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Abstract

�is paper addresses the real-time encoding-decoding
problem for high-frame-rate video compressive sensing (CS).
Unlike prior works that perform reconstruction using it-
erative optimization-based approaches, we propose a non-
iterative model, named “CSVideoNet”, which directly learns
the inverse mapping of CS and reconstructs the original in-
put in a single forward propagation. To overcome the limita-
tions of existing CS cameras, we propose a multi-rate CNN
and a synthesizing RNN to improve the trade-o� between
compression ratio (CR) and spatial-temporal resolution of
the reconstructed videos. �e experiment results demonstrate
that CSVideoNet signi�cantly outperforms state-of-the-art
approaches. Without any pre/post-processing, we achieve a
25dB Peak signal-to-noise ratio (PSNR) recovery quality at
100x CR, with a frame rate of 125 fps on a Titan X GPU.
Due to the feedforward and high-data-concurrency natures
of CSVideoNet, it can take advantage of GPU acceleration
to achieve three orders of magnitude speed-up over conven-
tional iterative-based approaches. We share the source code
at h�ps://github.com/PSCLab-ASU/CSVideoNet.

1. Introduction

High-frame-rate cameras are capable of capturing
videos at frame rates over 100 frames per second (fps).
�ese devices were originally developed for research pur-
poses, e.g., to characterize events that occur at a rate that
traditional cameras are incapable of recording in physi-
cal and biological science. Some high-frame-rate cameras,
such as Photron SA1, SA3, are capable of recording high
resolution still images of ephemeral events such as a su-
personic �ying bullet or an exploding balloon with negli-
gible motion blur and image distortion artifacts. However,
due to the complex sensor hardware designed for high sam-
pling frequency, these types of equipment are extremely
expensive (over tens of thousand dollars for one camera).

�e high cost limits the �eld of their applications. Further-
more, the high transmission bandwidth and the large stor-
age space associated with the high frame rate challenges
the manufacture of a�ordable consumer devices. For exam-
ple, true high-de�nition-resolution (1080p) video cameras
at a frame rate of 10k fps can generate about 500 GB data
per second, which imposes signi�cant challenges on exist-
ing transmission and storage techniques. Also, the high
throughput raises energy e�ciency a big concern. For ex-
ample, “GoPro 5” can capture videos at 120 fps with 1080p
resolution. However, the short ba�ery life (1-2 hours) has
signi�cantly narrowed their practical applications.

Traditional video encoder, e.g., H.264/MPEG-4, is com-
posed of motion estimation, frequency transform, quanti-
zation, and entropy coding modules. From both speed and
cost perspectives, the complicated structure makes these
video encoder unsuitable for high-frame-rate video cam-
eras. Alternatively, compressive sensing (CS) is a much
more hardware-friendly acquisition technique that allows
video capture with a sub-Nyquist sampling rate. �e ad-
vent of CS has led to the emergence of new image devices,
e.g., single-pixel cameras [6]. CS has also been applied
in many practical applications, e.g., accelerating magnetic
resonance imaging (MRI) [13]. While traditional signal
acquisition methods follow a sample-then-compress pro-
cedure, CS could perform compression along with sam-
pling. �e novel acquisition strategy has enabled low-
cost on-sensor data compression, relieving the pain for
high transmission bandwidth and large storage space. In
the recent decade, many algorithms have been proposed
[3, 16, 1, 4, 22, 2, 12] to solve the CS reconstruction problem.
Generally, these reconstruction algorithms are based on ei-
ther optimization or greedy approaches using signal spar-
sity as prior knowledge. As a result, they all su�er from
high computational complexity, which requires seconds to
minutes to recover an image depending on the resolution.
�erefore, these sparsity-based methods cannot satisfy the
real-time decoding need of high-frame-rate cameras, and
they are not appropriate for the high-frame-rate video CS
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Figure 1: Illustration of domain transformations in CS. �is
work bridges the gap between compressed and signal do-
mains.

application.
�e slow reconstruction speed of conventional CS ap-

proaches motivates us to directly model the inverse map-
ping from the compressed domain to original domain,
which is shown in Figure 1. Usually, this mapping is ex-
tremely complicated and di�cult to model. However, the
existence of massive unlabeled video data gives a chance
to learn such a mapping using data-driven methods. In
this paper, we design an enhanced Recurrent convolutional
neural network (RCNN) to solve this problem. RCNN has
shown astonishingly good performance for video recogni-
tion and description [5, 23, 25, 21]. However, conventional
RCNNs are not well suited for video CS application, since
they are mostly designed to extract discriminant features
for classi�cation related tasks. Simultaneously improv-
ing compression ratio (CR) and preserving visual details
for high-�delity reconstruction is a more challenging task.
To solve this problem, we develop a special RCNN, called
“CSVideoNet”, to extract spatial-temporal features, includ-
ing background, object details, and motions, to signi�-
cantly improve the compression ratio and recovery quality
trade-o� for video CS application over existing approaches.

�e contributions of this paper are summarized as fol-
lows:

• We propose an end-to-end and data-driven frame-
work for video CS. �e proposed network di-
rectly learns the inverse mapping from the com-
pressed videos to the original input without additional
pre/post-processing. To the best of our knowledge,
there has been no published work that addresses this
problem using similar methods.

• We propose a multi-level compression strategy to im-
prove CR with the preservation of high-quality spa-
tial resolution. Besides, we perform implicit motion
estimation to improve temporal resolution. By com-
bining both spatial and temporal features, we further
improve the compression ratio and recovery qual-
ity trade-o� without increasing much computational
complexity.

• We demonstrate CSVideoNet outperforms the refer-
ence approaches not only in recovery quality but also

in reconstruction speed because of its non-iterative
nature. It enables real-time high-�delity reconstruc-
tion for high-frame-rate videos at high CRs. We
achieve state-of-the-art performance on the large-
scale video dataset UCF-101. Speci�cally, CSVideoNet
reconstructs videos at 125 fps on a Titan X GPU and
achieves 25dB PSNR at a 100x CR.

2. Related work
�ere have been many recovery algorithms proposed

for CS reconstruction, which can be categorized as follows:
Conventional Model-based CS Recovery: In [18],

the authors model the evolution of scenes as a linear dy-
namical system (LDS). �is model comprises two sub-
models: the �rst is an observation model that models
frames of video lying on a low-dimensional subspace; the
second predicts the smoothly varied trajectory. �e model
performs well in stationary scenes, however, inadequate
for non-stationary scenes.

In [27], the authors use Gaussian mixture model (GMM)
to recover high-frame-rate videos, and the reconstruction
can be e�ciently computed as an analytical solution. �e
hallmark of the algorithm is that it adapts temporal com-
pression rate based upon the complexity of the scene. �e
parameters in GMM are trained o�-line and tuned during
the recovery process.

In [19], the authors propose a multi-scale video recov-
ery framework. It �rst obtains a low-resolution video pre-
view with very low computational complexity, and then
it exploits motion estimates to recover the full-resolution
video by solving an optimization problem. In a similar
work [8], the authors propose a motion-compensated and
block-based CS reconstruction algorithm with smooth pro-
jected Landweber (MC-BCS-SPL). �e motion vector is es-
timated from a reference and a reconstructed frame. �e
reconstructed video is derived from the combination of the
low-resolution video and the estimated motion vector. �e
drawback of the two work is the requirement of specify-
ing the resolution at which the preview frame is recov-
ered, which requires prior knowledge of the object speed.
Also, the recovery performance is highly dependent on the
quality of motion estimation. To accurately estimate mo-
tion vector is a challenging task especially in high-frame-
rate scenarios. �e high computational cost further makes
this model inadequate for reconstructing high-frame-rate
videos.

Deep Neural Network (DNN) Based CS Recovery:
In [15], the authors propose a stacked autoencoder to learn
a representation of the training data and to recover test
data from their sub-sampled measurements. Compared to
the conventional iterative approaches, which usually need
hundreds of iterations to converge, the feed-forward deep
neural network runs much faster in the inference stage.



In [11], the authors propose a convolutional neural net-
work, which takes CS measurements of an image as input
and outputs an intermediate reconstruction. �e interme-
diate output is fed into an o�-the-shelf denoiser to obtain
the �nal reconstructed image. �e author shows the net-
work is highly robust to sensor noise and can recover vi-
sually higher quality images than competitive algorithms
at low CRs of 10 and 25. Both [15] and [11] are designed
for image reconstruction, which only focus on spatial fea-
ture extraction. For video applications, temporal features
between adjacent frames are also important. �erefore, the
overlook of temporal correlation makes the image recon-
struction algorithms inadequate for video applications.

In [9], the authors propose a Video CS reconstruction
algorithm based on a fully-connected neural network. �is
work focuses on temporal CS where multiplexing occurs
across the time dimension. A 3D volume is reconstructed
from 2D measurements by a feed-forward process. �e
author claims the reconstruction time for each frame can
be reduced to about one second. �e major drawback of
this work is that the algorithm is based on a plain fully-
connected neural network, which is not e�cient in extract-
ing temporal features.

3. Methodology

3.1. Overview of the proposed framework for video
CS

Two kinds of CS cameras are being used today. Spa-
tial multiplexing cameras (SMC) take signi�cantly fewer
measurements than the number of pixels in the scene to
be recovered. SMC has low spatial resolution and seeks to
spatially super-resolve videos. In contrast, temporal multi-
plexing cameras (TMC) have a high spatial resolution but
low frame-rate sensors. Due to the missing of inter frames,
extra computation is needed for motion estimation. For
these two sensing systems, either spatial or temporal res-
olution is sacri�ced for achieving a be�er spatial-temporal
trade-o�. To solve this problem, we propose a new sensing
and reconstruction framework, which combines the advan-
tage of the two systems. �e random video measurements
are collected by SMC with very high temporal resolution.
To compensate for the low spatial resolution problem in
SMC, we propose a multi-CR strategy. �e �rst key frame
in a group of pictures (GOP) is compressed with a low CR,
and the remaining non-key frames are compressed with a
high CR. �e spatial features in the key frame are reused
for the recovery of the entire GOP due to the high inter-
frame correlation in high-frame-rate videos. �e spatial
resolution is hence improved. �e RNN extrapolates mo-
tion from high-resolution frames and uses it to improve the
temporal resolution. �erefore, a be�er compression ratio
and spatial-temporal resolution trade-o� are obtained by

the proposed framework.
�e overall architecture of the proposed video CS re-

construction framework is shown in Figure 2. �e net-
work contains three modules: 1) an encoder (sensing ma-
trix) for simultaneous sampling and compression; 2) a ded-
icated CNN for spatial features extraction a�er each com-
pressed frame; 3) an LSTM for motion estimation and video
reconstruction. As mentioned earlier, to improve the spa-
tial resolution, the random encoder encodes the key frame
in a GOP with more measurements and the remaining with
less. Also, a recent research [26] shows that sensing ma-
trix can be trained with raw data to be�er preserve the
Restricted Isometry Property (RIP). �erefore, the encoder
can also be integrated into the entire model and trained
with the whole network to improve reconstruction per-
formance. Besides, as the proposed algorithm eliminates
the sparsity prior constraint, the direct optimization of RIP
preservation in [26] is not necessary. Instead, we can use
the reconstruction loss to train the sensing matrix along
with the model. For simplicity, we still use a random
Bernoulli matrix for information encoding in the experi-
ment. Di�erent from the prior work that extracts motion
from low-resolution previews, the proposed LSTM net-
work infers motion from high-resolution frames generated
by multi-rate CNNs. �e resolution of the reconstructed
video is further improved with the incorporation of high-
quality motion estimation.

3.1.1 Multi-rateCNNEncoder for compression ratio
enhancement

Typical CNN architectures used for recognition, classi�ca-
tion, and segmentation that map input to rich hierarchi-
cal visual features is not applicable to the reconstruction
problem. �e goal of the CNN is not only to extract spa-
tial visual features but also to preserve details as much as
possible. �erefore, we eliminated the pooling layer which
causes information loss. Also, we discard the convolution-
deconvolution architecture (widely used in segmentation
tasks [17]), which �rst encodes salient visual features into
low-dimension space and then interpolates the missing in-
formation to generate a high-resolution image. Instead, we
design a special CNN suitable for CS reconstruction, which
has the best recovery performance among all the tested
structures mentioned above. �e overall network structure
is shown in Figure 3. All feature maps have the same di-
mension as the reconstructed video frames, and the num-
ber of feature maps decreases monotonically. �is process
resembles the sparse coding stage in CS, where a subset of
dictionary atoms is combined to form the estimation of the
original input. �ere is a fully-connected (FC) layer, de-
noted in gray color in Figure 3, which converts vectorized
m-dimensional video data to 2D features maps. To reduce
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Figure 2: Overall architecture of the proposed framework. �e compressed video frames are acquired by compressive
sensing. In a length T GOP, the �rst one frame and the remaining (T-1) frames are compressed with a low and high CR,
respectively. �e reconstruction is performed by the CSVideoNet that is composed of a key CNN, multiple non-key CNNs,
and a synthesizing LSTM.

the latency of the system and to simplify the network ar-
chitecture, we use video blocks as input and set the block
size n to 32×32. All convolutional layers are followed by
a ReLU layer except the �nal layer. We pre-train an eight-
layer key CNN to process the key frame that is compressed
with a low CR. For other non-key frames compressed with
a high CR, we use 3-layer non-key CNNs to handle them
since they carry information of low entropy. All weights of
the non-key CNNs are shared to reduce the requirement of
storage. Hence the proposed framework can be easily gen-
eralized to other high-frame-rate video applications that
require a larger number of non-key frames. It should be
noted that the pre-training of the key CNN is critical for im-
proving the reconstruction performance. In the case where
the whole network is trained from scratch without any pre-
training, the convergence performance is bad. �e reason
is partly due to the vanishing gradients, since we have a
long path from the CNNs to the LSTM. �e pre-training
greatly alleviate this problem.

3.1.2 Motion-estimation synthesizing LSTM De-
coder for spatial-temporal resolution en-
hancement

�e proposed framework is end-to-end trainable, compu-
tationally e�cient, and requires no pre/post-processing.
�is is achieved by performing motion estimation implic-
itly, which is di�erent from prior works [19, 27, 8]. We uti-
lize an LSTM network to extract motion features that are
critical for improving temporal resolution from the CNN
output. Since the information �ows from the �rst LSTM
node to the remaining, the LSTM will implicitly infers rep-
resentations for the hidden motion from the key frame to
the non-key frames. �erefore, the recovery quality of the
GOP is improved by the aggregation of motion and spa-
tial visual features. �at is why we call this network the
motion-estimation synthesizing LSTM. For simplicity, each

input LSTM node in the experiment accepts input data with
equal length. In fact, since the non-key frames carry less
information than the key frame, the LSTM network can
be designed to accept inputs with variable lengths. Hence,
we can further reduce the model size and get a faster re-
construction speed. From the experiment results, we �nd
the utilization of the LSTM network is critical to improv-
ing recovery �delity. As a result, our model outperforms
the competitive algorithms by a signi�cant margin.

�e update of the LSTM units is as follows:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) ,

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) ,

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) ,

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) ,

ht = ot tanh(ct),

where xt is the visual feature output of the CNN encoder.
�e detailed information �ow and the output dimension
at each LSTM node is shown in Figure 2. �e number on
the LSTM nodes denotes the dimension of the output fea-
tures. Speci�cally, the output feature map of each CNN
has a dimension of 16x32x32. All these feature maps are
directly fed into the input nodes of the LSTM. �e LSTM
has two hidden layers, the dimension of the output of each
hidden layer is 6x32x32. �e dimension of the �nal output
is 1x32x32.

3.2. Learning algorithm

Given the ground-truth video frames x{1,··· ,T} and the
corresponding compressed frames y{1,··· ,T}, we use mean
square error (MSE) as the loss function, which is de�ned
as:

L(W,b) =
1

2N

T∑
i

‖f(yi;W,b)− xi‖22, (1)

where W, b are network weights and biases, respectively.



Using MSE as the loss function favors high PSNR. PSNR
is a commonly used metric to quantitatively evaluate re-
covery quality. From the experiment results, we illustrate
that PSNR is partially correlated to the perceptual quality.
To derive a be�er perceptual similarity metric will be a fu-
ture work. �e proposed framework can be easily adapted
to a new loss function.

�ree training algorithms, i.e., SGD, Adagrad [7] and
Adam [10] are compared in the experiment. Although con-
suming most GPU memory, Adam converges towards the
best reconstruction results. �erefore, Adam is chosen to
optimize the proposed network.

4. Experiment
As there is no standard dataset designed for video CS,

we use UCF-101 dataset introduced in [20] to benchmark
the proposed framework. �is dataset consists of 13k
clips and 27 hours of video recording data collected from
YouTube, which belong to 101 action classes. Videos in
the dataset are randomly split into 80% for training, 10%
for validation and the remaining for testing. Videos in the
dataset have a resolution of 320×240 and are sampled at
25 fps. We retain only the luminance component of the
extracted frames and crop the central 160×160 patch from
each frame. �ese patches are then segmented into 32×32
non-overlapping image blocks. We get 499,760 GOPs for
training and testing in total.

We set three test cases with CRs of 25, 50 and 100, re-
spectively. Since the CR for key and non-key frames are
di�erent in the proposed method, we derive and de�ne the
CR for a particular GOP as follows. Let m1,m2 denotes
the dimension of compressed key and non-key frame, re-
spectively. Let n denotes the dimension of raw frames. T
is the sequential length of a GOP.

CR1 =n/m1, CR2 = n/m2,

CR =
CR1 × 1 + CR2 × (T − 1)

T
. (2)

In the experiment, the CR of each key frame is m1=5,
and the CR of non-key frames in each test case is m2=27,
55, and 110, respectively. �erefore, the averaged CR for
each test case is about 25, 50, and 100, respectively.

�e dimension of data for pre-training the key CNN is
(N × C × H ×W ), where N=100 is the batch size, C=1
is the channel size, and W,H=(32, 32) is the height and
width of each image block, respectively. �e dimension of
the data used for training the entire model is (N ′×T×C×
H ×W ), where T=10 is the sequence length for one GOP,
and N ′=20 is the batch size. �e other dimensions are the
same. We shrink the batch size here because of the GPU
memory limitation. In every ten consecutive video frames,
we de�ne the �rst one as the key frame, and the remaining
as non-key frames.

Table 1: Summary of major di�erences between the pro-
posed approach and all baselines.

Image CS
Iterative Based Denoising-based

approximate message passing D-AMP [14]

Non-iterative Based Stacked denoising autoencoder SDA [15]
Convolutional neural network ReconNet [11]

Video CS
Iterative Based

Motion-compensated block-
based CS with smooth
projected Landweber

MC-BCS-SPL [8]

Gaussian mixture model GMM [27]

Non-iterative Based Fully-connected neural network VCSNet [9]
Proposed approach CSVideoNet

4.1. Comparison with the state-of-the-art

We compare our algorithm with six reference work for
CS reconstruction: [27, 8, 15, 14, 11, 9]. We summarize all
baseline approaches and our approach in Table 1. For a
fair comparison, we also re-train reference algorithms us-
ing UCF-101 dataset. �ree metrics: Peak signal-to-noise
ratio (PSNR), structural similarity (SSIM) [24], and pixel-
wise mean absolute error (MAE) are applied for perfor-
mance evaluation. Note that MAE is the averaged abso-
lute error of each pixel value within the range of [0,255],
which gives a straightforward measure of the pixel-wise
distortion. �e authors of VCSNet only o�er a pre-trained
model with CR of 16, without providing su�cient training
details to reproduce the experiment at present. �erefore,
we train the proposed model and compare it with CVSNet
at a single CR of 16.

4.1.1 Comparison with image CS approaches

We �rst compare with the algorithms used for image CS
reconstruction. D-AMP is a representative of the conven-
tional iterative algorithms developed for CS, e.g., match-
ing pursuit, orthogonal mating pursuit, iterative hard-
thresholding. It o�ers state-of-the-art recovery perfor-
mance and operates tens of times faster compared to
other iterative methods [14]. Both SDA and ReconNet
are DNN-based reconstruction approaches for images pro-
posed recently. Speci�cally, ReconNet is based on CNN
and achieves state-of-the-art performance among all im-
age CS reconstruction algorithms [11]. In the experiment,
we tested both frame-based and block-based D-AMP that
reconstructs an entire frame and an image block at a time,
respectively. For other approaches, we test them in a block-
based pa�ern to reduce the di�culty for training the mod-
els. �e quantized results of average PSNR, SSIM, and MAE
for each method under di�erent CRs are shown in Table 2.
It is shown that CSVideoNet outperforms the reference ap-
proaches on all three metrics by a meaningful margin, es-
pecially at the CR of 100. �e MAE of CSVideoNet is 4.59 at
a 100x CR which means the averaged pixel-wise distortion
is only 4.59/255 = 1.2% compared to the ground-truth
video. �e PSNR drop from the CR of 25 to 100 is also cal-
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Figure 3: Pre-training of the key CNN.

Table 2: Performance comparison with image CS recon-
struction approaches.

CR D-AMP(F) D-AMP(B) SDA ReconNet CSVideoNet

PSNR
25 25.34 15.1494 23.39 24.27 26.87
50 12.49 9.1719 21.96 22.47 25.09
100 7.17 8.0942 20.40 20.44 24.23

SSIM
25 0.76 0.0934 0.69 0.73 0.81
50 0.08 0.0249 0.65 0.67 0.77
100 0.03 0.0067 0.61 0.61 0.74

MAE
25 4.65 24.92 5.76 5.02 3.38
50 64.30 81.67 6.60 5.67 4.31
100 92.12 86.04 8.50 7.42 4.59

PSNR↓ 25→ 100 72% 13% 47% 16% 10%

culated in Table 2. We found the proposed approach su�ers
from the least performance degradation. �is is partly due
to the feature sharing between the key and non-key frames
when the compressed input carries limited information.

For visual quality assessment purpose, we list the re-
constructed frame by each approach in Figure 4. �e re-
constructed frame is the middle (��h) frame in a GOP. We
�nd all the reconstructed non-key frames have homoge-
neous recovery quality, and the key frame has slightly bet-
ter reconstruction quality than the non-key frames. As the
proportion of key and non-key frames is 1:9, and the re-
construction quality of the video is dominated by that of
the non-key frames. �erefore, the middle frame (a non-
key frame) shown in Figure 4 well represents the average
reconstruction quality.

For all the numerical results, we calculate all the qual-
ity metrics, including PSNR, SSIM, and MAE, by aver-
aging the results over all frames in a GOP. We can see
that CSVideoNet provides the �nest details among all ap-
proaches. �e edges produced by CSVideoNet is much
sharper, while such details are no longer preserved by
other methods a�er reconstruction. �is comparison
demonstrates that the temporal correlation is critical for
video reconstruction, the overlook of such features will sig-
ni�cantly degrade the recovery quality of videos. �ere-
fore, the conventional image CS approaches are not suit-
able for video applications.

4.2. Comparison with video CS approaches

We compare the proposed CSVideoNet with existing
video CS approaches. MC-BCS-SPL estimates motion di-
rectly from the current and the reference frame. GMM
models the spatial-temporal correlation by assuming all

Table 3: Performance comparison with video CS recon-
struction approaches.

CR MC-BCS-SPL GMM CSVideoNet

PSNR
25 22.41 23.76 26.87
50 20.59 21.26 25.09
100 19.67 19.64 24.23

SSIM
25 0.37 0.72 0.81
50 0.30 0.61 0.77
100 0.19 0.54 0.74

MAE
25 11.88 5.14 3.38
50 16.03 7.50 4.31
100 28.86 9.37 4.59

PSNR↓ 25→ 100 26% 17% 10%

pixels within a video patch are drawn from a GMM distri-
bution. GMM has the state-of-the-art performance among
conventional model-based video CS approaches [27]. To
the best of our knowledge, [9] is the only DNN-based work
proposed for video CS. �e quantized results of average
PSNR, SSIM, and MAE for each method under di�erent
CRs are shown in Table 3. It is observed that the pro-
posed approach improves PSNR by 3 to 5dB over the ref-
erence methods. Speci�cally, we �nd MC-BCS-SPL and
GMM have similar performance and perform much be�er
than the model-based image CS approach, D-AMP. How-
ever, their performance are similar to SDA and ReconNet,
which are designed for processing images. �is implies
that the conventional model-based methods su�er from
limited performance due to the limited model capacity
when dealing with large-scale problem. Even though they
consider the temporal correlation among video frames, the
model capacity is insu�cient for visual pa�erns. To im-
prove performance, one could increase the size of the con-
ventional models. However, the computational complexity
forof these meods will also increase substantially, inhibit-
ing their application to video CS.

DNN provides a viable solution. Both CSVideoNet and
VCSNet are designed for video CS reconstruction. For rea-
sons explained earlier, we compare the two approaches at
a CR of 16. �e results are shown in Table 4 and Figure 5.
Both the two approaches achieve high recovery quality
compared to other baselines. However, VCSNet is a plain
fully-connect network that has limited capability for pro-
cessing sequential data. As a result, it su�ers from a low-
quality motion estimation, which explains why it has infe-
rior performance compared to the proposed solution.
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Figure 4: Illustration of reconstruction results for each method at the CR of (a) 25, (b) 50, and (c) 100, respectively.

27.14dB 29.46dB

Ground Truth CSVideoNetVCSNet

Figure 5: Illustration of reconstruction results at the CR of
16.
Table 4: Performance comparison with VCSNet at the CR
of 16.

VCSNet CSVideoNet
PSNR 25.07704 28.078
SSIM 0.817669 0.8431
MAE 3.887867 2.9452

To illustrate that the performance improvement of the
proposed approach comes from integrating temporal fea-
tures through the LSTM network rather than simply in-
creasing the model size, we set another experiment, in
which we compare the performance of two CNNs with dif-
ferent sizes. �e structure of the two CNNs are shown in

Table 5: Structures of CNN1 and CNN2.

# Layer 1 2 3 4 5 6 7 8 9 10 11 12 13
CNN1 1 128 64 32 32 16 16 1
CNN2 1 512 256 256 128 128 64 64 32 32 16 16 1

* CNN1 is used in CSVideoNet. �e dimension of all feature maps in both CNNs are 32×32.

Table 5, and the performance comparison is shown in Ta-
ble 7. We can see that simply increasing the size of CNN
does not provide meaningful improvement for reconstruc-
tion. �is, wh be explained by the incapability of CNN
to capture temporal features. �e incorporation of the
LSTM network improves the PSNR by up to 4 dB, which
represents more than twice of error reduction. Speci�-
cally, the performance improvement increases with thea-
long wiachieves theits maximum wheR is 100. �is ex-
plains that the implicit motion estimation by LSTM is crit-
ical to the video CS reconstruction especially at high CRs.

4.3. Performance under noise

To demonstrate that the robustness of CSVideoNet to
sensor noise, we conduct a reconstruction experiment with
input videos contaminated by random Gaussian noise. In
this experiment, the architecture of all DNN-based frame-
works remains the same as in the noiseless case. We test
the performance at three levels of SNR - 20dB, 40dB, and



Table 6: Runtime comparison for reconstructing a 160×160
video frame at di�erent CRs.

Model CR=25 CR=50 CR=100
D-AMP(F) 38.37 41.20 31.74
D-AMP(B) 8.4652 8.5498 8.4433

SDA 0.0278 0.027 0.023
ReconNet 0.064 0.063 0.061
MC-BCS 7.17 8.03 9.00

GMM 8.87 10.54 18.34
CSVideoNet 0.0094 0.0085 0.0080

Table 7: Performance comparison with CNN methods.

CR CNN1 CNN2 CSVideoNet

PSNR
25 24.27 23.74 26.87
50 22.47 22.17 25.09
100 20.44 20.10 24.23

SSIM
25 0.73 0.69 0.81
50 0.67 0.65 0.77
100 0.61 0.58 0.74

MAE
25 5.02 6.46 3.38
50 5.67 6.23 4.31
100 7.42 8.92 4.59

60dB. For each noise level, we evaluate all approaches at
three CRs of 25, 50, and 100. �e average PSNR achieved
by each method at di�erent CRs and noise levels are shown
in Figure 6. It can be observed that CSVideoNet can reli-
ably achieve a high PSNR across at di�erent noise levels
and outperform the reference methods consistently.

4.4. Time complexity

We benchmark the runtime performance of di�erent
methods. Due to the iterative nature of conventional CS al-
gorithms (D-AMP, MC-BCS-SPL, GMM), they su�er from
high data-dependency and low parallelism, which is not
suitable for GPU acceleration. Due to the lack of GPU
solvers, we run these reference algorithms on an octa-
core Intel Xeon E5-2600 CPU. Bene�ting from the feedfor-
ward data-path and high data concurrency of DNN-based
approaches, we accelerate CSVideoNet and other DNN-
based baselines using a Nvidia GTX Titan X GPU. �e time
cost for fully reconstructing a video frame in the size of
(160×160) are compared in Table 6. CSVideoNet consumes
8 milliseconds (125 fps) to reconstruct a frame at the CR of
100. �is is three orders of magnitude faster than the refer-
ence methods based on iterative approaches. �e time cost
of VCSNet and CSVideoNet at the CR of 16 is 3.5 and 9.7
milliseconds, respectively. �rough further hardware op-
timization, we believe CSVideoNet has the potential to be
integrated into CS cameras to enable the real-time recon-
struction of high-frame-rate video CS.

5. Conclusion
In this paper, we present a real-time, end-to-end, and

non-iterative framework for high-frame-rate video CS. A
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Figure 6: PSNR comparison at di�erent SNRs.

multi-rate CNN variant and a synthesizing LSTM net-
work are developed to jointly extract spatial-temporal fea-
tures. �is is the key to enhancing the compression
ratio and recovery quality trade-o�. �e magni�cent
model capacity of the proposed deep neural network al-
lows to map the inverse mapping of CS without exploit-
ing any sparsity constraint. �e feed-forward and high-
data-concurrency natures of the proposed framework are
the key to enabling GPU acceleration for real-time recon-
struction. �rough performance comparison, we demon-
strate that CSVideoNet has the potential to be extended as
a general encoding-decoding framework for high-frame-
rate video CS applications. In the future work, we will ex-
ploit the e�ective learning methods to decode high-level
information from compressed videos, e.g., object detection,
action recognization, and scene segmentation.
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