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ABSTRACT

Background: Radiofrequency ablation (RFA), a method of inducing thermal ablation (cell death), is
often used to destroy tumours or potentially cancerous tissue. Current techniques for RFA estimation
(electrical impedance tomography, Nakagami ultrasound, etc.) require long compute times (>2s) and
measurement devices other than the RFA device. This study aims to determine if a neural network
(NN) can estimate ablation lesion depth for control of bipolar RFA using complex electrical impedance
— since tissue electrical conductivity varies as a function of tissue temperature — in real time using only
the RFA therapy device’s electrodes.

Methods: Three-dimensional, cubic models comprised of beef liver, pork loin or pork belly represented
target tissue. Temperature and complex electrical impedance from 72 data generation ablations in
pork loin and belly were used for training the NN (403 s on Xeon processor). NN inputs were inquiry
depth, starting complex impedance and current complex impedance. Training-validation-test splits
were 70%-0%-30% and 80%-10%-10% (overfit test). Once the NN-estimated lesion depth for a margin
reached the target lesion depth, RFA was stopped for that margin of tissue.

Results: The NN trained to 93% accuracy and an NN-integrated control ablated tissue to within
1.0mm of the target lesion depth on average. Full 15-mm depth maps were calculated in 0.2s on a
single-core ARMv7 processor.

Conclusions: The results show that a NN could make lesion depth estimations in real-time using less
in situ devices than current techniques. With the NN-based technique, physicians could deliver quicker
and more precise ablation therapy.
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Introduction in tissue properties undergoing thermal ablation, including
electrical, acoustic and optical behaviours. Electrical imped-
ance tomography uses surface electrodes surrounding the tis-
sue under evaluation to measure impedance paths that are
reconstructed into tissue electrical conductivity to provide
lesion depth images that can be 90%-+ accurate [4,6-8].
While data collection is quick, reconstruction is complex due

to the requirement of solving the ill-posed three-dimensional

Radiofrequency ablation (RFA) is commonly used to destroy
liver, kidney, lung and bone tumours and other potentially
cancerous tissues. RFA heats tissue with electrodes that sup-
ply alternating electric current, which causes ionic agitation
and joule heating [1-4]. When cells are exposed to the tem-
peratures shown in Figure 1, they undergo coagulative
necrosis (i.e. ablation). Additionally, DNA repair and metabol-

ism are impaired in cells exposed to sublethal temperatures
in the transition zone [1]. However, as the tissue in the
depth-axis is not visible due to the opacity of tissue, it is dif-
ficult to visually monitor RFA progress in real time. Point
temperature probes are included in many RFA devices, but
do not provide three-dimensional lesion depths [1,2].
Feedback control requires monitoring of RFA lesion progress
as tissue left unablated could locally recur (underablation);
likewise, without knowledge of lesion depth, critical struc-
tures deeper within tissue could be damaged (overablation)
[3-5].

As of late 2017, there is quite a significant amount of
work done by the scientific community to develop techni-
ques for monitoring the progress of RFA treatment and
lesion depths in real time. These techniques utilise changes

inverse problem [6-8]. Thus, computing a single EIT-based
lesion depth map requires time on the order of seconds
(time increases with accuracy from >2s for 70% accuracy to
>100s for 90%+ accuracy) and > 1gigabyte of memory on
x86 processor-based workstations, despite many strides in
the speed of reconstruction algorithms [6-8]. Recently,
Nakagami-based ultrasound imaging using conventional
pulse-echo systems, instead of custom elastic strain systems,
has been shown to provide 94% accuracy for monitoring RFA
lesions in liver tissues in real-time (0.5-1.0s compute time on
x 86 workstations), but these systems cannot image muscular
tissue [5]. Optoacoustic imaging, a combination of optical
and acoustic techniques, uses pulses of lasers to excite tissue
and ultrasonic sensor arrays to record acoustic emissions
from these light pulses [9,10]. While optoacoustic methods
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Figure 1. Temperatures and times for thermal damage within tissue.

are 95%- accurate in the mm scale, construction of the
three-dimensional lesion depth map from the data requires
computation on the order of >400s [9,10]. Despite the high
accuracy and possibility of real-time data collection from
these current RFA monitoring methods, it is not yet possible
to compute lesion depth maps for all soft tissues in real-time
using standard embedded system hardware.

In addition to the computational complexity of current
techniques, there are clinical use pitfalls as well. For example,
EIT electrodes (16 4 placements usually) are cumbersome and
time-consuming to place, requiring that physicians place
electrodes exactly on a straight plane with good contact, as
reconstructions are highly sensitive to placement and elec-
trical noise [11,12]. One group improved EIT electrode place-
ment techniques by developing a stretching electrode belt
method for human torsos, but this still requires circumferen-
tial placement on patients, which may not be possible if the
ablation site opening interferes with placement [13]. In add-
ition, current acoustic imaging techniques require that physi-
cians hold the imaging probe during ablation [5,10]. Thus, it
is desirable to develop a monitoring technique that can util-
ise tissue properties without requiring additional external
probes or additional clinical effort.

Artificial neural networks (ANN) have made significant
strides in the late 2010s, most notably the real-time approxi-
mate computation of the Navier-Stokes fluid equations
[14,15]. These works have shown that artificial neural net-
works are able to approximate the solutions to partial differ-
ential equations in real-time, speeding up computation time
significantly by 2-4 orders of magnitude over finite element
analysis techniques (similar to some EIT reconstruction algo-
rithms) while retaining 90%-+ accuracy [14,15]. Recent bio-
medical imaging or monitoring-related applications of ANNs
are concentrated in biomedical image classification, where
ANNs perform fast, automatic classification of images and
cancer presence [16-18]. The main advantage of these ANN-
based systems is faster, improved reporting from radiologists
and pathologists on the presence of disease. However, ANN-
based methods require diverse training data to fully learn
relationships and are susceptible to poor choices of feature
descriptors (parameters input into the ANN); nevertheless,
when feature descriptors are chosen well, ANNs are highly
accurate [16-18]. For example, a skin cancer imaging seg-
mentation and classification ANN performed as well as or
better than dermatologists against a known training set [17].

As with all ANNs, the training set needed for such high
accuracy must be large, so the skin cancer study used 1.41
million training images [17]. Thus, the trade-off with ANNs is
between fast, accurate real-time computation performance
and large, accurate training data sets.

From these recent advances in ANNs, our group hypothes-
ised a feed-forward ANN might be able to compute in real-
time the lesion depth from RFA within biological tissue with
80%-+ accuracy. The hypothesised ANN would not require
significant additional probes or equipment besides the RFA
device. As far as we are aware, this is the first time that an
ANN has been applied for RFA monitoring and/or control.
Keywords used for searching included: “ablation”,
“radiofrequency”, “machine”, “learning”, “neural” and
“network”, within databases including Google Scholar,
PubMed and IEEE Xplore.

In this study, an ANN was used as a depth estimation sys-
tem that approximates the lesion depth map solution of a
pseudo-EIT system based on the Laplace and joule heating
equations. The depth estimation system we developed ena-
bles fast computation with embedded microprocessors since
neural networks are non-linear weighted sums. Our depth
estimation maps computed in under 0.2s on embedded
microprocessors. Data are collected using only the multipolar
RFA device electrodes. The neural network-based depth esti-
mator utilises the same temperature-based and cellular
morphology-based tissue electrical property changes
employed in EIT systems for RFA, primarily utilising changes
in electrical conductivity and complex electrical impedance.
In this study, we present an experimental proof-of-concept
study within ex vivo animal tissues of the utilisation of an
ANN for monitoring and control of RFA therapy. The study is
split into two parts: (1) collecting data for training via abla-
tion within target tissues followed by training/testing of the
ANN as a lesion depth estimator and (2) application testing
of the depth estimator when used as part of a feedback-
based automatic ablation control system within tissue to tar-
get lesion depths.

Materials and methods
Tissue model

Tissue models used for training and testing the neural net-
work consisted of fresh-ground pork loin and pork belly and
beef liver (only used for testing). Gross analysis was used to
measure the ablation lesion depths, as the discoloured gross
lesion margin closely correlates with microscopic histopatho-
logical staining necrosis margins in muscle and liver tissues
[19-21]. Samples were heated to near-physiological tempera-
ture (34°C) and placed into the centre of an 80-mm x 80-
mm x 80-mm acrylic fixture (Figure 2). The 40-mm diameter
RFA device used was placed directly into the centre of the
fixture, maintaining 20-mm of tissue clearance between the
centre of each panel of the acrylic fixture and the closest
side of the RFA device. The initial tissue electrical conductiv-
ities were not computed, as is standard in EIT, since the ini-
tial complex impedance magnitude parameter is the
weighted sum of electrical resistivity (reciprocal of electrical
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Figure 2. Tissue fixture for ablation data collection. Green arrows indicate the
temperature probes, which are inserted into the tissue model perpendicular to
each face.
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Figure 3. RFA device design with six faces, each corresponding to a clinical
margin (left). Prototype with 4 electrodes per face and ring electrode at anterior
face (right).

conductivity) of tissues and thus defines starting tissue condi-
tions indirectly within the neural network.

Measurement/ablation hardware configuration

The RFA device (Figure 3) used during the training and test-
ing studies was a multipolar design, with each exposed stain-
less steel 316 electrode (AM Systems, Carlsborg, WA)
individually connected to a matrix switch (National
Instruments PXle-2529, Austin, TX). The geometry of the
device is spherical, with six active faces, each corresponding
to a clinical margin. For simplicity and speed of data collec-
tion, the four electrodes of each device face were grouped
together as one connection by the matrix switch, thus pre-
senting a measurement of the entirety of each device face.
The matrix switch was also connected to a LCR (induct-
ance, capacitance, resistance) meter (Hameg HM8118,
Columbia, MD) and RF power generator (Covidien ForceTriad,
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Figure 4. RF current flow and dataflow architecture of depth estimator training
system.

Boulder, CO) set to 30W output (Figure 4). The LCR meter
was the measurement device for the complex electrical
impedance data and thus also potentially introduced meas-
urement noise or error within the data collected. All complex
electrical impedance data were collected at a single spot fre-
quency of 100kHz, within the RF ablation frequency range,
rather than multiple spot frequencies. At 100 kHz, the meas-
urement error of the LCR meter used for collecting complex
electrical impedance data was within about 0.5% of the true
value, according to the user manual. To improve the cer-
tainty of the collected data and remove erroneous measure-
ments, a truncated mean using six samples was used for
each impedance measurement. The single spot frequency
strategy was chosen for quicker prototyping and proof of
concept since measurements at additional frequencies would
only increase the accuracy of the system. This is due to the
properties of ablated tissue, which after having undergone
coagulation, will not vary as significantly in electrical con-
ductivity across different frequencies under 1 MHz [4].

A resistance temperature detector (RTD) signal condition-
ing input module (National Instruments PXle-4357, Austin,
TX) recorded temperature data from temperature probes at
2Hz fabricated using carbon fibre tubes (Rock West
Composites, San Diego, CA) and platinum 100-ohm resist-
ance temperature detectors (RDF Corp, Hudson, NH) spaced
at 5mm interval depths from the tip of the carbon fibre
tube. Thus, each temperature probe consists of RTDs meas-
uring 0, 5, 10 and 15mm depths from each device face. A
x86-64 Xeon (Intel, Santa Clara, CA) microprocessor-based
workstation was used for operating the matrix switch, log-
ging data and optimising and training the depth estimation
neural network. A development board with a ARMv7
embedded microprocessor (BCM2836, Broadcom, Irvine, CA)
with 512MB of memory was employed for testing the com-
putation time and memory usage of a full depth estimation
map.

Depth estimator software architecture

The depth estimator is a multilayer perceptron (MLP), a type
of feed-forward artificial deep neural network from the scikit-
learn Python library (INRIA, Rocquencourt, France). The MLP
depth estimator is a directed network configured with four
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Figure 5. (a) Backpropagation-based multilayer perceptron training algorithm flowchart. (b) Architecture of the multilayer perceptron used for depth estimation.

hidden layers and 60 nodes in each layer, resulting in 14400
weights to tune (Figure 5). The estimator, when trained, will
yield a computation of a non-linear function on the weighted
input sum at each neuron. Thus, if a neuron i in layer n has
input weights w and input values v from the previous neuron
j, and the non-linear activation function is g, then the output
value y of the neuron is:

Yi=g E WiVn_1 (1
j

Our MLP depth estimator used the rectified linear unit
function g for the non-linear activation function on each

hidden-layer neuron:
g(x) = max(0,x) 2

Other activation functions, such as the logistic sigmoid or
hyperbolic tangent functions, will yield different results. The
output layer makes the final transformation of the output
values of the last hidden layer to a binary classification. The
output layer activation function is the logistic sigmoid (3),
which makes the cost function differentiable for gradient
descent solvers. :

TTre ®

f(x)
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Figure 6. Sample depth-based impedance magnitude and phase training data.

Training occurred via a backpropagation-based algorithm
(Figure 5(b)) which utilised the logarithmic binary cross-
entropy (4) as the cost function on the output layer and the
ADAM stochastic solver [22-24]. The logarithmic binary cross-
entropy function is as follows, where n is the number of
instances of training data, x is the set of training data, y is
the set of expected outputs and a is the neural network
function and returns the neural network output:

n

L(X,Y) = —%Z {y,—ln(a(x,-)) +(1—w) In(1 - a(x,-))} (4)

1

The weights of the network were initialised by using a
zero-mean uniform distribution in the range

6 6 . .
(— N \/nmmm), which provides extremely stable

training results [25,26].

Six features (parameters) were input into the neural net-
work as floating-point numbers: device ablating face, depth
of inquiry (measurement position), initial impedance magni-
tude, current impedance magnitude, initial impedance phase
and current impedance phase.

The output was a binary classification of whether the tis-
sue volume at the face and depth specified was ablated or
not (ablation status code). Temperature data were used to
calculate the output labels for training, where tissues at
43°C for >10min, 50°C+ for >5min and 57°C+ for >2s
were considered ablated. The ablation heating times and
temperatures were chosen from literature of cell death
exposure models used in RFA studies [1-4]. A cell that
reaches 57°C undergoes near-instantaneous coagulation
and necrosis; similarly, when cells are exposed to high tem-
peratures for extended periods of times (43°C for >10min,
50°C for >5min), the cells undergo protein coagulation,
causing coagulative necrosis [1,2]. Sample data of the
ablation lesion depth of the margin in millimetres are plot-
ted against complex electrical impedance for one face in
Figure 6. The data in Figure 6 show that there are general
trends for the complex electrical impedance as the ablation
lesion of a particular face grows deeper. Thus, suggesting
the ANN can model the trends with respect to the tissue
ablation status.
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Ablation controller software architecture

A software component with real-time execution was created
to automate switching and data collection with the hardware
system. The ablation controller software operates the LCR
meter, matrix switch and RTD module (Figure 7(a)). To pre-
vent interference between the LCR meter and the RF gener-
ator, the RF generator and LCR meter lines were mutually
exclusive on the switch and on/off periods were alternated
(Figure 7(b)). After all enabled device faces delivered power
to their local tissue for 10s each, the ablation controller soft-
ware collected complex electrical impedance for all device
faces. Temperature was collected during all times at 2Hz,
with interpolated temperatures in between 0.5s measure-
ment intervals.

Study Part 1: depth estimator training

To generate the data needed for training, experiments were
performed with the hardware within the tissue models
described. For each training data generation ablation,
one face (tissue margin) was ablated to further depths than
the other five faces. For example, the further-ablated face
(manual target of 15mm) may have had 50 total ablation-
measurement cycles, while the shorter-ablated faces (manual
target of 10mm) may have had 50 total measurement
cycles and only 35 ablation cycles. Thus, the ablation shape
of the data collected is similar to an ellipsoid. Each training
ablation produced up to 300 samples of input data from
the number of complex electrical impedance measurements
per ablation run. In turn, since each time point has different
ablation depths, the ablation depth per time point was cal-
culated using the temperature point at that time point,
according to the previously described calculation in the
Software Architecture section. Since each face has 151 esti-
mation depth points (due to the 0.1 mm stepping from
0.0mm to 15.0 mm), a sample training ablation can generate
up to 46000 data points. In total, 72 data generation abla-
tions (36 pork loin and 36 pork belly) were performed,
resulting in 1872000 total data points for the training-
validation-testing data set. Two data set split sets were
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Figure 7. (a) Ablation controller software architecture flowchart. (b) Timing diagram of how ablation, measurement, and computation occur.

compared for training-validation-testing of the MLP classifier,
80%-10%-10% and 70%-0%-30%. The data within each split
were randomly selected from the overall data set.

Study Part 2: depth estimator-controlled RFA
application testing

The trained MLP neural network was then integrated into a
depth estimator software component to test the application
performance of the neural network as part of an automatic
feedback control system for RFA. The depth estimator soft-
ware receives complex electrical impedance data, computes
lesion depth estimations using the trained MLP neural net-
work and replies with lesion depth estimated data. This inter-
faced with the ablation controller software, which then
operated automatically due to this new closed feedback
loop. To receive a lesion depth estimation, the ablation con-
troller software sends a request containing the measured
impedance data to the depth estimator. The requests from
the ablation controller software contain the data values for
the features, and the real-time responses from the depth esti-
mator software provide depth estimations for the ablation
controller software. The ablation controller software will dis-
able a device face from being connected to the RF generator
on the switch upon the target lesion depth per face being
reached according to the depth estimation software
response.

This automated ablation control software was tested not
only within the trained tissues (pork loin and pork belly),
but also within an untrained tissue, beef liver, to test the
extrapolation potential of the MLP classifier for decisions
within tissues not present within the training data set. This
extrapolation potential is important because of the limited
number of in vivo or ex vivo human tissue samples that can
be acquired in comparison to more-available animal tissue
samples. Another important aspect was the high plurality of
liver as a test tissue model for RF ablation [1-5]. For all tissue
tests, except for two tests, the automatic target lesion depth

was set to 5mm for all sides except for one side at 10 mm.
For the two exceptions, the automatic target lesion depth
was set to 10 mm for all sides except for one side at 15 mm
to explore the performance at deeper ablation depths.

Results
Study Part 1: depth estimator training results

The training computation for the MLP classifier finished in
403s on an x86-64 microprocessor-based workstation
(Supermicro, San Jose, CA) with 16GB of memory. Export of
the trained neural network weights to C language-based
weighted sum execution code compiled for the ARMv7
embedded microprocessor showed that computation of a full
depth estimation map could occur within 0.20s. Using the
same C language-based code compiled for the x86-64 work-
station microprocessor, the depth estimation map was com-
puted within 0.02s.

The multilayer perceptron (MLP) classified tissue ablation
status quite well using only features related to complex elec-
trical impedance at 100kHz. Table 1 shows the confusion
matrix output statistics for the MLP classifier with a training-
validation-testing data set split of 80%-10%-10%, while Table
2 shows the confusion matrix output statistics for the MLP
classifier with a training-validation-testing data set split of
70%-0%-30%. The confusion matrix in both tables are calcu-
lated where true negatives are depths reported by the depth
estimator to be unablated and truly unablated, and true posi-
tives are depths reported by the depth estimator to be
ablated and truly ablated. The MLP classifies tissue ablation
status with a spatial resolution of 0.1 mm, for all depths up
to 15mm, the maximum depth trained with the classifier.
Minimal differences were observed when using the training-
validation-testing data set split of 70%-0%-30% versus a
training-validation-testing data set split of 80%-10%-10%,
indicating a sufficient number of training data points.
Overfitting was not an issue as shown in the convergence
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Table 1. Output statistics for multilayer perceptron when
trained using 80%-10%-10% train-validate-test data set split.
Statistics are based on using the 10% testing data split.

80-10-10 split (train n=1 497 600;
validate n =187 200; test n =187 200)
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curve in Figure 8, where training and validation curves do
not deviate in slope sign. The accuracy, overprediction (false
positives) and underpredictions (false negatives) are plotted
by ablation depth on Figure 9. This was generated by com-

Accuracy 93%
Precision 85%
True positive rate 91%
False positive rate 6%

paring the classifier output label against the expected output
label.

Table 2. Output statistics for multilayer perceptron when
trained using 70%-0%-30% train-validate-test data set split.
Statistics are based on using the 30% testing data split.

70-0-30 split (train n=1 310 400;
validate n =0; test n=561 600

Study Part 2: depth estimator-controlled RFA
application test results

The test results for the depth estimator-controlled RFA tests
are presented in Table 3. The difference is calculated as tar-
get lesion depth minus actual lesion depth, where the actual
lesion depths are measured as whole integer millimetres via

Ablation Lesion Depth (mm)

Figure 9. Final trained accuracy of MLP classifier as used for control system.
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have fewer samples than the pork types. Overall, the system
overall ablated the tested tissue types to a mean difference
of —0.7 mm.

Discussion
Neural network depth estimation discussion

As the results show, a deep neural network can learn the
relationship between electrical impedance/conductivity and
ablation status within biological tissues. The neural network
trained to 90%-+ accuracy (Tables 1 and 2) without requiring
external electrodes or significant additional equipment exter-
nal to the target tissue sample, significantly reducing the
amount of hardware required to actively control a RF abla-
tion procedure. However, as mentioned in the introduction,
all machine learning classifiers require a large and consistent
training data set for high accuracy [16-18]. The final system
had underestimation errors (Figure 9) that could be corrected
or reduced significantly by training with a larger, more
diverse data set.

The performance of the depth estimator within untrained
beef liver in Tables 3 and 4 (overablation of 1.9mm at 5mm
and underablation of 0.4 mm at 10 mm) show that the quan-
tity and limited diversity of training data within this proof-of-
concept system seemed to be potentially sufficient for other
homogeneous tissues with similar electrical and thermal
properties than the training tissues. As described in the
methods, training data were collected from only pork loin
and pork belly, and the bovine liver tests were conducted
without first training the neural network with beef liver train-
ing ablations. The performance of our system within this
newly encountered tissue model demonstrates some poten-
tial of extrapolation with neural network-based depth estima-
tion. We do expect, though, that extending the system for
in vivo use requires additional training tissue models that

Table 4. Overall depth estimator-based control testing results by target depth,
where the difference is between the target ablation depth and the system-
controlled ablation depth.

Target Samples Mean Standard

Tissue model depth (mm) measured difference (mm) error (mm)
Ground pork loin 5 18 —-32 0.4
10 18 0.3 0.4
15 4 1.0 0.4
Ground pork belly 5 24 -1.0 0.2
10 16 19 0.5
Whole beef liver 5 18 -1.9 0.3
10 12 04 0.4

include fatty, lean or vessel-heavy tissues at each face as well
as within ex vivo human samples.

Another issue is the design of the neural network itself,
which was a four-layer multilayer perceptron with rectified
linear activation functions within this study. This simpler
structure was chosen for quick proof-of-concept, since it
would represent the worst-case architecture. A more tailored
architecture, such as adjusting the activation functions, bias-
ing certain features or using feedback loops, could poten-
tially improve the accuracy and precision of the depth
estimation [21-23,27-29]. The baseline architecture used
worked quite well with the data as shown by the training
and test results presented in the Results section, but these
improvements should be further explored in future works.

Ablation system application discussion

Regarding potential improvements to the tissue measure-
ment system, multiple spot frequency measurements may
also increase the spatial resolution and accuracy of the sys-
tem, as described in the methods. Increased spatial reso-
lution could potentially allow for classification closer to the
ground truth, as the feature set increases by an additional
decimal digit (hundredths of millimetres, instead of just
tenths of millimetres). Additionally, the developed system
only measures current and voltage between two device faces
(all four electrodes on one device face grouped), but a more

11'mm .11 mm

510 mm

Figure 11. Ablation sample showing the desired deeper lesion depth in two
device faces and uniform lesion depths in four other device faces. Scale legends
are on images.
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Figure 10. lllustration of how tissue is sectioned for macroscopic analysis.
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complete tissue measurement system could drive current
between two electrodes (or device faces) and measure the
voltages present at the other electrodes or faces, providing
the neural network with more parameters.

Timing of measurement cycles after ablation cycles is
another potential issue. The current system scans the device
face impedances in sequential order, with a single device
face active on positive polarity and the other device faces
active on negative polarity at any given scan. However, this
imposes a sequentiality on the scan and ablation order. If a
device face was not active during the previous ablation cycle,
it may have different measurements than a device face that
was active during the previous ablation cycle, simply due to
the temperature of the tissue directly touching the electrode.
Additionally, the system performs all ablation activations for
an ablation cycle, then follows up with performing all meas-
urement activations for a measurement cycle. This additional
form of sequentiality means that tissue relaxation times
(cool-down periods) between device face ablation activation
and device face tissue measurement are not close or equal.
Thus, the timing of the cycles is an additional limiting factor
that could cause potential problems with heterogeneous tis-
sues. These timing problems could potentially be remedied
via the ablation controller software, either by face randomisa-
tion or face-by-face ablate-measure cycles.

Conclusions

These results of this study show the successful ability of a
neural network to estimate ablation lesion depth in real-
time without the need for significant additional equipment.
Current technologies used for lesion depth estimation are
generally limited by real-time computational demands and
additional hardware in meeting clinical use requirements.
The neural network-based system solves both computa-
tional and hardware challenges without significantly sacrific-
ing accuracy or precision of ablation results. With this
neural network-based depth estimation technique, physi-
cians could potentially deliver quicker and more precise
ablation therapy due to the real-time subsecond depth esti-
mation map computation times and lack of external elec-
trode placement. Future works will explore modifying
the measurement frequency and timing, and optimising the
neural network, to further improve results closer to the
ground truth.
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