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Abstract

Language is increasingly being used to de-
fine rich visual recognition problems with
supporting image collections sourced from
the web. Structured prediction models are
used in these tasks to take advantage of
correlations between co-occurring labels
and visual input but risk inadvertently en-
coding social biases found in web corpora.
In this work, we study data and models as-
sociated with multilabel object classifica-
tion and visual semantic role labeling. We
find that (a) datasets for these tasks con-
tain significant gender bias and (b) mod-
els trained on these datasets further am-
plify existing bias. For example, the ac-
tivity cooking is over 33% more likely
to involve females than males in a train-
ing set, and a trained model further ampli-
fies the disparity to 68% at test time. We
propose to inject corpus-level constraints
for calibrating existing structured predic-
tion models and design an algorithm based
on Lagrangian relaxation for collective in-
ference. Our method results in almost no
performance loss for the underlying recog-
nition task but decreases the magnitude of
bias amplification by 47.5% and 40.5% for
multilabel classification and visual seman-
tic role labeling, respectively.

1 Introduction

Visual recognition tasks involving language, such
as captioning (Vinyals et al., 2015), visual ques-
tion answering (Antol et al., 2015), and visual se-
mantic role labeling (Yatskar et al., 2016), have
emerged as avenues for expanding the diversity
of information that can be recovered from im-
ages. These tasks aim at extracting rich seman-

tics from images and require large quantities of la-
beled data, predominantly retrieved from the web.
Methods often combine structured prediction and
deep learning to model correlations between la-
bels and images to make judgments that otherwise
would have weak visual support. For example, in
the first image of Figure 1, it is possible to pre-
dict a spatula by considering that it is a com-
mon tool used for the activity cooking. Yet such
methods run the risk of discovering and exploiting
societal biases present in the underlying web cor-
pora. Without properly quantifying and reducing
the reliance on such correlations, broad adoption
of these models can have the inadvertent effect of
magnifying stereotypes.

In this paper, we develop a general framework
for quantifying bias and study two concrete tasks,
visual semantic role labeling (vSRL) and multil-
abel object classification (MLC). In vSRL, we use
the imSitu formalism (Yatskar et al., 2016, 2017),
where the goal is to predict activities, objects and
the roles those objects play within an activity. For
MLC, we use MS-COCO (Lin et al., 2014; Chen
et al., 2015), a recognition task covering 80 object
classes. We use gender bias as a running example
and show that both supporting datasets for these
tasks are biased with respect to a gender binary!.

Our analysis reveals that over 45% and 37%
of verbs and objects, respectively, exhibit bias to-
ward a gender greater than 2:1. For example, as
seen in Figure 1, the cooking activity in imSitu
is a heavily biased verb. Furthermore, we show
that after training state-of-the-art structured pre-
dictors, models amplify the existing bias, by 5.0%
for vSRL, and 3.6% in MLC.

'To simplify our analysis, we only consider a gender bi-
nary as perceived by annotators in the datasets. We recog-
nize that a more fine-grained analysis would be needed for
deployment in a production system. Also, note that the pro-
posed approach can be applied to other NLP tasks and other
variables such as identification with a racial or ethnic group.
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Figure 1: Five example images from the imSitu visual semantic role labeling (vSRL) dataset. Each im-
age is paired with a table describing a situation: the verb, cooking, its semantic roles, i.e agent, and
noun values filling that role, i.e. woman. In the imSitu training set, 33% of cooking images have man
in the agent role while the rest have woman. After training a Conditional Random Field (CRF), bias is
amplified: man fills 16% of agent roles in cooking images. To reduce this bias amplification our cal-
ibration method adjusts weights of CRF potentials associated with biased predictions. After applying our
methods, man appears in the agent role of 20% of cooking images, reducing the bias amplification
by 25%, while keeping the CRF vSRL performance unchanged.

To mitigate the role of bias amplification when
training models on biased corpora, we propose
a novel constrained inference framework, called
RBA, for Reducing Bias Amplification in predic-
tions. Our method introduces corpus-level con-
straints so that gender indicators co-occur no more
often together with elements of the prediction task
than in the original training distribution. For ex-
ample, as seen in Figure 1, we would like noun
man to occur in the agent role of the cooking
as often as it occurs in the imSitu training set when
evaluating on a development set. We combine
our calibration constraint with the original struc-
tured predictor and use Lagrangian relaxation (Ko-
rte and Vygen, 2008; Rush and Collins, 2012) to
reweigh bias creating factors in the original model.

We evaluate our calibration method on imSitu
vSRL and COCO MLC and find that in both in-
stances, our models substantially reduce bias am-
plification. For vSRL, we reduce the average mag-
nitude of bias amplification by 40.5%. For MLC,
we are able to reduce the average magnitude of
bias amplification by 47.5%. Overall, our calibra-
tion methods do not affect the performance of the
underlying visual system, while substantially re-
ducing the reliance of the system on socially bi-

ased correlations?.

2Code and data are available at https://github.
com/uclanlp/reducingbias

2 Related Work

As intelligence systems start playing important
roles in our daily life, ethics in artificial in-
telligence research has attracted significant in-
terest. It is known that big-data technologies
sometimes inadvertently worsen discrimination
due to implicit biases in data (Podesta et al.,
2014). Such issues have been demonstrated in var-
ious learning systems, including online advertise-
ment systems (Sweeney, 2013), word embedding
models (Bolukbasi et al., 2016; Caliskan et al.,
2017), online news (Ross and Carter, 2011), web
search (Kay et al., 2015), and credit score (Hardt
et al., 2016). Data collection biases have been
discussed in the context of creating image cor-
pus (Misra et al., 2016; van Miltenburg, 2016)
and text corpus (Gordon and Van Durme, 2013;
Van Durme, 2010). In contrast, we show that given
a gender biased corpus, structured models such as
conditional random fields, amplify the bias.

The effect of the data imbalance can be easily
detected and fixed when the prediction task is sim-
ple. For example, when classifying binary data
with unbalanced labels (i.e., samples in the major-
ity class dominate the dataset), a classifier trained
exclusively to optimize accuracy learns to always
predict the majority label, as the cost of mak-
ing mistakes on samples in the minority class can
be neglected. Various approaches have been pro-
posed to make a “fair” binary classification (Baro-
cas and Selbst, 2014; Dwork et al., 2012; Feldman
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et al., 2015; Zliobaite, 2015). For structured pre-
diction tasks the effect is harder to quantify and
we are the first to propose methods to reduce bias
amplification in this context.

Lagrangian relaxation and dual decomposi-
tion techniques have been widely used in NLP
tasks (e.g., (Sontag et al., 2011; Rush and Collins,
2012; Chang and Collins, 2011; Peng et al., 2015))
for dealing with instance-level constraints. Simi-
lar techniques (Chang et al., 2013; Dalvi, 2015)
have been applied in handling corpus-level con-
straints for semi-supervised multilabel classifica-
tion. In contrast to previous works aiming for
improving accuracy performance, we incorporate
corpus-level constraints for reducing gender bias.

3 Visualizing and Quantifying Biases

Modern statistical learning approaches capture
correlations among output variables in order to
make coherent predictions. However, for real-
world applications, some implicit correlations are
not appropriate, especially if they are amplified.
In this section, we present a general framework to
analyze inherent biases learned and amplified by a
prediction model.

Identifying bias We consider that prediction
problems involve several inter-dependent output
variables y1,y2, ...yx, Which can be represented
as a structure y = {y1,92,..yx} € Y. This
is a common setting in NLP applications, includ-
ing tagging, and parsing. For example, in the
vSRL task, the output can be represented as a
structured table as shown in Fig 1. Modern tech-
niques often model the correlation between the
sub-components in y and make a joint prediction
over them using a structured prediction model.
More details will be provided in Section 4.

We assume there is a subset of output vari-
ables g C y,g € G that reflects demographic at-
tributes such as gender or race (e.g. g € G =
{man, woman} is the agent), and there is another
subset of the output 0 C y,0 € O that are co-
related with g (e.g., o is the activity present in an
image, such as cooking). The goal is to identify
the correlations that are potentially amplified by a
learned model.

To achieve this, we define the bias score of a
given output, o, with respect to a demographic

variable, g, as:

c(0,9)
>gecc0:.9)

where ¢(0, g) is the number of occurrences of o
and g in a corpus. For example, to analyze how
genders of agents and activities are co-related in
vSRL, we define the gender bias toward man for
each verb b(verb,man) as:

b(O, g) =

c(verb,man)

. 1

c(verb,man) + c(verb, woman) M
If b(o, g) > 1/||G||, then o is positively correlated
with g and may exhibit bias.

Evaluating bias amplification To evaluate the
degree of bias amplification, we propose to com-
pare bias scores on the training set, b*(o, g), with
bias scores on an unlabeled evaluation set of im-
ages (0, g) that has been annotated by a predic-
tor. We assume that the evaluation set is iden-
tically distributed to the training set. There-
fore, if o is positively correlated with ¢ (i.e,
b*(0,9) > 1/||G|)) and b(o,g) is larger than
b*(o0,g), we say bias has been amplified. For
example, if b*(cooking,woman) = .66, and
b(cooking,woman) = .84, then the bias of
woman toward cooking has been amplified. Fi-
nally, we define the mean bias amplification as:

Kl)‘ z 3 b(0,9) — b"(0,9).

g o€{ocO|b*(0,9)>1/||G||}

This score estimates the average magnitude of bias
amplification for pairs of o and g which exhibited
bias.

4 Calibration Algorithm

In this section, we introduce Reducing Bias
Amplification, RBA, a debiasing technique for
calibrating the predictions from a structured pre-
diction model. The intuition behind the algorithm
is to inject constraints to ensure the model pre-
dictions follow the distribution observed from the
training data. For example, the constraints added
to the vSRL system ensure the gender ratio of each
verb in Eq. (1) are within a given margin based on
the statistics of the training data. These constraints
are applied at the corpus level, because comput-
ing gender ratio requires the predictions of all test
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instances. As a result, a joint inference over test
instances is required®. Solving such a giant in-
ference problem with constraints is hard. There-
fore, we present an approximate inference algo-
rithm based on Lagrangian relaxation. The advan-
tages of this approach are:

e QOur algorithm is iterative, and at each it-
eration, the joint inference problem is de-
composed to a per-instance basis. This can
be solved by the original inference algo-
rithm. That is, our approach works as a meta-
algorithm and developers do not need to im-
plement a new inference algorithm.

e The approach is general and can be applied in
any structured model.

e Lagrangian relaxation guarantees the solu-
tion is optimal if the algorithm converges and
all constraints are satisfied.

In practice, it is hard to obtain a solution where
all corpus-level constrains are satisfied. However,
we show that the performance of the proposed ap-
proach is empirically strong. We use imSitu for
vSRL as a running example to explain our algo-
rithm.

Structured Output Prediction As we men-
tioned in Sec. 3, we assume the structured output
y € Y consists of several sub-components. Given
a test instance ¢ as an input, the inference problem
is to find

arg ma; 1),
g max fo(y, 1)

where fp(y,i) is a scoring function based on a
model 0 learned from the training data. The struc-
tured output y and the scoring function fy(y, ) can
be decomposed into small components based on
an independence assumption. For example, in the
vSRL task, the output y consists of two types of
binary output variables {y, } and {y, , }. The vari-
able y,, = 1 if and only if the activity v is chosen.
Similarly, v, = 1 if and only if both the activity v
and the semantic role r are assigned . The scoring
function fy(y, ) is decomposed accordingly such
that:

f@(y, Z) = Z yUSG'(Ua Z) + Z yv,r59(vv r, 7;)7
v v,r

3 A sufficiently large sample of test instances must be used
so that bias statistics can be estimated. In this work we use
the entire test set for each respective problem.

*We use 7 to refer to a combination of role and noun. For
example, one possible value indicates an agent is a woman.

represents the overall score of an assignment, and
sg(v,1) and sg(v, r, ) are the potentials of the sub-
assignments. The output space Y contains all fea-
sible assignments of y,, and ¥, ,., which can be rep-
resented as instance-wise constraints. For exam-
ple, the constraint, ) v, = 1 ensures only one
activity is assigned to one image.

Corpus-level Constraints Our goal is to inject
constraints to ensure the output labels follow a
desired distribution. For example, we can set a
constraint to ensure the gender ratio for each ac-
tivity in Eq. (1) is within a given margin. Let
y' = {y.} U {y} .} be the output assignment for
test instance i°. For each activity v*, the con-

straints can be written as

7
Zi yy:fu*,reM

b* =< i i
Zi yv:v*,rEW +Zi yv:v*,rEM

<b*+
2

where b* = b*(v*, man) is the desired gender ra-
tio of an activity v*, v is a user-specified margin.
M and W are a set of semantic role-values rep-
resenting the agent as a man or a woman, respec-
tively.

Note that the constraints in (2) involve all the
test instances. Therefore, it requires a joint in-
ference over the entire test corpus. In general,
these corpus-level constraints can be represented
in a form of A Zl yi — b < 0, where each row
in the matrix A € R is the coefficients of one
constraint, and b € R!'. The constrained inference
problem can then be formulated as:

max , ng(yi,i),

{y're{y?

: (3
s.t. AZyl -b<0,

where {Y*} represents a space spanned by possi-
ble combinations of labels for all instances. With-
out the corpus-level constraints, Eq. (3) can be
optimized by maximizing each instance %

max f@(yiv Z)v
Y €Y

separately.

Lagrangian Relaxation Eq. (3) can be solved
by several combinatorial optimization methods.
For example, one can represent the problem as an

3For the sake of simplicity, we abuse the notations and use
7 to represent both input and data index.
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Dataset | Task |Images | O-Type || O||
imSitu |vSRL| 60,000 | verb | 212
MS-COCO | MLC | 25,000 | object | 66

Table 1: Statistics for the two recognition prob-
lems. In vSRL, we consider gender bias relating
to verbs, while in MLC we consider the gender
bias related to objects.

integer linear program and solve it using an off-
the-shelf solver (e.g., Gurobi (Gurobi Optimiza-
tion, 2016)). However, Eq. (3) involves all test in-
stances. Solving a constrained optimization prob-
lem on such a scale is difficult. Therefore, we con-
sider relaxing the constraints and solve Eq. (3) us-
ing a Lagrangian relaxation technique (Rush and
Collins, 2012). We introduce a Lagrangian multi-
plier A\; > 0 for each corpus-level constraint. The
Lagrangian is

L()‘v {yl}> =

i i 4)

X)X (450
i j=1 i

where all the \; > 0,Vj € {1,...,l}. The solu-

tion of Eq. (3) can be obtained by the following
iterative procedure:

1) At iteration ¢, get the output solution of each
instance ¢

Yt = argmax L()\(t_l)7 Y) o)
ye)y’

2) update the Lagrangian multipliers.

A =max <0, )\(tfl)—i-z n(Ay»®) — b)) ,

(2

where A(©) = 0. 7 is the learning rate for updat-
ing \. Note that with a fixed At~V Eq. (5) can
be solved using the original inference algorithms.
The algorithm loops until all constraints are satis-
fied (i.e. optimal solution achieved) or reach max-
imal number of iterations.

S Experimental Setup

In this section, we provide details about the two vi-
sual recognition tasks we evaluated for bias: visual
semantic role labeling (vSRL), and multi-label
classification (MLC). We focus on gender, defin-
ing G = {man, woman} and focus on the agent

role in VSRL, and any occurrence in text associ-
ated with the images in MLC. Problem statistics
are summarized in Table 1. We also provide setup
details for our calibration method.

5.1 Visual Semantic Role Labeling

Dataset We evaluate on imSitu (Yatskar et al.,
2016) where activity classes are drawn from verbs
and roles in FrameNet (Baker et al., 1998) and
noun categories are drawn from WordNet (Miller
et al., 1990). The original dataset includes about
125,000 images with 75,702 for training, 25,200
for developing, and 25,200 for test. However, the
dataset covers many non-human oriented activities
(e.g., rearing, retrieving, and wagging),
so we filter out these verbs, resulting in 212 verbs,
leaving roughly 60,000 of the original 125,000 im-
ages in the dataset.

Model We build on the baseline CRF released
with the data, which has been shown effective
compared to a non-structured prediction base-
line (Yatskar et al., 2016). The model decomposes
the probability of a realized situation, y, the com-
bination of activity, v, and realized frame, a set of
semantic (role,noun) pairs (e, n.), given an image
vas:

p(yli; 0) < (v, i0)  [[  ¢(v.e,ne,i;0)

(e;ne)ERy

where each potential value in the CRF for subpart
x, is computed using features f; from the VGG
convolutional neural network (Simonyan and Zis-
serman, 2014) on an input image, as follows:

Y(@,i;0) = s St

where w and b are the parameters of an affine
transformation layer. The model explicitly cap-
tures the correlation between activities and nouns
in semantic roles, allowing it to learn common pri-
ors. We use a model pretrained on the original task
with 504 verbs.

5.2 Multilabel Classification

Dataset We use MS-COCO (Lin et al., 2014),
a common object detection benchmark, for multi-
label object classification. The dataset contains 80
object types but does not make gender distinctions
between man and woman. We use the five asso-
ciated image captions available for each image in
this dataset to annotate the gender of people in the
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images. If any of the captions mention the word
man or woman we mark it, removing any images
that mention both genders. Finally, we filter any
object category not strongly associated with hu-
mans by removing objects that do not occur with
man or woman at least 100 times in the training
set, leaving a total of 66 objects.

Model For this multi-label setting, we adapt a
similar model as the structured CRF we use for
vSRL. We decompose the joint probability of the
output y, consisting of all object categories, ¢, and
gender of the person, g, given an image ¢ as:

p(yli; 0) o< (9,4 0) [ [ (9. ¢, 1; 6)

cey

where each potential value for z, is computed us-
ing features, f;, from a pretrained ResNet-50 con-
volutional neural network evaluated on the image,

W, i; 0) = Vs it

We trained a model using SGD with learning rate
10~°, momentum 0.9 and weight-decay 10~%, fine
tuning the initial visual network, for 50 epochs.

5.3 Calibration

The inference problems for both models are:
arg max fy(y, ) = log p(yli; 0).
yey

We use the algorithm in Sec. (4) to calibrate the
predictions using model 6. Our calibration tries to
enforce gender statistics derived from the training
set of corpus applicable for each recognition prob-
lem. For all experiments, we try to match gen-
der ratios on the test set within a margin of .05 of
their value on the training set. While we do adjust
the output on the test set, we never use the ground
truth on the test set and instead working from the
assumption that it should be similarly distributed
as the training set. When running the debiasing al-
gorithm, we set 7 = 10~! and optimize for 100
iterations.

6 Bias Analysis

In this section, we use the approaches outlined
in Section 3 to quantify the bias and bias amplifi-
cation in the vSRL and the MLC tasks.

6.1 Visual Semantic Role Labeling

imSitu is gender biased In Figure 2(a), along
the x-axis, we show the male favoring bias of im-
Situ verbs. Overall, the dataset is heavily biased
toward male agents, with 64.6% of verbs favoring
a male agent by an average bias of 0.707 (roughly
3:1 male). Nearly half of verbs are extremely bi-
ased in the male or female direction: 46.95% of
verbs favor a gender with a bias of at least 0.7.°
Figure 2(a) contains several activity labels reveal-
ing problematic biases. For example, shopping,
microwaving and washing are biased toward
a female agent. Furthermore, several verbs such
as driving, shooting, and coaching are
heavily biased toward a male agent.

Training on imSitu amplifies bias In Fig-
ure 2(a), along the y-axis, we show the ratio of
male agents (% of total people) in predictions on
an unseen development set. The mean bias ampli-
fication in the development set is high, 0.050 on
average, with 45.75% of verbs exhibiting ampli-
fication. Biased verbs tend to have stronger am-
plification: verbs with training bias over 0.7 in
either the male or female direction have a mean
amplification of 0.072. Several already problem-
atic biases have gotten much worse. For example,
serving, only had a small bias toward females
in the training set, 0.402, is now heavily biased
toward females, 0.122. The verb tuning, origi-
nally heavily biased toward males, 0.878, now has
exclusively male agents.

6.2 Multilabel Classification

MS-COCO is gender biased In Figure 2(b)
along the x-axis, similarly to imSitu, we ana-
lyze bias of objects in MS-COCO with respect
to males. MS-COCO is even more heavily bi-
ased toward men than imSitu, with 86.6% of ob-
jects biased toward men, but with smaller average
magnitude, 0.65. One third of the nouns are ex-
tremely biased toward males, 37.9% of nouns fa-
vor men with a bias of at least 0.7. Some prob-
lematic examples include kitchen objects such as
knife, fork, or spoon being more biased to-
ward woman. Outdoor recreation related objects
such tennis racket, snowboardand boat
tend to be more biased toward men.

®In this gender binary, bias toward woman is 1— the bias
toward man
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Figure 2: Gender bias analysis of imSitu vSRL and MS-COCO MLC. (a) gender bias of verbs toward
man in the training set versus bias on a predicted development set. (b) gender bias of nouns toward man
in the training set versus bias on the predicted development set. Values near zero indicate bias toward
woman while values near 0.5 indicate unbiased variables. Across both dataset, there is significant bias
toward males, and significant bias amplification after training on biased training data.

Training on MS-COCO amplifies bias In Fig-
ure 2(b), along the y-axis, we show the ratio of
man (% of both gender) in predictions on an un-
seen development set. The mean bias amplifica-
tion across all objects is 0.036, with 65.67% of
nouns exhibiting amplification. Larger training
bias again tended to indicate higher bias amplifi-
cation: biased objects with training bias over 0.7
had mean amplification of 0.081. Again, several
problematic biases have now been amplified. For
example, kitchen categories already biased toward
females such as knife, fork and spoon have
all been amplified. Technology oriented categories
initially biased toward men such as keyboard
and mouse have each increased their bias toward
males by over 0.100.

6.3 Discussion

We confirmed our hypothesis that (a) both the im-
Situ and MS-COCO datasets, gathered from the
web, are heavily gender biased and that (b) mod-
els trained to perform prediction on these datasets
amplify the existing gender bias when evaluated
on development data. Furthermore, across both
datasets, we showed that the degree of bias am-
plification was related to the size of the initial
bias, with highly biased object and verb categories
exhibiting more bias amplification. Our results
demonstrate that care needs be taken in deploying
such uncalibrated systems otherwise they could
not only reinforce existing social bias but actually
make them worse.

7 Calibration Results

We test our methods for reducing bias amplifica-
tion in two problem settings: visual semantic role
labeling in the imSitu dataset (vSRL) and multil-
abel image classification in MS-COCO (MLC). In
all settings we derive corpus constraints using the
training set and then run our calibration method in
batch on either the development or testing set. Our
results are summarized in Table 2 and Figure 3.

7.1 Visual Semantic Role Labeling

Our quantitative results are summarized in the first
two sections of Table 2. On the development
set, the number of verbs whose bias exceed the
original bias by over 5% decreases 30.5% (Viol.).
Overall, we are able to significantly reduce bias
amplification in VSRL by 52% on the develop-
ment set (Amp. bias). We evaluate the under-
lying recognition performance using the standard
measure in VSRL: top-1 semantic role accuracy,
which tests how often the correct verb was pre-
dicted and the noun value was correctly assigned
to a semantic role. Our calibration method results
in a negligible decrease in performance (Perf.). In
Figure 3(c) we can see that the overall distance to
the training set distribution after applying RBA de-
creased significantly, over 39%.

Figure 3(e) demonstrates that across all initial
training bias, RBA is able to reduce bias amplifi-
cation. In general, RBA struggles to remove bias
amplification in areas of low initial training bias,
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Figure 3: Results of reducing bias amplification using RBA on imSitu vSRL and MS-COCO MLC.
Figures 3(a)-(d) show initial training set bias along the x-axis and development set bias along the y-
axis. Dotted blue lines indicate the 0.05 margin used in RBA, with points violating the margin shown
in red while points meeting the margin are shown in green. Across both settings adding RBA signifi-
cantly reduces the number of violations, and reduces the bias amplification significantly. Figures 3(e)-(f)
demonstrate bias amplification as a function of training bias, with and without RBA. Across all initial
training biases, RBA is able to reduce the bias amplification.
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Method | Viol. | Amp. bias | Perf. (%)
vSRL: Development Set
CRF 154 0.050 24.07
CRF +RBA | 107 0.024 23.97
vSRL: Test Set
CRF 149 0.042 24.14
CRF +RBA | 102 0.025 24.01
MLC: Development Set
CRF 40 0.032 45.27
CRF+RBA | 24 0.022 45.19
MLC: Test Set
CRF 38 0.040 45.40
CRF+RBA | 16 0.021 45.38

Table 2: Number of violated constraints, mean
amplified bias, and test performance before and af-
ter calibration using RBA. The test performances
of vSRL and MLC are measured by top-1 seman-
tic role accuracy and top-1 mean average preci-
sion, respectively.

likely because bias is encoded in image statistics
and cannot be removed as effectively with an im-
age agnostic adjustment. Results on the test set
support our development set results: we decrease
bias amplification by 40.5% (Amp. bias).

7.2 Multilabel Classification

Our quantitative results on MS-COCO RBA are
summarized in the last two sections of Table 2.
Similarly to vSRL, we are able to reduce the num-
ber of objects whose bias exceeds the original
training bias by 5%, by 40% (Viol.). Bias amplifi-
cation was reduced by 31.3% on the development
set (Amp. bias). The underlying recognition sys-
tem was evaluated by the standard measure: top-
1 mean average precision, the precision averaged
across object categories. Our calibration method
results in a negligible loss in performance. In Fig-
ure 3(d), we demonstrate that we substantially re-
duce the distance between training bias and bias
in the development set. Finally, in Figure 3(f) we
demonstrate that we decrease bias amplification
for all initial training bias settings. Results on the
test set support our development results: we de-
crease bias amplification by 47.5% (Amp. bias).

7.3 Discussion

We have demonstrated that RBA can significantly
reduce bias amplification. While were not able to
remove all amplification, we have made significant

progress with little or no loss in underlying recog-
nition performance. Across both problems, RBA
was able to reduce bias amplification at all initial
values of training bias.

8 Conclusion

Structured prediction models can leverage correla-
tions that allow them to make correct predictions
even with very little underlying evidence. Yet such
models risk potentially leveraging social bias in
their training data. In this paper, we presented a
general framework for visualizing and quantify-
ing biases in such models and proposed RBA to
calibrate their predictions under two different set-
tings. Taking gender bias as an example, our anal-
ysis demonstrates that conditional random fields
can amplify social bias from data while our ap-
proach RBA can help to reduce the bias.

Our work is the first to demonstrate structured
prediction models amplify bias and the first to
propose methods for reducing this effect but sig-
nificant avenues for future work remain. While
RBA can be applied to any structured predic-
tor, it is unclear whether different predictors am-
plify bias more or less. Furthermore, we pre-
sented only one method for measuring bias. More
extensive analysis could explore the interaction
among predictor, bias measurement, and bias de-
amplification method. Future work also includes
applying bias reducing methods in other struc-
tured domains, such as pronoun reference resolu-
tion (Mitkov, 2014).
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