radius λ(M) > 0 is the Perron-

Frobenius eigenvalue of M . There exists a nonzero vector u ∈ Rr such that Mu =

λ(M)u and hence ||Mu||/||u|| = λ(M). The inequality λ(M) ≤ ||M || is obvious

since ||M || = maxv∈Rr\{0}
||Mv||
||v|| .

Recall that, by the Spectral Theorem, ||λ(M)|| = limn→∞
n
√
||Mn||. Consider

the “product” partial ordering ≤ on Rr where (x1, . . . , xn) ≤ (y1, . . . , yn) whenever

xi ≤ yi for i = 1, . . . , r.

Observe that if v, u ∈ Rr are vectors with non-negative coordinates and such

that v ≤ u, then ||v|| ≤ ||u|| and Mv ≤Mu.

Also notice that Mej ≥ mijei and Mei ≥ ej . Hence M2ej ≥ mijMei ≥ mijej ,

so that M2ej ≥ mijej . Iterating this argument we get M2nej ≥ mn
ijej and hence,

by taking the norm of both sides, we get mn
ij ≤ ||M2nej || ≤ ||M2n||. By taking the

n-th root and passing to the limit, by the Spectral Theorem we get mij ≤ λ(M)2

for all 1 ≤ i, j ≤ r.
Hence, maxmij ≤ λ(M)2, and therefore ||M || ≤ rλ(M)2.

Theorem 5.15. Let r ≥ 3 and let `1 be provided by Proposition 5.12 (so that `1 > 0

by Proposition 5.13).

Then, for µW -a.e. trajectory ω = θ1, θ2, . . . of W, the following hold:

(1)

0 < `1/2 ≤ lim inf
n→∞

1

n
log λ(gtn) ≤ lim sup

n→∞

1

n
log λ(gtn) ≤ `1,

where tn = θ1, . . . , θn for n ≥ 1.

(2) For any strictly increasing sequence of indices 1 ≤ n1 < n2 < n3 < . . . such

that for each i ≥ 1 tni = θ1, . . . , θni is cyclically admissible we have

0 < `1/2 ≤ lim inf
i→∞

1

ni
log λ(ϕni) ≤ lim sup

i→∞

1

ni
log λ(ϕni) ≤ `1,

where ϕni ∈ Out(Fr) is the outer automorphism represented by gtni .

Proof.

Let s be the admissible sequence provided by Proposition 4.5, so that M(gs) > 0.

Then, for µW -a.e. trajectory ω = θ1, θ2, . . . of W the sequence s has infinitely

many occurrences in ω. Let n(ω) ≥ 1 be such that tω = θ1, . . . , θn(ω) ends in s.

Then, for every n ≥ n(ω), we have M(gtn) > 0. Then, by Proposition 5.14, for every

n ≥ n(ω) we have
√
r
√
||M(gtn)|| ≤ λ(gtn) ≤ ||M(gtn)||. Hence, by Proposition 5.12
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and Proposition 5.13,

0 < `1/2 ≤ lim inf
n→∞

1

n
log λ(gtn) ≤ lim sup

n→∞

1

n
log λ(gtn) ≤ `1,

as required, so that part (1) of the theorem is verified. Note further that in this

situation for every n ≥ n(ω) such that tn is cyclically admissible, Theorem 3.11

implies that gtn is an expanding irreducible train track representative of ϕn with

M(gtn) > 0. Therefore, by Proposition 2.21, we have λ(gtn) = λ(ϕn) for every such

n. Hence part (2) of the theorem holds as well.

For Φ ∈ Aut(Fr), denote |Φ|A := maxa∈A |Φ(a)|A. Let Q = {ψ1, . . . , ψm} be any

finite generating set of Out(Fr) such that Q = Q−1. For an element ϕ ∈ Out(Fr),

denote by |ϕ|Q the geodesic word-length of ϕ with respect to the generating set Q

of Out(Fr); that is |ϕ|Q is the smallest n such that ϕ can be written as a product

ϕ = ψi1 . . . ψin where ψij ∈ Q.

For each ψi, choose an automorphism Ψi ∈ Aut(Fr) in the outer automorphism

class ψi. Finally, put |Q|A := maxmi=1 |Ψi|A.

Recall from Definition 2.20 the definition of the stretch factor λ(ϕ) ≥ 1 for a

ϕ ∈ Out(Fr).

Lemma 5.16. Let r ≥ 2 and let Q = Q−1 be a finite generating set of Out(Fr).

Then the following hold:

(1) For each ϕ ∈ Out(Fr) and representative Φ ∈ Aut(Fr) in the outer automor-

phism class ϕ, we have λ(ϕ) ≤ |Φ|A.

(2) If ϕ = ψi1 . . . ψin is a word of length n over Q, then λ(ϕ) ≤ (|Q|A)n.

(3) For any ϕ ∈ Out(Fr), we have λ(ϕ) ≤ (|Q|A)|ϕ|Q .

Proof. Note that, for each 1 6= w ∈ Fr and each n ≥ 1, we have ||ϕn(w)||A ≤
|Φn(w)|A ≤ |w|A|Φ|nA and, by taking n-th roots and passing to the limit, we get

λ(ϕ,w) ≤ |Φ|A. Therefore, by the definition of the stretch factor of an element of

Out(Fr) (Definition 2.20), we have that λ(ϕ) = supw∈Fr−{1} λ(ϕ,w) ≤ |Φ|A. Thus

(1) is verified.

Part (2) follows from part (1) since, if ϕ = ψi1 . . . ψin is a word of length n over

Q, then |Φ|A ≤ (|Q|A)n, where Φ = Ψi1 . . .Ψin .

Part (2) directly implies part (3).

We can now prove that the random walk W has a positive linear rate of escape

with respect to the word metric on Out(Fr):

Theorem 5.17. Let r ≥ 3 and let Q be a finite generating set of Out(Fr) such

that Q = Q−1. Then there exists a constant c > 0 such that, for µW -a.e. trajectory

ω = θ1, θ2, . . . of W,

lim
n→∞

1

n
|θn . . . θ1|Q = c.
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Proof. For n ≥ 1, define Zn : ΩW → R≥0 as

Zn(θ1, θ2, . . . ) := |θn . . . θ1|Q.

Also put Z0 = 0. Then, for m,n ≥ 1 and any ω = θ1, θ2 · · · ∈ ΩW , we have

Zm(Tnω) = |θn+m . . . θn+1|Q and Zn(ω) = |θn . . . θ1|Q. Since |θn+m . . . θ1|Q ≤
|θn+m . . . θn+1|Q + |θn . . . θ1|Q, it follows that Zn+m(ω) ≤ Zn(ω) + Zm(Tnω). It

is easy to check that Zn+m(ω) ≤ Zn(ω)+Zm(Tnω) also holds if at least one of m,n

is equal to 0.

Since T is a µW -ergodic transformation, Proposition 5.10 now implies that there

exists a number c ≥ 0 such that, for µW -a.e. trajectory ω = θ1, θ2, . . . of W, we

have

lim
n→∞

1

n
|θn . . . θ1|Q = c.

It remains to show that c > 0, that is, to rule out the possibility c = 0. Thus, assume

that c = 0. Then for µW -a.e. trajectory ω = θ1, θ2, . . . of W, the word-length |ϕn|Q
grows sub-exponentially in n, where ϕn = θn . . . θ1 ∈ Out(Fr).

On the other hand, for µW -a.e. trajectory ω = θ1, θ2, . . . , there exist infinitely

many indices 1 ≤ n1 < n2 < . . . such that, for each i ≥ 1, we have that θ1, . . . , θni is

a cyclically admissible sequence. Theorem 5.15 implies that λ(ϕni) grows exponen-

tially fast in ni. Then part (3) of Lemma 5.16, applied to ϕni = θni . . . θ1, implies

that |ϕni |Q must grow at least linearly fast in ni. This contradicts the fact that

|ϕn|Q grows sub-exponentially in n. Thus, the case c = 0 is impossible, and hence

c > 0, as required.

6. Realizability of powers of train track maps with one illegal turn

by admissible compositions

In this section we show that for each train track map g : Rr → Rr with exactly

one illegal turn, some positive power gp of g can be represented as the composition

of a cyclically admissible sequence, so that gp is reachable by our walk W; see

Theorem 6.5 below for a precise statement.

We assume some familiarity of the reader with Stallings folds, and only briefly

recall the basics related to folds here; we refer the reader to [47,30] for details.

Definition 6.1 (Stallings folds).

Let g : Γ → Γ′ be a regular graph-map. We say that a nondegenerate turn

τ = {e1, e2} is g-smooth if Dg(τ) is a nondegenerate turn in Γ′. We say that a

nondegenerate turn τ = {e2, e1} is g-foldable if Dg(τ) is a degenerate turn in Γ′.

Suppose that τ = {e1, e2} is a g-foldable turn. Then there exist maximal non-

trivial initial segments e′1, e
′
2 of e1, e2 accordingly such that g(e′1) = g(e′2) as paths.

Note that this automatically means that g send terminal points of e′1, e
′
2 to a vertex

of Γ′.

We consider the equivalence relation on Γ generated by identifying e′1 with e′2
according to the map g. The quotient object is a graph Γ1 and the quotient map
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q : Γ→ Γ1 is a graph-map called a Stallings fold, or just a fold; then q(e′1) = q(e′2)

is an edge of Γ1. There is also a natural graph-map g′ : Γ1 → Γ′ such that g =

g′ ◦ q : Γ→ Γ′.

The fold q is said to be

(1) a complete fold if e′1 = e1, e′2 = e2

(2) a partial fold if e′1 6= e1, e′2 6= e2

(3) a proper full fold if either e′1 = e1, e
′
2 6= e2 or e′1 6= e1, e

′
2 = e2 (i.e. if, for some

i, j such that {i, j} = {1, 2}, q identifies a proper initial segment of ei with the

entire edge ej).

Note that a fold q determined by a g-foldable turn {e1, e2} as above fails to be

a homotopy equivalence if and only if q is a complete fold and t(e1) = t(e2) in Γ.

The following important result is due to Stallings [47]:

Proposition 6.2. Let Γ,Γ′ be finite connected graphs without any degree-1 vertices.

Let g : Γ→ Γ′ be a regular graph-map such that g is a homotopy equivalence. Then

there exists a decomposition of g as a composition

Γ = Γ0
q1−→ Γ1

q2−→ · · · qn−1−−−→ Γn−1
qn−→ Γn = Γ′

such that qi, with 1 ≤ i ≤ n − 1, is a fold and qn is a graph-isomorphism (and in

particular qn is a homeomorphism). Moreover, for 1 ≤ i < n the fold qi a homotopy

equivalence.

A Stallings fold decomposition of g : Γ→ Γ′ in Proposition 6.2 can be obtained as

follows (the maps hi are depicted in Figure 1). Put Γ0 = Γ and h0 = g : Γ0 → Γ′. If

g is not a graph-automorphism already, choose a g-foldable turn {e1, e2} in Γ0 = Γ.

Then take q1 : Γ0 → Γ1 to be the fold determined by this turn, so that we also get a

homotopy equivalence h1 : Γ1 → Γ′ such that h0 = h1◦q1. Apply the same procedure

to the map h1 : Γ1 → Γ′ and, proceeding inductively, construct a sequence of folds

qk : Γk−1 → Γk and maps hk : Γk → Γ′, for k = 1, 2, . . . , such that hk ◦ qk = hk−1.

Each of hk, qk is a homotopy equivalence. The process must terminate in a finite

number of steps since, by construction, Γk has fewer edges then Γk−1. If the process

terminates with the map hn : Γn → Γ′, then every nondegenerate turn in Γn is

hn-smooth, and the map hn : Γn → Γ′ is a graph-isomorphism. See the illustration

of this process in Figure 1.

Γ0 q1
//

g=h0

��
Γ1 q2

//

h1

��
Γ2 q3

//

h2

��
. . .

qn
// Γn

Fig. 1. Constructing a Stallings folds decomposition
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Lemma 6.3. Let r ≥ 2 and let g : Rr → Rr be a regular graph map such that g is

a homotopy equivalence and such that there is at most one g-foldable nondegenerate

turn in Rr.

Then there exists a decomposition g = qn ◦ . . . q1 such that:

(1) For i = 1, . . . , n we have qi : Γi−1 → Γi is a regular graph map, where Γi =

Γi−1 = Rr.

(2) For 1 ≤ i < n the map qi is a proper full fold on Γi−1.

(3) The map qn : Γn−1 → Γn is a graph-isomorphism (and in particular a homeo-

morphism).

Proof. Recall that we have an orientation on Rr so that E+Rr = {e1, . . . , er}
consists of exactly r edges. For a regular graph map f : Rr → Rr we define the

complexity c(f) as c(f) :=
∑
e∈E+Rr

|f(e)|. Note that c(f) ≥ r, and, assuming that

f is also a homotopy equivalence, we have c(f) = r if and only if f is a graph

isomorphism.

We prove the statement of the lemma by induction on c(g). If c(g) = r, then

g is a graph isomorphism and the conclusion of the lemma holds with n = 1 and

q1 = g.

Suppose now that c(g) > r and that the statement of the lemma has been

established for all smaller values of the complexity. Since c(g) > r, there is exactly

one nondegenerate g-foldable turn τ in Rr. Without loss of generality we may

assume that τ = {e1, e2}. Let

Rr = Γ0
q1−→ Γ1

h1−→ Rr,

where Γ1 is obtained from Γ0 = Rr by applying a fold q1, which is the fold corre-

sponding to the g-foldable turn {e1, e2}. Thus g = h1 ◦ q1.

Note that q1 : Rr → Γ1 cannot be a complete fold since in that case q1 would

not be a homotopy equivalence, and Γ1 would be an (r − 1)-rose. Thus q1 is either

a proper full fold or a partial fold.

Suppose first that q1 is a partial fold. Then Γ1 would be as in Figure 2 and

Γ1 would not be homeomorphic to Rr. On the other hand, by construction, every

nondegenerate turn in Γ1 would be h1-smooth. Indeed, the turn e′′1 , e
′′
2 as in Figure 2

is h1-smooth since the fold q1 identified maximal initial segments of e1, e2 with the

same g-image. The turns e, e′′1 and e, e′′1 are h1-smooth because by assumption the

paths g(e1) and g(e2) are tight. Every other nondegenerate turn in Γ1 is already

present in Γ0 and is g-smooth there, and hence it is h1-smooth in Γ1. Thus there are

no folds applicable to Γ1, and yet the map h1 : Γ1 → Γn is not a graph-isomorphism,

yielding a contradiction.

Hence q1 is a proper full fold, so that Γ1 = Rr. Let e1 = e′1e
′′
1 , where e′1 is a

proper initial segment of e1, and let q1 completely fold e′1 around the edge e2. Thus

Γ1 is a rose with loop-edges e′′1 , e2, . . . , er wedged at a single vertex v1.

Note that by construction any turn formed by any two distinct directions among

e′′1 , e2, e2, . . . , er, er is h1-smooth because these turns were already present in Γ0 and
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Fig. 2. Partial fold on the rose

they were h0-smooth. Since h0(e1) is a tight edge-path and since e′1 has been folded

with e2, the turn e2, e1 is h1-smooth. Thus, the only possibility for a nondegen-

erate h1-foldable turn in Γ1 is a turn consisting of e′′1 and one of the directions

e2, e3, e3, . . . , er, er. There is at most one among the directions e2, e3, e3, . . . , er, er
which can form a h1-foldable turn together with e′′1 since otherwise some two dis-

tinct directions among e2, e3, e3, . . . , er, er would have formed a g-foldable turn in

Γ0, contrary to the assumption that {e1, e2} was the only nondegenerate g-foldable

turn in Γ0. Thus Γ1 = Rr and there is at most one nondegenerate h1-foldable turn

in Γ1. Since c(h1) < c(g), by the inductive hypothesis applied to h1, there exists a

decomposition of h1 as h1 = qn ◦ · · · ◦ q2

Γ1
q2−→ Γ2

q3−→ · · · qn−1−−−→ Γn−1
qn−→ Γn = Rr

satisfying the requirements of Lemma 6.3 for h1. Then g = qn ◦ · · · ◦ q2 ◦ q1 is the

required decomposition for g.

Recall that Fr = F (A) where A = {a1, . . . , ar} and that Rr is equipped with

the marking identifying ei ∈ E+Rr with ai for i = 1, . . . , r. We say that Ψ ∈
Aut(Fr) is a permutational automorphism if there exists a permutation σ ∈ Sr and

ε1, . . . εr ∈ {1,−1} such that Ψ(ai) = aεiσ(i) for i = 1, . . . , r. Recall also that with

every Φ ∈ Aut(Fr) we have associated its standard representative gΦ : Rr → Rr,

see Definition 2.19.

The following lemma is an immediate corollary of the definitions:

Lemma 6.4. Let r ≥ 2. Then:

(1) A regular graph map g : Rr → Rr is a graph-isomorphism if and only if g = gΨ

for some permutational automorphism Ψ of Fr.

(2) A homotopy equivalence regular graph map g : Rr → Rr is a single proper full

fold if and only if g = gθ (up to isotopy relative to the vertex of Rr) for some

elementary Nielsen automorphism θ = [x 7→ yx] of Fr.

(3) If Ψ is a permutational automorphism of Fr and θ = [x 7→ yx] is an elementary

Nielsen automorphism of Fr, then for θ′ = [Ψ(x) 7→ Ψ(y)Ψ(x)], we have Ψθ =

θ′Ψ in Aut(Fr) and, moreover, gΨ ◦ gθ = gθ′ ◦ gΨ, as maps Rr → Rr.

Theorem 6.5. Let r ≥ 2 and let g : Rr → Rr be a train track map with exactly one
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nondegenerate illegal turn representing some ϕ ∈ Out(Fr). Then there exist p ≥ 1

and a decomposition

gp = gθn ◦ · · · ◦ gθ1 ,

where θ1, . . . , θn is a cyclically admissible sequence of elementary Nielsen automor-

phisms of Fr.

Proof. By Lemma 6.3 and Lemma 6.4, there exist elementary Nielsen automor-

phisms θ1, . . . , θm and a permutational automorphism Ψ of Fr such that

g = gΨ ◦ gθm ◦ · · · ◦ gθ1 .

Let p be the order of Ψ in Aut(Fr). Then gpΨ = IdRr . We have

gp = (gΨ ◦ gθm ◦ · · · ◦ gθ1) ◦ · · · ◦ (gΨ ◦ gθm ◦ · · · ◦ gθ1),

where the term gΨ ◦ gθm ◦ · · · ◦ gθ1 is repeated p times. By applying part (3) of

Lemma 6.4, we can move all the occurrences of gΨ in the above expression to the

right and obtain a decomposition of gp as

gp = gθ′pm ◦ · · · ◦ gθ′1 ◦ g
p
Ψ = gθ′pm ◦ · · · ◦ gθ′1

for some elementary Nielsen automorphisms θ′1, . . . θ
′
m of Fr, where θ′i = [x′i 7→ y′ix

′
i].

We claim that the composition gθ′pm ◦ · · · ◦ gθ′1 is admissible. Indeed, gp : Rr →
Rr is a train track map with exactly one non-degenerate illegal turn. Therefore

Dgp(A±1) consists of 2r − 1 distinct directions.

Suppose that the sequence θ′1, . . . , θ
′
pm is not admissible. Let i ≥ 1 be the smallest

index such that the pair (θ′i = [x′i 7→ y′ix
′
i], θ
′
i+1 = [x′i+1 7→ y′i+1x

′
i+1]) is not

admissible. Then for gi = gθ′i ◦ · · · ◦ gθ′1 , by Lemma 3.10, we have Dgi = A±1 −
{x′i}, with Dgi(x

′
1) = Dgi(y

′
1). The only illegal turn for gθ′i+1

is {x′i+1, y
′
i+1}, and

Dgθ′i+1
(x′i+1) = Dgθ′i+1

(y′i+1). The fact that the pair (θ′i, θ
′
i+1) is not admissible

means that x′i+1 6= x′i and y′i+1 6= x′i, which means that Dgθ′i+1
identifies two

distinct directions in A±1 − {x′i}. It follows that Dgp(A±1) consists of ≤ 2r − 2

directions, yielding a contradiction.

Since g2p : Rr → Rr is also a train track map with exactly one nondegenerate

illegal turn, the same argument implies that the composition gθ′pm ◦ · · · ◦ gθ′1 ◦ gθ′pm ◦
· · · ◦ gθ′1 is also admissible. Hence the composition gp = gθ′pm ◦ · · · ◦ gθ′1 is cyclically

admissible, as required.

Note that, as the above proof shows, the power p ≥ 1 in the conclusion of

Theorem 6.5 can be chosen independent of the choice of g. In particular, if p0 is

the least common multiple of the orders of all the elements in the symmetric group

Sr, then p = 2p0 works for all g as in Theorem 6.5, since for every permutational

Ψ ∈ Aut(Fr) we have Ψp = 1 in Aut(Fr) and gpΨ = IdRr .



May 5, 2015 5:45 WSPC/INSTRUCTION FILE final-version

52 ILYA KAPOVICH and CATHERINE PFAFF

Acknowledgments

The first author thanks Terence Tao for supplying a proof of Proposition 5.14 and to

Jayadev Athreya, Vadim Kaimanovich, Camille Horbez and Igor Rivin for helpful

discussions about Lyapunov exponents and random walks. We are also grateful to

Lee Mosher for useful conversations regarding the proof of Theorem 6.5.

The first author was partially supported by the NSF grant DMS-1405146 and by

the Simons Foundation Collaboration grant no. 279836. The second author was sup-

ported first by the ARCHIMEDE Labex (ANR-11-LABX- 0033) and the A*MIDEX

project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French

government program managed by the ANR. She is secondly supported by the

CRC701 grant of the DFG, supporting the projects B1 and C13 in Bielefeld. Both

authors acknowledge support from U.S. National Science Foundation grants DMS

1107452, 1107263, 1107367 “GEAR Network”.

References

[1] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J.
Differential Geom. 35 (1992), no. 1, 85–101. MR 1152226 (93d:53053)

[2] M. Bestvina and M. Feighn, Outer limits, preprint, 1994;
http://andromeda.rutgers.edu/˜feighn/papers/outer.pdf

[3] M. Bestvina and M. Feighn, Stable actions of groups on real trees, Invent. Math. 121
(1995), no. 2, 287–321. MR 1346208 (96h:20056)

[4] M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors, Adv. Math.
256 (2014), 104–155. MR 3177291

[5] M. Bestvina, M. Feighn, and M. Handel, Laminations, trees, and irreducible au-
tomorphisms of free groups, Geometric and Functional Analysis 7 (1997), no. 2,
215–244.

[6] M. Bestvina, M. Feighn, and M. Handel, The Tits Alternative for Out (Fn) I: Dynam-
ics of exponentially-growing automorphisms, Annals of Mathematics-Second Series
151 (2000), no. 2, 517–624.

[7] M. Bestvina, M. Feighn, and M. Handel, The Tits alternative for Out(Fn). II. A
Kolchin type theorem, Ann. of Math. (2) 161 (2005), no. 1, 1–59. MR 2150382
(2006f:20030)

[8] M. Bestvina and M. Handel, Train tracks and automorphisms of free groups, Annals
of Mathematics 135 (1992), no. 1, 1–51.

[9] D. Calegari and J. Maher, Statistics and compression of scl, Ergodic Theory Dynam.
Systems 35 (2015), no. 1, 64110. MR 3294292

[10] T. Coulbois and A. Hilion, Botany of irreducible automorphisms of free groups, Pa-
cific Journal of Mathematics 256 (2012), no. 2.

[11] T. Coulbois and A. Hilion, Rips induction: index of the dual lamination of an R-tree,
Groups Geom. Dyn. 8 (2014), no. 1, 97–134. MR 3209704

[12] M. Cohen and M. Lustig, Very small group actions on R-trees and Dehn twist au-
tomorphisms, Topology 34 (1995), no. 3, 575–617. MR 1341810 (96g:20053)

[13] S. Dowdall, I. Kapovich, and C. J. Leininger, Dynamics on free-by-cyclic groups,
Geom. Tool, to appear; arXiv:1301.7739

[14] A. Eskin, M. Mirzakhani, and K. Rafi, Counting closed geodesics in strata, arXiv
preprint arXiv:1206.5574 (2012).



May 5, 2015 5:45 WSPC/INSTRUCTION FILE final-version

A TRAIN TRACK DIRECTED RANDOM WALK ON Out(Fr) 53

[15] B. Farb and D. Margalit, A Primer on Mapping Class Groups (pms-49), vol. 49,
Princeton University Press, 2011.

[16] D. Gaboriau, A. Jaeger, G. Levitt, and M. Lustig, An index for counting fixed points
of automorphisms of free groups, Duke mathematical journal 93 (1998), no. 3, 425–
452.

[17] D. Gaboriau and G. Levitt, The rank of actions on R-trees, Annales scientifiques de
l’Ecole normale supérieure, vol. 28, Société mathématique de France, 1995, pp. 549–
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