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ABSTRACT

Background: Radiofrequency ablation (RFA), a method of inducing thermal ablation (cell death), is
often used to destroy tumours or potentially cancerous tissue. Current techniques for RFA estimation
(electrical impedance tomography, Nakagami ultrasound, etc.) require long compute times (� 2 s) and
measurement devices other than the RFA device. This study aims to determine if a neural network
(NN) can estimate ablation lesion depth for control of bipolar RFA using complex electrical impedance
– since tissue electrical conductivity varies as a function of tissue temperature – in real time using only
the RFA therapy device’s electrodes.
Methods: Three-dimensional, cubic models comprised of beef liver, pork loin or pork belly represented
target tissue. Temperature and complex electrical impedance from 72 data generation ablations in
pork loin and belly were used for training the NN (403 s on Xeon processor). NN inputs were inquiry
depth, starting complex impedance and current complex impedance. Training-validation-test splits
were 70%-0%-30% and 80%-10%-10% (overfit test). Once the NN-estimated lesion depth for a margin
reached the target lesion depth, RFA was stopped for that margin of tissue.
Results: The NN trained to 93% accuracy and an NN-integrated control ablated tissue to within
1.0mm of the target lesion depth on average. Full 15-mm depth maps were calculated in 0.2 s on a
single-core ARMv7 processor.
Conclusions: The results show that a NN could make lesion depth estimations in real-time using less
in situ devices than current techniques. With the NN-based technique, physicians could deliver quicker
and more precise ablation therapy.
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Introduction

Radiofrequency ablation (RFA) is commonly used to destroy

liver, kidney, lung and bone tumours and other potentially

cancerous tissues. RFA heats tissue with electrodes that sup-

ply alternating electric current, which causes ionic agitation

and joule heating [1–4]. When cells are exposed to the tem-

peratures shown in Figure 1, they undergo coagulative

necrosis (i.e. ablation). Additionally, DNA repair and metabol-

ism are impaired in cells exposed to sublethal temperatures

in the transition zone [1]. However, as the tissue in the

depth-axis is not visible due to the opacity of tissue, it is dif-

ficult to visually monitor RFA progress in real time. Point

temperature probes are included in many RFA devices, but

do not provide three-dimensional lesion depths [1,2].

Feedback control requires monitoring of RFA lesion progress

as tissue left unablated could locally recur (underablation);

likewise, without knowledge of lesion depth, critical struc-

tures deeper within tissue could be damaged (overablation)

[3–5].

As of late 2017, there is quite a significant amount of

work done by the scientific community to develop techni-

ques for monitoring the progress of RFA treatment and

lesion depths in real time. These techniques utilise changes

in tissue properties undergoing thermal ablation, including

electrical, acoustic and optical behaviours. Electrical imped-

ance tomography uses surface electrodes surrounding the tis-

sue under evaluation to measure impedance paths that are

reconstructed into tissue electrical conductivity to provide

lesion depth images that can be 90%þ accurate [4,6–8].

While data collection is quick, reconstruction is complex due

to the requirement of solving the ill-posed three-dimensional

inverse problem [6–8]. Thus, computing a single EIT-based

lesion depth map requires time on the order of seconds

(time increases with accuracy from � 2 s for 70% accuracy to

� 100 s for 90%þ accuracy) and � 1 gigabyte of memory on

�86 processor-based workstations, despite many strides in

the speed of reconstruction algorithms [6–8]. Recently,

Nakagami-based ultrasound imaging using conventional

pulse-echo systems, instead of custom elastic strain systems,

has been shown to provide 94% accuracy for monitoring RFA

lesions in liver tissues in real-time (0.5–1.0 s compute time on

�86 workstations), but these systems cannot image muscular

tissue [5]. Optoacoustic imaging, a combination of optical

and acoustic techniques, uses pulses of lasers to excite tissue

and ultrasonic sensor arrays to record acoustic emissions

from these light pulses [9,10]. While optoacoustic methods
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are 95%þ accurate in the mm scale, construction of the

three-dimensional lesion depth map from the data requires

computation on the order of � 400 s [9,10]. Despite the high

accuracy and possibility of real-time data collection from

these current RFA monitoring methods, it is not yet possible

to compute lesion depth maps for all soft tissues in real-time

using standard embedded system hardware.

In addition to the computational complexity of current

techniques, there are clinical use pitfalls as well. For example,

EIT electrodes (16þplacements usually) are cumbersome and

time-consuming to place, requiring that physicians place

electrodes exactly on a straight plane with good contact, as

reconstructions are highly sensitive to placement and elec-

trical noise [11,12]. One group improved EIT electrode place-

ment techniques by developing a stretching electrode belt

method for human torsos, but this still requires circumferen-

tial placement on patients, which may not be possible if the

ablation site opening interferes with placement [13]. In add-

ition, current acoustic imaging techniques require that physi-

cians hold the imaging probe during ablation [5,10]. Thus, it

is desirable to develop a monitoring technique that can util-

ise tissue properties without requiring additional external

probes or additional clinical effort.

Artificial neural networks (ANN) have made significant

strides in the late 2010s, most notably the real-time approxi-

mate computation of the Navier–Stokes fluid equations

[14,15]. These works have shown that artificial neural net-

works are able to approximate the solutions to partial differ-

ential equations in real-time, speeding up computation time

significantly by 2–4 orders of magnitude over finite element

analysis techniques (similar to some EIT reconstruction algo-

rithms) while retaining 90%þ accuracy [14,15]. Recent bio-

medical imaging or monitoring-related applications of ANNs

are concentrated in biomedical image classification, where

ANNs perform fast, automatic classification of images and

cancer presence [16–18]. The main advantage of these ANN-

based systems is faster, improved reporting from radiologists

and pathologists on the presence of disease. However, ANN-

based methods require diverse training data to fully learn

relationships and are susceptible to poor choices of feature

descriptors (parameters input into the ANN); nevertheless,

when feature descriptors are chosen well, ANNs are highly

accurate [16–18]. For example, a skin cancer imaging seg-

mentation and classification ANN performed as well as or

better than dermatologists against a known training set [17].

As with all ANNs, the training set needed for such high

accuracy must be large, so the skin cancer study used 1.41

million training images [17]. Thus, the trade-off with ANNs is

between fast, accurate real-time computation performance

and large, accurate training data sets.

From these recent advances in ANNs, our group hypothes-

ised a feed-forward ANN might be able to compute in real-

time the lesion depth from RFA within biological tissue with

80%þ accuracy. The hypothesised ANN would not require

significant additional probes or equipment besides the RFA

device. As far as we are aware, this is the first time that an

ANN has been applied for RFA monitoring and/or control.

Keywords used for searching included: “ablation”,

“radiofrequency”, “machine”, “learning”, “neural” and

“network”, within databases including Google Scholar,

PubMed and IEEE Xplore.

In this study, an ANN was used as a depth estimation sys-

tem that approximates the lesion depth map solution of a

pseudo-EIT system based on the Laplace and joule heating

equations. The depth estimation system we developed ena-

bles fast computation with embedded microprocessors since

neural networks are non-linear weighted sums. Our depth

estimation maps computed in under 0.2s on embedded

microprocessors. Data are collected using only the multipolar

RFA device electrodes. The neural network-based depth esti-

mator utilises the same temperature-based and cellular

morphology-based tissue electrical property changes

employed in EIT systems for RFA, primarily utilising changes

in electrical conductivity and complex electrical impedance.

In this study, we present an experimental proof-of-concept

study within ex vivo animal tissues of the utilisation of an

ANN for monitoring and control of RFA therapy. The study is

split into two parts: (1) collecting data for training via abla-

tion within target tissues followed by training/testing of the

ANN as a lesion depth estimator and (2) application testing

of the depth estimator when used as part of a feedback-

based automatic ablation control system within tissue to tar-

get lesion depths.

Materials and methods

Tissue model

Tissue models used for training and testing the neural net-

work consisted of fresh-ground pork loin and pork belly and

beef liver (only used for testing). Gross analysis was used to

measure the ablation lesion depths, as the discoloured gross

lesion margin closely correlates with microscopic histopatho-

logical staining necrosis margins in muscle and liver tissues

[19–21]. Samples were heated to near-physiological tempera-

ture (34 �C) and placed into the centre of an 80-mm� 80-

mm� 80-mm acrylic fixture (Figure 2). The 40-mm diameter

RFA device used was placed directly into the centre of the

fixture, maintaining 20-mm of tissue clearance between the

centre of each panel of the acrylic fixture and the closest

side of the RFA device. The initial tissue electrical conductiv-

ities were not computed, as is standard in EIT, since the ini-

tial complex impedance magnitude parameter is the

weighted sum of electrical resistivity (reciprocal of electrical

Figure 1. Temperatures and times for thermal damage within tissue.
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conductivity) of tissues and thus defines starting tissue condi-

tions indirectly within the neural network.

Measurement/ablation hardware configuration

The RFA device (Figure 3) used during the training and test-

ing studies was a multipolar design, with each exposed stain-

less steel 316 electrode (AM Systems, Carlsborg, WA)

individually connected to a matrix switch (National

Instruments PXIe-2529, Austin, TX). The geometry of the

device is spherical, with six active faces, each corresponding

to a clinical margin. For simplicity and speed of data collec-

tion, the four electrodes of each device face were grouped

together as one connection by the matrix switch, thus pre-

senting a measurement of the entirety of each device face.

The matrix switch was also connected to a LCR (induct-

ance, capacitance, resistance) meter (Hameg HM8118,

Columbia, MD) and RF power generator (Covidien ForceTriad,

Boulder, CO) set to 30W output (Figure 4). The LCR meter

was the measurement device for the complex electrical

impedance data and thus also potentially introduced meas-

urement noise or error within the data collected. All complex

electrical impedance data were collected at a single spot fre-

quency of 100 kHz, within the RF ablation frequency range,

rather than multiple spot frequencies. At 100 kHz, the meas-

urement error of the LCR meter used for collecting complex

electrical impedance data was within about 0.5% of the true

value, according to the user manual. To improve the cer-

tainty of the collected data and remove erroneous measure-

ments, a truncated mean using six samples was used for

each impedance measurement. The single spot frequency

strategy was chosen for quicker prototyping and proof of

concept since measurements at additional frequencies would

only increase the accuracy of the system. This is due to the

properties of ablated tissue, which after having undergone

coagulation, will not vary as significantly in electrical con-

ductivity across different frequencies under 1MHz [4].

A resistance temperature detector (RTD) signal condition-

ing input module (National Instruments PXIe-4357, Austin,

TX) recorded temperature data from temperature probes at

2 Hz fabricated using carbon fibre tubes (Rock West

Composites, San Diego, CA) and platinum 100-ohm resist-

ance temperature detectors (RDF Corp, Hudson, NH) spaced

at 5mm interval depths from the tip of the carbon fibre

tube. Thus, each temperature probe consists of RTDs meas-

uring 0, 5, 10 and 15mm depths from each device face. A

�86–64 Xeon (Intel, Santa Clara, CA) microprocessor-based

workstation was used for operating the matrix switch, log-

ging data and optimising and training the depth estimation

neural network. A development board with a ARMv7

embedded microprocessor (BCM2836, Broadcom, Irvine, CA)

with 512MB of memory was employed for testing the com-

putation time and memory usage of a full depth estimation

map.

Depth estimator software architecture

The depth estimator is a multilayer perceptron (MLP), a type

of feed-forward artificial deep neural network from the scikit-

learn Python library (INRIA, Rocquencourt, France). The MLP

depth estimator is a directed network configured with four

Figure 3. RFA device design with six faces, each corresponding to a clinical
margin (left). Prototype with 4 electrodes per face and ring electrode at anterior
face (right).

Figure 4. RF current flow and dataflow architecture of depth estimator training
system.

Figure 2. Tissue fixture for ablation data collection. Green arrows indicate the
temperature probes, which are inserted into the tissue model perpendicular to
each face.
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hidden layers and 60 nodes in each layer, resulting in 14 400

weights to tune (Figure 5). The estimator, when trained, will

yield a computation of a non-linear function on the weighted

input sum at each neuron. Thus, if a neuron i in layer n has

input weights w and input values v from the previous neuron

j, and the non-linear activation function is g, then the output

value y of the neuron is:

yi ¼ g

X

j

wivn�1

0

@

1

A (1)

Our MLP depth estimator used the rectified linear unit

function g for the non-linear activation function on each

hidden-layer neuron:

gðxÞ ¼ maxð0; xÞ (2)

Other activation functions, such as the logistic sigmoid or

hyperbolic tangent functions, will yield different results. The

output layer makes the final transformation of the output

values of the last hidden layer to a binary classification. The

output layer activation function is the logistic sigmoid (3),

which makes the cost function differentiable for gradient

descent solvers.

fðxÞ ¼ 1

1þ e�x
(3)

Figure 5. (a) Backpropagation-based multilayer perceptron training algorithm flowchart. (b) Architecture of the multilayer perceptron used for depth estimation.
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Training occurred via a backpropagation-based algorithm

(Figure 5(b)) which utilised the logarithmic binary cross-

entropy (4) as the cost function on the output layer and the

ADAM stochastic solver [22–24]. The logarithmic binary cross-

entropy function is as follows, where n is the number of

instances of training data, x is the set of training data, y is

the set of expected outputs and a is the neural network

function and returns the neural network output:

LðX; YÞ ¼ � 1

n

X

n

i

yilnðaðxiÞÞ þ ð1� yiÞ ln
�

1� aðxiÞ
�h i

(4)

The weights of the network were initialised by using a

zero-mean uniform distribution in the range

� 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nconnections
p ; 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nconnections
p

� �

, which provides extremely stable

training results [25,26].

Six features (parameters) were input into the neural net-

work as floating-point numbers: device ablating face, depth

of inquiry (measurement position), initial impedance magni-

tude, current impedance magnitude, initial impedance phase

and current impedance phase.

The output was a binary classification of whether the tis-

sue volume at the face and depth specified was ablated or

not (ablation status code). Temperature data were used to

calculate the output labels for training, where tissues at

43 �C for �10min, 50 �Cþ for �5min and 57 �Cþ for �2 s

were considered ablated. The ablation heating times and

temperatures were chosen from literature of cell death

exposure models used in RFA studies [1–4]. A cell that

reaches 57 �C undergoes near-instantaneous coagulation

and necrosis; similarly, when cells are exposed to high tem-

peratures for extended periods of times (43 �C for >10min,

50 �C for >5min), the cells undergo protein coagulation,

causing coagulative necrosis [1,2]. Sample data of the

ablation lesion depth of the margin in millimetres are plot-

ted against complex electrical impedance for one face in

Figure 6. The data in Figure 6 show that there are general

trends for the complex electrical impedance as the ablation

lesion of a particular face grows deeper. Thus, suggesting

the ANN can model the trends with respect to the tissue

ablation status.

Ablation controller software architecture

A software component with real-time execution was created

to automate switching and data collection with the hardware

system. The ablation controller software operates the LCR

meter, matrix switch and RTD module (Figure 7(a)). To pre-

vent interference between the LCR meter and the RF gener-

ator, the RF generator and LCR meter lines were mutually

exclusive on the switch and on/off periods were alternated

(Figure 7(b)). After all enabled device faces delivered power

to their local tissue for 10 s each, the ablation controller soft-

ware collected complex electrical impedance for all device

faces. Temperature was collected during all times at 2Hz,

with interpolated temperatures in between 0.5 s measure-

ment intervals.

Study Part 1: depth estimator training

To generate the data needed for training, experiments were

performed with the hardware within the tissue models

described. For each training data generation ablation,

one face (tissue margin) was ablated to further depths than

the other five faces. For example, the further-ablated face

(manual target of 15mm) may have had 50 total ablation-

measurement cycles, while the shorter-ablated faces (manual

target of 10mm) may have had 50 total measurement

cycles and only 35 ablation cycles. Thus, the ablation shape

of the data collected is similar to an ellipsoid. Each training

ablation produced up to 300 samples of input data from

the number of complex electrical impedance measurements

per ablation run. In turn, since each time point has different

ablation depths, the ablation depth per time point was cal-

culated using the temperature point at that time point,

according to the previously described calculation in the

Software Architecture section. Since each face has 151 esti-

mation depth points (due to the 0.1mm stepping from

0.0mm to 15.0mm), a sample training ablation can generate

up to 46 000 data points. In total, 72 data generation abla-

tions (36 pork loin and 36 pork belly) were performed,

resulting in 1 872 000 total data points for the training-

validation-testing data set. Two data set split sets were

Figure 6. Sample depth-based impedance magnitude and phase training data.
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compared for training-validation-testing of the MLP classifier,

80%-10%-10% and 70%-0%-30%. The data within each split

were randomly selected from the overall data set.

Study Part 2: depth estimator-controlled RFA

application testing

The trained MLP neural network was then integrated into a

depth estimator software component to test the application

performance of the neural network as part of an automatic

feedback control system for RFA. The depth estimator soft-

ware receives complex electrical impedance data, computes

lesion depth estimations using the trained MLP neural net-

work and replies with lesion depth estimated data. This inter-

faced with the ablation controller software, which then

operated automatically due to this new closed feedback

loop. To receive a lesion depth estimation, the ablation con-

troller software sends a request containing the measured

impedance data to the depth estimator. The requests from

the ablation controller software contain the data values for

the features, and the real-time responses from the depth esti-

mator software provide depth estimations for the ablation

controller software. The ablation controller software will dis-

able a device face from being connected to the RF generator

on the switch upon the target lesion depth per face being

reached according to the depth estimation software

response.

This automated ablation control software was tested not

only within the trained tissues (pork loin and pork belly),

but also within an untrained tissue, beef liver, to test the

extrapolation potential of the MLP classifier for decisions

within tissues not present within the training data set. This

extrapolation potential is important because of the limited

number of in vivo or ex vivo human tissue samples that can

be acquired in comparison to more-available animal tissue

samples. Another important aspect was the high plurality of

liver as a test tissue model for RF ablation [1–5]. For all tissue

tests, except for two tests, the automatic target lesion depth

was set to 5mm for all sides except for one side at 10mm.

For the two exceptions, the automatic target lesion depth

was set to 10mm for all sides except for one side at 15mm

to explore the performance at deeper ablation depths.

Results

Study Part 1: depth estimator training results

The training computation for the MLP classifier finished in

403 s on an �86–64 microprocessor-based workstation

(Supermicro, San Jose, CA) with 16GB of memory. Export of

the trained neural network weights to C language-based

weighted sum execution code compiled for the ARMv7

embedded microprocessor showed that computation of a full

depth estimation map could occur within 0.20 s. Using the

same C language-based code compiled for the �86–64 work-

station microprocessor, the depth estimation map was com-

puted within 0.02 s.

The multilayer perceptron (MLP) classified tissue ablation

status quite well using only features related to complex elec-

trical impedance at 100 kHz. Table 1 shows the confusion

matrix output statistics for the MLP classifier with a training-

validation-testing data set split of 80%-10%-10%, while Table

2 shows the confusion matrix output statistics for the MLP

classifier with a training-validation-testing data set split of

70%-0%-30%. The confusion matrix in both tables are calcu-

lated where true negatives are depths reported by the depth

estimator to be unablated and truly unablated, and true posi-

tives are depths reported by the depth estimator to be

ablated and truly ablated. The MLP classifies tissue ablation

status with a spatial resolution of 0.1mm, for all depths up

to 15mm, the maximum depth trained with the classifier.

Minimal differences were observed when using the training-

validation-testing data set split of 70%-0%-30% versus a

training-validation-testing data set split of 80%-10%-10%,

indicating a sufficient number of training data points.

Overfitting was not an issue as shown in the convergence

Figure 7. (a) Ablation controller software architecture flowchart. (b) Timing diagram of how ablation, measurement, and computation occur.
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curve in Figure 8, where training and validation curves do

not deviate in slope sign. The accuracy, overprediction (false

positives) and underpredictions (false negatives) are plotted

by ablation depth on Figure 9. This was generated by com-

paring the classifier output label against the expected output

label.

Study Part 2: depth estimator-controlled RFA

application test results

The test results for the depth estimator-controlled RFA tests

are presented in Table 3. The difference is calculated as tar-

get lesion depth minus actual lesion depth, where the actual

lesion depths are measured as whole integer millimetres via

macroscopic analysis of colour change present within tissue

upon thermal ablation due to protein coagulation [1–3].

Table 4 breaks down the data in Table 3 by the target lesion

depth. The technique of sectioning is presented in Figure 10.

A representative test result, Figure 11, shows that, for a target

lesion depth of 5mm for all sides except two 10mm sides,

the neural network-based depth estimator-controlled RFA sys-

tem produced the target lesion geometries. An additional tis-

sue type not trained within the classifier but still tested was

bovine liver given its common use within RFA experiments.

The bovine liver tests produced the least difference, but also

Table 1. Output statistics for multilayer perceptron when
trained using 80%-10%-10% train-validate-test data set split.
Statistics are based on using the 10% testing data split.

80-10-10 split (train n¼ 1 497 600;
validate n¼ 187 200; test n¼ 187 200)

Accuracy 93%
Precision 85%
True positive rate 91%
False positive rate 6%

Table 2. Output statistics for multilayer perceptron when
trained using 70%-0%-30% train-validate-test data set split.
Statistics are based on using the 30% testing data split.

70-0-30 split (train n¼ 1 310 400;
validate n¼ 0; test n¼ 561 600

Accuracy 93%
Precision 90%
True positive rate 87%
False positive rate 4%

Figure 9. Final trained accuracy of MLP classifier as used for control system.

Figure 8. Training convergence plot for 80-10-10 training-validation-test split.

Table 3. Overall depth estimator-based control testing results, where the dif-
ference is between the target ablation depth and the system-controlled abla-
tion depth.

Tissue model
Sample
measured

Mean
difference (mm)

Standard
error (mm)

Ground pork loin 40 �1.2 0.4
Ground pork belly 40 �0.5 0.3
Whole beef liver 30 �0.1 0.4
All tissue types 110 �0.7 0.2
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have fewer samples than the pork types. Overall, the system

overall ablated the tested tissue types to a mean difference

of �0.7mm.

Discussion

Neural network depth estimation discussion

As the results show, a deep neural network can learn the

relationship between electrical impedance/conductivity and

ablation status within biological tissues. The neural network

trained to 90%þ accuracy (Tables 1 and 2) without requiring

external electrodes or significant additional equipment exter-

nal to the target tissue sample, significantly reducing the

amount of hardware required to actively control a RF abla-

tion procedure. However, as mentioned in the introduction,

all machine learning classifiers require a large and consistent

training data set for high accuracy [16–18]. The final system

had underestimation errors (Figure 9) that could be corrected

or reduced significantly by training with a larger, more

diverse data set.

The performance of the depth estimator within untrained

beef liver in Tables 3 and 4 (overablation of 1.9mm at 5mm

and underablation of 0.4mm at 10mm) show that the quan-

tity and limited diversity of training data within this proof-of-

concept system seemed to be potentially sufficient for other

homogeneous tissues with similar electrical and thermal

properties than the training tissues. As described in the

methods, training data were collected from only pork loin

and pork belly, and the bovine liver tests were conducted

without first training the neural network with beef liver train-

ing ablations. The performance of our system within this

newly encountered tissue model demonstrates some poten-

tial of extrapolation with neural network-based depth estima-

tion. We do expect, though, that extending the system for

in vivo use requires additional training tissue models that

include fatty, lean or vessel-heavy tissues at each face as well

as within ex vivo human samples.

Another issue is the design of the neural network itself,

which was a four-layer multilayer perceptron with rectified

linear activation functions within this study. This simpler

structure was chosen for quick proof-of-concept, since it

would represent the worst-case architecture. A more tailored

architecture, such as adjusting the activation functions, bias-

ing certain features or using feedback loops, could poten-

tially improve the accuracy and precision of the depth

estimation [21–23,27–29]. The baseline architecture used

worked quite well with the data as shown by the training

and test results presented in the Results section, but these

improvements should be further explored in future works.

Ablation system application discussion

Regarding potential improvements to the tissue measure-

ment system, multiple spot frequency measurements may

also increase the spatial resolution and accuracy of the sys-

tem, as described in the methods. Increased spatial reso-

lution could potentially allow for classification closer to the

ground truth, as the feature set increases by an additional

decimal digit (hundredths of millimetres, instead of just

tenths of millimetres). Additionally, the developed system

only measures current and voltage between two device faces

(all four electrodes on one device face grouped), but a more

Figure 10. Illustration of how tissue is sectioned for macroscopic analysis.

Figure 11. Ablation sample showing the desired deeper lesion depth in two
device faces and uniform lesion depths in four other device faces. Scale legends
are on images.

Table 4. Overall depth estimator-based control testing results by target depth,
where the difference is between the target ablation depth and the system-
controlled ablation depth.

Tissue model
Target

depth (mm)
Samples
measured

Mean
difference (mm)

Standard
error (mm)

Ground pork loin 5 18 �3.2 0.4
10 18 0.3 0.4
15 4 1.0 0.4

Ground pork belly 5 24 �1.0 0.2
10 16 1.9 0.5

Whole beef liver 5 18 �1.9 0.3
10 12 0.4 0.4
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complete tissue measurement system could drive current

between two electrodes (or device faces) and measure the

voltages present at the other electrodes or faces, providing

the neural network with more parameters.

Timing of measurement cycles after ablation cycles is

another potential issue. The current system scans the device

face impedances in sequential order, with a single device

face active on positive polarity and the other device faces

active on negative polarity at any given scan. However, this

imposes a sequentiality on the scan and ablation order. If a

device face was not active during the previous ablation cycle,

it may have different measurements than a device face that

was active during the previous ablation cycle, simply due to

the temperature of the tissue directly touching the electrode.

Additionally, the system performs all ablation activations for

an ablation cycle, then follows up with performing all meas-

urement activations for a measurement cycle. This additional

form of sequentiality means that tissue relaxation times

(cool-down periods) between device face ablation activation

and device face tissue measurement are not close or equal.

Thus, the timing of the cycles is an additional limiting factor

that could cause potential problems with heterogeneous tis-

sues. These timing problems could potentially be remedied

via the ablation controller software, either by face randomisa-

tion or face-by-face ablate-measure cycles.

Conclusions

These results of this study show the successful ability of a

neural network to estimate ablation lesion depth in real-

time without the need for significant additional equipment.

Current technologies used for lesion depth estimation are

generally limited by real-time computational demands and

additional hardware in meeting clinical use requirements.

The neural network-based system solves both computa-

tional and hardware challenges without significantly sacrific-

ing accuracy or precision of ablation results. With this

neural network-based depth estimation technique, physi-

cians could potentially deliver quicker and more precise

ablation therapy due to the real-time subsecond depth esti-

mation map computation times and lack of external elec-

trode placement. Future works will explore modifying

the measurement frequency and timing, and optimising the

neural network, to further improve results closer to the

ground truth.

Acknowledgements

The authors would like to thank Michelle Hasse for her help with figures

and insights into the tissue environments and considerations for technol-

ogy applications.

Disclosure statement

In accordance with Taylor & Francis policy and ethical obligation as

researchers, we are reporting that Y.C. Wang and T.C. Chan have finan-

cial interests in Innoblative Designs, Inc. that may be affected by the

research reported in the enclosed paper. These interests have been

disclosed fully to Taylor & Francis, and an approved plan for managing

any potential conflicts arising from this arrangement is in place.

Funding

This work was supported by the National Science Foundation under

Grant ENG/IIP-1622842.

ORCID

Yearnchee Curtis Wang http://orcid.org/0000-0003-0211-9286

References

[1] Chu KF, Dupuy DE. (2014). Thermal ablation of tumours: bio-

logical mechanisms and advances in therapy. Nat Rev Cancer

14:199–208.

[2] Goldberg SN, Gazelle GS, Dawson SL, et al. (1995). Tissue ablation

with radiofrequency: effect of probe size, gauge, duration, and

temperature on lesion volume. Acad Radiol 2:399–404.

[3] Larina IV, Larin KV, Esenaliev RO. (2005). Real-time optoacoustic

monitoring of temperature in tissues. J Phys D Appl Phys

38:2633.

[4] Wi H, McEwan AL, Lam V, et al. (2015). Real-time conductivity

imaging of temperature and tissue property changes during

radiofrequency ablation: an ex vivo model using weighted fre-

quency difference. Bioelectromagnetics 36:277–86.

[5] Zhou Z, Wu S, Wang CY, et al. (2015). Monitoring radiofrequency

ablation using real-time ultrasound Nakagami imaging combined

with frequency and temporal compounding techniques. PLoS

One 10:e0118030.

[6] Cherepenin VA, Karpov AY, Korjenevsky AV, et al. (2002).

Three-dimensional EIT imaging of breast tissues: system design

and clinical testing. IEEE Trans Med Imaging 21:662–7.

[7] Javaherian A, Soleimani M, Moeller K. (2016). A fast time-

difference inverse solver for 3D EIT with application to lung

imaging. Med Biol Eng Comput 54:1243–55.

[8] Martin S, Choi CT. (2017). A post-processing method for

three-dimensional electrical impedance tomography. Sci Rep

7:7212.

[9] Dean-Ben XL, Buehler A, Ntziachristos V, Razansky D. (2012).

Accurate model-based reconstruction algorithm for three-dimen-

sional optoacoustic tomography. IEEE Trans Med Imaging

31:1922–8.

[10] Pang GA, Bay E, Dean-Ben X, Razansky D. (2015). Three-

dimensional optoacoustic monitoring of lesion formation in real

time during radiofrequency catheter ablation. J Cardiovasc

Electrophysiol 26:339–45.

[11] Adler A. (2004). Accounting for erroneous electrode data in elec-

trical impedance tomography. Physiol Meas 25:227.

[12] Graham BM, Adler A. (2007). Electrode placement configurations

for 3D EIT. Physiol Meas 28:S29.

[13] Oh TI, Kim TE, Yoon S, et al. (2012). Flexible electrode belt

for EIT using nanofiber web dry electrodes. Physiol Meas

33:1603.

[14] Tompson J, Schlachter K, Sprechmann P, Perlin K. (2016).

Accelerating Eulerian fluid simulation with convolutional net-

works. Proceedings of the 34th International Conference on

Machine Learning; Pre-print on 2016 Jul 13.

[15] Baymani M, Effati S, Niazmand H, Kerayechian A. (2015). Artificial

neural network method for solving the Navier–Stokes equations.

Neural Comput Appl 26:765–73.
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