ON HYPERBOLICITY OF FREE SPLITTING AND FREE FACTOR
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ABSTRACT. We show how to derive hyperbolicity of the free factor complex of Fiy from the
Handel-Mosher proof of hyperbolicity of the free splitting complex of Fj, thus obtaining
an alternative proof of a theorem of Bestvina-Feighn. We also show that under the natural
map 7 from the free splitting complex to free factor complex, a geodesic [z,y] maps to a
path that is uniformly Hausdorff-close to a geodesic [r(z), 7(y)] .

1. INTRODUCTION

The notion of a curve complex, introduced by Harvey [17] in late 1970s, plays a key role in
the study of hyperbolic surfaces, mapping class group and the Teichmiiller space.

If S is a compact connected oriented surface, the curve complex C(S) of S is a simplicial
complex whose vertices are isotopy classes of essential non-peripheral simple closed curves. A
collection [ag], ..., [an] of (n+ 1) distinct vertices of C(S) spans an n—simplex in C(S) if there
exist representatives ay, . . . , a;, of these isotopy classes such that for all 7 # j the curves «; and
«a; are disjoint. (The definition of C(S) is a little different for several surfaces of small genus).
The complex C(5) is finite-dimensional but not locally finite, and it comes equipped with a
natural action of the mapping class group Mod(S) by simplicial automorphisms. It turns out
that the geometry of C(S) is closely related to the geometry of the Teichmiiller space 7 (.S) and
also of the mapping class group itself. The curve complex is a basic tool in modern Teichmiiller
theory, and has also found numerous applications in the study of 3-manifolds and of Kleinian
groups. A key general result of Masur and Minsky [21] says that the curve complex C(S),
equipped with the simplicial metric, is a Gromov-hyperbolic space. Hyperbolicity of the curve
complex was an important ingredient in the solution by Masur, Minsky, Brock and Canary
of the Ending Lamination Conjecture [22, 26, 10] (see [25] for detailed background discussion
about this solution).

The outer automorphism group Out(Fy) of a free group Fy is a cousin of the mapping
class group. However the group Out(Fy) is much less well understood and, in general, more
difficult to study than the mapping class group. A free group analog of the Teichmuller space
is the Culler-Vogtmann Outer space cvy, introduced by Culler and Vogtmann in [31]. The
points of cvy are free minimal discrete isometric actions of Fjy on R—trees, considered up to
Fn—equivariant isometry. The Outer space comes equipped with a natural action of Out(Fy).
It is known that cvy is finite-dimensional and contractible; as a result, quite a bit is known
about homotopy properties of Out(Fy ). However, the geometry of cvy and of Out(Fy) proved
to be much more difficult to tackle, particularly because cvy lacks the various useful analytic
and geometric structures present in the Teichmiiller space case. Another problem is that many
geometric dualities from the world of Riemann surfaces and their homeomorphisms break down
for automorphisms of free groups.
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In the case of a compact connected oriented surface S, an essential non-peripheral simple
closed curve a on S can be viewed in several other ways. Thus one can view [«] as a conjugacy
class in the fundamental group 71 (S). We may also think of « as corresponding to the (possibly
disconnected) subsurface K, of S obtained by cutting S open along «. Third, a determines
a splitting of 71(9) as an amalgamated product or an HNN-extension (depending on whether
the curve « is separating or non-separating) over the infinite cyclic subgroup (o). We can
interpret adjacency of vertices in C(S) using each of these points of views - or a combination
of them, providing several essentially equivalent descriptions of the curve complex. Thus two
distinct vertices [a], [3] of C(S) are adjacent if and only if « is conjugate in 71 (S) to an element
of a vertex group of the cyclic splitting of 71 (S) corresponding to 8. Equivalently, [«] and [(]
of C(S) are adjacent if and only if the cyclic splittings of 71 (S) corresponding to [a] and [(]
admit a common refinement, that is, a splitting of 71 (S) as the fundamental group of a graph of
groups with two edges and cyclic edge groups, such that collapsing one of the edges produces a
splitting corresponding to [a] and collapsing the other edge produces a splitting corresponding
to [B]. Also, [a] and [(] are adjacent in C(.S) if and only if there are connected components K,
of K, and Kj of Kg such that K, C Kj or Kj; C KJ,.

In the case of Fiy these different points of view produce several possible analogs of the notion
of a curve complex that are no longer essentially equivalent. The first of these is the free splitting
complex F'Sy. The vertices of F'Sy are nontrivial splittings of the type Fiy = 71 (A) where A is
a graph of groups with a single edge (possibly a loop edge) and the trivial edge group; two such
splittings are considered to be the same if their Bass-Serre covering trees are Fy—equivariantly
isometric. Two distinct vertices A and B of F'Sy are joined by an edge if these splittings admit
a common refinement, that is, a splitting Fiy = 71 (D) where D is a graph of groups with two
edges and trivial edge groups, such that collapsing one edge gives the splitting A and collapsing
the other edge produces the splitting B. Higher-dimensional simplices are defined in a similar
way, see Definition 3.2 below for a careful formulation. For example, if Fiy = A B C, where
A, B, C are nontrivial, then the splittings Fiy = (A% B)*xC and Fy = A (B () are adjacent
in FSy. There is a natural action of Out(Fy) on F'Sy by simplicial automorphisms. The
above definition of F'Sy has a variation [28], called the edge-splitting complex, denoted ESy,
where in the definition of vertices only splittings A with a single non-loop edge are allowed.

A rather different free group analog of the curve complex is the free factor complex FFy,
originally introduced by Hatcher and Vogtmann [16]. The vertices of FFy are conjugacy
classes [A] of proper free factors A of Fy. Two distinct vertices [A], [B] are joined by an edge
in FFy if there exist representatives A of [A] and B of [B] such that A < B or B < A.
Higher-dimensional simplices are defined similarly, see Definition 3.1 below. Note that this
definition does not work well for N = 2 as it produces a graph consisting of isolated vertices
corresponding to conjugacy classes of primitive elements in F». However, there is a natural
modification of the definition of F'Fy for N = 2 (see [4]) such that F'F5 becomes the standard
Farey graph (and in particular F'F; is hyperbolic).

A closely related object to F'Fy is the simplicial intersection graph In. The graph Iy is
a bipartite graph with two types of vertices: single-edge free splittings Fiy = 71(A) (that is,
vertices of F'Sy) and conjugacy classes of simple elements of Fiy. Here an element a € Fy is
simple if a belongs to some proper free factor of Fy. A free splitting A and a conjugacy class
[a] of a simple element a are adjacent if a is conjugate to an element of a vertex group of A.
The graph is a subgraph of a more general “intersection graph” defined in [19].

Both FFy and Iy admit natural Out(Fy)-actions. It is also not hard to check that for
N > 3 the graph Iy is quasi-isometric to the free factor complex F'Fy. By contrast, the
free factor complex FFy and the free splitting complex F'Sy are rather different objects
geometrically. By construction, the vertex set V(F'Sy) is a 1-dense subset of V/(Ix). Also, the
inclusion map ¢: (V(FSn),drsy) — (In,dry) is 2-Lipschitz. However the distance between
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two free splittings in Iy is generally much smaller than the distance between them in F'Sy.
Intuitively, it is “much easier” for A and B to share a common elliptic simple element (which
would make dj, (A, B) < 2) then for these splittings to admit a common refinement.

Until recently, basically nothing was known about the geometry of the above complexes.
Several years ago Kapovich-Lustig [19] and Behrstock-Bestvina-Clay [2] showed that for N > 3
the (quasi-isometric) complexes F'Fy and Iy have infinite diameter. Since the inclusion map
¢t above is Lipschitz, this implies that F'Sy has infinite diameter as well. A subsequent result
of Bestvina-Feighn [3] implies that every fully irreducible element ¢ € Out(Fy) acts on FFy
with positive asymptotic translation length (hence the same is true for the action of ¢ on
FSy). Tt is easy to see from the definitions that if ¢ € Out(Fy) is not fully irreducible then
some positive power of ¢ fixes a vertex of F Fl, so that ¢ acts on FFy with bounded orbits.

Sabalka and Savchuk proved [28] in 2010 that the edge-splitting complex ESy is not
Gromov-hyperbolic, because it possesses some quasi-flats. Aramayona and Souto [1] showed
that every automorphism of F'Sy is induced by some element of Out(Fl ).

Last year (2011), two significant further advances occurred. First, Bestvina and Feighn [4]
proved that for N > 2 the free splitting complex is Gromov-hyperbolic (as noted above, for
N = 2 this essentially follows from the definition of F'F5, so the main case of the Bestvina-
Feighn result is for N > 3). Then Handel and Mosher [15] proved that for all N > 2 the
free splitting complex F'Sy is also Gromov-hyperbolic. The two proofs are rather different in
nature, although both are quite complicated. Recently Hilion and Horbez [18] produced another
proof of hyperbolicity of F'Sy, using “surgery paths” in the sphere complex model of F'Sy.
Bestvina and Reynolds [6] and Hamenstandt [14] gave a description of the hyperbolic boundary
of FFy. Also, Bestvina and Feighn [5] and then Sabalka and Savchuk [29] investigated analogs
of subsurface projections in the F'Sy and F'F contexs.

In the present paper we show how to derive hyperbolicity of the free factor complex from
the Handel-Mosher proof of hyperbolicity of the free splitting complex. This gives a new proof
of the Bestvina-Feighn result [4] about hyperbolicity of FFy.

There is a natural “almost canonical” Lipschitz projection from the free splitting complex
to a free factor complex. Namely, for any free splitting v = A € V(FSy) choose a vertex
u of A and put 7(v): = [A,], where A, is the vertex group of w in A. This defines a
map (easily seen to be Lipschitz) 7: V(FSy) — V(FFy). Extend this map to a graph-map
T FS](\}) — FF](VI) by sending every edge in F'Sy to a geodesic in FF](Vl) joining the 7—images
of the endpoints of that edge. Although the map 7 is not quite canonically defined (since
it involves choosing a vertex group in a free splitting A when defining 7(A)), it is easy to
check that, for N > 3, if 7': V(FSy) — V(FFy) is another map constructed by the above
procedure, then d(7(v),7'(v)) < 2 for all v € V(FSy).

We prove:

Theorem 1.1. Let N > 3. Then the free factor complex F Fy is Gromov-hyperbolic. Moreover,
there exists a constant C > 0 such that for any two vertices x,y of FSNn and any geodesic [z, y]

in FS](\}) the path 7([z,y]) is C—Hausdorff close to a geodesic [T(x),T(y)] in FFI(Vl).

To prove Theorem 1.1, we first introduce a new object, called the free bases graph, and
denoted F'By, see Definition 4.2 below. The vertices of F'By are free bases of Fiy, up to some
natural equivalence. Informally, adjacency in F' By corresponds to two free bases sharing a
common element. We then prove (Proposition 4.3) that the natural map from FBy to FFy is
a quasi-isometry. Thus to show that F'F)y is hyperbolic it suffices to establish hyperbolicity of
FBy. To do the latter we use a hyperbolicity criterion for graphs (Proposition 2.3 below) due to
Bowditch [8]. Roughly, this criterion requires that there exists a family of paths G = {gas.y }a.y
(where z,y € VX) joining x to y and that there exists a “center”-like map ®: V(X)) x V(X) x
V(X) — V(X), such that the pair (G, ®) satisfies some nice “thin triangle” type properties, see
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Definition 2.2 below. Using Bowditch’s criterion we obtain Corollary 2.4 saying that if X,Y
are connected graphs, with X hyperbolic and if f: X — Y is a surjective Lipschitz graph-
map with the property that if d(f(z), f(y)) is small then f([x,y]) has bounded diameter,
then Y is also hyperbolic. Moreover, in this case f([z,y]) is uniformly Hausdorff-close to any
geodesic [f(z), f(y)] in Y. As noted in Remark 2.5, instead of the results of [8], in the proof of
Corollary 2.4 we could have also used a recent result of Bowditch (Proposition 3.1 of [9]) giving
a strengthened version of the hyperbolicity criterion of Masur-Schleimer given by Theorem 3.11
in [23].

We then construct a surjective Lipschitz map f: F.Sy — F By, where F'SY; is the barycen-
tric subdivision of F'Sy. The map f restricts to a natural bijection from a subset S of V(FSY;),
corresponding to N-roses, to the set V(FBy) of vertices of FBy. Thus we may, by abuse
of notation, say that S = V(FBy) and that f|s = Idg. In [15] Handel and Mosher con-
structed nice paths g, , given by “folding sequences” between arbitrary vertices x and y of
FS);, and proved that these paths are quasigeodesics in F'S};. To apply Corollary 2.4 to the
map f: FSy\ — FBy it turns out to be enough to show that f(gs,) has bounded diame-
ter if x,y € S and d(f(x), f(y)) < 1in FBy. To do that we analyze the properties of the
Handel-Mosher folding sequences in this specific situation. The construction of g, for arbi-
trary x,y € V(FSY}) is fairly complicated. However, in our situation, we have z,y € S, so
that x,y correspond to free bases of Fy. In this case the construction of g, , becomes much
easier and boils down to using standard Stallings foldings (in the sense of [20, 30]) to get from
x to y. Verifying that f(g,,) has bounded diameter in F' By, assuming d(f(z), f(y)) < 1,
becomes a much simpler task. Thus we are able to conclude that F'By is Gromov-hyperbolic,
and, moreover, that f([z,y]) is uniformly Hausdorff-close to any geodesic [f(x), f(y)] in FBy.
Using the quasi-isometry between F' By and F'F) provided by Proposition 4.3, we then obtain
the conclusion of Theorem 1.1.

Moreover, as we note in Remark 6.2, our proof of Theorem 1.1 provides a fairly explicit
description of quasigeodesics joining arbitrary vertices (i.e. free bases) in FBy in terms of
Stallings foldings.
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Institute of Mathematics in Palo Alto. We thank AIM and the other participants of the
workshop, Thierry Coulbois, Matt Clay, Arnaud Hilion, Martin Lustig and Alexandra Pettet,
for the stimulating research environment at the workshop. We are also grateful to Patrick
Reynolds for the many helpful comments on the initial version of this paper and to Saul
Schleimer for a helpful discussion regarding references for Proposition 2.7. We especially thank
the referee for the numerous useful comments and suggestions, and for providing Figure 1
(see Section 6 below) illustrating the relationships and the maps between the main objects
considered in this paper.

2. HYPERBOLICITY CRITERIA FOR GRAPHS

Convention 2.1. From now on, unless specified otherwise, every connected graph X will be
considered as a geodesic metric space with the simplicial metric (where every edge has length
1). As in the introduction, we denote the vertex set of X by V(X). Also, when talking about
a connected simplicial complex Z as a metric space, we will in fact mean the 1-skeleton Z()
of Z endowed with the simplicial metric.

Let X,Y be connected graphs. A graph-map from X to Y is a continuous function f: X —
Y such that f(V(X)) C V(Y) (so that f takes vertices to vertices), and such that for every
edge e of X f(e) is an edge-path in Y (where we allow for an edge-path to be degenerate and
to consist of a single vertex). Note that if f: X — Y is a graph-map and X’ is a subgraph of
X then f|X, : X’ =Y is also a graph-map and f(X’) is a subgraph of Y.
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We say that a graph-map f: X — Y is L-Lipschitz (where L > 0) if for every edge e of X
the edge-path f(e) has simplicial length < L.

We use a characterization of hyperbolicity for a geodesic metric space (X,dx) that is due
to Bowditch [8]. A similar hyperbolicity conditions have been originally stated by Masur and
Minsky (see Theorem 2.3 in [21]). A related statement was also obtained by Hamenstadt [13].
The following result is a slightly restated special case of Proposition 3.1 in [§].

Definition 2.2 (Thin triangles structure). Let X be a connected graph. Let G = {g, 4|z, y €
V(X)} be a family of edge-paths in X such that for any vertices z,y of X g¢,, is a path
from z to y in X. Let ®: V(X) x V(X) x V(X) — V(X) be a function such that for any
a,b,c e V(X),

®(a,b,c) = ®(b,c,a) = P(c,a,b).
Assume, for constants By and Bs that G and ® have the following properties:

(1) For z,y € V(X), the Hausdorff distance between g, , and g, , is at most Bs.
(2) For z,y € V(X), gay: [0,1] = X, s,t €0,]] and a,b € V(X), assume that

dx(a,g(s)) < By and dx(b,g(t)) < By.

Then, the Hausdorff distance between g, and gm,y|[s 9 is at most Bs.
(3) For any a,b,c € V(X), the vertex ®(a, b, ¢) is contained in a By—neighborhood of gq p.
Then, we say that the pair (G, ®) is a (By, Be)-thin triangles structure on X.

Proposition 2.3 (Bowditch). Let X be a connected graph. For every By > 0 and By > 0,
there is 6 > 0 and H > 0 so that if (G, ®) is a (B, Ba)-thin triangles structure on X then X
is 6—hyperbolic. Moreover, every path g, in G is H-Hausdorff-close to any geodesic segment

[z, y].

Corollary 2.4. Let X andY be connected graphs and assume that X is 6g—Gromouv-hyperbolic.
Let f: X =Y be a L-Lipschitz graph-map and f(V (X)) =V (Y). Suppose there are integers
My > 0 and My > 0 so that, for z,y € V(X), if dy (f(z), f(y)) < M; then diamy f([z,y]) <
M.

Then, there exists 61 > 0 such that Y is 61 -hyperbolic. Moreover, there exists H > 0
such that for any vertices x,y of X the path f([z,y]) is H-Hausdorff close to any geodesic

[f (@), f(y)] in Y.

Proof. For every pair of vertices a,b € X, let g, be any geodesic segment [a, b] and let G be
the set of all these paths. Also. for any vertices a, b, c of X let

®(a,b,c) = ®(b,c,a) = P(c,a,b)

be any vertex of X that is at most §y away from each of [a,b], [b, ¢], [a,c]. The hyperbolicity
of X implies that (G, ®) forms a (b1, by)—thin triangles structure on X for some b; and by
depending on dy. We now push this structure (G, ®) forward via the map f.

For any vertex y of Y choose a vertex v, of X such that f(v,) =y.

For any vertices y,z € Y choose a geodesic g,, ., from v, to v, in X (note that such a
geodesic is generally not unique) and let g . := f(gv,v.). Then let G’ = {g, .|y, z € V(Y)}.
Now, for any vertices w,y,z € Y put

D' (w,y,2) == f(P(vy, vy, v2)).

We claim that, the pair (', ®’) is a (Bi, B2)—thin triangles structure for Y for some B; and
Bs. The conditions (1) and (3) of Definition 2.2 are satisfied as long as By > Lbs since f is
L—Lipschitz. Thus we only need to verify that condition (2) of Definition 2.2 holds for (G, ®').
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Let y, z be vertices of Y, v,,v. be the associated vertices in X, g,, ..: [0,{] — X be the
path in G connecting v, to v, and g, ,: [0,I'] — Y be the f-image of g,, ,.. In the interest of
brevity, we denote these paths simply by g and ¢'.

Let By = M; and let, a,b € Y and §',t' € [0,1'] be such that

dy(a,g'(s')) < B and  dy(b,¢'(t)) < Bu.

We need to bound the Hausdorff distance between 9;,1; = f(guv, v,) and ¢’ (0]
Let s,t € [0,1] be such that fg(s) = ¢'(s") and fg(t) = ¢'(¥). Let u be a vertex of g, ;.
From hyperbolicity, we have v, is contained in a 2dy—neighborhood of the union

g’[s7t] U [g(s),va] U [g(t)7vb]'
Thus w is (2L d§p)—close to the union
|2y U F(Lg(s),val) U F(lg(8), 03]

But the dy—diameters of f([g(s),va]) f([g(t),vs]) are less than Ms. Hence, u is in (2L do+ Ma)—
neighborhood of ¢’ (s 0" Similarly, ¢’ (577 is in the same size neighborhood of g, ,. The

condition (2) of Definition 2.2 holds for By = (2L 6 + M).

Therefore, by Proposition 2.3, the graph Y is d;-hyperbolic, and, moreover, for any two
vertices y, 2z of Y the path g, . = f(gv,.) is H'-Hausdorff close to [y, 2] for some constant
H' > 0 independent of y, z. Since g,, ., was chosen to be a geodesic from v, to v, in X and
any two such geodesics are dg-Hausdorfl close, by increasing the constant H' we also get that
for any geodesic [y, z] from y to z in Y and any geodesic [vy,v,] from v, to v, in X the paths
ly,z] and f([vy,v.]) are H'-Hausdorff close in Y

Now let y, z be any vertices of Y and let vy, ' be arbitrary vertices of X such that f(v! ) Y
and f(vl) = z. A geodesic [vy, v.] in X is contained in the 25p-neighborhood of [v;, vy]u[vy, v, |U
[v2,v]. Since f(vy) = f(v,) =y and f(v,) = f(vl) = 2, the assumptions on f imply that
f([vy,vy]) is contained in the Ms-ball around y and f([v,,v)]) is contained in the Ms-ball
around z in Y. Moreover7 we have already shown that f([vy,v.]) is H'-Hausdorff close to

[

[y, z]. Therefore f([v,,v,]) is contained in the H-neighborhood of [y, z] = [f(v;), f(y.)] with
H = 2Ly + My + H'. A similar argument shows that [y,z] = [f(v}), f(y%)] is contained in
the H-neighborhood of f([v;,v.]). Thus [y, z] = [f(v;), f(v})] and f([v,,v.]) are H-Hausdorff

close, as required.
O

Remark 2.5. In the proof of Corollary 2.4, instead of Bowditch’s criterion of hyperbolicity
from [8] we could have used a new result of Bowditch [9] providing a strengthening of a
hyperbolicity criterion of Masur-Schleimer from [23]. Namely, Theorem 3.11 of [23] shows the
following: Let X be a connected graph with a simplicial metric, M > 1 is an integer and
9{xz,y} (where {x,y} varies over all unordered pairs of vertices of X) are connected subgraphs
such that: (a) the graph gy, ,, contains z and y; (b) for any vertices x,y,z of X we have
Iizyy © Nu (g{LZ} Ug{z7y}); and (c) for any vertices x,y of X with d(z,y) < 1 we have
diamx (g1z,41) < M. Then X is Gromov-hyperbolic.

Proposition 3.1 of [9] strengths this result to also include the conclusion that, under the
above assumptions, there exists a constant H = H(M) > 0 such that any gy, is H-Hausdorff
close to any geodesic [z,y]x in X. In fact, Proposition 3.1 of [9] gives an explicit quantitative
estimate for H(M). After minor modifications, the above proof of Corollary 2.4 goes through
and becomes simpler by appealing to Proposition 3.1 of [9] (instead of of using Proposition 2.3
which distills a result of [8]) since there are fewer things to check. At the time the present
paper was written and subsequently refereed, [9] was not yet available, and for that reason we
provide a proof of Corollary 2.4 using Bowditch’s hyperbolicity criterion from [8].
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Proposition 2.6. For any positive integers dg, L, M and D there exist §; > 0 and H > 0 so
that the following holds.
Let X, Y be connected graphs, such that X is §g—hyperbolic. Let f: X — Y be a L-Lipschitz
graph map for some L > 0. Let S C V(X) be such that:
(1) We have f(S)=V(Y).
(2) The set S is D—dense in X for some D > 0.
(3) Forz,y e S, if d(f(x), f(y)) <1 then for any geodesic [z,y] in X we have

diamy (f ([, y])) < M.

Then Y is 61-hyperbolic and, for any z,y € V(X) and any geodesic [x,y] in X, the path
f([z,y]) is H-Hausdorff close to any geodesic [f(x), f(y)] in Y.

Proof. First we show that, for every m; > 0, there is mo > 0 so that whenever x,y € S satisfy
dy (f(z), f(y)) < my then diamy (f([x,y])) < mq. Indeed let z,y € S be as above and consider
a geodesic path [f(x), f(y)] in Y. Let

f($)2207217-~-72t:f(y)> t<m1
be the sequence of consecutive vertices on [f(z), f(y)]. Let zo =z, 2, =y and for 1 <i<¢—1
let x; € S be such that f(z;) = z;. Such z; exist since by assumption f(S) = V(Y). We
have diamy f([z;, z;41]) < M. By hyperbolicity, the geodesic [z, y] is contained in the (m1dg)—

neighborhood of the union
t—1

U [T, Tip1]-
i=0
Since f is L-Lipschitz, f([z,y]) is contained in the (Lmidp)—neighborhood of
t—1
U £ (i, zia]).-
=0
But each f([z;,2;11]) has diameter < M. Therefore, f([z,y]) has a diameter of at most
meo = (mlM + 2Lm150).
Now let M; > 0 and z,y € V(X) be arbitrary vertices with dy (f(z), f(y)) < M;. Since
S is D—dense in X, there exist z’,y' € S such that d(x,2’),d(y,y’) < D. The fact that f is
L-Lipschitz implies that d(f(«’), f(y')) < M1+ 2DL. Therefore, by the above claim, it follows
that the
diamy f([2',y']) < ma(M; + 2DL).
Since X is dp—hyperbolic and d(x, 2"), d(y,y") < D, we have that [z, y] and [2/, '] are (204+2D)—
Hausdorff close. Again, using that f is L-Lipschitz, we conclude that f([z,y]) has a diameter
of at most
My = ma(M, + 2DL) + AL(260 + 2D).

The assumption of Corollary 2.4 are now satisfied for constants dg, L, M7 and Ms. Proposi-
tion 2.6 now follows from Corollary 2.4. O

Proposition 2.6 easily implies the well-known fact that “coning-off” or “electrifying” a family
of uniformly quasiconvex subsets in a hyperbolic space produces a hyperbolic space. Various
versions of this statement have multiple appearances in the literature; see, for example, Lemma
4.5 and Proposition 4.6 in [12], Proposition 7.12 in [7], Lemma 2.3 in [27], Theorem 3.4 in [11],
etc. Maher and Schleimer [24] appear to be the first once to explicitly note that after “electri-
fying” a family of uniformly quasiconvex subsets in a hyperbolic space, not only is the resulting
space again hyperbolic, but the image of a geodesic is a reparameterized quasigeodesic.

We give a version of the “coning-off” statement here phrased in the context of graphs with
simplicial metrics.
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Proposition 2.7. Let X be a connected graph with simplicial metric dx such that (X,dx) is
0o-hyperbolic. Let C > 0 and (X;);cs be a family of subgraphs of X such that each X, is a
C-quasiconvex subset of X. Let' Y be the graph obtained from X by adding to X the new edges
€x,y,; With endpoints x, y whenever j € J and xz,y are vertices of X; (thus X is a subgraph of
Y ). Let dy be the simplicial metric on'Y.

Then Y 1is 61-hyperbolic for some constant §1 > 0 depending only on C and §y. Moreover
there exists H = H(C, dy) > 0 such that whenever z,y € V(X), [z,y]x is a dx-geodesic from x
toy in X and [z,y]y is a dy-geodesic from x toy inY then [x,y]x and [z,yly are H-Hausdorff
close in (Y, dy).

Proof. Let f: X — Y be the inclusion map and put S = V(X). We claim that the conditions
of Proposition 2.6 are satisfied.

By construction V(X) =V (Y), so f(S) =V (Y). Also, the map f is obviously 1-Lipschitz.
Suppose now that z,y € V(X) are such that dy (z,y) < 1. If dy (z,y) < 1 then dy (z,y) =0, so
that 2 = y. In this case it is obvious that condition (3) of Proposition 2.6 holds for f([z,y]x).
Suppose now that dy (z,y) = 1. Thus there exists an edge e in Y with endpoints z,y. If e is
an edge of X then dx(x,y) = 1 and it is again obvious that condition (3) of Proposition 2.6
holds for f([x,y]x). Suppose now that e = e, , ; for some j € J. Thus z,y € V(X). Since X;
is C-quasiconvex in X, we see that for any point w on [z, y]x there exists a vertex z of X; with
dx(u,z) < C. Hence dy (u, z) < C as well. We have dy (z,2) <1 and dy(z,y) < 1 since z,y, z
are vertices of X;. Hence dy (f(u),z) = dy(u,z) < C+ 1. Thus f([x,y]x) is contained in the
dy-ball of radius C' + 1 centered at x in (Y,dy), and again condition (3) of Proposition 2.6
holds.

Thus Proposition 2.6 applies and the conclusion of Proposition 2.7 follows.

O

Note that the assumptions of Proposition 2.7 do not require the family (X;);cs to be
“sufficiently separated”. Such a requirement is present in many versions of Proposition 2.7
available in the literature, although this assumption is not in fact necessary and, in particular,
Proposition 7.12 in [7] does not impose the “sufficiently separated” requirement. We have
derived Proposition 2.7 from Proposition 2.6, which in turn was a consequence of Corollary 2.4.
A close comparison of these statements show that the converse implication does not work, and
that Corollary 2.4 is a more general statement than Proposition 2.7.

3. FREE FACTOR COMPLEX AND FREE SPLITTING COMPLEX

Definition 3.1 (Free factor complex). Let Fiy be a free group of finite rank N > 3.

The free factor complex F'Fy of Fy is a simplicial complex defined as follows. The set of
vertices V(FFy) of FFy is defined as the set of all Fy—conjugacy classes [A] of proper free
factors A of Fy. Two distinct vertices [A] and [B] of FFy are joined by an edge whenever
there exist proper free factors A, B of Fy representing [A] and [B] respectively, such that either
A< Bor B<A.

More generally, for k > 1, a collection of k + 1 distinct vertices [Ag], ..., [Ax] of FFx spans
a k—simplex in F Fy if, up to a possible re-ordering of these vertices there exist representatives
A; of [A;] such that Ag < Ay < -+ < Ay.

There is a canonical action of Out(Fx) on FFy by simplicial automorphisms: If A =
{[Ao], ..., [Ak]} is a k simplex and ¢ € Out(Fy), then p(A) := {[p(A4o)],..., [¢(Ar)]}.

It is not hard to check that for N > 3 the complex F'F is connected, has dimension N — 2
and that FFy/Out(Fy) is compact.

Definition 3.2 (Free splitting complex). Let Fiy be a free group of finite rank N > 3.
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The free splitting complex F'Sy is a simplicial complex defined as follows. The vertex set
V(FSn) counsists of equivalence classes of splittings Fy = 71 (A), where A is a graph of groups
with a single topological edge e (possibly a loop edge) and the trivial edge group such that the
action of Fy on the Bass-Serre tree Ty is minimal (i.e. such that if e is a non-loop edge then
both vertex groups in A are nontrivial). Two such splittings Fy = m1(A) and Fy = m1(B)
are equivalent if there exists an Fy—equivariant isometry between Ty and Tg. We denote the
equivalence class of a splitting Fiy = 71 (A) by [A].

The edges in F'Sy correspond to two splittings admitting a common refinement. Thus two
distinct vertices [A] and [B] of F'Sy are joined by an edge whenever there exists a splitting
Fy = m (D) such that the graph of groups D has exactly two topological edges, both with
trivial edge groups, and such that collapsing one of these edges produces a splitting of F
representing [A] and collapsing the other edge produces a splitting representing [B].

More generally, for k£ > 1 a collection of k+ 1 distinct vertices [Ag], ..., [Ag] of F'Sy spans a
k—simplex in F'Sy whenever there exists a splitting Fiy = m1 (D) such that the graph of groups
D has the following properties:

(a) The underlying graph of D has exactly k + 1 topological edges, ey, ..., €.

(b) The edge group of each e; is trivial.

(c) For each i = 0,...,k collapsing all edges except for e; in D produces a splitting of Fi
representing [A;].

The complex F'Sy comes equipped with a natural action of Out(Fy) by simplicial auto-
morphisms.

Again, it is not hard to check that for N > 3 the complex F'Sy is finite-dimensional,
connected and that the quotient F'Sy /Fy is compact.
We denote the barycentric subdivision of F'Sy by FSY.

Definition 3.3 (Marking). Let N > 2. Recall that a marking on Fy is an isomorphism
a: Fy — m1(I,v) where I is a finite connected graph without any degree-one and degree-two
vertices and v is a vertex of I'. By abuse of notation, if « is specified, we will often refer to I'
as a marking.

Two markings «: Fy — m(T,v) and o': Fy — m(I”,v') are said to be equivalent, if

e~

there exists an Fy—equivariant isometry (I',v) — (I”,v’). The equivalence class of a marking
a: Fy — w1 (T, v) is denoted by [a] or, if « is already specified, just [T].

Convention 3.4 (Barycenters). Note that for N > 3 any marking a: Fy — m1(I") corresponds
to a simplex A, in F'Sy, as follows. We can view I' as a graph of groups by assigning trivial
groups to all the vertices and edges of T'. Then the vertices of A, correspond to the (topological)
edges of I' and come from choosing an edge e of I and collapsing all the other edges of I". It
is easy to see that A, depends only on the equivalence class [a] of the marking «.

We denote the vertex of F'S} given by the barycenter of A, by z(a) or, if it is more
convenient, by z(I'). Note that if [a] = [5] then z(a) = z(8). We will sometimes refer to a
marking I" as a vertex of F'S}; when that happens, we always mean the vertex z(T').

4. THE FREE BASES GRAPH

If T is a graph (i.e. a one-dimensional CW-complex), then any topological edge (i.e. a closed
1-cell) of T' is homeomorphic to either [0, 1] or to S' and thus admits exactly two orientations.
An oriented edge of T' is a topological edge together with a choice of an orientation on this
edge. If e is an oriented edge of I', we denote by e~! the oriented edge obtained by changing
the orientation on e to the opposite one. Note that (e71)~! = e for any oriented edge e. For
an oriented edge e we denote the initial vertex of e by o(e) and the terminal vertex of e by
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t(e). Then o(e™t) = t(e) and t(e™!) = o(e). We will denote by ET the set of oriented edges of
I" and by VT the set of vertices of T'.

Let N > 2. We denote by Wy the graph with a single vertex vy and N distinct oriented
loop-edges e1,...,enN.

Definition 4.1 (A-rose). Let A = {ai,...,an} be a free basis of F. Define the A-rose R
as the marking a4: Fy — m1 (W, vp) where a4 sends a; to the loop at vg in I' corresponding
to e;, traversed in the direction given by the orientation of e;.

Definition 4.2 (Free bases graph). Let N > 3. The free bases graph FBy of Fy is a simple
graph defined as follows. The vertex set V(FBy) consists of equivalence classes free bases A
of Fiy. Two free bases A and B of Fy are considered equivalent if the Cayley graphs T4 and
Ti of Fy with respect to A and B are Fy—equivariantly isometric. We denote the equivalence
class of a free basis A of Fy by [A].

Note that for free bases A = {a1,...,an} and B = {by,...,bny} of Fx we have [A] = [B] if
and only if there exist a permutation o € Sy, an element g € Fyy and numbers ¢; € {1,—1}
(where i = 1,..., N) such that

b; = g_lai—i(i)g
fori=1,...,N. Thus [A] = [B] if and only if the roses R4 and Rp are equivalent as markings.
Note also that for any free basis A of Fiy and any g € F we have [g~1Ag] = [A].

The edges in F By are defined as follows. Let [A] and [B] be two distinct vertices of FBy.
These vertices are adjacent in F' By whenever there exists a € A such that some element b € B
is conjugate to a or a~!. Thus two distinct vertices vy, vy of F By are adjacent if and only if
there exist free bases A and B representing v1, vy accordingly such that AN B # ().

The graph FBy comes equipped with a natural Out(Fy) action by simplicial automor-
phisms.

Proposition 4.3. Let N > 3. Then:

(1) The graph FBy is connected.
(2) For each vertex v = [A] of FByn choose some a, € A. Consider the map

h:V(FBy) — V(FFy)
defined as h(v) = [{(ay)] for every vertex v of FBy. Extend h to a graph-map
h: FBy — FFy

by sending every edge e of F By with endpoints v,v' to a geodesic path [h(v),h(v')] in
FF\. Then:

(a) The map h is a quasi-isometry. In particular, the complezes FBy and FFy are
quasi-isometric.

(b) The set h(V(FBy)) is 3—dense in FF](Vl)

Proof. First we will show that h is 4-Lipschitz. Since h: FBy — FF ](Vl ) is a graph-map, it
suffices to check that for any two adjacent vertices v, v’ of F'Bp we have dpp, (h(v), h(v')) < 4.

Let v = [A] and v' = [B] be two adjacent vertices of F By. Hence we may choose free bases
A representing v and B representing v’ such that AN B # (. Up to re-ordering these bases,
we may assume that A = {a1,...,an}, B={b1,...,bx} and that a; = b;. Then a, = a; and
a, = b; for some 1 < 4,5 < N and thus, by definition of h, we have h(v) = [(a;)], h(v") = [(b;)].

We will assume that ¢ > 1 and j > 1 as the cases where i = 1 or j = 1 are easier. Then in
FFyn we have

drry ([{ai)], (@i a1)]) = driy ([(ai )], [(a)]) =1
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and
drry (8], (b5, 5]) = dry (105 00)], [(01)]) = 1.

Since a; = by, by the triangle inequality we conclude that

dpry (R(v), h(v")) = drry ([(a:)], [(b)]) < 4.

Thus the map h is 4-Lipschitz, as claimed.

To show that h is a quasi-isometry we will construct a “quasi-inverse”, that is a Lipschitz
map q: FF j(vl ) . FB ~ such that there exists C' > 0 with the property that for every vertex v
of FBy dppy (v,q(h(v))) < C and that for every vertex u of FFy, dpn, (u, h(q(u))) < C.

We define ¢ on V(FFy) and then extend ¢ to edges in a natural way, by sending every edge
to a geodesic joining the images of its end-vertices.

Let u = [K] be an arbitrary vertex of FFx (so that K is a proper free factor of Fy).
We choose a free basis Bx of K and then a free basis Ax of Fy such that Bx C Ax. Put
q(u) = [Ak].

First we check that ¢ is Lipschitz. Let v = [K] and «’ = [K'] be adjacent vertices of FFy,
where K, K’ are proper free factors of Fiy. We may assume that K < K’ is a proper free factor
of K'. Since K’ # Fy, there exists t € Axs \ Bx-. Since K is a free factor of K/, we can find a
free basis A of Fiy such that t € A and Bx C A. Since t € A N A, we have d([Ax/], [A]) <1
in FBy. Since Bx C AN Ag, it follows that d([Ak],[A]) <1 in FBy. Therefore

drpy (q(u),q(v') = dppy ([Ax], [Ax/]) < 2.

Hence ¢ is 2-Lipschitz.

For a vertex v = [A] of FBy let us now estimate drpg, (v,q(h(v))). We have h(v) = [(ay)]
for some a, € A. The group K = (a,) is infinite cyclic (that is free of rank 1). Therefore this
group has only two possible free bases, {a,} and {a;'}. We will assume that B = {a,} as
the case Bx = {a; '} is similar. Then, by definition, A is a free basis of Fy containing a,
and ¢(h(v)) = ¢([K]) = [Ak]. Thus a, € AN Ak and hence dpp, (v,q(h(v))) <1 in FBy.

Now let u = [K] be an arbitrary vertex of FFy. We need to estimate dpp, (u, h(q(u))). By
definition, v := h(u) = [Ak] where Af is a free basis of Fiy containing as a (proper) subset a
free basis Bg of K. Then a, € Ag and h(q(u)) = h(v) = [(ay)]. Choose an element b € By.
It may happen that b = a,, but in any case K’ := (b, a,) is a proper free factor of Fy. Then

drry (K] [(0)]) <1, depy ([(B)],[K]) <1 and  dpp, ([K'], [{au)]) < 1.
Therefore
drry (u, h(q(w)) = drry ([K], [(a0)]) < 3.
Thus indeed ¢ is a quasi-inverse for h, and hence h is a quasi-isometry, as required.
We next show that h(V(FBy)) is 3-dense in FFJ(VI). Indeed, let K < F be an arbitrary
proper free factor of F. Let ay,...,a, (where 1 < m < N) be a free basis of K and choose

Gm41 - - -,an such that A = {a1,...,an} is a free basis of Fiy. Then h([A]) = [{(a;)] for some
1 <7< N. In FFy we have

dFFN ([KL [<a1>]) < 1’ dFFN ([<a1>]7 [<a17ai>]) <1 and dFFN ([<a17ai>}7 [<a7>]) <L
Since h([A]) = [{a;)], it follows that drp, ([K], h(v)) < 3. Thus indeed h(V(FBy)) is 3—dense
in FF](VU, as claimed. O

Definition 4.4 (Free basis defined by a marking). If a: Fy — m(I',v) is a marking, and
T CT is a maximal tree in I', there is a naturally associated free basis B(«,T") (which we will
also sometimes denote B(T',T)) of F. Namely, in this case I' — T consists of N topological
edges. Choose oriented edges ei,...,ex € E(I' —T) so that E(I' — T) = {ei’,...,ex'}. For
j=1,...,N put

% = [v.oleg)lr ¢; [Hey), ol
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where [u, u']7 denotes the (unique) geodesic in the tree T from u to u’ for u,u’ € V(') = V(7).
Then 71, ...,y is a free basis of m ([, v). Put B(a,T) := {a Y (11),...,a " (11)}

Remark 4.5. One can show that there is a constant C' = C'(N) > 0 such that if a: Fy —
m([,v) and o': Fy — m(IY,v") are equivalent markings and T C I', 77 C T” are maximal
trees, then

drp,, ([B(Q, )], [B(/, T')]) <cC.

This can be shown, for example, using the quasi-isometry q : FBy — FFx constructed in
Proposition 4.3. Thus the definitions imply that if 7" is a maximal tree in I" and e is an edge
of T'\ T, then ¢([B(a,T)]) is a bounded distance away in F'Fy from the free factor of Fy
corresponding to any of the vertex groups in the graph of groups I'. obtained by collapsing
I'\ e. On the other hand, for any two edges e;,es of I' the free splittings I'., and T, are
adjacent vertices of F'Sy and therefore (e.g. using the Lipschitz map 7 : FSy — FFx from
the Introduction), any two vertex groups A; and As from these splittings are bounded distance
away in F'Fly.

5. A—-GRAPHS AND STALLINGS FOLDS

We briefly discuss here the language and machinery of Stallings foldings, introduced by
Stallings in a seminal paper [30]. We refer the reader to [20] for detailed background on the
topic.

If T is a finite connected non-contractible graph, we denote by Core(I") the unique minimal
subgraph of I" such that the inclusion Core(I') C I' is a homotopy equivalence. Thus Core(I")
carries 7 (I') and we can obtain I" from Core(I") by attaching finitely many trees.

Definition 5.1 (A-graph). Let A be a free basis of Fiy and let R 4 be the corresponding rose
marking. An A-graph is a graph I' with a labelling function p: ET — A*! (where ET is the
set of oriented edges of I') such that for every oriented edge e € ET we have u(e™') = u(e) ™.

Note that there is an obvious way to view the rose R 4 as an A-graph. Any A-graph I" comes
equipped with a canonical label-preserving graph-map p: I' — R4 which sends all vertices of
I to the (unique) vertex of R4 and which sends every oriented edge of I' to the oriented edge
of the rose R4 with the same label. We call p the natural projection.

Let T" be a finite connected A-graph containing at least one vertex of degree > 3. Following
Handel-Mosher [15], we call vertices of I" that have degree > 3 natural vertices. The complement
of the set of natural vertices in I' consists of a disjoint union of intervals whose closures, again
following [15], we call natural edges.

Recall that in the definition of a marking on Fiy the graph appearing in that definition had
no degree-one and degree-two vertices.

Remark 5.2. Suppose that I' is a connected A—graph such that the natural projection ' — R 4
is a homotopy equivalence. Then the projection p: Core(I') — R 4 is a homotopy equivalence.

Then, via using the homotopy inverse of p and making inverse subdivisions in Core(T") to
erase all the degree-2 vertices, we get an actual marking of Fy, a: Fy — m(T). Here T
is the graph obtained from Core(T") by doing inverse edge-subdivisions to erase all degree-two
vertices. In this case we call a the marking associated with I and denote v by ar, or, sometimes

just by T.

Definition 5.3 (Folded graphs and Stallings folds). Let I' be an A-graph. We say that T
is folded if there does not exist a vertex v of I' and two distinct oriented edges e, es with
o(e1) = o(ez) = v such that p(er) = p(ez). Otherwise we say that I' is non-folded.

Let T" be a non-folded A-graph, let ej,es be two distinct oriented edges of T' such that
o(e1) = o(ez) = v € V(T) and such that pu(e;) = p(ez) = a € AL, Construct an A-graph I
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by identifying the edges e; and es into a single edge e with label p(e) = a. We say that IV is
obtained from I' by a Stallings fold. In this case there is also a natural label-preserving fold
map f: I' — I". It is easy to see that the fold map f is a homotopy equivalence if and only if
t(e1) #t(ex) inT. If t(eg) # t(e2) in T', we say that f is a type-I Stallings fold. If t(e1) = t(e2)
in I, we say that f is a type-II Stallings fold.

Note that if ' is a finite connected A-graph such that the natural projection I' — R 4 is a
homotopy equivalence, and if T is obtained from I by a Stallings fold f, then f is necessarily
a type-I fold, and hence the natural projection I' — R 4 is again a homotopy equivalence.

Definition 5.4 (Maximal fold). Let " be a non-folded finite connected A-graph, let v € VA
be a natural vertex, let e1,es be two distinct oriented edges of T" such that o(e1) = o(e2) = v
and such that u(e;) = p(ez) = a € AL Let €1 and é be the natural edges in T' that begin
with e, es accordingly. Let z1, 2o be maximal initial segments of €; and €5 such that the label
w(z1) is graphically equal, as a word over A*!, to the label p(22). Thus 2; starts with e; and
29 starts with es. Let TV be obtained from I' by a chain of Stallings folds that fold z; and zo
together. We say that IV is obtained from I' by a maximal fold. Being a composition of several
Stallings folds, a maximal fold also comes equipped with a fold map f: T' — T".

Remark 5.5. Let I be a connected .A-graph such that ' = Core(T") and such that the natural
projection p: I' — R4 is a homotopy equivalence. Let a: Fy — m(T',v) be an associated
marking. Let T'C I' be a maximal tree.

Recall that according to Definition 4.4, we have an associated free basis B(I',T") of Fiy. In
this case B(T', T') can be described more explicitly as follows. Choose oriented edges e1,...,enx €
E( —T) so that B(T —T) = {ef!,...,ex'}. For each j = 1,..., N let w; be the label (i.e. a
word over A) of the path [v,0(e;)]re;[t(e;), v]r. Then B(T,T) = {w1,...,wn}.

We need the following technical notion which is a variant of the notion of a foldable map
from the paper of Handel-Mosher [15].

Definition 5.6 (Foldable maps). Let I' be a finite connected A-graph such that the natural
projection p: I' — R4 is a homotopy equivalence and such that I' = Core(T).
We say that the natural projection p: I' — R 4 is foldable if the following conditions hold:

(1) If v is a vertex of degree 2 in I" and ey, ea are the two distinct edges in I' with o(e;) =
o(e2) = v then pu(er) # p(ea).
(2) If deg(v) > 3 in I then there exist three (oriented) edges ej,eq,e3 in I' such that
o(e1) = o(ez) = o(e3) = v and such that u(ey), u(e2), p(es) are three distinct elements
in A%
If the natural projection p: T' — R4 is foldable, we will also sometimes say that the A-graph
I' is foldable.

Remark 5.7. Let T' be a foldable A-graph and let T be obtained from I' by a maximal fold.
(1) One can check that I" is again foldable. Note, however, that a single Stallings fold on a
foldable A-graph may introduce a vertex of degree three where condition (2) of Definition 5.6
fails, so that the resulting graph is not foldable. Performing maximal folds instead of single
Stallings folds avoids this problem.
(2) Lemma 2.5 in [15] implies that

dFS;\I (Z(f),z(ﬁ)) < 2.

Recall that the marking I’ was defined in Remark 5.2.

(3) As noted above, in [15] Handel and Mosher introduce the notion of a “foldable” Fi-
equivariant map between trees corresponding to arbitrary minimal splittings of Fj as the
fundamental group of a finite graph of groups with trivial edge groups. They also prove the
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2(Ra) < [A]
FSY fCB———QFBN [(a1,a2,...,aN)]
qi. | () h|qd J
FSy L FFy [(a:)]

[A x B], [A%] — [A]

FIGURE 1. A diagram showing the maps between the various curve complex
analogs considered in this paper. Here Fiy = Ax represents an HNN-extension
splitting of Fy with the trivial associated subgroups and with the base group
A. The map 9 is the quasi-isometry between FSy and FSy given by the
inclusion map.

existence of such “foldable maps” in that setting. The general definition and construction of
foldable maps are fairly complicated, but in the context of A-graphs corresponding to markings
on Fly they become much easier. In particular, we will only need the following basic fact that
follows directly from comparing Definition 5.6 with the Handel-Mosher definition of a foldable
map:

Let T" be a finite connected A—graph such that the natural projection p: I' — R4 is a
homotopy equivalence and such that I' = Core(I'). Suppose that p is foldable in the sense
of Definition 5.6 above. Then there exists a foldable (in the sense of Handel-Mosher) map
I — Ra.

Handel and Mosher use foldable maps as a starting point in constructing folding paths
between vertices of FSY;, and we will need the above fact in the proof of the main result in
Section 6.

6. PROOF OF THE MAIN RESULT

Before giving a proof of the main result, we illustrate the relationship and the maps between
FSn,FSy,FFy and FBy in the following diagram, provided by the referee:

Theorem 6.1. Let N > 3. Then the free factor complex F Fy is Gromov-hyperbolic. Moreover,
there exists a constant H > 0 such that for any two vertices x,y of FSn and any geodesic [z, y]

in FS](\}) the path 7([x,y]) is H-Hausdorff close to a geodesic [T(x),T(y)] in FF](VI).

Proof. Recall that F'S’ is the barycentric subdivision of the free splitting graph F'Sy, so that
the inclusion map FSy C FS} is a quasi-isometry.

Recall also that for any free basis A of Fiy the rose R4 defines an (N — 1)-simplex in F'Sy
(via the canonical marking Fy — m1(R4) sending the elements of A to the corresponding
loop-edges of R4) and that, as in Convention 3.4, z2(R4) € V(FS)) is the barycenter of that
simplex. Note that by definition, if [A] = [B] then z(R4) = z(Rg). Put

S ={z(R4)|A is a free basis of Fi}.

Thus S C V(FSYy) and we may think of S as a copy of V(FBy) in V(FS}).

For every z,y € S let g, , be the path from = to y in F'S} given by the Handel-Mosher
folding line [15]. Recall that, as proved in [15], F'S} is Gromov-hyperbolic and g, , is a re-
parameterized uniform quasigeodesic. Hence g, , is uniformly Hausdorff close to any geodesic
[z,y] in F'SY.

Consider the following map f: V(FSy) — V(FBy). For every vertex u of FS};, which
may be viewed as a splitting of Fy as the fundamental group of a graph of groups with trivial
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edge-groups, choose an edge e of that splitting, collapse the rest of u to a single-edge splitting
corresponding to u and let A(u) be a vertex group of that collapsed splitting. Thus A(u) is a
proper free factor of Fiy and hence [A(u)] is a vertex of F'Fy. Then choose a vertex v of F'By
with d(h(v), [A(u)]) < 3 (such v exists by Proposition 4.3). Put f(u) := v. We can make the
above choices to make sure that for every free basis A of Fiy we have f(z(R4)) = [A] (note
that dpp, (h([A]), A(z(R4))) < 2). With the above mentioned identification of S and V(FBy)
we may in fact informally think that f|s = Idgs. Moreover, if T is a foldable A-graph (which
therefore defines a marking T') and T' C T is a maximal tree, then we have an associated free
basis B(I',T) described in Remark 5.5 above. One can check that d(f(T'), [B(I',T)]) < B for
some constant B = B(NN) > 0 independent of A, T, T.

We have defined a map f: V(FS)y) — V(FBy). We then extend this map to a graph-map
f: FS)\ — FBy by sending an arbitrary edge e of F'S), with endpoints u1, us to a geodesic
edge-path [f(u1), f(uz)] in FBy. The graph-map f: FS) — FBy is L-Lipschitz for some
L > 0, since 7 is Lipschitz and the maps V (FSY) — FFJ(\,D7 given by u — [A(u)] and u — 7(u),
are bounded distance away from each other.

We claim that all the assumptions of Proposition 2.6 are satisfied for the map f: FSy —
F By and the set S.

Condition (1) of Proposition 2.6 holds, since by assumption f(S) = V(FBy). Also, as
noted above, f: FS) — FBy is L-Lipschitz, and it is easy to see that S is D—dense in F'S;,
for some D > 0. Our task is to verify condition (3) of Proposition 2.6.

If ',y € V(FBy) have d(2’,3y') < 1 then there exist free bases A,B of Fy such that
' = [B], y = [A] and such that there exists a € AN B. Without loss of generality, we may
assume that A = {ay,...,an}, B = {b1,...,by} and that a; = by = a. Put z = 2(Rp) and
y = z(A), so that f(z) =2’ and f(y) =v'.

In [15] Handel-Mosher [15], given any ordered pair of vertices x,y of V(FS);), construct an
edge-path g, , from z to y in F'S);, which we will sometimes call the Handel-Mosher folding
path. The general definition of g, , in [15] is fairly complicated. However, we only need to use
this definition for the case where x,y € S, in which case it becomes much simpler, and which
we will now describe in greater detail for the vertices z = z(Rp) and y = z(A) defined above.

Consider an A-graph I'g which is a wedge of N simple loops at a common base-vertex
vg, where the i-th loop is labeled by the freely reduced word over A that is equal to b; in
Fx. Note that the first loop is just a loop-edge labelled by a;, since by assumption b; =
a1. The natural projection p: I'g — R4 is a homotopy equivalence and we also have I'y =
Core(T'g). Condition (1) of Definition 5.6 holds for Iy by construction. However, p: I'g — R4
is not necessarily foldable since Condition (2) of Definition 5.6 may fail. This happens exactly
when there exists ¢ € {1, —1} such that for all ¢ = 2,..., N the freely reduced word over A
representing b; begins with af and ends with a;¢. However, after possibly replacing B by
an equivalent free basis of the form a]"Ba;™, for the graph I'y defined as above the natural
projection p: I'g — R 4 is foldable in the sense of Definition 5.6. Note that conjugation by a}®
fixes the element b; = a1, so that even after the above modification of B it will still be true
that T'y contains a loop-edge at vy with label a;.

As noted in Remark 5.7 above, as the initial input for constructing g, ,, Handel and Mosher
need a “foldable” (in the sense of [15]) Fy—equivariant map Rg — R.4. Again, as observed in
Remark 5.7, such a map exists since we have arranged for the A-graph I'g to be foldable in the
sense of Definition 5.6.

Note that by construction, the marking T'y corresponding to I'y is exactly the vertex z =
z(Rg) of FSY.
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The remainder of the Handel-Mosher construction of g, , in this case works as follows. Since
p: T'g — R4 is a homotopy equivalence, there exists a finite sequence of A—graphs

To,Ty,...T, = R4

where for ¢ = 1,...,n I'; is obtained from I';_; by a maximal fold. Then the associated
markings T'; are vertices of F'S%;. As observed in Remark 5.7, we have d(T';_1,T;) < 2 in F'S).
Joining each consecutive pair T';_1,T; by a a geodesic path of length < 2 in F'S%; produces the
path g, from z to y in F'S%. Note that each I'; has a base-vertex v; which is the image of
the base-vertex vg of I'g under the sequence of folds that takes I'g to T';.

A crucial feature of the above construction is that every I'; will have a loop-edge (at the
base-vertex v; of I';) with label a;. Since the map f: FS) — FBy is L-Lipschitz, this implies
that f(gs,,) has diameter bounded by some constant M independent of z,y. Indeed, Since T';
has a loop-edge at its base-vertex with label a1, there exists a free basis v1,...,yn of m1 (T, v;)
(e.g. coming from a choice of a maximal tree in I';, as in Definition 4.4 and Remark 5.5) such
that w(y1) = a1 and such that B; = {u(y1),...,u(yn)} is a free basis of F. Since a; € B;,
we have d([B;], [A]) < 1in FBy for each i. Unpacking the definition of the map f we see that
d(f(Ti—1),[Bs]) < C in FBy for some constant C' > 0. Hence d(f(T;_1),[A]) < C + 1. Recall
that g, is a quasi-geodesic in a hyperbolic graph F'S; and hence g, , is uniformly Hausdorff-
close to a geodesic [z,y|. Since f is L-Lipschitz, it follows that f([z,y]) has diameter bounded
by some constant M independent of x,y. Thus condition (3) of Proposition 2.6 holds.

Therefore, by Proposition 2.6, the graph F' By is Gromov-hyperbolic, and, moreover, for any
vertices x,y of F.Sy, the path f([z,y]) is uniformly Hausdorff-close to a geodesic [f(z), f(y)].

Recall that in Proposition 4.3 we constructed an explicit quasi-isometry h: FBy — FFy.
Since F By is hyperbolic, it follows that F'F is Gromov-hyperbolic as well. Moreover, the
map 7: FSy — FFy from the statement of Theorem 1.1, and the map ho f: FSy — FFy
are bounded distance from each other. This implies that there exists a constant H > 0 such

that for any two vertices x,y of F'Sy and any geodesic [z,y] in FS](\}) the path 7([z,y]) is
H-Hausdorff close to a geodesic [r(z), 7(y)] in FF](VI). O

Remark 6.2. The above proof implies a reasonably explicit description of certain reparam-
eterized quasigeodesics in F'By between two arbitrary vertices of F' By in terms of Stallings
folds. Let A ={a3,...,an} and B = {b1,...,bn} be free bases of Fy. Let 'y be an A-graph
corresponding to B constructed in a similar way to the way Iy was constructed in the above
proof. That is, let I'y be a wedge of N simple loops at a common base-vertex vy, where the i-th
loop is labeled by the freely reduced word over A that is equal to b; in Fy. Suppose that 'y is
such that the natural projection p: I'y — R4 is foldable in the sense of Definition 5.6. (Note
that this assumption does not always hold; however, it may always be ensured after replacing
B by an equivalent free basis).

Let Ty,T'y,...,T';, = R4 be A-graphs such that for s = 1,...,n I'; is obtained from T';_;
by a maximal fold. Note that each I'; has a distinguished base-vertex v;, which is the image
of the base-vertex vy of I'g under the foldings transforming I'g to T'; .

For each 1 < i < n choose a maximal subtree T; in T';. Let A; = B(T';, T;) be the associated
free basis of Fyy (see Remark 5.5 above for its detailed description). Put Ay = B and A,, = A.

It is not hard to check that d([A4;], f(T;)) < C in FBy for some constant C' = C(N) > 0
independent of A, B. Since, as noted in the proof of Theorem 1.1 above, the sequence Iy, ..., T,
defines a (reparameterized) uniform quasigeodesic in FS%;, it now follows from the proof of
Theorem 1.1 that the set {[A¢], [A1], - - -, [Ax]} is uniformly Hausdorff-close to a geodesic joining
[B] and [A] in F'By. This fact can also be derived from a careful analysis of the Bestvina-Feighn
proof [4] of hyperbolicity of FFy.
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