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Abstract—Hourly wind power ramps in ERCOT are studied
by applying extreme value theory. Mean excess plot reveals that
the tail behavior of large hourly wind power ramps indeed
follows a generalized Pareto distribution. The location, shape
and scale parameters of generalized Pareto distribution are then
determined by using mean excess plot and the least square
technique, from which risk measures including α quantile VaR
and CVaR are calculated.

Index Terms—ERCOT, extreme value theory, generalized
Pareto distribution, risk assessment, wind power ramp.

I. INTRODUCTION

Grid-connected wind power generation in ERCOT has in-
creased dramatically in the past decade, with installed capacity
increased from 2GW in 2006 to 16GW by 2015. Particularly,
there were 464 hours in total in 2015 when over 30% of system
load in ERCOT was served by wind power. As wind power
generation is intermittent, uncertain and not fully dispatch-
able, wind power ramps pose grand operational challenges.
Probabilistic models and risk measures for hourly wind power
ramps would provide invaluable information for scheduling
generation resources and acquiring adequate reserves [1].

Recently, there has been a vast amount of effort directed
toward statistical modeling and analysis of wind power ramps
(see [2], [3] and the references therein). However, it is noted
that for α (e.g., 5% or more conservatively, 1%) quantile
risk measures, statistical models that characterize the tail
distribution of large wind power ramps are more pertinent.
Indeed, recent study [4] has demonstrated that real-world
wind power ramp data exhibits heavier tails than common
parametric probabilistic models fitted to these data. Therefore,
quantitative risk assessment of wind power ramps requires
different treatment and models from those in literature.

In this paper, extreme value theory is applied to examine the
tail characteristics of wind power ramp data, and generalized
Pareto distribution is utilized to model large wind power
ramps. The data used in this study is the ERCOT hourly
wind power ramp data from 2011 to 2015, normalized to
corresponding installed capacity, resulting in a knowledge base
of 43,824 data points in total. The proposed probabilistic
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modeling and subsequent risk assessment is carried out for
wind power up ramps and down ramps separately. Further,
modeling and risk assessment of wind power ramp is carried
out for each month and each hour of day, to account for
seasonality and diurnal non-stationarity.

II. WIND POWER RAMP MODELING

Large wind power ramps are low-probability events. As
revealed in the prior work [5], less than 5% of hourly wind
power ramps in ERCOT had a magnitude greater than ‘3σ’
(where σ is the standard deviation). Therefore, in order to
quantify typical risk measures, e.g., α (α≤5%) quantile value
at risk (VaR) or conditional value at risk (CVaR), accurate
models for the tail distribution of wind power ramps is the
key. To this end, extreme value theory provides useful tools.

Specifically, according to extreme value theory [6], the
conditional probability distribution of the magnitude of an up
or down ramp X , given that it exceeds a large threshold µ,
can be well approximated by a generalized Pareto distribution,
i.e.,

Pr {X − µ ≤ x|X > µ} ≈ Gµ,ε,β (x) , (1)
where µ, ε, β, and Gµ,ε,β (·) denote the location parameter,
shape parameter, scale parameter, and cumulative distribution
function of a generalized Pareto distribution, in which

Gµ,ε,β (x) = 1 − (1 + ε(x − µ)/β)−1/ε
. (2)

Two technical issues arise when generalized Pareto distribution
is to be applied: 1) whether large hourly wind power ramp
data follows a generalized Pareto distribution, and 2) what
is an appropriate threshold µ, beyond which large wind
power ramps exhibit the tail behavior dictated by generalized
Pareto distributions. Mean excess plot can address both issues.
Specifically, the mean excess function, e(ν), E(X−ν|X>ν),
could be characterized by using (1) and (2), as follows:

e(ν) = (β + ε(ν − µ)) /(1 − ε), ν ≥ µ. (3)
This unique property, which is a result of ‘threshold stability’
[6] of generalized Pareto distribution, shows that e(ν) is linear
in terms of ν. Thus, the plot of e(ν) against ν is a line with
slope ε/(1−ε) and intercept (β−εµ)/(1−ε) for ν≥µ. With
this insight, empirical values of e(ν) for all wind power ramp
data are calculated and plotted. If the plot contains a linear
tail, then generalized Pareto distribution is applicable, and the
point at which linearity begins in the plot is the threshold µ.
An example of applying this mean excess plot-based approach
is illustrated in Fig. 1. It can be seen that the threshold µ is 4%
(647MW out of 16GW), and wind power down ramps greater
than µ follow a clearly linear mean excess function, which
indicates the applicability of generalized Pareto distribution.

Once the location parameter µ is determined, the shape
parameter ε and the scale parameter β could be estimated
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Fig. 1. mean excess plot (least sqaure fit RMS error 0.103) and Pareto type
II fitted tail of wind power down ramp for November 17:00PM.

by applying maximum likelihood methods to the data that is
greater than µ. However, a more straightforward yet equally
effective approach is to fit a straight line to the data on the
mean excess plot using the least square technique, as shown
in Fig. 1. Using the slope a and intercept b of the fitted line,
the shape and scale parameters are then calculated as follows:

ε = a/(1 + a), β = (b + aµ)/(1 + a). (4)
Once all the parameters are known, the conditional cumulative
probability could be calculated, and compared with empirical
values to verify the capability of generalized Pareto distribu-
tion in characterizing the tail behavior of large wind power
ramps. This is also shown in Fig. 1. Note that the generalized
Pareto fit starts at the threshold 4%, and does not model
any wind power down ramp that is lower than this threshold.
Therefore, compared with common parametric models that aim
to model entire data set, generalized Pareto distribution is more
suitable for large wind ramp modeling and risk assessment,
to which there are two main reasons: 1) small wind power
ramps may have arbitrary distribution while large wind ramps
follow generalized Pareto distribution, and thus a model for
both could undermine its fitness to large wind power ramps;
2) the distribution of small wind power ramps contains little
information for quantifying α% risk measures.

III. RISK ASSESSMENT

The α quantile VaR implies that with 1−α confidence
hourly wind power ramp is no greater than VaRα. Let F denote
the cumulative probability distribution of hourly wind power
ramp, then α quantile VaR is given by VaRα=F−1(1−α).
As the tail of F has been characterized by generalized Pareto
distribution, it follows from (1) and (2) that VaR is given by:

VaRα = µ + β
(
((1 − F (µ))α)−ε − 1

)
/ε, (5)

for which the empirical value of F (µ) could be used. The α
quantile CVaR is defined as the conditional mean of hourly
wind power ramp, given that its magnitude exceeds VaRα,
i.e., CVaRα,E(X|X>VaRα). By definition, it can be seen
that CVaRα=VaRα+e(VaRα). Thus, by using the mean excess
function in (3), the α quantile CVaR is given by:

CVaRα = (VaRα + β − εµ) /(1 − ε). (6)
Note that both VaRα and CVaRα are also normalized values
to capacity. These values times projected installed capacity
would produce the risk measures of hourly wind power ramp
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Fig. 2. 5% VaR (MW) of hourly wind power down ramp for installed capacity
(a) 16GW and (b) 24GW, by month and by hour of day.

for future years. The 5% quantile VaRs for wind power down
ramps are presented here. Numerical results for two scenarios:
a) the contemporary 16GW capacity and b) a projected 24GW
capacity are illustrated in Fig. 2. It can be seen that large
wind power down ramps are very unlikely in afternoon of
warm seasons, due to convection or low-level jets; whereas a
considerable portion of largest down ramps are concentrated
around early evening in winter season, as a result of rapid
slackening of pressure gradient, which is aggravated by the
fact that load could ramp to peak within the same time frame.

IV. CONCLUSION

An interesting finding by this work is that large ramps in
system-level wind power indeed follow a tail behavior that
can be characterized by generalized Pareto, more specifically,
Pareto type II distributions, which builds the foundation for
calculating α quantile VaR and CVaR in a rigorous and
computationally efficient manner. Note that extreme value
theory has proven to be applicable to extreme wind speed [7]
and farm-level wind power ramp [4]. Therefore, the proposed
approach for risk assessment could also be useful to other
power systems with wind power generation at different scales.
It is necessary to point out that a majority of increased wind
generation in ERCOT in the past decade is from West Texas
and Panhandle area, which have homogenous geographical and
climate characteristics. However, the emerging wind resources
in other in-land and coastal areas may bring new statistical
signatures to wind power ramps.
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