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ABSTRACT

The Intel Knight Landing (KNL) manycore chip includes 3D-stacked

memory named MCDRAM, also known as High Bandwidth Mem-

ory (HBM) for parallel applications that needs to scale to high thread

count. In this paper, we provide a quantitative study of the KNL

for HPC proxy applications including Lulesh, HPCG, AMG, and

Hotspot when using DDR4 and MCDRAM. The results indicate that

HBM signiicantly improves the performance of memory intensive

applications for as many as three times better than DDR4 in HPCG,

and Lulesh and HPCG for as many as 40% and 200%. For the se-

lected compute intensive applications, the performance advantage

of MCDRAM over DDR4 varies from 2% to 28%. We also observed

that the cross-points, where MCDRAM starts outperforming DDR4,

are around 8 to 16 threads.
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1 INTRODUCTION

The past decade has seen dramatically increased complexity of com-

puter systems, including the increase of parallelism and the adop-

tion of heterogeneous and accelerator architectures. Adding on that

recently, memory systems are becoming more complex, e.g. the use

of 3D-stacked memory and NVRAM. 3D-stacked DRAMs [8], which

connect DRAM dies vertically with through silicon vias (TSVs), in-

crease memory density and the amount of interface channels. Two

3D-stacked DRAM standards and products, Hybrid Memory Cube

(HMC) and High Bandwidth Memory (HBM), are already available

in commercial products, including the use of HBM in AMD’s Fiji

GPUs, Nvidia’s Pascal GPUs, and Intel’s Knights Landing (KNL)

manycore architecture.
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It has been well discussed the 3D-stack memory is unable to

eliminate memory wall [11]. Particularly, for the latency challenge,

3D-stacked DRAMs may increase latency due to circuit complexity.

Our latency evaluation on the latest 64-core KNL shows that the idle

latencies of HBM (named as Multi-Channel DRAM (MCDRAM))

and DDR4 are 168.6ns and 140.8ns. The latency tests for other KNL

memory and clustering modes show the similar results between

the MCDRAM and DDR4 1. In general, HBM’s latency is about 20%

higher than the DDR4 latency in KNL 2.

For bandwidth, 3D-stack memory is designed to sustain much

higher memory bandwidth than conventional 2D-stacked DRAMs.

It is thus generally agreed that 3D-stacked memory would beneit

highly parallel memory and data intensive application on many-

core architectures. In this paper, we evaluate the performance im-

pact of using KNL MCDRAM for several HPC applications, in-

cluding Lulesh, HPCG, AMG, and HotSpot. Our study shows that

MCDRAM improves the performance for memory intensive appli-

cations (HPCG and Lulesh) for as many as of 40%and 200%. For

compute intensive applications, the performance advantage of MC-

DRAM over DDR4 varies according to the applications and problem

sizes, from 2% to 25%. We also observed that the cross-points as the

number of threads when MCDRAM starts outperforming DDR4

are around 8 to 16 threads for most applications.

This paper is organized as follows. Section introduces KNL mem-

ory and cluster modes of its MCDRAM and DDR4 memory. Sec-

tion 3 presents the performance results using STREAM benchmark.

Section 4 presents our evaluation using HPC workloads. Section 5

concludes the paper.

2 KNL MEMORIES

Intel Knights Landing (KNL) [4] manycore processor is the second-

generation Intel Xeon Phi product. It has up to 36 physical tiles

each with two x86 cores and two vector processing units. A KNL

machine has two types of memory: MCDRAM, which is a version of

HBM and DDR4 memory. MCDRAM in KNL totals 16GB capacity

and 450GB/s bandwidth. DDR4 is a high-capacity memory with

maximum 384GB capacity and 90GB/s bandwidth.

2.1 KNL MCDRAM Memory Modes

The MCDRAM can be conigured in three diferent modes: 1) Cache

mode, in which MCDRAM acts as directed mapped L3 cache for

DDR4; 2) Flat mode, in which MCDRAM is treated the same as

DDR4, but in a diferent NUMA domain; and 3) Hybrid mode, which

1John D. McCalpin, Memory Latency on the Intel Xeon Phi x200 "Knights Landing"
processor from http://sites.utexas.edu/jdm4372/tag/memory-latency
2Tested using Intel Memory Latency Checker v3.3 from https://software.intel.com/en-
us/articles/intelr-memory-latency-checker.
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is a combination of cache and lat modes. Some MCDRAM is con-

igured as addressable memory as a new NUMA domain and the

other is conigured as cache.

2.2 KNL Memory Cluster Modes

Cluster mode refers to the way that memory requests originating

from cores reach the memory channel. There are three kinds of

cluster mode in KNL: 1) All-to-All, 2) Quadrant mode, 3) Sub-NUMA

Cluster (SNC). In all-to-all cluster mode, memory requests can be

originated from any core to any memory channel. In quadrant

mode, which is the default mode when all channels have the same

capacity and number of DIMMs, the mesh network and cores titles

are virtually divided into four identical sections. The quadrant mode

generally results in less mesh traic as compared to all-to-all mode

and hence can provide better performance.

For the results reported in this paper, we used a KNL 7210 pro-

cessor @ 1.30GHz conigured with the quadrant clustering mode.

we used MCDRAM lat mode in order to take full advantage of

MCDRAM, The processor has 36 tiles connected by a 2D Mesh

interconnect. It has 64 cores with up to 4 threads per core, 16 GB

of MCDRAM and 68 GB of DDR4. The host operating system is

CentOS 6.7 Linux with kernel version 2.6.32-573.12.1.el6.x86 64. For

compiling, Intel ICC has been used with -O2 optimization option.

3 EVALUATION OF BANDWIDTH SCALING
USING STREAM BENCHMARK

Our irst evaluation used STREAM benchmark [10] to measure the

memory bandwidth and its scalability on the KNL machine. It con-

sists of four operations: Copy, Scale, Sum and Traid. Table 1 shows

the execution time of the four functions of STREAM using DDR4

and MCDRAM for problems size of 15 Million (M). MCDRAM starts

outperforming DDR4 for both Copy and Scale functions from 8

threads onward, and for Sum and Traid, this cross-point is at 16

threads. Before these points, DDR4 shows a bit better performance

in terms of execution time. This can be explained by the lower

latency of DDR4 than that of MCDRAM before bandwidth becomes

the dominating factor of the performance. These points are also

the number of threads when DDR4 bandwidths are saturated. The

bandwidth trends shown in Figure 1 to Figure 4 verify this. Since 16

threads, DDR4 reaches the bandwidth saturation point and band-

width levels of after that. MCDRAM delivers better performance

by adding more threads after 10 threads. The best performance

by MCDRAM for all functions are achieved when the number of

threads is 256, which is about 5 times better than using DDR4. It is

also worth to mention that hyperthreading (from 64 to 256 threads)

does not help the performance much for this workload.

4 APPLICATION EVALUATION

In this section, we evaluate the performance impacts of KNL MC-

DRAM for memory and compute intensive applications. The per-

formance of memory intensive applications may converge to the

saturation point determined by the memory bandwidth. Thus, they

can take advantage of HBM to achieve better performance.

4.1 Memory Intensive Applications

HPCG: High Performance Conjugate Gradients (HPCG) is a bench-

mark created as a complement to High Performance LINPACK

(HPL) Benchmark for measuring the performance of and ranking

HPC systems [7]. The main diference between HPL and HPCG

refers to their main computational kernels, which is matrix mul-

tiplication in HPL, and matrix vector multiplication in HPCG [9].

Thus, the ratio of memory access to FLOP in HPCG is signiicantly

higher than HPL [2]. HPCG also exhibits the same irregular access

to memory and ine-grain recursive computations[1].

HPCG has been evaluated for three problem sizes (24, 120, 256)

across diferent number of threads. As shown in Table 2, DDR4 and

MCDRAM perform very closely for the small numbers of threads,

but DDR4 still shows a bit better performance rather than MC-

DRAM due to the lower latency of DDR4. However, from 16 threads

and more, MCDRAM outperforms DDR4, and this fact is more ob-

vious in large problem sizes (120 and 256). The best performance

by MCDRAM for problem size 120 is achieved at 64 threads, which

is about two times faster than DDR4. For problem size 256, MC-

DRAM also performs around three times better of using DDR4 at

64 threads. HPCG performance has similar trends as STREAM and

the saturation points determined by the DDR4 bandwidth remains

constant across diferent problem sizes at 16 threads.

Lulesh: Livermore Unstructured Lagrangian Explicit Shock Hy-

drodynamics (LULESH) is a proxy-app which performs a hydro-

dynamics stencil calculation by using both MPI and OpenMP [6].

Hydrodynamics describes the relative motion of materials caused

by a force. Lulesh partitions the problem domain into a collection

of elements and estimates the hydrodynamics equations discretely

[6]. Generally, the compute intensive part of this application is still

considered massive, but it also demands high memory access which

has an irregular pattern. It can take advantage of MCDRAM.

Based on the performance results in Table 3, it is clear that for

small problem size (20) the margin between DDR4 and MCDRAM

is small, less than 10%. For large problem sizes (70 and 100), MC-

DRAM outperforms DDR4 when the number of threads reaches 16.

For the input data size of 70, MCDRAM achieve 57% better perfor-

mance than using DDR4 at 64 threads, and this improvement for

problem size 100 is around 47%. After these points MCDRAM also

creates less parallelism overhead. The saturation point of DDR4 for

Lulesh varies based on the problem size. For large problem sizes,

it stands at 16 threads. From the results, it is also obvious that for

small problem size this application achieves better performance by

adding more threads until 16 cores, while for larger problem sizes,

increasing number of threads until 64 is still worth and can provide

better execution time. Thus, this application exhibits certain weak

scalability character.

4.2 Computation Intensive Applications

AMG: AMG is an Algebraic Multigrid (AMG) solver for linear sys-

tems for unstructured grids [5]. The memory access pattern for

this application is irregular. The default problem of AMG which

is a Laplace type problem and demands more memory access in

comparison with other problems of AMG, has been evaluated. The

results in Table 4 indicate that AMG is not impacted much by the
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Table 1: STREAM performance (s) for DDR4 and MCDRAM. The results in red color are the cross-point of the number of

threads when MCDRAM outperforms DDR4. The results in bold are the best performance achieved.

Number of threads

Memory/problem size/function 1 2 4 8 16 32 64 128 256

DDR4-PS=15M-Copy 0.435397 0.220136 0.112345 0.059609 0.038772 0.037819 0.038212 0.039263 0.039532

MCDRAM_PS=15M-Copy 0.457037 0.229367 0.115001 0.05775 0.028958 0.015616 0.009761 0.00996 0.008285

DDR4-PS=15M-Scale 0.440568 0.222475 0.113633 0.059729 0.038788 0.037891 0.038142 0.039427 0.040249

MCDRAM_PS=15M-Scale 0.453367 0.227237 0.113996 0.057183 0.028733 0.015667 0.009532 0.010174 0.007274

DDR4-PS=15M-Add 0.475274 0.238583 0.12065 0.067228 0.051013 0.050519 0.051147 0.0524 0.053464

MCDRAM_PS=15M-Add 0.525253 0.264652 0.134484 0.069455 0.039043 0.026416 0.015315 0.014271 0.010627

DDR4-PS=15M-Triad 0.48141 0.244698 0.125668 0.069466 0.051278 0.050505 0.051214 0.052698 0.052827

MCDRAM_PS=15M-Traid 0.543858 0.274373 0.140221 0.073043 0.043038 0.02887 0.015856 0.01447 0.010696
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Figure 1: Bandwidth usage

of Copy function for DDR4

and MCDRAM.
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Figure 2: Bandwidth usage

of Sum function for DDR4

and MCDRAM.
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Figure 3: Bandwidth usage

of Scale function for DDR4

and MCDRAM.
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Figure 4: Bandwidth usage

of Traid function for DDR4

and MCDRAM.

Table 2: HPCG performance for DDR4 and MCDRAM based on diferent problem sizes

Number of threads

Memory/Problem size 1 2 4 8 16 32 64 128 192 256

DDR4-PS=24 0.413 0.246578 0.170208 0.136 0.121 0.121 0.143 0.193 0.236 0.29

MCDRAM-PS=24 0.424 0.252088 0.172699 0.137 0.119 0.12 0.141 0.192 0.236 0.254

DDR4-PS=120 47.51 25.391 12.929 6.91 3.87 2.72 2.42 2.69 2.96 3.22

MCDRAM-PS=120 49.25 26.2325 13.3637 7.11 3.78 2.09 1.32 1.34 1.705 1.86

DDR4-PS=256 530.548 294.781 145.211 71.48 37.42 27.1 25.75 27.27 28.34 31.31

MCDRAM-PS=256 560.835 310.951 152.326 73.12 35.91 18.88 8.54 8.54 8.8 9.009

Table 3: Lulesh performance for DDR4 and MCDRAM based on diferent problem sizes

Number of threads

Memory/Problem size 1 2 4 8 16 32 64 128 192 256

DDR4-PS=20 26.98 16.16 9.6 6.4 5.1 5.27 6.49 7.87 10.73 15.32

MCDRAM-PS=20 27 16.04 9.55 6.3 4.97 4.97 5.57 8.1 10.95 14.17

DDR4-PS=70 3763.85 1935.76 1013.7 554.02 324.97 213.18 193.28 277.17 377.24 469.56

MCDRAM-PS=70 3803.33 1957.34 1029.87 557.63 313.92 184.05 122.94 147.96 184.58 205.29

DDR4-PS=100 15979.59 8747.46 4253.11 2269.75 1304.7 877.96 727.55 959.73 1245.7 1539.96

MCDRAM-PS=100 16142.62 8310.88 4307.5 2304.18 1280.26 772.95 495.16 527.95 648.36 748.3
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Table 4: AMG performance for DDR4 and MCDRAM based on diferent problem sizes

Number of threads

Memory/Problem size 1 2 4 8 16 32 64 128 192 256

DDR4-PS=8 0.5743 0.5812 0.2628 0.2404 0.2809 0.3178 1.1006 1.9945 3.1980 4.6404

MCDRAM-PS=8 0.5812 0.3712 0.2738 0.2310 0.2754 0.3177 1.0903 2.0824 3.4203 4.3952

DDR4-PS=25 20.7608 12.6096 8.7321 7.3952 7.3918 7.9169 11.0711 18.8593 25.2377 31.4963

MCDRAM-PS=25 21.1714 12.9787 9.1912 7.3045 7.1013 7.2919 10.8136 18.6789 24.9322 31.8620

DDR4-PS=32 46.3767 27.8609 19.3458 15.8239 15.8775 17.4901 24.1028 35.6903 45.5660 55.1687

MCDRAM-PS=32 47.2552 28.4761 19.3595 17.6864 15.3934 15.6847 23.0124 34.0167 43.8763 53.1282

Table 5: Hotspot performance for DDR4 and MCDRAM based on diferent problem sizes

Number of threads

Memory/Problem size 1 2 4 8 16 32 64 128 192 256

DDR4-PS=64 0.0781 0.0396 0.0421 0.0409 0.0349 0.0405 0.0529 0.0763 0.0995 0.1390

MCDRAM-PS=64 0.0611 0.0406 0.0326 0.0374 0.0368 0.0428 0.0538 0.0798 0.1019 0.1382

DDR4-PS=1024 0.8844 0.4641 0.2481 0.1433 0.0966 0.0770 0.0756 0.0988 0.1313 0.1618

MCDRAM-PS=1024 0.8615 0.4445 0.2398 0.1475 0.0949 0.0750 0.0714 0.0954 0.1210 0.153164

DDR4-PS=8192 30.7353 15.9062 7.9791 4.0918 2.2283 1.2724 0.8157 0.8564 1.0689 1.2723

MCDRAM-PS=8192 30.9131 16.0073 8.0585 4.0764 2.0582 1.1213 0.6792 0.7256 0.8498 0.806057

memory types. MCDRAM only delivers about 2%-4% better perfor-

mance than DDR4. For small input dataset (8), the best performance

by MCDRAM is achieved when the number of threads is 8 and it

also has less parallelism overhead, whereas for larger problem size

it is at 16 threads. The cross-point is between 8 and 16 threads.

Hotspot: Hotspot [3] is able to take advantage of MCDRAM

because the memory access is not contiguous for this algorithm. It

demands more bandwidth because of large amount of cache misses.

As shown in Table 5, Hotspot for small problem size (64) achieves

best performance with MCDRAM and created less parallelism over-

head at 4 threads with almost 28% improvement comparing to

DDR4. While for larger problem sizes, this happens at 64 threads,

and showing around 6% better performance for problem size 1024

and 20% for 8192. However, this margin for memory intensive appli-

cations is higher than 45% for large input dataset. This application

is not able to scale well and after 16 number of threads it shows

a downward trend for problem size 64. For larger problem sizes

increasing the number of threads until 64 can help to performance,

but after that hyperthreading does not help either.

5 CONCLUSION

In this work, we evaluated performance of compute and memory in-

tensive applications for both DDR4 and MCDRAMmemory in Intel

Knight Landing processor. For compute intensive applications, the

performance advantage of MCDRAM over DDR4 varies according

to the applications and problem sizes, which range from 2% to 28%.

For memory intensive applications when the input data size is big

enough, MCDRAM is able to deliver much better performance than

DDR4, 57% for Lulesh and 200% for HPCG. The results also show

that the cross-points as the number of threads, when MCDRAM

starts outperforming DDR4 for memory intensive applications, are

around 8 to 16 threads.
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