
HOMP: Automated Distribution of Parallel Loops

and Data in Highly Parallel Accelerator-Based

Systems

Yonghong Yan and Jiawen Liu

Department of Computer Science and Engineering

Oakland University

Email: {yan, jliu}@oakland.edu

Kirk W. Cameron and Mariam Umar

Department of Computer Science

Virginia Polytechnic Institute and State University

Email: cameron@cs.vt.edu, mariam.umar@vt.edu

Abstract—Heterogeneous computing systems, e.g., those with
accelerators than the host CPUs, offer the accelerated perfor-
mance for a variety of workloads. However, most parallel pro-
gramming models require platform dependent, time-consuming
hand-tuning efforts for collectively using all the resources in a
system to achieve efficient results. In this work, we explore the
use of OpenMP parallel language extensions to empower users
with the ability to design applications that automatically and
simultaneously leverage CPUs and accelerators to further opti-
mize use of available resources. We believe such automation will
be key to ensuring codes adapt to increases in the number and
diversity of accelerator resources for future computing systems.
The proposed system combines language extensions to OpenMP,
load-balancing algorithms and heuristics, and a runtime system
for loop distribution across heterogeneous processing elements.
We demonstrate the effectiveness of our automated approach to
program on systems with multiple CPUs, GPUs, and MICs.

Keywords-accelerator architecture; OpenMP; parallel loops;
performance model; runtime system; data and computation
distribution; alignment; load balance

I. INTRODUCTION

Coprocessors or accelerators, e.g. NVIDIA GPUs and In-

tel Many Integrated Cores (MICs), incorporate specialized

processing capabilities to handle particular tasks and to aug-

ment performance of conventional processors. Applications are

commonly developed to offload a computational loop onto an

accelerator while utilizing host processors for helper tasks such

as data movement. Ideally, multiple accelerators and even the

host processors could be utilized fully on demand for appli-

cations that can benefit from their combined computational

capabilities. Unfortunately, typical implementations separate

the memory space of these devices.

Moreover, programming constructs designed for proces-

sors and accelerators primarily support isolated computation

across the devices. Most existing programming models support

offloading a computation task to a single device a time.

Co-scheduling of tasks on different devices is possible. It,

however, needs significant manual efforts of programming for

decomposing computation and input data, and for synchro-

nization and merging the output data [32], [29], [13], [31].

This renders state-of-the-art node-level programming models,

e.g. OpenMP [22], OpenACC [1], CUDA and OpenCL [16],

unproductive for programming across multiple devices.

In this paper, we present HOMP (Hybrid OpenMP)1 pro-

gramming interfaces for automating the distribution of com-

putation and data of parallel loops across multiple CPUs,

GPUs and MICs within heterogeneous computing nodes. The

contributions of this work are highlighted as follows.

1) We develop minimal language extensions to OpenMP

for distributing data and computation of parallel loops onto

multiple computation devices of same or different types. Those

extensions allow users to specify the alignment of data and

computation that uses the data to improve programmability.

These extensions are compatible with the OpenMP standard,

thus facilitating the migration of existing applications to use

multiple devices collectively.

2) When distributing work between all devices within a

computing node, one challenge is to achieve load balance

among devices. We develop seven different algorithms for

enabling partitioning of parallel loops at runtime to balance the

use of computationally different resources. We also implement

an approach of using cutoff ratio to automatically select

devices for a parallel loop for the optimal performance.

3) We develop a runtime prototype to address challenges

of hybrid execution within heterogeneous systems, including

data and computation alignment and binding, mechanisms of

loop scheduling and analytical modeling, runtime techniques

for multi-target execution, and solutions for unified memory

management of discrete and shared address space.

Performance analysis was performed using scientific kernels

on a machine with multiple CPUs, GPUs and Intel MICs to

study the effectiveness of loop distribution algorithms, and

the performance of the HOMP implementation. The results

indicate that by using a few HOMP directives, users can ef-

fectively use multiple architecturally different devices through

hybrid execution of a parallel loop across those devices.

This paper is organized as follows: Section II introduces the

background and motivation. Section III presents our language

extensions to OpenMP. In Section IV, the loop distribution

approaches and algorithms are illustrated. Section V describes

our prototype implementation. We present our evaluation re-

1Available from https://github.com/passlab/homp

sults in Section VI. Section VII covers the related work and

Section VIII concludes the paper.

II. MOTIVATION

In an accelerator-based heterogeneous system, an accelera-

tor, such as GPUs, operates in a different memory domain

from the host processor. The use of accelerators employs

an offloading execution model, an approach to shipping data

and computation to another device for computation. The

model is realized in programming languages through dedicated

interfaces. For example, the OpenMP target construct allows

users to annotate regions of code and data to be offloaded to an

accelerator. In Figure 1, we include a simple AXPY example

(vector addition) written in OpenMP.

1void axpy_omp(REAL* x, REAL* y, int n, REAL a) {

2 #pragma omp target device (0) map(tofrom: y[0:n]) \

3 map(to: x[0:n],a,n)

4 #pragma omp parallel for shared(x, y, n, a)

5 for (int i = 0; i < n; ++i)

6 y[i] += a * x[i];

7}

8void axpy_omp_mdev(REAL* x, REAL* y, int n, REAL a) {

9 int ndev = omp_get_num_devices();

10 #pragma omp parallel num_threads(ndev)

11 { int devid = omp_get_thread_num();

12 int start, size, remnant;

13 remnant = n % ndev; size = n / ndev;

14 if (devid < remnant) {

15 size++; start = size*devid;

16 } else start = size*devid+remnant;

17 #pragma omp target device (devid) \

18 map(tofrom: y[start:size]) \

19 map(to: x[start:size],a,size)

20 #pragma omp parallel for shared(x, y, size, a)

21 for (int i = 0; i < size; ++i)

22 y[i] += a * x[i];

23 }

24}

Fig. 1. AXPY OpenMP example for accelerators: The axpy omp function
shows how to offload the whole computation and two arrays to a single
accelerator. The axpy omp mdev function demonstrates the use of OpenMP
parallel and target constructs for offloading the same loop and data onto
multiple accelerators by evenly partitioning the iteration and two arrays.

The offloading in OpenMP, which is similar to other models

such as OpenACC, CUDA and OpenCL, etc, is performed

in an all-or-none fashion for a single accelerator. Offloading

onto more than one accelerators can be achieved by using the

techniques illustrated in the axpy omp mdev function. In [32],

the authors also demonstrated the use of OpenMP+OpenACC

to achieve this. However, such an approach is a manual process

that requires partitioning of both data and loop iterations,

and making sure only necessary data are copied to the

each accelerator associated with the assigned loop iterations.

Moreover, such hand-tuning solutions do not adapt across

multiple and different accelerators. To improve efficiency and

performance, it is additionally necessary to automate this

process to the greatest extent possible and to steer load

balancing with consideration of the computational abilities of

each device. Our work automates such process of distributing

and aligning computation and data across host and accelerators

using language extensions, loop distribution algorithms and

runtime support.

III. LANGUAGE EXTENSIONS FOR DISTRIBUTING AND

BINDING COMPUTATION AND DATA

In principle, using multiple accelerators for a single loop

involves decomposing data and work, so each portion of data

and work are offloaded to one device and the whole execution

exploits multiple devices. Our design follows this principle.

Figure 2 highlights the design using the AXPY example and

these extensions are described as follows.

1/* align computation with data using ALIGN(x)*/

2void axpy_homp_v1(REAL* x, REAL* y, int n, REAL a) {

3 #pragma omp parallel target device (*) \

4 map(tofrom: y[0:n] partition([BLOCK])) \

5 map(to: x[0:n] partition([BLOCK]),a,n)

6 #pragma omp parallel for distribute \

7 dist_schedule(target:[ALIGN(x)])

8 for (int i = 0; i < n; ++i)

9 y[i] += a * x[i];

10}

11

12/* align data with computation using ALIGN*/

13void axpy_homp_v2(REAL* x, REAL* y, int n, REAL a) {

14 #pragma omp parallel target device (*) \

15 map(tofrom: y[0:n] partition([ALIGN(loop)])) \

16 map(to: x[0:n] partition([ALIGN(loop)]),a,n)

17 #pragma omp parallel for distribute \

18 dist_schedule(target:[AUTO])

19loop: for (int i = 0; i < n; ++i)

20 y[i] += a * x[i];

21}

Fig. 2. AXPY using HOMP extensions. axpy homp v1: aligning computa-
tion with data; axpy homp v2: aligning data with computation.

1) Extension to the device clause of the target

directive: The current OpenMP 4.5 syntax for

device clause is device(scalar-integer-expression),

which allows for only one device as a target for

offloading. We extend it for supporting specifying

multiple devices as offloading targets with the form

device(device specifier[[,device specifier],...]).

The device specifier should be formed as

initial devid[[:nums][:dev type filter]], which lists the

device IDs starting from initial devid consecutively for

nums number of devices that are of dev type filter

type. The nums parameter, whose default value is 1 if

not provided, should be either an integer expression or

wildcard character *, which denotes all devices from the

initial devid. The following usages are legal device targets:

device(0:*) for all devices; device(0, 2, 3, 5) for a list of

devices; device(0:2, 4:2) which is the list of 0,1,4,5; and

device(0:*:HOMP DEVICE NVGPU) which includes all the

NVIDIA GPU devices.
2) Extension to the distribute directive for distributing loop

iterations among multiple devices: The distribute directive in

current OpenMP standard is used for distributing a loop among

multiple teams of threads within a single device. We extend its

semantics for allowing to specify the distribution of the loop

iteration among multiple target devices as well. The usage of

the directive is shown in line 6 and 17 of Figure 2. We also

extend the dist schedule clause of the distribute directive for

specifying distribution policy between devices and between

teams of each device by using either the target or teams

directive name modifier.

The usage is shown in line 7 and 18 of Figure 2. Valid kinds

for the dist schedule(target:) clause are listed in Table I.

The AUTO policy for loop distribution leaves to the runtime

to determine the partition of a loop. Using this policy, a

loop could be distributed among multiple devices in a way

to achieve optimal load balance. For example, the sizes of

loop chunks for each device, determined at runtime, could be

proportional to their computation capabilities.

3) Extension to the map clause to include an optional

partition parameter for each mapped variable to support

distribution of data among multiple devices: Line 4, 5, 15,

and 16 in Figure 2 show the usage of the partition parameter.

Observing the fact that the range of an array in one dimension

can be used for specifying the iteration range of a loop, we can

use the same policies for loop and data distribution, which are

listed in Table I. For distributing a multiple dimensional array,

the extensions allow for specifying different policies in each

dimension by using the syntax similar to multi-dimensional

array declaration. Similarly, for distributing the iteration spaces

of nested loops, users can specify policies for each loop.

The ALIGN policy provides an approach to bind an array

subregion and a chunk of a loop iteration space so data can

be automatically copied to the device that the loop chunk

is assigned to. There are two ways to use this policy, 1)

decompose data and then align the loop iteration with the

data allocated for each device, and 2) partition the loop

iteration space among multiple devices and then decompose

data aligning with the computation. The axpy homp v1 and

axpy homp v2 procedures in Figure 2 illustrate the usage of

these two ways.

TABLE I
CURRENT DISTRIBUTION POLICIES

FULL The full range of this dimension is used for
distribution. This is the default policy if no
policy is specified.

BLOCK Divides the indices of a dimension evenly
into contiguous blocks.

ALIGN(dist,
ratio)

Aligns the distribution with the dist dis-
tribution provided as the clause arguments
with ratio. Ratio default is 1, i.e. the two
distributions are the same.

AUTO Distributes the loop iterations with goal
to achieve load balance. This policy only
applies to loop distribution.

4) Introducing the parallel target composite construct for

specifying that a code region is to be executed on the target

devices in parallel: Our first extension for allowing multiple

devices to be specified as offloading target does not require

parallel offloading, thus offloading to the target devices could

be serialized. The parallel target2, used in line 3 and 14

in Figure 2, explicitly requires that data distribution, loop

distribution and offloading computation should be performed

2The target parallel combined construct of the current OpenMP standard
is a shortcut for specifying a parallel construct immediately nested inside the
target construct, which is for offloading a parallel region on one device.

in parallel by multiple host threads, thus providing an option

to concurrently offload computation of a large scientific loop

onto multiple devices.

A. Comparing with Related Work

A more complicated example, the Jacobi iterative kernel,

is shown in Figure 3 using those extensions. In general,

similar approaches of distributing data have been used in

programming models for distributed systems. HPF [17] has the

ALIGN directive to indicate elements (subarrays) of multiple

arrays to be co-located in the same processors, which however,

did not provide mechanisms to align computation with data.

The Unified Parallel C(UPC) [8]’s upc forall worksharing

construct added the affinity field to the standard C for loop for

specifying the correlation of loop iterations with UPC threads,

an approach of distributing loop iterations among threads. UPC

also provide interfaces to define array distribution using such

policies as blocking or cyclic. The bindings between array

subregions and loop partitions are formed implicitly through

their links to the thread affinity. X10 [6] and Chapel [5]

allow for array distribution among abstractions of memory

segments (places in X10 and locale in Chapel). Launching

an asynchronous task with an array subregion as the target

location means to execute the task in a place where the

subregion resides. They however, does not provide policy for

specifying loop distribution.

OpenMP worksharing (parallel for) and distribute direc-

tives are designed to distribution parallel loops among threads

of a team and teams of a league, respectively [22], both

within the same memory space. OpenMP does not support

data distribution or loop distribution among multiple devices.

Comparing with these efforts, our approach supports the

distribution of both data and computation, as well as the align-

ment between them. It gives users more control of managing

data and computation for heterogeneous systems. We realize

these features through extensions to the OpenMP distribute

and map clauses. The approach of viewing a loop iteration

space and array dimension both as a region upon which a

distribution can be applied offers an intuitive solution for

binding data and computation, thus improving the productivity

of using multiple accelerators.

The design of these interfaces and their semantics leverages

the most recent OpenMP standard (4.5) with attempt to be

intuitive to use, thus providing an easy migration path for

existing OpenMP program to use multiple accelerators con-

currently. Though we use OpenMP as baseline for extension,

these interfaces, with modification, can be used with other

programming APIs such as OpenACC. The principles are also

applicable to other models, including runtime library, C++

template, meta-programming or domain specific languages.

B. The Challenges of Implementing HOMP Extensions

The designed extensions enable hybrid execution of paral-

lel loops among multiple devices, There are however three

challenges to implement those extensions: 1) to achieve load

1#pragma omp parallel target data device(*) \

2 map(to:n, m, omega, ax, ay, b,\

3 f[0:n][0:m] partition([ALIGN(loop1)],FULL)) \

4 map(tofrom:u[0:n][0:m] \

5 partition([ALIGN(loop1)],FULL))\

6 map(alloc:uold[0:n][0:m] \

7 partition([ALIGN(loop1)],FULL) halo(1,))

8while ((k<=mits)&&(error>tol)) {

9#pragma omp parallel for target device(*) collapse(2)\

10 distribute dist_schedule(target:[ALIGN(loop1)])

11 for(i=0;i<n;i++)

12 for(j=0;j<m;j++)

13 uold[i][j] = u[i][j];

14

15#pragma omp halo_exchange (uold)

16

17#pragma omp parallel for target device(*)\

18 reduction(+:error) \

19 distribute dist_schedule(target:[AUTO])

20loop1: for (i=0;i<n;i++) {

21 if (i==0||i==n-1) continue;

22 for (j=1;j<(m-1);j++) {

23 resid = (ax*(uold[i-1][j] + uold[i+1][j])\

24 + ay*(uold[i][j-1] + uold[i][j+1])\

25 + b * uold[i][j] - f[i][j])/b;

26 u[i][j] = uold[i][j] - omega * resid;

27 error = error + resid*resid ;

28 }

29 }

30 // the rest code omitted ...

31}

Fig. 3. Jacobi kernel for showing alignment of array and loop distributions
as well as the use of AUTO policy

balance when distributing loop iterations across multiple com-

putationally different devices, such as CPU, GPU and MICs, 2)

to automatically schedule loop distribution and data movement

(copy or share) so only the necessary data will be copied to

the accelerators for the computation assigned to each device,

and 3) to automatically select appropriate target devices for

the optimal performance. We present our solutions to these

challenges in the following two sections.

IV. APPROACHES TO LOOP DISTRIBUTION FOR

ACHIEVING LOAD BALANCE

Illustrated in Section III, the distribute(target:AUTO)

clause indicates to distribute the loop iteration among multiple

devices (host and accelerators) so the computation could be

load-balanced. In this section, we discuss three approaches we

developed to support load-balanced hybrid execution.

A. Chunk Scheduling

Conventionally, loop scheduling on shared memory systems

is the process of distributing iteration of a parallel loop to

multiple threads [15]. The same approach can be applied to

distribute loop among multiple accelerators and CPUs.

1) Static Chunking (BLOCK): It is beneficial to divide the

work evenly among multiple devices of the same when the

work performed by each iteration are the same. This approach

is known as static chunk scheduling. Provided that each device

computes at the same rate, all the devices should complete at

the same time, thus achieving load-balance.

2) Dynamic Chunking (SCHED DYNAMIC): Static chunk-

ing may not achieve good load balance when the work

performed by each iteration varies. In dynamic chunking

algorithm, after completion of its chunk, a device tries to

acquire another chunk from the same loop. So in general,

faster devices will likely perform more works, thus to achieve

load-balanced distribution. The selection of the chunk size is

critical for the load balance and it is a decision for tradeoffs

between load-balance and chunking scheduling overhead.

3) Guided Chunking (SCHED GUIDED): Guided chunk-

ing works similar to dynamic chunking, except that each

device gets successively smaller sizes of chunks. In this

approach, program execution starts with large chunk sizes and

then chunks reduce in sizes as the computation close to finish,

thus reducing the total amount of chunks and still maintaining

good balance when it closes to finish.

B. Distributing Loop using Analytical Models

In this approach, analytical models are constructed to predict

the throughput of each device for a loop, and then use

the prediction to partition the loop iteration among multiple

devices as well as the distribution of data associated with the

loop chunks assigned to the devices. While using a full-fledged

performance model such as those developed in [9], [12] and [3]

will provide accurate prediction of the execution time, it will

also incur large overhead to the application execution when the

model is used at the runtime. Thus our models are specifically

designed for handling computation-intensive parallel loops and

are significantly simplified for the needs of loop distribution.

1) Analytical Model Considering only Computation Capa-

bility (MODEL 1 AUTO): For a given device i, the execution

time T taken to compute a loop with N number of iteration

can be represented as follows:

T = gi(N) (1)

For a given amount of time, the number of iteration that can

be completed, i.e. throughput, is the reverse function of gi,

denoted as fi = gi
−1. Using Ni as the throughput for T time

units, we have equation (2).

Ni = fi(T), 0 ≤ i < M (2)

To distribute a loop with N iteration on to M number of

devices, the objective of the model is to create M number of

chunks of the loop, each computed by one device, and it takes

the same amount of T0 time to complete, theoretically. Thus

we have equation (3).

N =
∑

0≤i<M

Ni =
∑

0≤i<M

fi(T0) (3)

For data parallel loops in which each loop iteration contains

the same amount of work (e.g. dense linear algebra), we can

combine the Equation 2 and 3 to arrive a model that solves

a linear system with M+1 variables, i.e. N0, N1, ..., NM −
1, and T0. In this model, all the devices compute possibly

different sizes of loop chunks according to their computation

capabilities and complete at the same time, T0, which is the

loop completion time.

2) Analytical Model Considering Both Computation and

Data Movement Cost (MODEL 2 AUTO): To apply the basic

analytical model to accelerators, the execution time of T

TABLE II
COMPARISONS OF LOOP DISTRIBUTION ALGORITHMS

Approaches Algorithms Notations used in Evaluation # Stages Overhead Load Balancing Descriptions Related Work

Chunk Scheduling

Static Chunking BLOCK 1 Low Poor to good Even distributions of iterations [26], [27], [20]

Dynamic Chunking SCHED DYNAMIC,2% Multiple High Good Each device receives chunks of same size

Guided Chunking SCHED GUIDED,20% Multiple High Good Each device receives chunk of different sizes

Analytical Modeling
Compute-only Modeling MODEL 1 AUTO,-1,15% 1 Low Medium Only considers computation in modeling [25]

Compute/Data Modeling MODEL 2 AUTO,-1,15% 1 Low Medium to good Considers both computation and data movement

Sample Profiling
Constant Sampling SCHED PROFILE AUTO,10%,15% 2 Medium Medium to good Constant sample size for profiling [14], [21], [28]

Model-based Sampling MODEL PROFILE AUTO,10%,15% 2 Medium Medium to good Uses models to select sample sizes for profiling

Note: SCHED PROFILE AUTO,10%,15%: 10% is the chunk size (-1 if not used) and 15% is CUTOFF ratio. CUTOFF ratio is only applicable to the last four algorithms.

in Equation 1 for each device consists of both the cost of

computation and data movement.

T = DataTdev + ExeTdev = gi(N)

The parameters needed to solve the system in Equation 3,

which could be linear or non-linear, include DataTdev and

ExeTdev for each device. Although the model needs two pa-

rameters (DataTdev and ExeTdev) for each device for distribut-

ing a parallel loop, it is actually the speedup of the particular

loop on one device over another, e.g. CPUs vs GPUs, that

determines the ratio of distributions of loop iteration.

DataTdev + ExeTdev

ExeThost

=
DataTdev

ExeThost

+
ExeTdev

ExeThost

(4)

TABLE III
NOTATIONS USED IN MODELING

Notation What it represents

ExeThost Execution time taken by host

ExeTdev Execution time taken by a device

DataTdev Data transfer cost, to and from a device

Flops # of FLOPS of offloaded kernel on a device

Perfhost Sustaining peak performance of the host

Perfdev Sustaining peak performance of a device

Sizedata Size of data moved from and to a device

Sizedata Size of data moved from and to a device

MemComp Memory load/stores to computation ratio

DataComp Data transfer to computation ratio

FlopssHost Flops per second performance of host

FlopssDev Flops per second performance of a device

For each of the parameters in the above speedup formula,

the following assumptions and heuristics are applied:

• For the DataTdev parameter, the time to move data to

and from a device, we use the Hockney’s model, also

known as “α-β model” [11]. It is a linear model of data

sizes and the latency and bandwidth of memory systems.

• For ExeTdev , each loop iteration has the approximately

the same amount of work. For data parallel loops that

contain no branching, this assumption is valid. Also due

to the mechanisms of branch scheduling in GPU and

MIC’s SIMD architecture, which execute all the branches

even there is divergence, the assumption holds as well.

• The ExeThost|dev parameter is computed using

FLOPs/(Perfhost|dev*MemComp), by assuming similar

memory behaviors for the loop iteration across devices.

For example, applications on GPUs that have highly

coalesced memory access achieve similar effects of hid-

ing memory access latency to how CPUs with multi-

level cache memory hierarchy works. For each device,

the MemComp parameter is the ratio of the amount of

memory load/stores to the amount of computation.

Under these assumptions, the speedup formula is written as:

Sizedata ∗MemComp

FLOPs
∗

Perfhost

Bandwidth
+

Perfhost

Perfdev
(5)

In this model, the Sizedata

FLOPs
, represents the kernel character-

istics, i.e. the ratio of the amount of data to be moved to the

amount of computation, denoted as DataComp. The use of

MemComp and DataComp is similar to the use of a single

parameter in roofline performance model [30]. Thus the first

factor is reduced to MemComp
DataComp

, which could be further reduced

to MemoryAccess
DataTransfer

. This is the ratio of the amount of memory

access to the amount of data to be transferred. The second

factor, Perfhost

Bandwidth
, is the machine characteristics, i.e. the ratio

of host CPU performance to the memory bus performance. The

third ratio factor, Perfhost

Perfdev
, is the relative performance between

CPU and GPU device, again a machine characteristics.

For a machine, the last two machine factors are constants,

each of which is obtained through microbenchmark profiling

in our experiment. The parameters in first ratio factor is

collected through compiler analysis or direct user input. As

an approximate model for loop distribution, the model does

not take into consideration the differences of the performance

impact to CPU and GPU from factors such as control-flow

divergence, irregular memory access patterns (i.e., memory

divergence), and register file pressure.

C. Loop Distribution based on Sample Profiling

In this approach, the system first computes a small amount

of loop iterations on CPU and accelerators (GPUs and MICs)

to determinate the throughput of each device for the loop

(stage 1), and then distributes the remaining iterations ac-

cording to the rate (stage 2). The selection of chunk sizes

impacts the distribution of the remaining iterations. Large

chunk sizes will provide more accurate profiling, but may also

incur load-balance issues in stage 1. Smaller chunk sizes will

reduce the profiling overhead and also incur less imbalance

in stage 1, it however may not provide accurate profiling

result for guiding the loop distribution in stage 2. By combing

improvements can be achieved by dividing and load balancing

both computation and data automatically using methods that

are inherently portable across architectures.

In the increasingly heterogeneous parallel systems, the

importance of tapping all of the computational capabilities

across memory domains while optimizing performance and

maintaining code portability will grow substantially. With our

prototype, we have demonstrated that software can improve

our ability to leverage opportunities across memory domains to

ensure performance continues to grow with the total number of

computational engines available. Future enhancements include

improving prediction models for more advanced computational

engines, and more platform and code diversity experiments.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 1409946 and 1551182,

and 1422712.

REFERENCES

[1] OpenACC. http://www.openacc-standard.org/.
[2] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-

André Wacrenier. StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures. Concurrency and Computation:

Practice and Experience, 23(2):187–198, 2011.
[3] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D.

Gropp, and Wen-mei W. Hwu. An adaptive performance modeling
tool for gpu architectures. In Proceedings of the 15th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2010.
[4] Javier Cabezas, Lluı́s Vilanova, Isaac Gelado, Thomas B. Jablin, Nacho

Navarro, and Wen-mei Hwu. Automatic execution of single-gpu com-
putations across multiple gpus. In Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, 2014.
[5] Bradford L. Chamberlain, Steven J. Deitz, David Iten, and Sung-Eun

Choi. User-defined distributions and layouts in chapel: Philosophy and
framework. In Proceedings of the 2Nd USENIX Conference on Hot

Topics in Parallelism, HotPar’10, pages 12–12, Berkeley, CA, USA,
2010.

[6] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek
Sarkar. X10: An object-oriented approach to non-uniform cluster
computing. SIGPLAN Not., 40(10):519–538, October 2005.

[7] Gregory F. Diamos and Sudhakar Yalamanchili. Harmony: An exe-
cution model and runtime for heterogeneous many core systems. In
Proceedings of the 17th International Symposium on High Performance

Distributed Computing, HPDC ’08, pages 197–200. ACM, 2008.
[8] Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine

Yelick. UPC: Distributed Shared-Memory Programming. Wiley-
Interscience, 2003.

[9] D. Grewe, Zheng Wang, and M.F.P. O’Boyle. Portable mapping of data
parallel programs to opencl for heterogeneous systems. In IEEE/ACM

Code Generation and Optimization (CGO) Symposium, 2013.
[10] Dominik Grewe and Michael F. P. O’Boyle. A static task partitioning

approach for heterogeneous systems using opencl. In Proceedings of

the 20th International Conference on Compiler Construction.
[11] Roger W. Hockney. The communication challenge for mpp: Intel

paragon and meiko cs-2. Parallel Computing, 20(3):389 – 398, 1994.
[12] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu archi-

tecture with memory-level and thread-level parallelism awareness. In
Proceedings of the 36th Annual International Symposium on Computer

Architecture, ISCA ’09, pages 152–163, New York, NY, USA, 2009.
[13] Yulu Jia, Piotr Luszczek, and Jack Dongarra. Multi-gpu implementation

of {LU} factorization. In Proceedings of the International Conference

on Computational Science, {ICCS} 2012, pages 106 – 115, 2012.
[14] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,

Chunling Hu, and Keshav Pingali. Adaptive heterogeneous scheduling
for integrated gpus. In Proceedings of the 23rd International Conference

on Parallel Architectures and Compilation, PACT ’14, 2014.

[15] David J. Liljab Kelvin K. Yuea. Parallel loop scheduling for high per-
formance computers. In L. Grandinetti J.J. Dongarra, G.R. Joubert and
J. Kowalik, editors, High Performance ComputingTechnology, Methods

and Applications, volume 10 of Advances in Parallel Computing, pages
243 – 264. North-Holland, 1995.

[16] Khronos OpenCL Working Group. The OpenCL Specification - Version
1.0. Technical report, The Khronos Group, 2009.

[17] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L.
Steele, Jr., and Mary E. Zosel. The High Performance Fortran Hand-

book. MIT Press, Cambridge, MA, USA, 1994.
[18] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke.

Skmd: Single kernel on multiple devices for transparent cpu-gpu col-
laboration. ACM Trans. Comput. Syst., 33(3):9:1–9:27, August 2015.

[19] Chunhua Liao, Yonghong Yan, Bronis R de Supinski, Daniel J Quinlan,
and Barbara Chapman. Early Experiences with the OpenMP Accelerator
Model. In OpenMP in the Era of Low Power Devices and Accelerators

(IWOMP’13), pages 84–98. Springer, 2013.
[20] João V. F. Lima, Thierry Gautier, Nicolas Maillard, and Vincent Danjean.

Exploiting concurrent GPU operations for efficient work stealing on
multi-gpus. In IEEE 24th International Symposium on Computer

Architecture and High Performance Computing, SBAC-PAD 2012.
[21] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting

parallelism on heterogeneous multiprocessors with adaptive mapping. In
Proceedings of the 42Nd Annual IEEE/ACM International Symposium

on Microarchitecture, pages 45–55, New York, NY, USA, 2009. ACM.
[22] OpenMP Architecture Review Board. The OpenMP API Specification

for Parallel Programming. http://www.openmp.org/.
[23] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley,

and Saman Amarasinghe. Portable performance on heterogeneous
architectures. In The 8th International Conference on Architectural

Support for Programming Languages and Operating Systems, 2013.
[24] Thejas Ramashekar and Uday Bondhugula. Automatic data allocation

and buffer management for multi-gpu machines. ACM Trans. Archit.

Code Optim., 10(4):60:1–60:26, December 2013.
[25] Nishkam Ravi, Yi Yang, Tao Bao, and Srimat Chakradhar. Semi-

automatic restructuring of offloadable tasks for many-core accelerators.
In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’13, 2013.
[26] Vignesh T. Ravi and Gagan Agrawal. A dynamic scheduling framework

for emerging heterogeneous systems. In 18th International Conference

on High Performance Computing, HiPC 2011, Bengaluru, India, De-

cember 18-21, 2011, pages 1–10, 2011.
[27] Vignesh T. Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal.

Compiler and runtime support for enabling generalized reduction com-
putations on heterogeneous parallel configurations. In Proceedings of

the 24th ACM International Conference on Supercomputing, ICS ’10,
pages 137–146, New York, NY, USA, 2010. ACM.

[28] Thomas R. Scogland, Wu-Chun Feng, Barry Rountree, and Bronis R.
Supinski. Coretsar: Adaptive worksharing for heterogeneous systems.
In Proceedings of the 29th International Conference on Supercomputing

- Volume 8488, ISC 2014, pages 172–186, 2014.
[29] Sundaresan Venkatasubramanian and Richard W. Vuduc. Tuned and

wildly asynchronous stencil kernels for hybrid cpu/gpu systems. In
Proceedings of the 23rd International Conference on Supercomputing,
ICS ’09, pages 244–255, New York, NY, USA, 2009. ACM.

[30] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, April 2009.

[31] Noah Wolfe, Tianyu Liu, Christopher Carothers, and Xie George Xu.
Heterogeneous concurrent execution of monte carlo photon transport on
cpu, gpu and mic. In Proceedings of the 4th Workshop on Irregular

Applications: Architectures and Algorithms, IA3 ’14, pages 49–52,
Piscataway, NJ, USA, 2014. IEEE Press.

[32] Rengan Xu, Sunita Chandrasekaran, and Barbara Chapman. Explor-
ing programming multi-gpus using openmp and openacc-based hybrid
model. In Proceedings of the 2013 IEEE 27th International Symposium

on Parallel and Distributed Processing Workshops and PhD Forum,
pages 1169–1176. IEEE Computer Society, 2013.

[33] Yonghong Yan, Pei-Hung Lin, Chunhua Liao, Bronis R. de Supinski,
and Daniel J. Quinlan. Supporting multiple accelerators in high-
level programming models. In Proceedings of the Sixth International

Workshop on Programming Models and Applications for Multicores and

Manycores, PMAM ’15, pages 170–180. ACM, 2015.

