HOMP: Automated Distribution of Parallel Loops
and Data in Highly Parallel Accelerator-Based
Systems

Yonghong Yan and Jiawen Liu
Department of Computer Science and Engineering
Oakland University
Email: {yan, jliu} @oakland.edu

Abstract—Heterogeneous computing systems, e.g., those with
accelerators than the host CPUs, offer the accelerated perfor-
mance for a variety of workloads. However, most parallel pro-
gramming models require platform dependent, time-consuming
hand-tuning efforts for collectively using all the resources in a
system to achieve efficient results. In this work, we explore the
use of OpenMP parallel language extensions to empower users
with the ability to design applications that automatically and
simultaneously leverage CPUs and accelerators to further opti-
mize use of available resources. We believe such automation will
be key to ensuring codes adapt to increases in the number and
diversity of accelerator resources for future computing systems.
The proposed system combines language extensions to OpenMP,
load-balancing algorithms and heuristics, and a runtime system
for loop distribution across heterogeneous processing elements.
We demonstrate the effectiveness of our automated approach to
program on systems with multiple CPUs, GPUs, and MICs.

Keywords-accelerator architecture; OpenMP; parallel loops;
performance model; runtime system; data and computation
distribution; alignment; load balance

I. INTRODUCTION

Coprocessors or accelerators, e.g. NVIDIA GPUs and In-
tel Many Integrated Cores (MICs), incorporate specialized
processing capabilities to handle particular tasks and to aug-
ment performance of conventional processors. Applications are
commonly developed to offload a computational loop onto an
accelerator while utilizing host processors for helper tasks such
as data movement. Ideally, multiple accelerators and even the
host processors could be utilized fully on demand for appli-
cations that can benefit from their combined computational
capabilities. Unfortunately, typical implementations separate
the memory space of these devices.

Moreover, programming constructs designed for proces-
sors and accelerators primarily support isolated computation
across the devices. Most existing programming models support
offloading a computation task to a single device a time.
Co-scheduling of tasks on different devices is possible. It,
however, needs significant manual efforts of programming for
decomposing computation and input data, and for synchro-
nization and merging the output data [32], [29], [13], [31].
This renders state-of-the-art node-level programming models,
e.g. OpenMP [22], OpenACC [1], CUDA and OpenCL [16],

Kirk W. Cameron and Mariam Umar
Department of Computer Science
Virginia Polytechnic Institute and State University
Email: cameron@cs.vt.edu, mariam.umar@vt.edu

unproductive for programming across multiple devices.

In this paper, we present HOMP (Hybrid OpenMP)! pro-
gramming interfaces for automating the distribution of com-
putation and data of parallel loops across multiple CPUs,
GPUs and MICs within heterogeneous computing nodes. The
contributions of this work are highlighted as follows.

1) We develop minimal language extensions to OpenMP
for distributing data and computation of parallel loops onto
multiple computation devices of same or different types. Those
extensions allow users to specify the alignment of data and
computation that uses the data to improve programmability.
These extensions are compatible with the OpenMP standard,
thus facilitating the migration of existing applications to use
multiple devices collectively.

2) When distributing work between all devices within a
computing node, one challenge is to achieve load balance
among devices. We develop seven different algorithms for
enabling partitioning of parallel loops at runtime to balance the
use of computationally different resources. We also implement
an approach of using cutoff ratio to automatically select
devices for a parallel loop for the optimal performance.

3) We develop a runtime prototype to address challenges
of hybrid execution within heterogeneous systems, including
data and computation alignment and binding, mechanisms of
loop scheduling and analytical modeling, runtime techniques
for multi-target execution, and solutions for unified memory
management of discrete and shared address space.

Performance analysis was performed using scientific kernels
on a machine with multiple CPUs, GPUs and Intel MICs to
study the effectiveness of loop distribution algorithms, and
the performance of the HOMP implementation. The results
indicate that by using a few HOMP directives, users can ef-
fectively use multiple architecturally different devices through
hybrid execution of a parallel loop across those devices.

This paper is organized as follows: Section II introduces the
background and motivation. Section III presents our language
extensions to OpenMP. In Section IV, the loop distribution
approaches and algorithms are illustrated. Section V describes
our prototype implementation. We present our evaluation re-

! Available from https://github.com/passlab/homp

sults in Section VI. Section VII covers the related work and
Section VIII concludes the paper.

II. MOTIVATION

In an accelerator-based heterogeneous system, an accelera-
tor, such as GPUs, operates in a different memory domain
from the host processor. The use of accelerators employs
an offloading execution model, an approach to shipping data
and computation to another device for computation. The
model is realized in programming languages through dedicated
interfaces. For example, the OpenMP target construct allows
users to annotate regions of code and data to be offloaded to an
accelerator. In Figure 1, we include a simple AXPY example
(vector addition) written in OpenMP.

lvoid axpy_omp (REAL* X,
2 #pragma omp target device (0)

3 map (to: x[0:n],a,n)

4 #pragma omp parallel for shared(x, y, n, a)
5

6

REAL* y, int n, REAL a) {

map (tofrom: y([0:n]) \

for (int 1 = 0; 1 < n; ++1)
y[i] += a » x[1i];

7}

8void axpy_omp_mdev (REAL* x, REAL* y, int n,

9 int ndev = omp_get_num_devices|();

10 #pragma omp parallel num_threads (ndev)

11 { int devid = omp_get_thread_num();

REAL a) {

12 int start, size, remnant;
13 remnant = n % ndev; size = n / ndev;
14 if (devid < remnant) {
15 size++; start = sizexdevid;
16 } else start = sizexdevid+remnant;
17 #pragma omp target device (devid) \
18 map (tofrom: y[start:size]) \
19 map (to: x[start:size],a,size)
20 #pragma omp parallel for shared(x, y, size, a)
21 for (int 1 = 0; i < size; ++1i)
22 y[i] += a » x[i];
23}
24}
Fig. 1. AXPY OpenMP example for accelerators: The axpy_omp function

shows how to offload the whole computation and two arrays to a single
accelerator. The axpy_omp_mdev function demonstrates the use of OpenMP
parallel and target constructs for offloading the same loop and data onto
multiple accelerators by evenly partitioning the iteration and two arrays.

The offloading in OpenMP, which is similar to other models
such as OpenACC, CUDA and OpenCL, etc, is performed
in an all-or-none fashion for a single accelerator. Offloading
onto more than one accelerators can be achieved by using the
techniques illustrated in the axpy_omp_mdev function. In [32],
the authors also demonstrated the use of OpenMP+OpenACC
to achieve this. However, such an approach is a manual process
that requires partitioning of both data and loop iterations,
and making sure only necessary data are copied to the
each accelerator associated with the assigned loop iterations.
Moreover, such hand-tuning solutions do not adapt across
multiple and different accelerators. To improve efficiency and
performance, it is additionally necessary to automate this
process to the greatest extent possible and to steer load
balancing with consideration of the computational abilities of
each device. Our work automates such process of distributing
and aligning computation and data across host and accelerators
using language extensions, loop distribution algorithms and
runtime support.

III. LANGUAGE EXTENSIONS FOR DISTRIBUTING AND
BINDING COMPUTATION AND DATA

In principle, using multiple accelerators for a single loop
involves decomposing data and work, so each portion of data
and work are offloaded to one device and the whole execution
exploits multiple devices. Our design follows this principle.
Figure 2 highlights the design using the AXPY example and
these extensions are described as follows.

| /+ align computation with data using ALIGN (x) */

2void axpy_homp_vl (REAL* x, REAL* y, int n, REAL a) {
3 #pragma omp parallel target device (x) \
4 map (tofrom: y[0:n] partition ([BLOCK])) \

5 map (to: x[0:n] partition ([BLOCK]),a,n)
6 #pragma omp parallel for distribute \

7 dist_schedule (target: [ALIGN (x)])

8 for (int i = 0; 1 < n; ++1)

9 yli] += a » x[1i];

10}

11

12/+ align data with computation using ALIGN*/

13void axpy_homp_v2 (REAL* x, REAL* y, int n, REAL a) {
14 +#pragma omp parallel target device (x) \

15 map (tofrom: y[0:n] partition ([ALIGN (loop)])) \
16 map (to: x[0:n] partition ([ALIGN (loop)]),a,n)
17 #pragma omp parallel for distribute \

18 dist_schedule (target: [AUTO])

191oop: for (int i = 0; 1 < n; ++1)

20 y[i] += a * x[1];

211}

Fig. 2. AXPY using HOMP extensions. axpy_homp_v1: aligning computa-
tion with data; axpy_homp_v2: aligning data with computation.

the device clause of the target

current OpenMP 45 syntax for
device(scalar-integer-expression),
which allows for only one device as a target for
offloading. We extend it for supporting specifying
multiple devices as offloading targets with the form
device(device_specifier[[,device_specifier],...]).
The device_specifier should be formed as
initial_devid[[:nums][:dev_type_filter]], which lists the
device IDs starting from initial_devid consecutively for
nums number of devices that are of dev_type_filter
type. The nums parameter, whose default value is 1 if
not provided, should be either an integer expression or
wildcard character *, which denotes all devices from the
initial_devid. The following usages are legal device targets:
device(0:*) for all devices; device(0, 2, 3, 5) for a list of
devices; device(0:2, 4:2) which is the list of 0,1,4,5; and
device(0:*:HOMP_DEVICE_NVGPU) which includes all the
NVIDIA GPU devices.

2) Extension to the distribute directive for distributing loop
iterations among multiple devices: The distribute directive in
current OpenMP standard is used for distributing a loop among
multiple teams of threads within a single device. We extend its
semantics for allowing to specify the distribution of the loop
iteration among multiple target devices as well. The usage of
the directive is shown in line 6 and 17 of Figure 2. We also
extend the dist_schedule clause of the distribute directive for
specifying distribution policy between devices and between
teams of each device by using either the target or teams
directive name modifier.

1) Extension to
directive: The
device clause is

The usage is shown in line 7 and 18 of Figure 2. Valid kinds
for the dist_schedule(target:) clause are listed in Table I.
The AUTO policy for loop distribution leaves to the runtime
to determine the partition of a loop. Using this policy, a
loop could be distributed among multiple devices in a way
to achieve optimal load balance. For example, the sizes of
loop chunks for each device, determined at runtime, could be
proportional to their computation capabilities.

3) Extension to the map clause to include an optional
partition parameter for each mapped variable to support
distribution of data among multiple devices: Line 4, 5, 15,
and 16 in Figure 2 show the usage of the partition parameter.
Observing the fact that the range of an array in one dimension
can be used for specifying the iteration range of a loop, we can
use the same policies for loop and data distribution, which are
listed in Table I. For distributing a multiple dimensional array,
the extensions allow for specifying different policies in each
dimension by using the syntax similar to multi-dimensional
array declaration. Similarly, for distributing the iteration spaces
of nested loops, users can specify policies for each loop.

The ALIGN policy provides an approach to bind an array
subregion and a chunk of a loop iteration space so data can
be automatically copied to the device that the loop chunk
is assigned to. There are two ways to use this policy, 1)
decompose data and then align the loop iteration with the
data allocated for each device, and 2) partition the loop
iteration space among multiple devices and then decompose
data aligning with the computation. The axpy_homp_vI and
axpy_homp_v2 procedures in Figure 2 illustrate the usage of
these two ways.

TABLE I
CURRENT DISTRIBUTION POLICIES

FULL The full range of this dimension is used for
distribution. This is the default policy if no
policy is specified.

Divides the indices of a dimension evenly
into contiguous blocks.

Aligns the distribution with the dist dis-
tribution provided as the clause arguments
with ratio. Ratio default is 1, i.e. the two
distributions are the same.

Distributes the loop iterations with goal
to achieve load balance. This policy only
applies to loop distribution.

BLOCK

ALIGN(dist,
ratio)

AUTO

4) Introducing the parallel target composite construct for
specifying that a code region is to be executed on the target
devices in parallel: Our first extension for allowing multiple
devices to be specified as offloading target does not require
parallel offloading, thus offloading to the target devices could
be serialized. The parallel target?, used in line 3 and 14
in Figure 2, explicitly requires that data distribution, loop
distribution and offloading computation should be performed

2The target parallel combined construct of the current OpenMP standard
is a shortcut for specifying a parallel construct immediately nested inside the
target construct, which is for offloading a parallel region on one device.

in parallel by multiple host threads, thus providing an option
to concurrently offload computation of a large scientific loop
onto multiple devices.

A. Comparing with Related Work

A more complicated example, the Jacobi iterative kernel,
is shown in Figure 3 using those extensions. In general,
similar approaches of distributing data have been used in
programming models for distributed systems. HPF [17] has the
ALIGN directive to indicate elements (subarrays) of multiple
arrays to be co-located in the same processors, which however,
did not provide mechanisms to align computation with data.
The Unified Parallel C(UPC) [8]’s upc_forall worksharing
construct added the affinity field to the standard C for loop for
specifying the correlation of loop iterations with UPC threads,
an approach of distributing loop iterations among threads. UPC
also provide interfaces to define array distribution using such
policies as blocking or cyclic. The bindings between array
subregions and loop partitions are formed implicitly through
their links to the thread affinity. X10 [6] and Chapel [5]
allow for array distribution among abstractions of memory
segments (places in X10 and locale in Chapel). Launching
an asynchronous task with an array subregion as the target
location means to execute the task in a place where the
subregion resides. They however, does not provide policy for
specifying loop distribution.

OpenMP worksharing (parallel for) and distribute direc-
tives are designed to distribution parallel loops among threads
of a team and teams of a league, respectively [22], both
within the same memory space. OpenMP does not support
data distribution or loop distribution among multiple devices.

Comparing with these efforts, our approach supports the
distribution of both data and computation, as well as the align-
ment between them. It gives users more control of managing
data and computation for heterogeneous systems. We realize
these features through extensions to the OpenMP distribute
and map clauses. The approach of viewing a loop iteration
space and array dimension both as a region upon which a
distribution can be applied offers an intuitive solution for
binding data and computation, thus improving the productivity
of using multiple accelerators.

The design of these interfaces and their semantics leverages
the most recent OpenMP standard (4.5) with attempt to be
intuitive to use, thus providing an easy migration path for
existing OpenMP program to use multiple accelerators con-
currently. Though we use OpenMP as baseline for extension,
these interfaces, with modification, can be used with other
programming APIs such as OpenACC. The principles are also
applicable to other models, including runtime library, C++
template, meta-programming or domain specific languages.

B. The Challenges of Implementing HOMP Extensions

The designed extensions enable hybrid execution of paral-
lel loops among multiple devices, There are however three
challenges to implement those extensions: 1) to achieve load

I#pragma omp parallel target data device(x) \

2 map(to:n, m, omega, ax, ay, b,\

3 £[0:n][0:m] partition([ALIGN (loopl)],FULL)) \
4 map (tofrom:u[0:n] [0:m] \

5 partition ([ALIGN (loopl)],FULL))\

6 map(alloc:uold[0:n] [0:m] \

7 partition ([ALIGN (loopl)],FULL) halo(l,))
8while ((k<=mits)&& (error>tol)) {

O#pragma omp parallel for target device(x) collapse(2)\
10 distribute dist_schedule (target: [ALIGN (loopl)]
11 for (i=0;i<n;i++)

12 for (3=0; J<m; j++)

13 uold[i] [J] = ulil([]];

14

I5#pragma omp halo_exchange
16

|7#pragma omp parallel for target device (x)\
18 reduction (+:error) \

19 distribute dist_schedule (target: [AUTO])

)

(uold)

20loopl: for (i=0;i<n;i++) {

21 if (i==0]|i==n-1) continue;

22 for (Jj=1;3<(m-1);J++) {

23 resid = (ax* (uold[i-1][73] + uold[i+1]1[7])\
24 + ay*(uold[i] [j-1] + uold[i][F+11)\

25 + b x uoldl[i][]] - £1i1[3])/b;

26 ulil[j] = uold[i]l[J] - omega * resid;

27 error = error + residxresid ;

28 }
29 }
30 // the rest code omitted

Fig. 3. Jacobi kernel for showing alignment of array and loop distributions
as well as the use of AUTO policy

balance when distributing loop iterations across multiple com-
putationally different devices, such as CPU, GPU and MICs, 2)
to automatically schedule loop distribution and data movement
(copy or share) so only the necessary data will be copied to
the accelerators for the computation assigned to each device,
and 3) to automatically select appropriate target devices for
the optimal performance. We present our solutions to these
challenges in the following two sections.

IV. APPROACHES TO LOOP DISTRIBUTION FOR
ACHIEVING LOAD BALANCE

Illustrated in Section III, the distribute(target:AUTO)
clause indicates to distribute the loop iteration among multiple
devices (host and accelerators) so the computation could be
load-balanced. In this section, we discuss three approaches we
developed to support load-balanced hybrid execution.

A. Chunk Scheduling

Conventionally, loop scheduling on shared memory systems
is the process of distributing iteration of a parallel loop to
multiple threads [15]. The same approach can be applied to
distribute loop among multiple accelerators and CPUs.

1) Static Chunking (BLOCK): 1t is beneficial to divide the
work evenly among multiple devices of the same when the
work performed by each iteration are the same. This approach
is known as static chunk scheduling. Provided that each device
computes at the same rate, all the devices should complete at
the same time, thus achieving load-balance.

2) Dynamic Chunking (SCHED_DYNAMIC): Static chunk-
ing may not achieve good load balance when the work
performed by each iteration varies. In dynamic chunking
algorithm, after completion of its chunk, a device tries to

acquire another chunk from the same loop. So in general,
faster devices will likely perform more works, thus to achieve
load-balanced distribution. The selection of the chunk size is
critical for the load balance and it is a decision for tradeoffs
between load-balance and chunking scheduling overhead.

3) Guided Chunking (SCHED_GUIDED): Guided chunk-
ing works similar to dynamic chunking, except that each
device gets successively smaller sizes of chunks. In this
approach, program execution starts with large chunk sizes and
then chunks reduce in sizes as the computation close to finish,
thus reducing the total amount of chunks and still maintaining
good balance when it closes to finish.

B. Distributing Loop using Analytical Models

In this approach, analytical models are constructed to predict
the throughput of each device for a loop, and then use
the prediction to partition the loop iteration among multiple
devices as well as the distribution of data associated with the
loop chunks assigned to the devices. While using a full-fledged
performance model such as those developed in [9], [12] and [3]
will provide accurate prediction of the execution time, it will
also incur large overhead to the application execution when the
model is used at the runtime. Thus our models are specifically
designed for handling computation-intensive parallel loops and
are significantly simplified for the needs of loop distribution.

1) Analytical Model Considering only Computation Capa-
bility (MODEL_1_AUTO): For a given device i, the execution
time 7 taken to compute a loop with N number of iteration
can be represented as follows:

T = gi(N))]

For a given amount of time, the number of iteration that can
be completed, i.e. throughput, is the reverse function of g;,
denoted as f; = g;~'. Using N; as the throughput for T time
units, we have equation (2).

Ni=f{(T),0<i<M)

To distribute a loop with N iteration on to M number of
devices, the objective of the model is to create M number of
chunks of the loop, each computed by one device, and it takes
the same amount of T, time to complete, theoretically. Thus
we have equation (3).

N= Y N= Y fm))

0<i<M 0<i<M

For data parallel loops in which each loop iteration contains
the same amount of work (e.g. dense linear algebra), we can
combine the Equation 2 and 3 to arrive a model that solves
a linear system with M+1 variables, i.e. No, Ny, ..., Nps —
1, and Ty. In this model, all the devices compute possibly
different sizes of loop chunks according to their computation
capabilities and complete at the same time, Ty, which is the
loop completion time.

2) Analytical Model Considering Both Computation and
Data Movement Cost (MODEL_2_AUTO): To apply the basic
analytical model to accelerators, the execution time of T

TABLE II
COMPARISONS OF LOOP DISTRIBUTION ALGORITHMS

Approaches Algorithms Notations used in Evaluation # Stages | Overhead | Load Balancing Descriptions Related Work
Static Chunking BLOCK 1 Low Poor to good | Even distributions of iterations [26], [27], [20]
Chunk Scheduling Dynamic Chunking SCHED_DYNAMIC,2% Multiple High Good | Each device receives chunks of same size
Guided Chunking SCHED_GUIDED,20% Multiple High Good | Each device receives chunk of different sizes
X . Compute-only Modeling | MODEL_1_AUTO,-1,15% 1 Low Medium | Only considers computation in modeling [25]
Analytical Modeling - - - -
Compute/Data Modeling | MODEL_2_AUTO,-1,15% 1 Low | Medium to good | Considers both computation and data movement
Sample Profiling Constant Sampling SCHED_PROFILE_AUTO,10%,15% 2 Medium | Medium to good | Constant sample size for profiling [14], [21], [28]
Model-based Sampling MODEL_PROFILE_AUTO,10%,15% 2 Medium | Medium to good | Uses models to select sample sizes for profiling

Note: SCHED_PROFILE_AUTO,10%,15%: 10% is the chunk size (-1 if not used) and 15% is CUTOFF ratio. CUTOFF ratio is only applicable to the last four algorithms.

in Equation 1 for each device consists of both the cost of
computation and data movement.

T = DataT e, + ExeTe, = gi(N)

The parameters needed to solve the system in Equation 3,
which could be linear or non-linear, include DataT,., and
ExeTye, for each device. Although the model needs two pa-
rameters (DataT ., and ExeTy.,) for each device for distribut-
ing a parallel loop, it is actually the speedup of the particular
loop on one device over another, e.g. CPUs vs GPUs, that
determines the ratio of distributions of loop iteration.

DataTye, + ExeTye, Datalye, FExelye, @
EmeThost B EmeﬂLost EweThost
TABLE III

NOTATIONS USED IN MODELING

Notation What it represents
ExeTp0st Execution time taken by host
ExeT geq Execution time taken by a device
DataT 4., Data transfer cost, to and from a device
Flops # of FLOPS of offloaded kernel on a device
Perfpost Sustaining peak performance of the host
Perf e, Sustaining peak performance of a device
Sizegata Size of data moved from and to a device
Sizegata Size of data moved from and to a device
MemComp Memory load/stores to computation ratio
DataComp Data transfer to computation ratio
FlopssHost | Flops per second performance of host
Flopsspew Flops per second performance of a device
For each of the parameters in the above speedup formula,

the following assumptions and heuristics are applied:

e For the DataTy., parameter, the time to move data to
and from a device, we use the Hockney’s model, also
known as “«a-3 model” [11]. It is a linear model of data
sizes and the latency and bandwidth of memory systems.

e For FzeTy.,, each loop iteration has the approximately
the same amount of work. For data parallel loops that
contain no branching, this assumption is valid. Also due
to the mechanisms of branch scheduling in GPU and
MIC’s SIMD architecture, which execute all the branches
even there is divergence, the assumption holds as well.

o The EzeThost|der parameter is computed using
FLOPs/(Per f1,0st|dev *MemComp), by assuming similar
memory behaviors for the loop iteration across devices.
For example, applications on GPUs that have highly

coalesced memory access achieve similar effects of hid-
ing memory access latency to how CPUs with multi-
level cache memory hierarchy works. For each device,
the MemComp parameter is the ratio of the amount of
memory load/stores to the amount of computation.

Under these assumptions, the speedup formula is written as:

Perfhost

" Perfhost
Bandwidth

Sizeqata * MemComp
FLOPs Perfie,
Sizegdata

In this model, the ==3date represents the kernel character-
istics, i.e. the ratio of the amount of data to be moved to the
amount of computation, denoted as DataComp. The use of
MemComp and DataComp is similar to the use of a single
parameter in roofline performance model [30]. Thus the first

factor is reduced to 24emComp which could be further reduced

s N DataComp
to SEREYLCCSS Thig is the ratio of the amount of memory
DataTransfer

access to the amount of data to be transferred. The second
factor, %, is the machine characteristics, i.e. the ratio
of host CPU performance to the memory bus performance. The
third ratio factor, %ﬁj, is the relative performance between
CPU and GPU device, again a machine characteristics.

For a machine, the last two machine factors are constants,
each of which is obtained through microbenchmark profiling
in our experiment. The parameters in first ratio factor is
collected through compiler analysis or direct user input. As
an approximate model for loop distribution, the model does
not take into consideration the differences of the performance
impact to CPU and GPU from factors such as control-flow
divergence, irregular memory access patterns (i.e., memory

divergence), and register file pressure.

&)

C. Loop Distribution based on Sample Profiling

In this approach, the system first computes a small amount
of loop iterations on CPU and accelerators (GPUs and MICs)
to determinate the throughput of each device for the loop
(stage 1), and then distributes the remaining iterations ac-
cording to the rate (stage 2). The selection of chunk sizes
impacts the distribution of the remaining iterations. Large
chunk sizes will provide more accurate profiling, but may also
incur load-balance issues in stage 1. Smaller chunk sizes will
reduce the profiling overhead and also incur less imbalance
in stage 1, it however may not provide accurate profiling
result for guiding the loop distribution in stage 2. By combing

chunking scheduling and analytical modeling, we developed
the following two profiling-guided approaches.

1) Constant Sample Sizes (SCHED_PROFILE_AUTO): In
this approach, each device receives the same amount of loop
iterations and compute in stage 1. After all devices finish the
computation, profiling information will be broadcasted to each
devices for computing the portions of iterations assigned to
each device of the remaining iterations.

2) Sample Size Determined by Analytical Models
(MODEL_PROFILE_AUTO): In this algorithm, we first
distribute a small portion of the iterations using analytical
model in stage 1. All the device compute and profile the
execution. After all devices finish, profiling information will
be broadcasted for computing their own portions from the
remaining iterations.

D. Heuristics for Selecting an Algorithm

In Table II, the seven algorithms are summarized. The
number of stages impact the runtime overhead since the
more stages of loop distributions, e.g. in dynamic and guided
chunking, the more runtime overhead would incurred. These
overhead include cost from both runtime scheduling and data
movement since more stages need more memory movement
transactions. The selection of chunk sizes also play an impor-
tant role for the effectiveness of chunk-based algorithms.

Thus it is important to provide heuristics for the system to
automatically select an algorithm for an offloading kernel. To
make the runtime lightweight, we use computational intensity
based on the roofline model [30] to capture the computation
and data movement behavior of an application to decide an
algorithm to use. The heuristics are derived from experimental
study as shown in Section VI.

E. Using CUTOFF Ratio for Selecting Offloading Devices

We observed that when offloading a parallel loop onto
devices whose computational capability are significantly dif-
ferent, slower devices may contribute negatively to the overall
performance. It is often that fewer faster devices deliver better
performance than the combination of those faster devices and
some slower devices since the additional overhead incurred
by involving those slower devices are much higher than the
contributions made by those devices. We address this by
introducing a CUTOFF ratio parameter for the algorithms in
modeling and profiling approaches. When distributing loop
iterations, the runtime will not offload computation to a device
whose the predicted contribution is less than the CUTOFF.
In our experiment, CUTOFF ratio is selected as the average
contribution by one device when considering all the devices
are the same.

V. HOMP IMPLEMENTATION

The implementation includes both the compiler and runtime
for the designed interfaces. The compiler generates multi-
target kernel code and transforms the usage of HOMP syntax
to runtime calls. The runtime system implements functional-
ities such as offloading kernel scheduling, loop distribution,

data distribution, data mapping and movement, the seven
loop distribution algorithms, system profiling and device man-
agements. The library is designed to be portable and cross
platform adaptations with different kind of architectures and
memory systems. Loop scheduling framework is implemented
modularly such that new scheduling algorithms can be easily
added or tweaked for improved performance results.

I homp_offloading_info I
v

| Dist and acquire a loop chunk |<—

| Dist/Bind data region with the chunk |

I Mem allocation and data movement I

| Offloading kernel launching |

I Inter-device barrier and return I

Iteration
finished ?

I Memcpy from acc to host }—‘-)l Block wait for chunk to finish I

| If there is data exchange, barrier I

| Data exchange between devices |

Async call with stream

No data exchange

| Barrier for data exchange |

&
€

Fig. 4. The Offloading Loop by A Device’s Proxy Thread

When being initialized, the HOMP runtime reads from a
given machine description file the specification of host CPU
and accelerators. An accelerator can be specified to have either
shared memory (if available) or discrete memory types, allow-
ing runtime to choose either copying data or simply sharing
data for data mapping. Each device (host, GPU or MIC) has
a host side pthread as a proxy accepting offloading request.
Such a request is represented as an homp_offloading_info
object that contains information for data source pointers,
dimension information of an array, data distribution policies,
data mapping directions, offloading loop distribution policies,
etc. A proxy thread performs operations such as array and loop
distribution, memory allocation, data movement, launching the
computation kernel, and other book-keeping tasks. The proxy
pthread participates in the computation if it represents a host.
For an accelerator, the proxy thread invokes asynchronous
calls to interact with accelerators to perform data movement
and launching tasks, maximizing the utilization of all devices.
Figure 4 shows the offloading procedure by a proxy thread.

A. Multi-Target Code Generations

To allow maximum runtime adaptation when offloading a
single code region to multiple and different targets, each code
region is outlined into a separate function and transformed into
multiple versions, one for each type of targets. For NVIDIA
GPU, the ROSE compiler [19] is used for generating CUDA
codes. For host, OpenMP worksharing loops are created from
the original loop, and similarly for Intel MIC, Intel offloading
directives are inserted into OpenMP code. The multi-target
source codes are built into a fat binary.

B. LOOP Distribution

The proxy threads perform loop distribution and scheduling
in parallel. Each thread calculates the subregion range of

the loop iteration according to the global information stored
in the homp_offloading_info object. For chunk scheduling
algorithms, each proxy thread calculates the next chunk size
and then picks a chunk from the remaining iterations using a
compare-and-swap operation. For profiling-based algorithms,
each proxy thread computes its first chunk and then broadcasts
to all other proxies its own loop throughput calculated using
the profiled timing. Each proxy thread then calculates the
ratio of distribution for the remaining iterations using the
throughput of all devices. For model-based algorithms, the
proxy thread predict the execution time (T) first. They then
estimate the costs of data movement of non-aligned array and
the cost of transferring aligned array and the computation
itself. These information are then aggregated together and
be broadcasted to all the device threads. Each device thread
then computes the number of iterations (N;) and synchronizes
with each other to make sure the whole range are properly
distributed among the participating devices.

C. Data Mapping and Array Distribution

The HOMP runtime performs data mapping for both host
CPUs and accelerators. CPU cores share host memory, and
accelerators, e.g. NVIDIA GPU, each has its own device
memory separated from host. NVDIA GPUs also supports
unified memory between host and device, which can be consid-
ered as shared memory between host and accelerators. When
mapping a data region from host memory to device memory,
data are “shared” between host multiple CPU cores and/or
GPUs that have unified memory enabled. The mapped data are
“copied” between discrete memory spaces. If the data mapping
semantics of the user program allow, the HOMP runtime
makes mapping decisions (shared or copied) according to
the memory types (shared or discrete) of the devices, thus
optimizing and reducing unnecessary data movement.

For array references and loop iteration range by each device,
the compiler transformations guarantee array references to its
original array index spaces are properly translated to refer-
ences to the array subregion that is mapped to each device. We
use internal book-keeping variables and their corresponding
runtime functions to keep track of the mapping.

Unified memory access between host and GPUs provides
sharing memory semantics between host and device, hence no
explicit data movement operations in programming is required.
However, physical memories between CPUs and GPU are still
separate, and data has to be transferred on demand through
the PCle bus, incurring much higher latency than accessing
data from memory in accelerators. In our implementation,
if not explicitly specified in the user program, we do not
use this feature because of the observed poor performances
of using unified memory as compared with explicit data
movement (maximum of 10 and 18 times slowdown in our
BLAS examples).

D. Computation and Data Alignment

When the ALIGN policy is used between loop iteration
space and an array region, the runtime makes copies of the

ranges of the alignees as the aligners’ ranges. For example, in
the axpy_homp_v1 function of Figure 2, for each target device,
the iteration range of the loop (aligner) is a copy of the the
array subregion of X or Y since the distribution of array X or
y is determined when the loop is encountered. For alignment
in which multiple distributions form an inter-dependent align-
ment relationships, the runtime re-links those distribution so
each aligner points to the root alignee’s distribution.

VI. EVALUATION

We evaluate HOMP on a machine with two CPUs (Xeon
E5-2699 Haswell), four NVIDIA K40 GPUs in two K80
dual-GPU cards, and two Intel Xeon Phi SC7120P for both
performance and strong-scaling.

Representative scientific kernels are selected to evalu-
ate the load-balance algorithms based on the range of the
computation-data and computation-memory intensity of these
kernels, and the patterns of computation. This allows the
evaluation to cover a large range of data parallel algorithms
for scientific applications being considered for offloading.
Table IV summarizes these kernels. The MemComp and Data-
Comp ratios represent the intensity each kernel impresses onto
the memory and bus system with regards to the computation.
The greater of the ratio, the more intensive it is.

TABLE IV
BENCHMARK CHARACTERISTICS

MemComp| DataComp Characteristics
AXPY (N) 1.5 1.5 Data-intensive
Matrix Vector | 1+0.5/N 0.5+1/N | Compute-data balanced
(NxN)
Matrix Multipli- | 1.5/N 1.5/N Compute-intensive
cation (NxN)
Stencil (NxN, 13 0.5 1/13 Compute-data Balanced and
points) neighborhood communication
Sum (N) 1 1 Data-intensive and reduction
Block Matching | 0.5 0.06 Compute-intensive and neigh-
(NxN) borhood communication

A. Evaluation on 4 GPUs

Speedup using 4 K40 GPUs (2 K80 Cards)

=gm=AXPY-1B
e==matvec-48000x48000

‘matmul-6144x6144
@5 um-500M

“emstencil2d-2048x2048

25 bm2d-512x512

e

=1

Number of GPUs

Fig. 7. Speedup using 2 K80 GPUs (Total 4 K40 GPUs)

We first experiment HOMP on four technically identical
K40 GPUs to evaluate the scheduling algorithms for load
balancing. The performance results are shown in Figure 5.

Offloading Execution Time (ms) on 2 K80 GPUs (= 4 K40) Using Different Loop Distribution Policies
MODEL_PROFILE_AUTO,5%
SCHED_PROFILE_AUTO,5% 1 28
H MODEL_2_AUTO [idd3z:760 1.28 i t i
§£ MOBEL 1 AUTY e —— The algorithm that delivers the best performance
g SCHED_GUIDED, 15% and its speedup against the BLOCK algorithm.
SCHED_DYNAMIC,25% [SuiS53i00s
BLOCK
IS g MODEL_2_AUTO jWid0672:084% 1.0
§ MODEL_1_AUTO
BLOCK
g MODEL_PROFILE_AUTO,5%
SCHED_PROFILE_AUTO,5%
MODEL_2_AUTO
MODEL_1_AUTO
g SCHED_GUIDED,15%
£ SCHED_DYNAMIC,10% |ww2sgeasens 1.13)
€ BLOCK
é MODEL_PROFILE_AUTO,5%
§ SCHED_PROFILE AUTOS%
= MODEL_2_AUTO
:; MODEL_1_AUTO
£ SCHED_GUIDED, 15%
SCHED_DYNAMIC,5%
£ BLOCK 1.0)
. MODEL_PROFILE_AUTO,5%
3 SCHED_PROFILE_AUTO,5%
a MODEL_2_AUTO
b} MODEL_1_AUTO |si7608i24 1.0 J
E SCHED_GUIDED,15%
SCHED_DYNAMIC,10%
BLOCK
MODEL_PROFILE_AUTO,5%
o SCHED_PROFILE_AUTO,5% |uii2249:185 1.22 '
T MODEL_2_AUTO
% MODEL_1_AUTO
SCHED_GUIDED, 15%
'SCHED_DYNAMIC,10%
BLOCK
o 1000 2000 3000 4000 5000 6000 7000 8000
 Total OFF Time(ms), 10 times average
Fig. 5. Offloading Execution Time (ms) on 2 K80 GPUs (Total 4 K40 GPUs) Using Different Loop Distribution Policies
Breakdown (%) of Offloading Time on 2 K80 GPUs (= 4 K40) Using Different Loop Distribution Policies
WINIT “MAPTO © KERNEL WDATA_X < MAPFROM © BARRIER FINI
'MODEL_PROFILE_AUTO,5% wﬁ
| sl mos a0k —
MOoEL2_AUTO
8 MOoEL1_AuUTO p—
§ souncupmies > 5
scHEo_DINAMIC2% 4
Eé 'MODEL_2_AUTO. s xl T
3%~ MoDEL1_AUTO ¢
i :
= VoD PRORLE AUTO K -) i T T
§ oo aan . : ; - R
g 'MODEL_2_AUTO. ' Y T T T N\
H Moo Ao . | ; : .
T oo oupinasw - T T ¥ ¥
P o - - : . —1
MODEL_PROFILE_AUTO,5% : : : . r N
2 iomenis ! ! | | | : 1
H MODEL 2_AUTO {
2 scoepcupioasw . . : ' r 7 Y —
B oo ’ . . T r ¥ ¥ - s
omR FroRE Ao ; ! ! : - . |
. SCHED_PROFIE AUTOSK. . v : T . . |
g MODEL 2_AUTO . v ' T ? . Y X
4 MoDEL1_AuTO
2 s ; ! | | ; T Y
® soieo_owamic o ’ Y v T r " ’ }
slock | r
VOB FROME ATOS N ? ’
SCHED.PROFIE_AUTOS% ’ ’
a MOoEL2_AUTO
: MOoEL1_AUTO ¥ " r:
H ‘SCHED_GUIDED, 15% . r A
soueo_orAMIC 0% ; ; X
slocx "
oo 1000 000 s000n oo so00% P oo oo soco 100000

Fig. 6.

Accumulated Breakdown (%) of Offloading Time on 2 K80 GPUs (= 4 K40) Using Different Loop Distribution Policies. The curve line crossing

the figure shows the percentage of the incurred load imbalance which is below 5% in average.

Figure 6 shows the breakdown execution time in percentage
among different operations of offloading and Figure 7 shows
the speedup. Theoretically, BLOCK distribution, e.g. evenly
distributing a loop among the same four accelerators, would
yield good load balance, thus best performance. The results in
Figure 5, however, indicate slightly differently. Computational-
intensive kernels, i.e. mm, stencil and bm, deliver the best
performance under the BLOCK policy. For the other three
kernels(axpy, mv, sum), which are medium to highly data-
intensive, the SCHED_DYNAMIC algorithm delivers better
performance than using the BLOCK policy since it achieves
overlapping of data movement and computation when schedul-
ing multiple chunks to the same device. The accumulated

breakdown percentage of the total execution time shown in
Figure 6 indicate that most of the algorithms are able to
schedule the loop with less than 5% overhead per device in
average as the cost of barrier synchronizations. The results in
Figure 7 show strong-scaling when using the four GPUs.

B. Evaluations on 2 CPUs + 2 MICs

We then experiment HOMP using 2 CPUs and 2 MICs
for true hybrid and heterogeneous offloading. The results for
the execution time are shown in Figure 8. For each kernel,
CPU execution is handled using OpenMP, so no real data
movement happens, and execution on MICs is handled using
Intel MIC offloading mode. Practically, we would use peak
performance as guideline to distribute loop iterations on CPU

stencil2d-2|

Offloading Execution Time (ms) on 2 CPUs + 2 MICs Using Different Loop Distribution Policies

MODEL_PROFILE_AUTO,5%
SCHED_PROFILE_AUTO,5%
MODEL_2_AUTO
MODEL_1_AUTO
SCHED_GUIDED,15%
SCHED_DYNAMIC,2%
BLOCK

sum-300M

MODEL_2_AUTO
MODEL_1_AUTO
BLOCK

56

MODEL_PROFILE_AUTO,5%
SCHED_PROFILE_AUTO,5%
MODEL_2_AUTO
MODEL_1_AUTO
SCHED_GUIDED, 15%
SCHED_DYNAMIC,2%
BLOCK

matvec-24000

MODEL_PROFILE_AUTO,5%
SCHED_PROFILE_AUTO,5%
MODEL_2_AUTO
MODEL_1_AUTO
SCHED_GUIDED,15%
SCHED_DYNAMIC,10%
BLOCK

matmul-2048

MODEL_PROFILE_AUTO,5%
SCHED_PROFILE_AUTO,5%
MODEL_2_AUTO
MODEL_1_AUTO
SCHED_GUIDED,15%
SCHED_DYNAMIC,10%
BLOCK

bm2d-256

. 64193

94839
2070.34

1811.78

- 633.86
3749.16

3.27 |

The algorithm that delivers the best performance
and its speedup against/the MODEL_1_AUTO algorithm

16906.55

19195.25

111659
89893 _

3.03

1911.88

2997.45

2647.05

1628.47

1.0

2594.12

2480.5

4004.29

5546.28

5569.16

121969
1.0

3923.7

3378.76

1509.69

MODEL_PROFILE_AUTO,5% [« & 47.77
SCHED_PROFILE_AUTO,5% [« 74.18
MODEL_2_AUTO & & 51.63
MODEL_1_AUTO & & 63.02
SCHED_GUIDED,15% & & 45.14

SCHED_DYNAMIC,5% 29.4
BLOCK [& 62.88

0 1000 2000

axpy-10M

217

3000 4000 5000

i Total OFF Time(ms), 10 times average

Fig. 8.

and MICs, which is our MODEL_1_AUTO algorithm. The
results demonstrate the effectiveness of such an approach in
computation-intensive kernels (mm, bm, and stencil). For other
kernels, SCHED_DYNAMIC demonstrates to be an effective
option. The breakdown percentage results, which are not
included in this version of the paper, show average barrier
overheads around 2% to 8% of the total execution time of
each device, demonstrating the agility of the algorithms when
scheduling loop iterations across heterogeneous devices.

TABLE V
SPEEDUP USING CUTOFF

Benchmarks | Devices after CUTOFF | CUTOFF Speedup
axpy-10M 2 CPU + 4 GPUs 1.35
bm2d-256 2 CPU + 4 GPUs 1.01

matul-6144 4 GPUs 2.68
matvec-48k 4 GPUs 0.56

stencil2d-256 4 GPUs 343

sum-300M 2 CPUs + 4 GPUs 2.09

C. Evaluations on 2 CPUs + 4 GPUs + 2 MICs

In Figure 9, we show the performance results using all
the computational resources on the machine. We report the
execution time of these kernels using different scheduling
policy and the minimum execution time when 15% CUTOFF
ratio is applied. The CUTOFF ratio is selected based on the
average contribution by each of the device (100/7, considering

Offloading Execution Time (ms) on 2 CPUs and 2 MICs Using Different Loop Distribution Policies

2 CPUs as one host device). In general, the results show
that when computational resources vary significantly in per-
formance, SCHED_DYNAMIC yields decent performance for
most kernels. In Table V, it shows the speedup range from 0.5
- 3.x when 15% CUTOFF ratio is applied. It demonstrates the
effectiveness of the algorithms to automatically select appro-
priate devices for the computation for optimal performance.

D. Evaluation Summary

The evaluation demonstrates the effectiveness of the load-
balancing algorithms (average around 5% load imbalance) and
also the heuristics of selecting loop distribution algorithms,
which are as follows: 1. For computation intensive kernels,
BLOCK should be the first choice for the same devices and
MODEL_AUTO_1 will be the choice if devices are different
because of the simplicity of the two algorithms. 2. For kernels
with balanced data and computation, SCHED_DYNAMIC
seems to work better for achieving overlapping of data
movement and computation. 3. For data intensive kernels,
MODEL_AUTO_2 is used since the mode takes into consid-
eration of the data movement.

The evaluation also demonstrates the effectiveness of using
CUTOFF heuristics for selecting device targets for offloading.
If the contribution by one device is below the average when
considering all the devices are the same, it could be removed
from offloading targets.

VII. RELATED WORK

Our previous work [33] extended OpenMP target constructs
with dist_data and dist_iteration clauses for distributing data

MODEL_PROFILE_AUTO(15% CUTOFF)

MODEL_PROFILE_AUTO | 286t it
SCHED_PROFILE_AUTO —‘nm_'_r

MODEL_2_AUTO 545.66

TP S—_— |

75222

sum-300M

MODEL_1_AUTO
SCHED_GUIDED
SCHED_DYNAMIC

BLOCK

MODEL_1_AUTO(15% CUTOFF)
MODEL_2_AUTO

Fas2a NNy 4

Execution Time (ms) on 2 CPUs + 4 GPUs + 2 MICs

The algorithm that delivers|the best pefformance without CUTOFF

The algorithm with 15% CUTOFF_RATIO that delivers the best performance
and its speedup against the best algorithm that does not use CUTOFF!

MODEL_1_AUTO 4148290

stencil2d-25

BLOCK 505433 . .
SCHED_PROFILE_AUTO(15% CUTOFF) __mnn.&\\&s‘&\\\\\\\\\\\\\\\\\\\\\\\\\\\\V
MODEL_PROFILE_AUTO 555.21 . . |
SCHED_PROFILE_AUTO 93.04
MODEL_2_AUTO 953.50

MODEL_1_AUTO

matvec-48k

SCHED_DYNAMIC
BLOCK

|

MODEL_2_AUTO(15% CUTOFF)

MODEL_PROFILE_AUTO

SCHED_PROFILE_AUTO

MODEL_2_AUTO
MODEL_1_AUTO
SCHED_GUIDED

matul-6144

SCHED_DYNAMIC

BLOCK

MODEL_1_AUTO(15% CUTOFF)
MODEL_PROFILE_AUTO

SCHED_PROFILE_AUTO

MODEL_2_AUTO
MODEL_1_AUTO

bm2d-256

nnnnn

SCHED_GUIDED
SCHED_DYNAMIC

"

MODEL_PROFILE_AUTO (15% CUTOFF)
MODEL_PROFILE_AUTO
SCHED_PROFILE_AUTO

haos2en NS EY

"
"

MODEL_2_AUTO 0

11 E R w &
sSSBaR

CES N C

SN 6 3

S SR 5 b ~

5] J E

axpy-108

MODEL_1_AUTO
SCHED_DYNAMIC
BLOCK

|

200.00 400.00 600.00

1000.00
TOTAL OFF TIME(ms)

1200.00 1400.00 1600.00 1800.00 2000.00

Fig. 9.

and loops onto multiple accelerators, not including host. Only
BLOCK distribution policy was introduced. The work pre-
sented in this paper provides support for data and computation
alignment, AUTO loop distribution policy, load balancing
algorithms and heuristics, and for automatically selecting
devices for computations.

Ravi et. al, [26], [27] have developed work distribution and
scheduling mechanism between CPU and GPU for iterative
stencil type of applications that involve generalized reductions.
It uses dynamic chunk scheduling algorithm (equal chunk
size). Rashid et. al, in [14] used profiling-based algorithm for
loop distributions in Concord C++ framework. Phothilimthana
et.al, extends PetaBricks [23] with empirical auto-tuning
and workstealing runtime for selecting optimal mapping of
programs to devices to achieve load-balancing. It relies on
static compiler analysis for data and computation alignments.
Similarly, Lee et.al, in SKMD [18], Cabezas et.al, in [4]
and Ramashekar et.al in [24] also use compiler analysis to
obtain data boundary associated with computations assigned
to a device. While this approach is appealing for users, it
would be difficult for compiler to accurately derive optimal
boundary when the application becomes complicated. Our
approach introduces minimal language extension for users
to explicitly specify data and computation distribution and
alignment, which allows for more control to optimize data
movement with computations.

Luk et al., in [21] use historical execution to project the
execution time of a given problem sizes. Grewe et al. in [10]
use machine learning approach to partition tasks statically,
which could be categorized as model-based. These work were
demonstrated using CPU and a single GPU only.

Ravi, Nishkam et al., in [25] presented an approach to split

Offloading Execution Time (ms) on 2 CPUs, 2 K80 GPUs and 2 MICs Using Different Loop Distribution Policies and Using CUTOFF_RATIO(%15)

a parallel loop between CPU and an Intel MIC in a semi-
automatic way using user-inserted cost models. Their approach
relies on compiler analysis to identify boundary of data access,
which may be challenging for more complicated applications.

Sundaresan et. al in [29] demonstrated a hand-tuning ap-
proach to distribute Jacobi kernels on hybrid CPU/GPU sys-
tems. While manual optimization may deliver better perfor-
mance than the automated approaches including ours, this
application-specific effort limits the usage of the approach and
tools for other applications.

Scogland et.al. in [28] developed CoreTSAR runtime library
for distributing loops by extending OpenACC with interfaces
such as pcopy(matftrue:10:1][false:10]), hetero(TRUE),
etc. It uses sample profiling algorithm for loop distribution.

Related work for runtime systems focusing on task schedul-
ing address the load balance challenges through variants of
workstealing, for example in [20], [7], and [2]. In comparison,
our work extends OpenMP with minimum extensions to allow
for easy migration. We implement most of the available algo-
rithms in one system and design the modeling and CUTOFF
ratio approaches to work more effectively with system with
diverse computation devices.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we explore automating the process of si-
multaneous hybrid execution of parallel loops using all com-
puting devices across memory domains in a heterogeneous
system. Our work focuses on systems with multiple acceler-
ators and a host CPU to test a prototype implementation of
a runtime optimization infrastructure that exploits advanced
parallel language extensions and loop distribution algorithms.
We demonstrate quantitatively that significant performance

improvements can be achieved by dividing and load balancing
both computation and data automatically using methods that
are inherently portable across architectures.

In the increasingly heterogeneous parallel systems, the
importance of tapping all of the computational capabilities
across memory domains while optimizing performance and
maintaining code portability will grow substantially. With our
prototype, we have demonstrated that software can improve
our ability to leverage opportunities across memory domains to
ensure performance continues to grow with the total number of
computational engines available. Future enhancements include
improving prediction models for more advanced computational
engines, and more platform and code diversity experiments.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1409946 and 1551182,
and 1422712.

[1]
[2]

[3

=

[4

[l

[5

=

[6

=

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

REFERENCES

OpenACC. http://www.openacc-standard.org/.

Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures. Concurrency and Computation:
Practice and Experience, 23(2):187-198, 2011.

Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D.
Gropp, and Wen-mei W. Hwu. An adaptive performance modeling
tool for gpu architectures. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2010.
Javier Cabezas, Lluis Vilanova, Isaac Gelado, Thomas B. Jablin, Nacho
Navarro, and Wen-mei Hwu. Automatic execution of single-gpu com-
putations across multiple gpus. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, 2014.

Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun
Choi. User-defined distributions and layouts in chapel: Philosophy and
framework. In Proceedings of the 2Nd USENIX Conference on Hot
Topics in Parallelism, HotPar’10, pages 12-12, Berkeley, CA, USA,
2010.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: An object-oriented approach to non-uniform cluster
computing. SIGPLAN Not., 40(10):519-538, October 2005.

Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: An exe-
cution model and runtime for heterogeneous many core systems. In
Proceedings of the 17th International Symposium on High Performance
Distributed Computing, HPDC °08, pages 197-200. ACM, 2008.
Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine
Yelick. UPC: Distributed Shared-Memory Programming. Wiley-
Interscience, 2003.

D. Grewe, Zheng Wang, and M.E.P. O’Boyle. Portable mapping of data
parallel programs to opencl for heterogeneous systems. In IEEE/ACM
Code Generation and Optimization (CGO) Symposium, 2013.
Dominik Grewe and Michael F. P. O’Boyle. A static task partitioning
approach for heterogeneous systems using opencl. In Proceedings of
the 20th International Conference on Compiler Construction.

Roger W. Hockney. The communication challenge for mpp: Intel
paragon and meiko cs-2. Parallel Computing, 20(3):389 — 398, 1994.
Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu archi-
tecture with memory-level and thread-level parallelism awareness. In
Proceedings of the 36th Annual International Symposium on Computer
Architecture, ISCA °09, pages 152-163, New York, NY, USA, 2009.
Yulu Jia, Piotr Luszczek, and Jack Dongarra. Multi-gpu implementation
of {LU} factorization. In Proceedings of the International Conference
on Computational Science, {ICCS} 2012, pages 106 — 115, 2012.
Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,
Chunling Hu, and Keshav Pingali. Adaptive heterogeneous scheduling
for integrated gpus. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation, PACT 14, 2014.

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

David J. Liljab Kelvin K. Yuea. Parallel loop scheduling for high per-
formance computers. In L. Grandinetti J.J. Dongarra, G.R. Joubert and
J. Kowalik, editors, High Performance ComputingTechnology, Methods
and Applications, volume 10 of Advances in Parallel Computing, pages
243 — 264. North-Holland, 1995.

Khronos OpenCL Working Group. The OpenCL Specification - Version
1.0. Technical report, The Khronos Group, 2009.

Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L.
Steele, Jr., and Mary E. Zosel. The High Performance Fortran Hand-
book. MIT Press, Cambridge, MA, USA, 1994.

Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke.
Skmd: Single kernel on multiple devices for transparent cpu-gpu col-
laboration. ACM Trans. Comput. Syst., 33(3):9:1-9:27, August 2015.
Chunhua Liao, Yonghong Yan, Bronis R de Supinski, Daniel J Quinlan,
and Barbara Chapman. Early Experiences with the OpenMP Accelerator
Model. In OpenMP in the Era of Low Power Devices and Accelerators
(IWOMP’13), pages 84-98. Springer, 2013.

Jodo V. F. Lima, Thierry Gautier, Nicolas Maillard, and Vincent Danjean.
Exploiting concurrent GPU operations for efficient work stealing on
multi-gpus. In IEEE 24th International Symposium on Computer
Architecture and High Performance Computing, SBAC-PAD 2012.
Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting
parallelism on heterogeneous multiprocessors with adaptive mapping. In
Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 45-55, New York, NY, USA, 2009. ACM.
OpenMP Architecture Review Board. The OpenMP API Specification
for Parallel Programming. http://www.openmp.org/.

Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley,
and Saman Amarasinghe. Portable performance on heterogeneous
architectures. In The S8th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2013.
Thejas Ramashekar and Uday Bondhugula. Automatic data allocation
and buffer management for multi-gpu machines. ACM Trans. Archit.
Code Optim., 10(4):60:1-60:26, December 2013.

Nishkam Ravi, Yi Yang, Tao Bao, and Srimat Chakradhar. Semi-
automatic restructuring of offloadable tasks for many-core accelerators.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC 13, 2013.

Vignesh T. Ravi and Gagan Agrawal. A dynamic scheduling framework
for emerging heterogeneous systems. In /8th International Conference
on High Performance Computing, HiPC 2011, Bengaluru, India, De-
cember 18-21, 2011, pages 1-10, 2011.

Vignesh T. Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal.
Compiler and runtime support for enabling generalized reduction com-
putations on heterogeneous parallel configurations. In Proceedings of
the 24th ACM International Conference on Supercomputing, ICS 10,
pages 137-146, New York, NY, USA, 2010. ACM.

Thomas R. Scogland, Wu-Chun Feng, Barry Rountree, and Bronis R.
Supinski. Coretsar: Adaptive worksharing for heterogeneous systems.
In Proceedings of the 29th International Conference on Supercomputing
- Volume 8488, ISC 2014, pages 172-186, 2014.

Sundaresan Venkatasubramanian and Richard W. Vuduc. Tuned and
wildly asynchronous stencil kernels for hybrid cpu/gpu systems. In
Proceedings of the 23rd International Conference on Supercomputing,
ICS ’09, pages 244-255, New York, NY, USA, 2009. ACM.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65-76, April 2009.

Noah Wolfe, Tianyu Liu, Christopher Carothers, and Xie George Xu.
Heterogeneous concurrent execution of monte carlo photon transport on
cpu, gpu and mic. In Proceedings of the 4th Workshop on Irregular
Applications: Architectures and Algorithms, 1A3 14, pages 49-52,
Piscataway, NJ, USA, 2014. IEEE Press.

Rengan Xu, Sunita Chandrasekaran, and Barbara Chapman. Explor-
ing programming multi-gpus using openmp and openacc-based hybrid
model. In Proceedings of the 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing Workshops and PhD Forum,
pages 1169-1176. IEEE Computer Society, 2013.

Yonghong Yan, Pei-Hung Lin, Chunhua Liao, Bronis R. de Supinski,
and Daniel J. Quinlan. Supporting multiple accelerators in high-
level programming models. In Proceedings of the Sixth International
Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM 15, pages 170-180. ACM, 2015.

