FlowPaP and FlowReR: Improving Energy Efficiency and
Performance for STT-MRAM-Based Handheld Devices under
Read Disturbance

HAO YAN, University of Texas at San Antonio
LEI JIANG, Indiana University
LIDE DUAN, WEI-MING LIN, and EUGENE JOHN, University of Texas at San Antonio

Handheld devices, such as smartphones and tablets, currently dominate the semiconductor market. The mem-
ory access patterns of CPU and IP cores are dramatically different in a handheld device, making the main
memory a critical bottleneck of the entire system. As a result, non-volatile memories, such as spin transfer
torque magnetoresistive random-access memory (STT-MRAM), are emerging as a replacement for the ex-
isting DRAM-based main memory, achieving a wide variety of advantages. However, replacing DRAM with
STT-MRAM also results in new design challenges including read disturbance. A simple read-and-restore
scheme preserves data integrity under read disturbance, but incurs significant performance and energy over-
heads. Consequently, by utilizing unique characteristics of mobile applications, we propose FlowPaP, a flow
pattern prediction scheme to dynamically predict the write-to-last-read distances for data frames running
on a handheld device. FlowPaP identifies and removes unnecessary memory restores originally required for
preventing read disturbance, significantly improving energy efficiency and performance for STT-MRAM-
based handheld devices. In addition, we propose a flow-based data retention time reduction scheme named
FlowReR to further lower energy consumption of STT-MRAM at the expense of reducing its data reten-
tion time. FlowReR imposes a second step that marginally trades off the already improved energy efficiency
for performance improvements. Experimental results show that, compared to the original read-and-restore
scheme, the application of FlowPaP and FlowReR together can simultaneously improve energy efficiency by
34% and performance by 17% for a set of commonly used Android applications.

CCS Concepts: « Computer systems organization — Embedded systems; - Hardware — Non-volatile
memory; Emerging architectures;

Additional Key Words and Phrases: Handheld devices, STT-MRAM, main memory, read disturbance, flow-
based applications

ACM Reference format:

Hao Yan, Lei Jiang, Lide Duan, Wei-Ming Lin, and Eugene John. 2017. FlowPaP and FlowReR: Improving
Energy Efficiency and Performance for STT-MRAM-Based Handheld Devices under Read Disturbance. ACM
Trans. Embed. Comput. Syst. 16, 5s, Article 132 (September 2017), 20 pages.

https://doi.org/10.1145/3126532

This article was presented in the International Conference on Compilers, Architecture, and Synthesis for Embedded Sys-
tems (CASES) 2017 and appears as part of the ESWEEK-TECS special issue.

This work is supported by the National Science Foundation, under grant CCF-1566158.

Authors’ addresses: H. Yan, Department of Electrical and Computer Engineering, University of Texas at San Antonio, One
UTSA Circle, San Antonio, TX 78249, USA; emial: hao.yan@utsa.edu; L. Jiang, Department of Intelligent Systems Engineer-
ing, Indiana University, Bloomington, IN 47408, USA; email: jiang60@iu.edu; L. Duan, W. Lin, and E. John, Department of
Electrical and Computer Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
emails: {lide.duan, weiming.lin, eugene.john}@utsa.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1539-9087/2017/09-ART132 $15.00

https://doi.org/10.1145/3126532

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:2 H. Yan et al.

1 INTRODUCTION

Currently, the semiconductor market is dominated by various handheld devices, such as smart-
phones and tablets, that have shown fundamental influence on people’s daily lives. In 2014, the
number of global mobile users reached 1.7 billion, exceeding the number of desktop computer
users for the first time in history [4]. This fast growing market has attracted major chip designers
from across the world to develop high-performance, low-cost handheld devices.

Current mobile applications running on handheld devices are becoming increasingly computa-
tion and data intensive, requiring fast and even real-time manipulation of large amounts of data.
Therefore, handheld devices employ a variety of custom hardware components (called IP cores) to
offload particular computation tasks from CPUs. These IP cores can achieve significantly improved
performance and energy efficiency for the specific functionality they implement. In contrast to
latency-critical memory accesses from CPUs, memory accesses from IPs are usually bandwidth-
critical, transferring a large number of data frames into and out of memory. Hence, the memory
access patterns of CPUs and IPs are dramatically different in a handheld device. Moreover, IPs
have strict latency deadlines by which they need to process data frames; violating such deadlines
results in dropping entire data frames and thus degrading user experience. Consequently, with
increasingly larger numbers of CPUs and IPs incorporated in a handheld device, the shared main
memory has become a critical performance and energy bottleneck in handheld systems [2, 16, 38].

Existing memory optimizations in handheld devices [2, 38] have focused on DRAM-based main
memories. However, conventional DRAM memories are facing scalability challenges in small fea-
ture sizes [13]. This is primarily due to refresh, which is a necessary operation to maintain data in
DRAM. As technology scaling reduces the feature size, the changes in DRAM cell capacitance and
leakage current decrease the cell retention time. This will in turn result in more frequent refreshes
and other complications. Therefore, it is getting increasingly difficult to scale DRAM to have larger
capacities.

Consequently, non-volatile memories, particularly spin transfer torque magnetoresistive
random-access memory (STT-MRAM), are emerging as a replacement for DRAM [5, 7, 14, 18,
34]. A wide variety of benefits can be obtained in STT-MRAM-based main memories. First, due to
its non-volatility, STT-MRAM has almost zero idle power. For the same reason, periodic refreshes,
which consume a significant portion of power in DRAM, are not required in STT-MRAM. Second,
as opposed to DRAM reads being destructive, STT-MRAM enables non-destructive reads that can
lead to various memory optimizations. For instance, it is not needed to write clean data back to
memory arrays upon row buffer conflicts in a memory controller. Moreover, STT-MRAM has al-
most infinite data retention time, and can thereby reboot or wake up a computer system faster and
more efficiently than DRAM.

However, employing STT-MRAM as the main memory also results in new design challenges,
such as high write overheads [14] and incompatibility with LPDDR interfaces [34]. Orthogonal to
these prior studies, this paper investigates a reliability challenge, namely read disturbance [35],
for STT-MRAM-based memories in deep sub-micrometer regime. Read disturbance characterizes
the accidental data corruption that occurs in STT-MRAM after a read operation. It occurs due
to the write current approaching the read current in a STT-MRAM cell with increasingly small
feature sizes. With technology scaling, read disturbance is inevitable in future STT-MRAM-based
main memories [35]. To preserve data integrity under read disturbance, a simple read-and-restore
scheme [32] has been proposed to perform a data restore to the same memory address after each
read operation. However, this incurs significant performance and energy overheads.

In this paper, we first propose an application flow pattern predictor named FlowPaP to re-
move unnecessary memory restores for STT-MRAM-based handheld devices running mobile
applications. It is motivated by the fact that, even in the presence of read disturbance, the restore

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:3

associated with the last read before a write can be safely removed. We identify such unnecessary
data restores by analyzing and predicting the write-to-last-read distance for each data frame in
a mobile application. Since such distances are mostly very short in flow-based applications [20,
21, 38], a large fraction of restores can be removed and the resulting performance and energy ef-
ficiency improvements are significant. Experimental results show that, compared to the original
read-and-restore scheme, FlowPaP achieves an average energy reduction of 25% along with 8%
performance improvement for a set of popular Android applications.

Second, we propose a data retention time reduction scheme named FlowReR to further lower
energy consumption of STT-MRAM. By adjusting device-level parameters such as the cell free
layer thickness, FlowReR improves STT-MRAM energy efficiency at the expense of reducing its
data retention time. FlowReR is motivated by the observation that mobile applications exhibit short
data write-to-last-read durations that can be easily covered by a significantly reduced data reten-
tion time. In order to mitigate the high write latency of STT-MRAM, FlowPaP further marginally
trades off the already improved energy efficiency for a much better performance improvement.
Collectively, the combination of FlowPaP and FlowReR can simultaneously improve energy effi-
ciency and performance by 34% and 17%, respectively, compared to the read-and-restore baseline
for commonly used Android applications.

Note that, although our design uses STT-MRAM for the whole main memory, our proposed
FlowPaP and FlowReR schemes can only be applied to a part of it. This includes the frame buffer
(which stores a data frame to be shown on the display) and the shared memory portion used by
pairs of IP cores to store intermediate data frames. Nevertheless, this comprises the majority of the
memory because processing data frames is the primary task for the IP cores in a handheld device.
Furthermore, our schemes only target flow-based applications because: (1). more than 80% of the
time users spend on a handheld device is in such applications [21]; and (2). the majority of the
memory is occupied by these applications to store data frames. Optimizing this important class of
applications will significantly improve user experience of the handheld device.

The main contributions of this paper can be summarized as follows:

e We propose using STT-MRAM as the main memory in handheld devices, identifying read
disturbance as a major barrier for enabling such systems in deep sub-micrometer regime.
By utilizing unique characteristics of flow-based mobile applications, we present convincing
motivation studies that address the necessity of our proposed work.

e We propose a flow pattern predictor, namely FlowPaP, to accurately predict the write-to-
last-read distances for data frames in handheld devices. As a result, unnecessary data re-
stores can be identified and removed. FlowPaP dynamically switches between two simple
prediction heuristics, capturing both the periodic and aperiodic behavior of the running
application.

e We propose a flow-based data retention time reduction scheme, namely FlowReR, to signif-
icantly improve energy efficiency while still successfully retaining data. FlowReR initially
lowers energy consumption by reducing STT-MRAM data retention time, and then trades
off the improved energy efficiency for better performance improvements.

e We perform a detailed evaluation of our proposed schemes. FlowPaP turns out to be highly
accurate and effective, improving energy efficiency by 25% and performance by 8% over the
baseline. Applying FlowPaP and FlowReR together results in an end-to-end energy reduc-
tion of 34% and an end-to-end performance improvement of 17%. Finally, the effectiveness
of FlowPaP in reducing energy and execution time achieves that of a perfect predictor.

The rest of this paper is organized as follows. Section 2 presents the background knowledge
regarding handheld devices, STT-MRAM, and read disturbance. Section 3 and Section 4 provide

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:4 H. Yan et al.

CPU Cores

GPU Cores

Fig. 1. A handheld platform with two flow examples.

detailed descriptions of our proposed schemes FlowPaP and FlowReR, respectively. Experiments
and evaluations are presented in Section 5. Section 6 lists the related work in different aspects.
Finally, Section 7 concludes our work.

2 BACKGROUND
2.1 Handheld Devices and Flow Applications

Our target platform in this work is a handheld device, as demonstrated in Figure 1, that contains
CPU cores, GPU cores, IP cores, main memory, etc. Current mobile applications running on hand-
held devices exhibit remarkably different program characteristics than conventional desktop ap-
plications, making general-purpose CPUs a poor fit for these applications. As a result, specialized
ASIC components, namely IP cores, are integrated in handheld devices to execute certain computa-
tion tasks with significantly improved performance and energy efficiency. IP cores can be broadly
classified into accelerators and devices: accelerators speed up application intermediate stages, such
as audio/video encoding and decoding, image processing, etc.; devices are interfaces to the outside
world, and include cameras, display subsystems, etc. These IPs can achieve 10-100x better energy
efficiency than general-purpose processors for their specific tasks [3]. A current handheld device
typically contains tens of CPUs and hundreds of IPs, most of which need to access the shared
main memory. With an increasing number of IPs and increasingly higher user demands, the main
memory has become a critical bottleneck of the entire handheld system [2, 16, 38].

Applications running on handheld devices (e.g., YouTube) are usually flow-based [20, 21, 38],
processing a massive amount of data frames in a pipelined manner. Figure 1 shows two flow ex-
amples in a Skype-like application: in the top flow, data frames are fetched from memory, decoded
by a video decoder, and then displayed to users; in the bottom flow, users speak to a microphone
that stores audio data to memory, which are then passed to an audio encoder for encoding. A large
number of such flows co-exist in a handheld device, dynamically being generated and completed
over time. A device component may be involved in multiple such flows, within each it constantly
consumes data frames from a producer component and sends the processed data frames to a con-
sumer component. As can be seen, the main memory is heavily used for storing data frames by
each pair of components that need to communicate. The main memory performance and energy
efficiency are critical to the running application.

2.2 STT-MRAM and Read Disturbance

STT-MRAM is an emerging and increasingly popular non-volatile memory technology that has
been widely considered as a universal solution for the cache memory hierarchy in current proces-
sors [9]. As opposed to DRAM using electrical charge in capacitors to store data, STT-MRAM takes

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:5

Bit Line
41
11
[J] 11
£ I MT)J
= 11
= 1y
o Free Reference
; Layer Layer
4' Access Transistor
Sense Line

Fig. 2. A cell of STT-MRAM.

advantage of the Magnetic Tunnel Junction (MT]J) resistance for data storage. Figure 2 shows the
STT-MRAM cell structure with one access transistor and one MT]J (1T-1MTJ). The MT]J contains
two ferromagnetic layers separated by an oxide barrier layer. The magnetization direction is fixed
in the reference layer, but can be altered in the free layer. Therefore, as depicted in the figure, the
magnetic fields of the two layers can be parallel or anti-parallel, representing the two values of a bit.

STT-MRAM has first appeared as a replacement for SRAM-based low level caches, and recently
been considered as a replacement for DRAM in main memory [5, 7, 14, 18, 34]. Kultursay et al. [14]
include dirty bits in row buffer to eliminate unnecessary write-backs of clean data to STT-MRAM.
Wang et al. [34] tackle the LPDDR pin-compatibility issue in MRAM-based mobile devices. A wide
variety of advantages can be achieved in STT-MRAM-based main memories, including almost in-
finite data retention time, non-destructive reads, and the removal of periodic refreshes. However,
adopting STT-MRAM as the main memory also results in new design challenges that need to be
addressed, such as high write overheads [6] [14] and incompatible sense amplifiers [34]. Orthogo-
nal to these existing studies, this paper investigates a critical data reliability challenge named read
disturbance [35] that turns out to be inevitable and may cause significant performance and energy
overheads in STT-MRAM-based memories.

The read and write operations of a STT-MRAM cell are very similar [8]. To read from a cell, a
voltage is applied between the bit line and the sense line, creating a small read current through
the MT]J to sense the stored bit value. To write to a cell, depending on the data to be written, a
positive or negative voltage is applied. The resulting write current has a larger amplitude and a
longer duration than the read current, thus changing the magnetic direction of the MT]J free layer
to write the data. The write current amplitude of a STT-MRAM cell scales with its MTJ area, thus
fast decreasing with the technology node scaling to small feature sizes. The read current amplitude
is dependent on the sensitivity of STT-MRAM sense amplifiers, and does not scale down with the
feature size and cell area. As a result, the amplitude of the write current approaches that of the read
current in small feature sizes in STT-MRAM. Figure 3 [11, 35] demonstrates the read/write current
scaling trends in STT-MRAM. As can be seen, these two currents have become too close to each
other at 32nm and below. Since the read and write operations only differ in the current amplitude,
a read operation may be erroneously interpreted as a write operation in a STT-MRAM cell and
may accidentally change the data value stored in the cell. This is referred to as read disturbance.

In order to preserve data integrity in STT-MRAM under read disturbance, a simple read-and-
restore scheme [32] has been used. It basically writes data back to the same memory location
immediately after reading the data from it. Since read operations dominate memory accesses in
most applications, the introduced data restores significantly degrade system performance and

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:6 H. Yan et al.

—=— write[”
-\\ —e—read

. .
05
N u

w

[
o

N

Current (pA)
o

(N

[
o

[N
difficult to sense - o.

[
17T 17T 111 17717

,&%Q xap N P o 3l L S

Feature Size (nm)

Fig. 3. The read/write current scaling in STT-MRAM. [11, 35].

write write write write

N Y
TTTTTTTTT T TTTT T

5 reads 6 reads 4 reads

Fig. 4. An illustrative example of data frame writes and reads.

energy efficiency. In this work, we identify and remove unnecessary data restores for STT-MRAM
used in handheld devices.

3 FLOWPAP: A FLOW PATTERN PREDICTOR

In this section, we propose FlowPaP, a flow pattern predictor to dynamically predict the write-
to-last-read distances for data frames in flow applications running on handheld devices. Upon
accurate predictions, unnecessary data restores originally required for preventing read disturbance
in STT-MRAM can be identified and eliminated. The resulting performance and energy efficiency
improvements are significant because the write-to-last-read distances are usually very short for
most data frames.

3.1 Motivation

In a handheld device, a pair of device components that need to communicate is allocated with
a shared memory region, within which the producer component periodically writes data frames
that are later consumed by the consumer component. For example, a movie player app in Android
typically writes to the frame buffer (part of the main memory) with 12 movie frames per second
(fps), which are then read out and sent to the display subsystem with a frequency of 60 fps. As
illustrated in Figure 4, this results in a write-to-read ratio of 1:5 in the Android frame buffer. In a
STT-MRAM-based memory under read disturbance, a data restore (not shown) is needed after each
such data frame read except for the last one before a write. Therefore, if we can successfully predict
the number of reads before the next write, we can remove 1 out of 5 data restores in this example.
FlowPaP seeks to identify such “last read” before a write by analyzing the “write-to-last-read
distance” for each data frame.

The write-to-last-read distance of a data frame is defined as the number of reads of this frame
before the next frame arrives. Ideally, in the above movie player example, this distance is 5 for all
data frames. However, dynamically predicting the write-to-last-read distance for a data frame is

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:7

70%
50%

N

. \
a0% I,l' ~+=KamMail

[\
309 A / rR & = MXPlayer

> / / by

ﬁ i ’_i }L' %‘i—i”‘“

Z 3 B 9 10 11 12 13
Fig. 5. Percentage distributions of write-to-last-read distances for three mobile applications.

Phase 1

T T Y

Wl

Fig. 6. The write-to-last-read distance variation over time for two program phases.

W s oo~ o

Whnh~o

not straightforward. A data frame can be delayed due to various reasons, arriving at the frame
buffer later than expected. For instance, the 3rd frame in Figure 4 arrives at time B rather than its
scheduled time A, perhaps due to some emergency task occupying the writing CPU. This leads
to a write-to-last-read distance of 6 for the previous data frame and 4 for the next data frame,
respectively. Figure 5 shows the percentage distributions of write-to-last-read distances for data
frames in three mobile applications. As can be seen, frames can arrive at very different times,
resulting in a wide spectrum of write-to-last-read distances.

We make several important observations from our motivational studies. First, data frames run-
ning on handheld devices preserve regularity lower than that one may intuitively expect. The
resulting write-to-last-read distances for different data frames can span a wide range of values
(Figure 5). Second, the write-to-last-read distance for a data frame can vary drastically during
application run time, showing periodic and aperiodic behaviors in different application phases.
This is depicted in Figure 6, where phase 1 shows periodic behavior, and phase 2 is aperiodic.
This motivates our FlowPaP design described in Section 3.2. Consequently, in order to identify the
last read before a write and remove its associated restore, a dynamic, accurate prediction of the
write-to-last-read distances for data frames is necessary but also challenging.

3.2 The FlowPaP Design

We observe that the runtime write-to-last-read distance variation of data frames exhibits a combi-
nation of periodic and aperiodic behaviors (as exemplified in Figure 6). This is because flow-based
applications possess a degree of regularity in processing data frames while being influenced by
various device components involved in computation. Therefore, we propose two simple heuristics
to predict the write-to-last-read distance for periodic/aperiodic program phases, respectively.
FlowPaP dynamically combines these two predictors for the runtime write-to-last-read distance
prediction.

Slide-by-lag (SBL) for periodic phases. To predict future write-to-last-read distances in ap-
plication phases showing periodic behavior, we use a simple heuristic:

D(n+1)=D(n+1-1L) (1)

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:8 H. Yan et al.

Window size = n Weighted average
fw=1
WMA
time
D(1) D(2) D(n) D(n+1)
Laglength=1L
SBL
time
D(1) D(2) D(n+1-L) D(n) D(n+1)

Just use the value a lag ago

Fig. 7. Weighted-moving-average (WMA) vs. slide-by-lag (SBL).

where D(n + 1) denotes the first write-to-last-read distance outside a window of n past distances.
Since the current window of write-to-last-read distances demonstrates a periodic repetition of L
distances, we simply use the historical distance that is a lag length (L) ago to predict the next
distance. The lag length L needs to be carefully chosen to capture the periodic behavior.

Weighted-moving-average (WMA) for aperiodic phases. Following a similar approach pre-
sented in [22] for calculating the dynamic data frame length, we propose using the weighted av-
erage of the n past distances as the prediction of the next distance when no periodic patterns can
be found in a program phase:

no ;
D(n+1) = 220 20 @)
i=1!
In order to predict D(n + 1), Equation 2 assigns a higher weight to a distance that is closer to the
next one being predicted. The window size n can be tuned; and the weights are assigned in this
way such that more recent historical distances are given higher weights.

These two predictors are visualized in Figure 7. If the current phase is determined to be periodic
(bottom), SBL is used to adopt the write-to-last-read distance that is L distances in the past to
predict the next distance. If the current phase is aperiodic (top), WMA is used, averaging the n
past distances with non-uniform weights to predict the next distance. Our proposed FlowPaP
scheme dynamically switches between SBL and WMA based on the current application phase
being periodic or not. Specifically, we use autocorrelation [29], defined in Equation 3, as a metric
to determine whether the current phase is periodic or not:

AutoCovariance(n, L)

AutoCorrelation(n,L) = 3
utoCorrelation(n, L) AutoCovariance(n,0) ®)
where AutoCovariance is given by:
n—L
AutoCovariance(n, L) = Z(D(z’ +L) - D) - (D(i) - D) ()

i=1

where D is the average of all distances in the chosen window. By definition, a higher autocorrela-
tion indicates a closer match between the current window and the window that is a distance of L
off; the autocorrelation achieves a value of 1 when these two windows exactly match. Therefore,
autocorrelation quantitatively captures the periodic behavior of the running application phase.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:9

Algorithm 1 describes the proposed hybrid scheme FlowPaP. Basically, FlowPaP uses SBL when
the autocorrelation of the current window exceeds a predefined threshold th; otherwise, it uses
WMA. This process is dynamically applied to predict future write-to-last-read distances during
application run time. The window size n, the lag length L, and the autocorrelation threshold th
are critical model parameters that need to be determined. When running an application, FlowPaP
enters a training mode first, within which it collects a set of write-to-last-read distances, exhaus-
tively testing different value combinations of these parameters (n, L, th) and picking the one that
gives the lowest error rate for the training data. After that, FlowPaP enters the prediction mode,
using the trained model parameters to predict the future write-to-last-read distances. Note that
FlowPaP may choose a different set of model parameters when running a different application,
thus capturing the periodicity behavior unique to the application.

ALGORITHM 1: The Flow Pattern Predictor (FlowPaP)

1: procedure FLowPAP

2 n, L, and th are determined from the training mode.
3: To predict the next distance D(n + 1):

4 if AutoCorrelation(n,L) >= th then
5

6

7

Use the slide-by-lag (SBL) predictor (Equation 1).
else

Use the weighted-moving-average (WMA) predictor (Equation 2).
Advance the window by one distance.
goto line 3.

O oo

3.3 Implementation and Error Handling

The implementation of FlowPaP consists of two parts. First, the training and prediction of the
algorithm are performed by a CPU since the involved calculations are lightweight tasks for the
CPU. Second, the memory controller allocates an 8-bit counter for each frame slot in the memory.
When a data frame arrives at this slot, the CPU predicts its write-to-last-read distance and records
it in the counter, which will later be decremented by 1 when the frame is read each time. The
memory controller issues a restore after each read when the counter is larger than 0, but stops
issuing the restore when the counter reaches 0.

The overhead of implementing FlowPaP is negligible. In an Android system with an 800 x 480
display resolution and 2-byte pixels, a data frame has a size of 750K bytes. Therefore, the hardware
overhead of these counters is only 1/750K = 1.3 X e~*%. The performance overhead of running
FlowPaP is also negligible. The time and memory complexities of the prediction are both O(n),
where n is the window size in the algorithm. Note that n is a small constant after the model is
trained. We have run FlowPaP together with other real-world applications in a CPU, and observed
almost no difference in system performance and power consumption when FlowPaP is run.

If the predicted write-to-last-read distance is longer than the actual distance, no error handling
is needed since we will just lose the opportunity to remove an unnecessary restore. If the
predicted distance is shorter than the actual distance, a critical restore is erroneously removed.
Error handling in such cases can be carried out at the system level: the CPU processing the data
flow will be notified immediately when a write is expected but a read arrives at the frame slot; the
CPU will then obtain the previous data frame from the frame’s consumer component. Depending
on the design requirement, the CPU can choose to either copy back the entire data frame or
perform a pixel-by-pixel comparison to detect and correct any pixel corruption. The former is

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:10 H. Yan et al.

a simple operation that causes higher data transferring overhead; and the latter involves more
computation but reduces network traffic.

4 FLOWRER: A FLOW-BASED DATA RETENTION TIME REDUCTION SCHEME

Despite various advantages, STT-MRAM suffers from high write overheads in both energy and
latency compared to DRAM [6]. Techniques have been proposed at both the architecture level
[17, 19, 23, 33] and circuit level [37, 39] to mitigate the STT-MRAM write overheads. In particular,
several attempts [12, 15, 27, 30] have been made to mitigate the STT-MRAM write overheads by
relaxing its non-volatility. Since lowering STT-MRAM’s data retention time can reduce its write
energy and latency, this section proposes FlowReR, a flow-based retention time reduction scheme
to trade off data retention for improved write performance and energy efficiency when running
flow applications on handheld devices.

4.1 Motivation

FlowReR is motivated by the observation that mobile applications exhibit short data write-to-last-
read durations that can be easily covered by a significantly reduced data retention time. This is
because flow-based mobile applications process data frames in a pipelined manner across different
device components. As shown in Figure 5, the write-to-last-read distance rarely exceeds 14 in
the examined mobile benchmarks. We have conducted a detailed analysis on the memory read
and write activities in the entire benchmark suite used in this work, and discovered that not a
single write-to-last-read distance is greater than 50. Since Android sends data frames to the display
subsystem with a typical rate of 60 frames-per-second (equivalent to 16.7 ms per frame read), the
longest write-to-last-read duration for our benchmark suite is less than 1 second. Consequently,
FlowReR reduces the data retention time of STT-MRAM used in handheld devices to 10 seconds,
allowing more time than the observed 1 second boundary to account for unobserved corner cases.
Reducing the data retention time in FlowReR significantly improves the memory system’s energy
efficiency and performance in handheld devices.

4.2 Reducing Data Retention Time to Improve Write Energy Efficiency

Since write energy is directly related to cell write current, reducing the cell write current (also
called switching current) in STT-MRAM is an effective way to lower its write energy consump-
tion. This can be done by reducing either the cell surface area or the cell write current density. As
shrinking the MTJ planar area in a STT-MRAM cell has become increasingly difficult with lower
feature sizes [30], reducing cell write current density has been a recent focus of intense research.
The switching current density J. is approximately proportional to the switching current density
at zero temperature [12, 25, 30, 36], J.o, where J. is determined by various device-level parame-
ters [30]:

Jeo = (2_;) (%) (tFMS) (HK + Heyr + 2ﬂj\/IS) (5)
In this equation, tr is the free layer thickness, Mg is the saturation magnetization, and Hk is the
effective anisotropy field; whereas e (the electron charge), h (the reduced Planck’s constant), « (the
damping constant), n (the spin-transfer efficiency), and H,,; (the external field) are all device-level
constants. Therefore, in order to reduce J.o (which will in turn reduce J. and write energy), we
can lower device-level parameters such as tr, Mg, and Hg.

On the other hand, the data retention time of a MTJ characterizes how long the data stored
in the MTJ can be retained. It is exponentially proportional to the thermal stability of the MTJ

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:11

100%

: II II II II
60%
o II Il e

10years 1year 1 month 1week 1day 1hour 1min 10s 1s

¥ thermal stability factor ~ M write energy

Fig. 8. The thermal stability factor and write energy of a STT-MRAM cell with different retention times. All
values are normalized to the case of 10 years.

»

10 years
==+ lday
10 seconds

Write Current

Write Pulse Width

Fig. 9. Variations of cell write current on the write pulse width at different retention times.

[27, 30]:

tretention eA (6)
where A is the thermal stability factor. STT-MRAM is deemed as a non-volatile memory because
its data retention time is nearly infinite (e.g., 10 years) with a regular thermal stability factor. The
thermal stability factor A can be further expressed as [28, 30]:
A:HK'MS'A'tF (7)

kg-T

where A is the MTJ planar area, kg is the Boltzmann constant, and T is the working temperature.
Shrinking the cell size or increasing the working temperature would lower the data stability. ¢F,
Ms, and Hg have been described in Equation (5). If we compare Equation (5) and Equation (7),
it can be easily observed that reducing the device-level parameters tp, Mg, and Hg reduces J.o
but also lowers the thermal stability factor A. In other words, we can reduce STT-MRAM write
energy at the expense of exponentially reducing its data retention time.

Prior studies have used a smaller cell surface area [27] or reduced tr, Mg, and Hi [12, 30] to
lower the data retention time in STT-MRAM. In this work, we follow a similar approach that re-
duces these parameters, e.g., the thickness of the MTJ free layer or tr. We illustrate the STT-MRAM
thermal stability factor and cell write energy at different retention times in Figure 8. Compared to
the original retention time of 10 years, FlowReR’s target retention time of 10 seconds reduces ther-
mal stability by 42.9% and cell write energy by 48.5%. In our model, the baseline 10-year retention
has a thermal stability factor of 40.3 and cell write energy of 0.66 pJ.

4.3 Trading Off Write Energy Efficiency for Reduced Write Latency

The STT-MRAM data retention time reduction scheme described in Section 4.2 greatly reduces
the write energy consumption, but has a neutral impact on the performance (cell write time). This
is illustrated in Figure 9, which shows the variations of the cell write current on the write pulse
width at three retention times: 10 years, 1 day, and 10 seconds. At each retention level, applying a
lower switching current takes a longer time (write pulse width) to write to the cell. By fixing the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:12 H. Yan et al.

i P1 | P2 | | IP3 | Display
{ 1 i —
= 1 rad —
3 1 L i
80 P S o P s | o |
| | Frame | Frame Frame Frame
— Slot1 | Slot2 Slot3 Buffer
EEESEEEEE =T
! = i i SHEINES =58 a1
.l ED.FET Ttglmlior‘l t1T1E| I L
—+ 10-year retention time | \E)I [
.................. 1. . Irgf.‘ﬂs
Sense Bit T
Line Word Line Line S
o BL
1 0w — = . “ | ¢
10-year I\ 10-sec |SL :
I : Sensing ! |
Circuit |
R [4 Comparator

Fig. 10. An implementation of FlowReR.

write pulse width at a certain value (e.g., 10 ns), the technique presented in Section 4.2 reduces the
retention time from 10 years to 10 seconds. This can be seen as moving from A to B in Figure 9.
A fixed write plus width indicates a neutral impact to performance. Therefore, the performance
degradation of STT-MRAM due to high write latency is not mitigated.

In this subsection, we further propose trading off the already improved write energy efficiency
for a reduced write latency, by following a similar study performed in [12]. Our approach applies
the tradeoff between write current and write pulse width within the same retention time, moving
from B to C in Figure 9. Intuitively, while keeping the same data retention time, a higher write
current shortens the write pulse width. The shortened write pulse width will in turn reduce the
write latency and improve performance. An end-to-end comparison between A and C indicates
that FlowReR can simultaneously improve both write energy efficiency and performance. In our
experiments (Section 5.3), we will examine multiple points of C along the curve, finding the best
tradeoff that can achieve the highest performance improvement with significant energy reduction.

4.4 Implementation and Comparison with Prior Work

As shown in Figure 10, our implementation of FlowReR is a hybrid memory design consisting
of a region with a 10-second retention time (for storing data frames) and the rest with a 10-year
retention time (for storing CPU data). All data frames are stored in the 10-second region, which
covers the frame buffer (containing a data frame to be shown on the display) and the frame slots
shared by pairs of IP cores. Data frames are processed by various IP cores in a pipelined manner;
at each stage of the flow, a producer IP (e.g., IP1) writes frames into empty slots that are later
consumed by a consumer IP (e.g., IP2). Since processing data frames is the primary task for IPs,
the 10-second region occupies the majority of the memory. Furthermore, the STT-MRAM cells in
this implementation can be reconfigured between the two retention times. At each retention time,
the sensing circuit compares the sensed cell current with a reference current to determine the bit
value in the cell. Therefore, the 10-second region can be resized by the system to adapt to different
applications.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:13

Table 1. Comparisons Between FlowReR and Prior Studies

[27] [30] [12] FlowReR
Replaced multiple L1 and L2 caches |last level cache main memory
levels cache levels
Technique reducing cell |reducing tp, Mg, or | reducing tp reducing tp, Mg, or
used area Hyg Hyg
Refreshes Yes Yes Yes No
needed?
Data No Yes No No
movement
across ret.
times?
Table 2. The Simulated Configuration
CPUs 2GHz, private L1 I/D caches with 32KB/core and 64B lines,
8MB shared L2 with 64B lines.
Memeoy Controller on-chip, 64-entry transaction queue, 64-entry command
queue, close-page row buffer policy, FR-FCES scheduling.
STT-MRAM-Based Main 1 channel with 2GB capacity, 1 rank-per-channel,
Memory 8 banks-per-rank. LPDDR STT-MRAM timing and current
parameters are adopted from [34].

A few prior studies [12, 27, 30] have been conducted to mitigate the STT-MRAM write overhead
by relaxing its non-volatility. Smullen et al. [27] reduce the MTJ planar area to reduce both write
latency and energy. Sun et al. [30] adjust device parameters such as the MT] free layer thickness
and magnetization to generate multiple retention levels across different cache levels. Jog et al. [12]
apply an application-driven approach to determine a reduced retention time for the whole last-
level cache. Table 1 lists the comparison of several key aspects between FlowReR and these prior
studies. In particular, FlowReR has its unique novelties:

e FlowReR utilizes the unique characteristics of flow applications to apply retention reduction
in main memory of handheld devices. No refreshes are needed in FlowReR.

e FlowReR applies to the main memory, while the prior studies only targeted SRAM caches.

e FlowReR performs a second step that marginally trades off the already improved energy
efficiency for performance improvement.

5 EXPERIMENTS
5.1 Experimental Setup

We use a full-system simulator gem5 [1] to simulate an Android system. A detailed memory model
DRAMSim2 [26] has been incorporated into gem5 to simulate the main memory, which adopts
various timing constraints and current parameters from a prior work [34] to simulate a reasonable
LPDDR3 STT-MRAM-based main memory. The machine configuration used in our simulation is
shown in Table 2. To take into account read disturbance, our baseline design models a simple read-
and-restore scheme [32] for the entire main memory, whereas the proposed FlowPaP and FlowReR
schemes are implemented to the part of memory that stores data frames.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:14 H. Yan et al.

Baseline
100%
FlowPaP
80%
60% /Ideal
40% Precharge/
Activate
20%
Burst
0% Background
Adobe Baidu Netease Ttpod geomean

Fig. 11. Energy comparison of different schemes for evaluating FlowPaP.

100%
Q0%
e ® Baseline
70% = FlowPaP
60% w ideal
50% :
40%

Adobe Baidu MX Netease Ttpod geomean

Fig. 12. Performance (execution time) comparison of different schemes for evaluating FlowPaP.

A set of commonly used mobile benchmarks from Moby [10] are evaluated in our experiments.
The following is a short description of these popular Android applications:

e Adobe: an app for reliably viewing and interacting with PDF documents.

e BaiduMap: a mobile map client from China’s largest search engine Baidu; similar to Google
Maps.

K9Mail: an open-source email client supporting POP3 and IMAP4 protocols.

MXPlayer: a video player that supports various movie formats.

NeteaseNews: a news reader app.

TTpod: a music player for various audio formats.

5.2 Results of FlowPaP

To evaluate FlowPaP, we implement and compare the following schemes:

e Baseline: the baseline scheme that performs a data restore after each read operation to pre-
serve data integrity under read disturbance.

e FlowPaP: our proposed hybrid and dynamic flow pattern prediction scheme that predicts
the write-to-last-read distance for each data frame and removes the data restore associated
with the last read before a write.

e Ideal: an ideal but unrealistic scheme in which no data restores are performed in the pres-
ence of read disturbance. This is provided to demonstrate the impact resulting from the
necessary memory restores.

Figure 11 and Figure 12 depict the energy and performance (execution time) comparisons, re-
spectively, among the three schemes. Both metrics favor lower values. In both figures, results
are normalized to the corresponding workload’s Baseline scheme. Figure 11 shows a breakdown
of energy into three portions: precharge/activate, burst, and background. The precharge/activate

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:15

25%

20%
15% B WMA
10% N SBL
5% ¥ Hybrid
| O -

0%
Adobe Baidu K9 MX Netease Ttpod Average

Fig. 13. Prediction error rates of different predictors used in FlowPaP.

100% Baseline is 100%

90% ¥ Time_FlowPaP
20% Time_Perfect

® Energy_FlowPaP
70% I I I Energy_Perfect

60%
Adobe Baidu Netease Ttpod geomean

Fig. 14. The effectiveness comparison of FlowPaP and a perfect predictor. Results are normalized to the
corresponding workload’s Baseline scheme.

energy reflects the dynamic energy consumed by the precharge and activate operations in the
memory controller; the burst energy reflects the dynamic energy consumed by the read and write
operations in the memory controller; and the background energy is the static energy. Note that
the refresh energy is always zero in STT-MRAM because of its non-volatility. As can be seen,
FlowPaP significantly improves energy efficiency across all evaluated benchmarks, showing an
average energy reduction of 25% compared to Baseline. The majority of the energy reduction is in
dynamic energy (burst and precharge/activate) due to the removal of unnecessary restores. The
performance improvement, as shown in Figure 12, is about 8% on average (up to 16%) from Base-
line to FlowPaP. Compared with energy improvements, performance improvements are smaller
because the removed data restores are not on critical timing paths.

Figure 13 compares the prediction error rates for the three prediction schemes described in
Section 3.2: WMA (weighted-moving-average), SBL (slide-by-lag), and Hybrid (i.e., FlowPaP). The
error rate is defined as: the absolute difference between the actual and predicted distances divided
by the actual distance. The two static predictors, WMA and SBL, both show high error rates in
some benchmarks. In contrast, FlowPaP consistently performs better than the static ones, achiev-
ing an average error rate of 9%. This is because FlowPaP successfully captures both periodic and
aperiodic behavior of the running application. As described in Section 3.3, error handling needs to
be performed for cases where the predicted write-to-last-read distance is shorter than the actual
distance. On the other hand, Figure 14 compares the effectiveness of FlowPaP with that of a perfect
predictor. The perfect predictor is capable of correctly predicting the write-to-last-read distance
at all times. As shown in the figure, in spite of the 9% error rate, FlowPaP is highly effective and
achieves within 3% in both time and energy obtained by the perfect predictor.

5.3 Results of FlowReR

As described in Section 4, FlowReR consists of two steps. First, it reduces the write energy con-
sumption by lowering STT-MRAM’s data retention time from 10 years to 10 seconds (Section 4.2).
Second, it reduces the write latency by slightly trading off the already improved write energy

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:16 H. Yan et al.

100%

S0%
10y_Baseline

0% ® 10y_FlowPaP

70 A B 10y _Perfect

[4 | : W 10y_ideal

5 g 105_Baseline

4 i | | 10s_FlowPaP
¥ 10s_Perfect

3 i W 10s_|deal

agg L g ..

MX

Adobe Baidu K3

o o o o
B E & & R

MNetease Ttpod geomean

Fig. 15. Energy comparison of different schemes for two retention times: 10 years and 10 seconds. Results
are normalized to the total energy of the corresponding workload’s Baseline scheme at 10-year retention
time.

100%
0%

80%
~#-Baseline

70% ——FlowPaP

~=PerfectPredict
80% ~+-Ideal
0% N“

A40%
10years 1year 1month 1week lday lhour 1Imin 10§ 1s

Fig. 16. The energy reduction trends across different retention times for different schemes.

efficiency (Section 4.3). Overall, FlowReR achieves a significant energy reduction with a consid-
erable performance improvement. It is important to note that data refreshes are not needed in
FlowReR even with a reduced retention time of 10 seconds. This is because the longest write-to-
last-read duration in our evaluated benchmark suite is less than 1 second (Section 4.1). Real-world
applications running on handheld devices are expected to have the similar write-to-last-read
durations.

Figure 15 shows the energy comparison among different schemes for two retention times: 10
years and 10 seconds. At each retention time, comparison is made among four schemes: Baseline,
FlowPaP, PerfectPredict, and Ideal. All these schemes have been described in Section 5.2. We can
see that reducing data retention time to 10 seconds significantly reduces the energy consumption.
Initially, FlowPaP reduces energy by 25% compared to Baseline; reducing data retention to 10 sec-
onds results in another 13% (a relative 17%) energy reduction. Furthermore, the impact of FlowReR
deceases from Baseline to FlowPaP to Ideal. The energy reduction due to FlowReR is a relative 19%
(from 100% to 81%) in Baseline, a relative 17% (from 75% to 62%) in FlowPaP, and a relative 10%
(from 41% to 37%) in Ideal. This clearly reflects the decreasing trend of number of memory writes
(restores) across these schemes. In Figure 16, we further plot the energy reduction trends across
different retention times for these schemes. The curves of FlowPaP and PerfectPredict largely over-
lap due to their similar prediction effectiveness (Figure 14). As can be seen, a continuous reduction
of retention time indeed continuously reduces energy to lower levels. The curve of Baseline is
steeper than the others because it has the largest amount of memory restores.

The second step of FlowReR trades off the already reduced write energy for a reduced write
latency. This is accomplished by moving along the tradeoff curve of write current vs. write pulse

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:17

120%

10% — e
100%
90%

>
80%
70%
60%
50%

40%
10 ns Sns 4ns 3ns 2ns

M Baseline ™ FlowPaP ¥ PerfectPredict © Ideal

Fig. 17. Energy consumption increases with decreased write pulse widths at the 10-second retention time.
Results are normalized to the total energy of Baseline with a 10-ns write pulse width.

100% g -

o 8 N R >
80%
70%
60%
50%
40%

10 ns 5ns 4ns 3ns 2ns
M Baseline ™ FlowPaP ¥ PerfectPredict " Ideal

Fig. 18. Execution time decreases with decreased write pulse widths at the 10-second retention time. Results
are normalized to the execution time of Baseline with a 10-ns write pulse width.

width when the retention time is kept the same (i.e., from B to C in Figure 9). Our experiments here
examine different choices of C on the curve, decreasing the write pulse width (but also increasing
the write current) to different extents. Figure 17 and Figure 18 demonstrate the variation trends
of energy and execution time, respectively, with respect to decreased write pulse widths when
the retention time is kept at 10 seconds. As expected, the reduced write pulse width decreases
the execution time at the expense of increasing the energy consumption. As shown, while the
energy consumption continuously increases approximately at a constant rate, the performance
improvement encounters apparent slowdown after reaching 3 ns. Taking into account the trends
shown in Figure 9, one can expect that the energy increase will continue and even speed up while
the performance improvement will slow down. Therefore, the write pulse width of 3 ns turns out
to be a turning point, achieving the best tradeoff between performance improvement and energy
increase in our experiment. When reducing the write pulse width from 10 ns to 3 ns, FlowPaP
experiences a relative 10% performance improvement together with a relative 6% energy increase.

5.4 Summary of Results

By combining FlowPaP and FlowReR, we summarize the end-to-end improvements in energy ef-
ficiency and performance of our work:

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:18 H. Yan et al.

e FlowPaP by itself achieves a 25% reduction in energy consumption (Figure 11) and a 8%
reduction in execution time (Figure 12), compared to Baseline.

o The first step of FlowReR achieves a relative 17% reduction in energy consumption (Fig-
ure 15) and no change in execution time.

e The second step of FlowReR suffers from a relative 6% increase in energy consumption
(Figure 17) but achieves a relative 10% reduction in execution time (Figure 18).

e Overall, the end-to-end energy consumption is (1 —25%) X (1 —17%) X (1 + 6%) = 66% of
Baseline; the end-to-end execution time is (1 — 8%) X 100% X (1 — 10%) = 83% of Baseline.

Consequently, our proposed FlowPaP and FlowReR schemes simultaneously improve energy
efficiency and performance, by 34% and 17%, respectively.

6 RELATED WORK

There has been a number of recent studies on handheld platforms. Nachiappan et al. [2] design a
heterogeneous memory controller for handheld devices. Yedlapalli et al. [38] shrink data frames
to reduce IP-to-IP data reuse distances, and forward a store to the corresponding load to bypass
memory. Nachiappan et al. [20] predict data frame processing slacks. Virtualized IP chains [21]
are proposed to enable inter-flow scheduling and release CPUs. These studies all work on conven-
tional DRAM-based main memory in handheld devices. In contrast, our work targets the unique
challenges in STT-MRAM-based handheld devices.

Read disturbance in STT-MRAM is traditionally mitigated using either a pulsed read scheme [24]
or a read-and-restore scheme [32]. Jiang et al. [11] adaptively select one of these two read schemes
based on the bank busyness. Wang et al. [35] delay restores to a STT-MRAM L2 cache until the read
cache line is evicted from the L1 cache. Sun et al. [31] invent a dual-mode cache architecture that
can enable or disable restores based on accuracy requirements. These existing schemes are mostly
cache-oriented and application-agnostic, merely focusing on removing restores in restricted cases.
In contrast, our FlowPaP scheme utilizes the unique characteristics of flow applications running
on handheld devices. Peters et al. [22] use a hybrid prediction scheme similar to FlowPaP to predict
the workload length of data frames. In contrast, FlowPaP predicts the write-to-last-read distances
for future data frames.

7 CONCLUSIONS

With memory becoming a critical bottleneck in current handheld devices, STT-MRAM is an ideal
candidate to replace DRAM in the main memory for a variety of beneficial reasons. However,
this also results in an inevitable reliability challenge, namely read disturbance, in future STT-
MRAM-based memories. In this paper, we characterize flow-based mobile applications running
on handheld devices, proposing two innovative flow-based schemes to improve system energy
efficiency and performance. FlowPaP is an effective prediction scheme that identifies and removes
unnecessary memory restores originally used against read disturbance; FlowReR is a data retention
time reduction time for STT-MRAM to further lower energy consumption and achieve the best
tradeoff between energy efficiency and performance improvements. Detailed evaluation results
demonstrate the merits of our proposed schemes over prior schemes in both performance and
energy efficiency for a set of commonly used mobile applications.

ACKNOWLEDGMENTS

The authors would also like to thank the anonymous reviewers for their invaluable comments and
helpful suggestions. The work is supported by the National Science Foundation under Grant No.
CCF-1566158.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

FlowPaP and FlowReR 132:19

REFERENCES

(1]

[2]

(3]
(4]
(5]

(6]

(12]
(13]
(14]

(15]

(22]
(23]
[24]

[25]

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (2011).
Nachiappan Chidambaram Nachiappan, Praveen Yedlapalli, Niranjan Soundararajan, Mahmut Taylan Kandemir,
Anand Sivasubramaniam, and Chita R. Das. 2014. GemDroid: A Framework to Evaluate Mobile Platforms. In SIG-
METRICS.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik Gururaj, and Glenn Reinman. 2014.
Accelerator-Rich Architectures: Opportunities and Progresses. In DAC.

Danyl Bosomworth. 2015. Mobile Marketing Statistics 2015. (2015). http://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-statistics/

Rajagopalan Desikan, Charles R. Lefurgy, Stephen W. Keckler, and Doug Burger. 2002. On-chip MRAM as a High-
Bandwidth, Low-Latency Replacement for DRAM Physical Memories. In Department of Computer Science Tech Report
TR-02-47, The University of Texas at Austin.

Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, H. Li, and Yiran Chen. 2008. Circuit and microarchitecture
evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In DAC.

Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G. Friedman. 2013. AC-DIMM: Associative Computing
with STT-MRAM. In ISCA.

D. Halupka, S. Huda, W. Song, A. Sheikholeslami, K. Tsunoda, C. Yoshida, and M. Aoki. 2010. Negative-resistance
read and write schemes for STT-MRAM in 0.13 gm CMOS. In ISSCC.

Yiming Huai. 2008. Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects. AAPPS Bulletin 18, 6 (2008).
Yongbing Huang, Zhongbin Zha, Mingyu Chen, and Lixin Zhang. 2014. Moby: A mobile benchmark suite for archi-
tectural simulators. In ISPASS.

Lei Jiang, Wujie Wen, Danghui Wang, and Lide Duan. 2016. Improving Read Performance of STT-MRAM based Main
Memories through Smash Read and Flexible Read. In IEEE/ACM Asia and South Pacific Design Automation Conference
(ASP-DAC).

A.Jog, A.K. Mishra, Cong Xu, Yuan Xie, V. Narayanan, R. Iyer, and C. R. Das. 2012. Cache revive: Architecting volatile
STT-RAM caches for enhanced performance in CMPs. In DAC.

Uksong Kang, Hak soo Yu, Churoo Park, Hongzhong Zheng, John Halbert, Kuljit Bains, SeongJin Jang, and Joo Sun
Choi. 2014. Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling. In The Memory Forum.

E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. 2013. Evaluating STT-RAM as an energy-efficient
main memory alternative. In ISPASS.

Hai Li, Xiaobin Wang, Zhong-Liang Ong, Weng-Fai Wong, Yaojun Zhang, Peiyuan Wang, and Yiran Chen. 2011. Per-
formance, Power, and Reliability Tradeoffs of STT-RAM Cell Subject to Architecture-Level Requirement. Magnetics,
IEEE Transactions on 47, 10 (2011).

Ye-Jyun Lin, Chia-Lin Yang, Tay-Jyi Lin, Jiao-Wei Huang, and Naehyuck Chang. 2010. Hierarchical Memory Sched-
uling for Multimedia MPSoCs. In ICCAD.

Mengjie Mao, Hai (Helen) Li, Alex K. Jones, and Yiran Chen. 2013. Coordinating Prefetching and STT-RAM Based
Last-level Cache Management for Multicore Systems. In GLSVLSL

J. Meza, Jing Li, and O. Mutlu. 2012. A case for small row buffers in non-volatile main memories. In ICCD.

Asit K. Mishra, Xiangyu Dong, Guangyu Sun, Yuan Xie, N. Vijaykrishnan, and Chita R. Das. 2011. Architecting On-
chip Interconnects for Stacked 3D STT-RAM Caches in CMPs. In ISCA.

N. C. Nachiappan, P. Yedlapalli, N. Soundararajan, A. Sivasubramaniam, M. T. Kandemir, R. Iyer, and C. R. Das. 2015.
Domain Knowledge Based Energy Management in Handhelds. In HPCA.

Nachiappan Chidambaram Nachiappan, Haibo Zhang, Jihyun Ryoo, Niranjan Soundararajan, Anand Sivasubrama-
niam, Mahmut T. Kandemir, Ravi Iyer, and Chita R. Das. 2015. VIP: Virtualizing IP Chains on Handheld Platforms. In
ISCA.

Nadja Peters, Sangyoung Park, Dominik F, and Samarjit Chakraborty. 2016. Frame-based and Thread-based Power
Management for Mobile Games on HMP Platforms. In ICCD.

M. Rasquinha, D. Choudhary, S. Chatterjee, S. Mukhopadhyay, and S. Yalamanchili. 2010. An energy efficient cache
design using Spin Torque Transfer (STT) RAM. In ISLPED.

A. Raychowdhury. 2013. Pulsed READ in spin transfer torque (STT) memory bitcell for lower READ disturb. In
Nanoscale Architectures (NANOARCH), 2013 IEEE/ACM International Symposium on.

A. Raychowdhury, D. Somasekhar, T. Karnik, and V. De. 2009. Design space and scalability exploration of 1T-1STT
MT]J memory arrays in the presence of variability and disturbances. In IEEE International Electron Devices Meeting
(IEDM).

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

132:20 H. Yan et al.

[26]
[27]
(28]

[29]
(30]

(31]
(32]

[33]

[34]
(35]

(36]

(37]
(38]

(39]

P.Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. DRAMSim2: A Cycle Accurate Memory System Simulator. Computer
Architecture Letters 10, 1 (2011).

Clinton W. Smullen, Vidyabhushan Mohan, Anurag Nigam, Sudhanva Gurumurthi, and Mircea R. Stan. 2011. Relaxing
non-volatility for fast and energy-efficient STT-RAM caches. In HPCA.

Clinton W. Smullen, IV, Anurag Nigam, Sudhanva Gurumurthi, and Mircea R. Stan. 2011. The STeTSiMS STT-RAM
Simulation and Modeling System. In ICCAD.

Petre Stoica and Randolph Moses. 2005. Spectral Analysis of Signals. Prentice Hall.

Zhenyu Sun, Xiuyuan Bi, Hai (Helen) Li, Weng-Fai Wong, Zhong-Liang Ong, Xiaochun Zhu, and Wenqing Wu. 2011.
Multi Retention Level STT-RAM Cache Designs with a Dynamic Refresh Scheme. In MICRO.

Zhenyu Sun, Hai Li, and Wenqing Wu. 2012. A Dual-mode Architecture for Fast-switching STT-RAM. In ISLPED.

R. Takemura, T. Kawahara, K. Ono, K. Miura, H. Matsuoka, and H. Ohno. 2010. Highly-scalable disruptive reading
scheme for Gb-scale SPRAM and beyond. In IMW.

Jue Wang, Xiangyu Dong, and Yuan Xie. 2013. OAP: An obstruction-aware cache management policy for STT-RAM
last-level caches. In DATE.

Jue Wang, Xiangyu Dong, and Yuan Xie. 2014. Enabling High-performance LPDDRx-compatible MRAM. In ISLPED.
Rujia Wang, Lei Jiang, Youtao Zhang, Linzhang Wang, and Jun Yang. 2015. Selective Restore: An Energy Efficient
Read Disturbance Mitigation Scheme for Future STT-MRAM. In DAC.

C. Xu, Y. Zheng, D. Niu, X. Zhu, S. H. Kang, and Y. Xie. 2015. Impact of Write Pulse and Process Variation on 22 nm
FinFET-Based STT-RAM Design: A Device-Architecture Co-Optimization Approach. IEEE Transactions on Multi-Scale
Computing Systems 1, 4 (Oct 2015), 195-206.

Wei Xu, Hongbin Sun, Xiaobin Wang, Yiran Chen, and Tong Zhang. 2011. Design of Last-Level On-Chip Cache Using
Spin-Torque Transfer RAM (STT RAM). Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 19, 3 (2011).
Praveen Yedlapalli, Nachiappan Chidambaram Nachiappan, Niranjan Soundararajan, Anand Sivasubramaniam,
Mahmut T. Kandemir, and Chita R. Das. 2014. Short-Circuiting Memory Traffic in Handheld Platforms. In MICRO.
Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. Energy reduction for STT-RAM using early write termination.
In ICCAD.

Received April 2017; revised June 2017; accepted July 2017

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 132. Publication date: September 2017.

